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Abstract

Statistical analysis of multiple differential attacks are considered in this paper. Following the work of
Blondeau and Gérard, the most general situation of multiple differential attack where there are no restrictions
on the set of differentials is studied. We obtain closed form expressions for the data complexity in terms
of the success probability and the advantage of an attack. This is done under two scenarios – one, where
an independence assumption used by Blondeau and Gérard is assumed to hold and second, where no such
assumption is made. The first case employs the Chernoff bounds while the second case uses the Azuma-
Hoeffding bounds from the theory of martingales. In both cases, we do not make use of any approximations
in our analysis. As a consequence, the results are more generally applicable compared to previous works. The
analysis without the independence assumption is the first of its kind in the literature. We believe that the
current work places the statistical analysis of multiple differential attack on a more rigourous foundation than
what was previously known.
Keywords: multiple differential cryptanalysis, Chernoff bounds, martingales, Azuma-Hoeffding
bounds.

1 Introduction

One of the basic techniques for attacking a block cipher is differential cryptanalysis [3]. In its basic form, it
considers the difference after several rounds of the encryption function to two plaintexts which themselves which
differ by a fixed string. A pair of such input and output differences is called a differential. Initially, differential
cryptanalysis was considered with respect to a single differential. Later work considered several differentials
where either all the input differences are the same or all the output differences are the same. In its most general
form, there are multiple differentials with no restrictions on either the input or the output differences.

Cryptanalysis of block ciphers has two conceptual phases. The first phase consists of a detailed study of the
structure of the block cipher to discover some property which can be distinguished from randomness. Obtaining
one or more differentials is one such property that a cryptanalyst looks for. The second phase involves using
statistical methods to exploit such a property for deriving a portion of the secret key. Over the years, the second
phase has received increasing focus [15, 12, 13, 14, 1, 5, 23, 11, 8, 6, 7].

To mount an attack, a cryptanalyst requires a number of plaintexts and the corresponding ciphertexts en-
crypted with the same secret key. In a key recovery attack, the goal is to obtain the correct value for a subset of
the key bits. This subset is called the target sub-key. Suppose m bits of the key are to be recovered. Processing
the obtained plaintext-ciphertext pairs will provide the cryptanalyst with a list of candidate values for the target
sub-key. The attack is successful if the correct value is in the list of candidate values. The other parameter of
interest is the size of the candidate list. If for some a, this list is of size 2m−a, then the attack is said to have
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advantage at least a. A statistical analysis tries to determine the number N of plaintext-ciphertext pairs such
that the attack is successful with probability at least PS and has advantage a. The parameter N is called the
data complexity of the attack. The goal of a statistical analysis is to obtain an expression for N in terms of PS
and a.

Statistical analysis of the most general form of multiple differential cryptanalysis was considered by Blondeau
and Gérard [6]. Building on prior work [8], the paper provided two separate expressions for the data complexity
and the success probability. The expression for the data complexity holds for success probability close to 0.5 and
so for example, it cannot be applied to attack with success probability close to 1 (say 0.95). The expression for
success probability, on the other hand, is complicated and does not directly involve the data complexity. Further,
the analysis used several approximations involving the Poisson distributions and also required the approximations
of tails of binomial distributions used in an earlier work [8]. The errors in such approximations, however, have
not been rigorously analysed. Another feature of the analysis in [6] is that it is based on an independence
assumption. Whether the assumption holds in general is not clear and the authors remark [6]: “This hypothesis
is not so far to being true.”

Our Contributions

As in [6], the setting of our work is multiple differential cryptanalysis without any restrictions on the input or
the output differences. We perform a new statistical analysis of this kind of attack. This analysis involves using
the Chernoff bounds and the theory of martingales. These techniques have been earlier used in the context of
block cipher cryptanalysis [22].

We build the statistical analysis in several steps. The first step considers the simpler scenario where there is
only one single input difference while there can be several output differences. In the second step, we extend this
to the general scenario of multiple differentials without any restriction on the input or the output differences.
This step, however, utilises the independence assumption used in [6]. In the third step, we do away with the
independence assumption. So, the analysis of the third step is the most general. The analysis of the first two
steps uses the Chernoff bounds while the third step is based on the theory of martingales. There are two common
features to all the three steps of our analysis.

1. Nowhere do we make any kind of approximation. So, the analysis holds for all settings.

2. In each case, we obtain explicit closed form expressions for the data complexity in terms of the success
probability and the advantage. These expressions can be evaluated to obtain the data complexity for any
values of the success probability and the advantage.

A set of multiple differentials were provided for a 64-bit toy cipher SMALLPRESENT in [6]. For these
differentials, we compare the concrete values of the data complