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Abstract. At Asiacrypt 2015, Barbulescu et al. performed a thorough
analysis of the tower number field sieve (TNFS) variant of the number
field sieve algorithm. More recently, Kim and Barbulescu combined the
TNFS variant with several polynomial selection methods including the
Generalised Joux-Lercier method and the Conjugation method proposed
by Barbulescu et al. at Eurocrypt 2015. Sarkar and Singh (Eurocrypt
2016) proposed a polynomial selection method which subsumes both the
GJL and the Conjugation methods. This study was done in the context
of the NFS and the multiple NFS (MNFS). The purpose of the present
note is to show that the polynomial selection method of Sarkar and Singh
subsumes the GJL and the Conjugation methods also in the context of
the TNFS and the multiple TNFS variants. This was not clear from the
recent work by Kim and Barbulescu. Applying the new polynomial selec-
tion method to the TNFS variants results in new asymptotic complexities
for certain ranges of primes.

1 Introduction

There has been a recent increase in the interest of applying the number field
sieve (NFS) algorithms and its several variants to the study of the discrete log-
arithm problem on finite fields Fpn with n > 1. The work by Barbulescu et
al. [1] at Eurocrypt 2015 proposed two new methods for polynomial selections
and worked out the asymptotic complexities of these methods as applied to the
NFS algorithm. These polynomial selection methods were named the generalised
Joux-Lercier (GJL) method and the Conjugation method. At the same confer-
ence, Pierrot [5] showed how to combine these polynomial selection methods
with the multiple NFS (MNFS) variant [5] and worked out the corresponding
asymptotic complexities. Sarkar and Singh (Eurocrypt 2016) proposed [6] a new
polynomial selection method which subsumes both the GJL and the Conjuga-
tion methods. Using this method, the asymptotic complexity of both the NFS
and the MNFS were worked out in [6].

At Asiacrypt 2015, Barbulescu et al., [2] presented a detailed analysis of
the tower number field sieve (TNFS) variant. In a recent paper, Kim and Bar-
bulescu [4] applied previous polynomial selection methods to the TNFS, the



multiple TNFS (MTNFS) and the special TNFS variants. The polynomial se-
lection methods considered in [4] include the methods from Joux-Lercier-Smart-
Vercauteren [3], the GJL and the Conjugation methods from [1] and the polyno-
mial selection method from [6]. The discussion in [4] does not make it clear that
the polynomial selection method from [6] subsumes the GJL and the Conjugation
methods in the context of TNFS.

The main point of the present note is to properly apply the polynomial
selection method of Sarkar and Singh [6] to TNFS. Once this is done, it once
more follows that the polynomial selection method from [6] subsumes the GJL
and the Conjugation methods for the TNFS variant also.

The polynomial selection method considered in [6] has been called A. The
modification considered here provides a generalisation of A and let us denote the
generalisation as B. Let the variant of TNFS obtained by using B be denoted by
TNFS-B and similarly denote MTNFS-B.

Let Q = pn, where n = ηκ and gcd(η, κ) = 1. Suppose that p = LQ(a, cp) for
some a in (1/3, 2/3) where LQ is the usual sub-exponential notation. Further sup-
pose that η can be written as η = cη(lnQ/ln lnQ)2/3−a and let cθ = cpcη. For this
setting, the following new asymptotic results are obtained: For cθ ∈ [3.39, 20.91],
the complexity of TNFS-B is better than the complexities of all previous al-
gorithms whether classical or MNFS. The TMNFS-B algorithm provides lower
complexity compared to TNFS-B algorithm; for cθ ∈ (0, 1.12] ∪ [1.45, 3.15], the
complexity of TMNFS-B is the same as that of the TMNFS-Conjugation and
for cθ /∈ (0, 1.12]∪ [1.45, 3.15], the complexity of TMNFS-B is lower than that of
all previous methods. Figure 1 shows the plot of the asymptotic complexity for
both TNFS-B and MTNFS-B.

In this short note, we do not provide a background on the NFS algorithm.
Instead, we refer to the above mentioned papers for a background on NFS and
its variants as applied to the discrete logarithm problem.

2 Using LLL for Polynomial Selection

The method from [6] uses an idea earlier considered in [1]. We briefly mention
this idea.

Let ϕ(x) be a monic polynomial over the integers ϕ(x) = xn + ϕn−1x
n−1 +

· · · + ϕ1x + ϕ0 and r ≥ deg(ϕ) be an integer. Let n = deg(ϕ). Given ϕ(x) and
r, define an (r + 1)× (r + 1) matrix Mϕ,r in the following manner.

Mϕ,r =



p
. . .

. . .

p
ϕ0 ϕ1 · · · ϕn−1 1

. . .
. . .

. . .

ϕ0 ϕ1 · · · ϕn−1 1


(1)



Fig. 1. Complexity plot for medium prime case

The first n × n principal sub-matrix of Mϕ,r is diag[p, p, . . . , p] corresponding
to the polynomials p, px, . . . , pxn−1. The last r − n + 1 rows correspond to the
polynomials ϕ(x), xϕ(x), . . . , xr−nϕ(x).

Apply the LLL algorithm to Mϕ,r and let the first row of the resulting LLL-
reduced matrix be [g0, g1, . . . , gr−1, gr]. Define

g(x) = g0 + g1x+ · · ·+ gr−1x
r−1 + grx

r. (2)

The notation

g = LLL (Mϕ,r) (3)

will be used to denote the polynomial g(x) given by (2). By construction, ϕ(x)
is a factor of g(x) modulo p.

3 A New Polynomial Selection Method for TNFS

We show how to properly modify the polynomial selection method described
in [6] to the TNFS variant.

Consider the field Fpn where n = ηκ with gcd(η, κ) = 1. Let h(z) be an
irreducible polynomial over Z of degree η and R = Z[z]/(h(z)). This is the basic
set-up of the tower number field sieve algorithm.



Let A be a positive integer. Consider the set of all polynomials φ(x) of the
form

φ(x) = φ0(z) + φ1(z)x+ · · ·+ φt−1(z)xt−1,

where φi(z) ∈ Z[z], deg(φi) ≤ η − 1 and ‖φi‖∞ ≤ A. The number of such
polynomials φ(x) is at most Aηt. We will call any such polynomial to be a
sieving polynomial. Sieving is done using such polynomials φ(x).

Define E to be E2 = Aηt and so Aη = E2/t. So, the number of possible
coefficient polynomials of φ(x) is E2/t.

Let f be an irreducible polynomial over the integers. Define

Nf (φ) = Rest(Resx(φ(x), f(x)), h(z)).

If ‖h‖∞ is bounded by an absolute constant H and p = LQ(`p, c) for some
`p > 1/3 and c > 0, then following [2, 4], it can be proved that the following
holds:

Nf (φ) ≤ E2deg(f)/t (‖f‖∞)
t−1

LQ(2/3, o(1)).

Algorithm B describes the extension of our previous method to the TNFS
setting. Note that if η = 1, then κ = n and B becomes identical to the polyno-
mial selection algorithm A defined in [6]. The following result states the basic

Algorithm: B: Polynomial selection for TNFS.

Input: p, n = ηκ, d (a factor of κ) and r ≥ κ/d.
Output: f(x), g(x) and ϕ(x).

Let k = κ/d;
repeat

Randomly choose a monic irreducible polynomial A1(x) having the
following properties: degA1(x) = r + 1; A1(x) is irreducible over the
integers; A1(x) has coefficients of size O(ln(p)); modulo p, A1(x) has an
irreducible factor A2(x) of degree k.
Randomly choose monic polynomials C0(x) and C1(x) with small
coefficients such that degC0(x) = d and degC1(x) < d.
Define

f(x) = Resy (A1(y), C0(x) + y C1(x)) ;

ϕ(x) = Resy (A2(y), C0(x) + y C1(x)) mod p;

ψ(x) = LLL(MA2,r);

g(x) = Resy (ψ(y), C0(x) + y C1(x)) .

until f(x) and g(x) are irreducible over Z and ϕ(x) is irreducible over Fp.

return f(x), g(x) and ϕ(x).

properties of Algorithm B.



Proposition 1. The outputs f(x), g(x) and ϕ(x) of Algorithm B satisfy the
following.

1. deg(f) = d(r + 1); deg(g) = rd and deg(ϕ) = κ;

2. both f(x) and g(x) have ϕ(x) as a factor modulo p;

3. ‖f‖∞ = O(ln(p)) and ‖g‖∞ = O(Q1/(d(r+1))).

Consequently, if φ is a sieving polynomial, then

Nf (φ) = E2d(r+1)/t × LQ(2/3, o(1)); (4)

Ng(φ) = E2dr/t ×Q(t−1)/(d(r+1)) × LQ(2/3, o(1)); (5)

Nf (φ)×Ng(φ) = E(2d(2r+1))/t ×Q(t−1)/(d(r+1))LQ(2/3, o(1)). (6)

We note the following points.

1. If d = 1, then the norm bound is E2(2r+1)/tQ(t−1)/(r+1) which is the same
as that obtained using the GJL method.

2. If d = κ, then the norm bound is E2κ(2r+1)/tQ(t−1)/(κ(r+1)). Further, if
r = k = 1, then the norm bound is the same as that obtained using the
Conjugation method. So, for d = κ, Algorithm B is a generalisation of the
Conjugation method.

3. If κ is a prime, then the only values of d are either 1 or n. The norm bounds
in these two cases are covered by the above two points.

4. If κ is composite, then there are non-trivial values for d and it is possible to
obtain new trade-offs in the norm bound. For concrete situations, this can
be of interest. Further, for composite κ, as value of d increases from d = 1
to d = κ, the norm bound nicely interpolates between the norm bounds of
the GJL method and the Conjugation method.

4 Asymptotic Complexity Analysis for the Medium
Prime Case

For 1/3 < a < 2/3, write

p = LQ(a, cp), where cp =
1

n

(
lnQ

ln lnQ

)1−a

and so n =
1

cp

(
lnQ

ln lnQ

)1−a

.(7)

For each cp, the runtime of the NFS algorithm is the same for the family of finite
fields Fpn where p is given by (7).

Recall that n = ηκ where gcd(η, κ) = 1. Suppose η can be written as

η = cη

(
lnQ

ln lnQ

)2/3−a

. (8)



Define P = pη. Then

P = LQ(a, cpη)

= exp
(
cpη(lnQ)a(ln lnQ)1−a

)
= exp

(
cpcη

(
lnQ

ln lnQ

)2/3−a

(lnQ)a(ln lnQ)1−a

)
= exp

(
cpcη(lnQ)2/3(ln lnQ)1/3

)
= LQ(2/3, cpcη). (9)

So, if p is a medium prime with p = LQ(a, cp) with 1/3 < a < 2/3 and η is
given by (8), then P is of the form LQ(2/3, cpcη), i.e., its size corresponds to the
boundary case of NFS. The tower number field sieve considers an extension of
degree κ over P . So, the extension of degree ηκ over a medium size prime p is
transformed into an extension of degree κ over a boundary case size prime power
P . Consequently, for such a situation, the asymptotic results obtained earlier for
the boundary case can be translated to the medium size case.

We recall the following.

1. The number of polynomials to be considered for sieving is E2.
2. The factor base is of size B.

Sparse linear algebra using the Lanczos or the block Wiedemann algorithm takes
time O(B2). For some 0 < b < 1, let

B = LQ(b, cb). (10)

The value of b will be determined later. Set

E = B (11)

so that asymptotically, the number of sieving polynomials is equal to the time
for the linear algebra step.

Let π = Ψ(Γ, B) be the probability that a random positive integer which is at
most Γ is B-smooth. Let Γ = LQ(z, ζ) and B = LQ(b, cb). Using the L-notation
version of the Canfield-Erdös-Pomerance theorem,

(Ψ(Γ, B))
−1

= LQ

(
z − b, (z − b) ζ

cb

)
. (12)

Following the usual convention, we assume that the same smoothness probability
π holds for the event that a random sieving polynomial φ(x) is smooth over the
factor base.

The expected number of polynomials to consider for obtaining one relation is
π−1. Since B relations are required, obtaining this number of relations requires
trying Bπ−1 trials. Balancing the cost of sieving and the linear algebra steps
requires Bπ−1 = B2 and so

π−1 = B. (13)



Obtaining π−1 from (12) and setting it to be equal to B allows solving for cb.
Balancing the costs of the sieving and the linear algebra phases leads to the
runtime of the NFS algorithm to be B2 = LQ(b, 2cb). So, to determine the
runtime, we need to determine b and cb. The value of b will turn out to be 1/3
and the only real issue is the value of cb.

Lemma 1. Let n = ηκ and κ = kd for positive integers η, k and d. Using the
expressions for p and E(= B) given by (7) and (10), we obtain the following.

E
2
t d(2r+1) = LQ

(
1− a+ b, 2cb(2r+1)

cpηkt

)
;

Q
t−1

d(r+1) = LQ

(
a,

kcpη(t−1)
(r+1)

)
.

 (14)

If further η = cη(lnQ/ln lnQ)2/3−a, then

E
2
t d(2r+1) = LQ

(
1/3 + b, 2cb(2r+1)

cpcηkt

)
;

Q
t−1

d(r+1) = LQ

(
2/3,

kcpcη(t−1)
(r+1)

)
.

 (15)

Proof. The second expression follows directly from Q = pn, p = LQ(a, cp) and
n = ηkd. The computation for obtaining the first expression is the following.

E
2
t d(2r+1) = LQ

(
b, cb

2

t
d(2r + 1)

)
= exp

(
cb

2

t
(2r + 1)

n

kη
(lnQ)b(ln lnQ)1−b

)
= exp

(
cb

2

cpηkt
(2r + 1)

(
lnQ

ln lnQ

)1−a

(lnQ)b(ln lnQ)1−b

)

= LQ

(
1− a+ b,

2cb(2r + 1)

cpηkt

)
.

ut

Theorem 1. Let n = ηκ; gcd(η, κ) = 1; κ = kd; r ≥ k; t ≥ 2; p = LQ(a, cp)
with 1/3 < a < 2/3 and 0 < cp < 1; and η = cη(lnQ/ln lnQ)2/3−a. It is possible
to ensure that the runtime of the NFS algorithm with polynomials chosen by
Algorithm B is LQ(1/3, 2cb) where

cb =
2r + 1

3cθkt
+

√(
2r + 1

3cθkt

)2

+
kcθ(t− 1)

3(r + 1)
and (16)

cθ = cpcη. (17)

Proof. Setting b = 1/3, the two L-expressions given by (15) have the same first
component and so the product of the norms is

Γ = LQ

(
2

3
,

2cb(2r + 1)

cpcηkt
+
kcpcη(t− 1)

(r + 1)

)
= LQ

(
2

3
,

2cb(2r + 1)

cθkt
+
kcθ(t− 1)

(r + 1)

)
.



Then π−1 given by (12) is

LQ

(
1

3
,

1

3

(
2(2r + 1)

cθkt
+
kcθ(t− 1)

cb(r + 1)

))
.

From the condition π−1 = B, we get

cb =
1

3

(
2(2r + 1)

cθkt
+
kcθ(t− 1)

cb(r + 1)

)
. (18)

Solving the quadratic for cb and choosing the positive root gives

cb =
2r + 1

3cθkt
+

√(
2r + 1

3cθkt

)2

+
kcθ(t− 1)

3(r + 1)
.

ut

Note that cb is minimised at cpcη = cθ = 121/3 whence the corresponding com-
plexity of the TNFS algorithm is LQ(1/3, (48/9)1/3).

5 Multiple Number Field Sieve Variant

There are two variants of multiple number field sieve algorithm. In the first
variant, the image of φ(x) needs to be smooth in at least any two of the number
fields. In the second variant, the image of φ(x) needs to be smooth in the first
number field and at least one of the other number fields. We discuss the second
variant of MNFS only. In contrast to the number field sieve algorithm, the right
number field is replaced by a collection of V number fields in the second variant
of MNFS. The sieving polynomial φ(x) has to satisfy the smoothness condition
on the left number field as before. On the right side, it is sufficient for φ(x) to
satisfy a smoothness condition on at least one of the V number fields.

Recall that Algorithm B produces two polynomials f(x) and g(x) of degrees
d(r+1) and dr respectively. The polynomial g(x) is defined as Resy(ψ(y), C0(x)+
yC1(x)) where ψ(x) = LLL(MA2,r), i.e., ψ(x) is defined from the first row of the
matrix obtained after applying the LLL-algorithm to MA2,r.

Methods for obtaining the collection of number fields on the right have been
mentioned in [5]. We adapt one of these methods to our setting. Consider Algo-
rithm B. Let ψ1(x) be ψ(x) as above and let ψ2(x) be the polynomial defined from
the second row of the matrix MA2,r. Define g1(x) = Resy(ψ1(y), C0(x)+yC1(x))
and g2(x) = Resy(ψ2(y), C0(x) + yC1(x)). Then choose V − 2 linear combi-
nations gi(x) = sig1(x) + tig2(x), for i = 3, . . . , V . Note that the coefficients
si and ti are of the size of

√
V . All the gi’s have degree dr. Asymptotically,

‖ψ2‖∞ = ‖ψ1‖∞ = Q1/(d(r+1)). Since we take V = LQ(1/3), all the gi’s have
their infinity norms to be the same as that of g(x) given by Proposition 1.

For the left number field, as before, let B be the bound on the norms of the
ideals which are in the factor basis defined by f . For each of the right number



fields, let B′ be the bound on the norms of the ideals which are in the factor
basis defined by each of the gi’s. So, the size of the entire factor basis is B+V B′.
The following condition balances the left portion and the right portion of the
factor basis.

B = V B′. (19)

With this condition, the size of the factor basis is B1+o(1) as in the classical
NFS and so asymptotically, the linear algebra step takes time B2. As before,
the number of sieving polynomials is E2 = B2 and the coefficient polynomials
of φ(x) can take E2/t distinct values.

Let π be the probability that a random sieving polynomial φ(x) gives rise
to a relation. Let π1 be the probability that φ(x) is smooth over the left factor
basis and π2 be the probability that φ(x) is smooth over at least one of the
right factor bases. Further, let Γ1 = Resx(f(x), φ(x)) be the bound on the norm
corresponding to the left number field and Γ2 = Resx(gi(x), φ(x)) be the bound
on the norm for any of the right number fields. Note that Γ2 is determined only
by the degree and the L∞-norm of gi(x) and hence is the same for all gi(x)’s.
Heuristically, we have

π1 = Ψ(Γ1, B);
π2 = VΨ(Γ2, B

′);
π = π1 × π2.

(20)

As before, one relation is obtained in about π−1 trials and so B relations are
obtained in about Bπ−1 trials. Balancing the cost of linear algebra and sieving,
we have as before B = π−1.

The following choices of B and V are made.

E = B = LQ
(
1
3 , cb

)
;

V = LQ
(
1
3 , cv

)
; and so

B′ = B/V = LQ
(
1
3 , cb − cv

)
.

(21)

Theorem 2. Let n = ηκ; gcd(η, κ) = 1; κ = kd; r ≥ k; t ≥ 2; p = LQ(a, cp)
with 1/3 < a < 2/3 and 0 < cp < 1; and η = cη(lnQ/ln lnQ)2/3−a. It is possible
to ensure that the runtime of the MNFS algorithm is LQ(1/3, 2cb) where

cb =
4r + 2

6ktcθ
+

√
r(3r + 2)

(3ktcθ)2
+
cθk(t− 1)

3(r + 1)
and (22)

cθ = cpcη.



Proof. Note the following computations. For a sieving polynomial φ,

Γ1 = Nf (φ)

= E(2d(r+1))/tLQ(2/3, o(1))

= E(2n(r+1))/(ηkt)

= LQ

(
2

3
,

2(r + 1)cb
ktcpcη

)
;

π−11 = LQ

(
1

3
,

2(r + 1)

3ktcθ

)
;

Γ2 = Ng(φ)

= E(2rd)/t ×Q(t−1)/(d(r+1))LQ(2/3, o(1)

= E(2rn)/(ηkt) ×Qηk(t−1)/(n(r+1))

= LQ

(
2

3
,

2rcb
cpcηkt

+
kcpcη(t− 1)

r + 1

)
;

π−12 = LQ

(
1

3
,−cv +

1

3(cb − cv)

(
2rcb
cθkt

+
kcθ(t− 1)

r + 1

))
;

π−1 = LQ

(
1

3
,

2(r + 1)

3ktcθ
− cv +

1

3(cb − cv)

(
2rcb
cθkt

+
kcθ(t− 1)

r + 1

))
;

From the condition π−1 = B, we obtain the following equation.

cb =
2(r + 1)

3ktcpcη
− cv +

1

3(cb − cv)

(
2rcb
cθkt

+
kcθ(t− 1)

r + 1

)
. (23)

We wish to find cv such that cb is minimised subject to the constraint (23). Using
the method of Lagrange multipliers, the partial derivative of (23) with respect
to cv gives

cv =
r + 1

3ktcθ
.

Using this value of cv in (23) provides the following quadratic in cb.

(3ktcθ)c
2
b − (4r + 2)cb +

(r + 1)2

3ktcθ
− (cθk)2t(t− 1)

r + 1
= 0.

Solving this and taking the positive square root, we obtain

cb =
4r + 2

6ktcθ
+

√
r(3r + 2)

(3ktcθ)2
+
cθk(t− 1)

3(r + 1)
. (24)

Hence the overall complexity of MNFS for the boundary case is LQ
(
1
3 , 2cb

)
. ut

From Theorem 2, the entire analysis carried out in Sections 8.1 and 8.2 of [6] ap-
ply with the constant cp replaced by cθ leading to the new asymptotic complexity
results for the medium prime case that has been mentioned in the introduction.



References

1. Razvan Barbulescu, Pierrick Gaudry, Aurore Guillevic, and François Morain. Im-
proving NFS for the discrete logarithm problem in non-prime finite fields. In Elis-
abeth Oswald and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I,
volume 9056 of Lecture Notes in Computer Science, pages 129–155. Springer, 2015.

2. Razvan Barbulescu, Pierrick Gaudry, and Thorsten Kleinjung. The tower number
field sieve. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology -
ASIACRYPT 2015 - 21st International Conference on the Theory and Application
of Cryptology and Information Security, Auckland, New Zealand, November 29 -
December 3, 2015, Proceedings, Part II, volume 9453 of Lecture Notes in Computer
Science, pages 31–55. Springer, 2015.

3. Antoine Joux, Reynald Lercier, Nigel P. Smart, and Frederik Vercauteren. The
number field sieve in the medium prime case. In Cynthia Dwork, editor, Advances
in Cryptology - CRYPTO 2006, 26th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 20-24, 2006, Proceedings, volume 4117 of
Lecture Notes in Computer Science, pages 326–344. Springer, 2006.

4. Taechan Kim and Razvan Barbulescu. Extended tower number field sieve: A new
complexity for medium prime case. Cryptology ePrint Archive, Report 2015/1027,
2015. http://eprint.iacr.org/.

5. Cécile Pierrot. The multiple number field sieve with conjugation and generalized
Joux-Lercier methods. In Advances in Cryptology - EUROCRYPT 2015 - 34th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 156–170,
2015.

6. Palash Sarkar and Shashank Singh. New complexity trade-offs for the (multiple)
number field sieve algorithm in non-prime fields. Cryptology ePrint Archive, Report
2015/944, 2015. http://eprint.iacr.org/.


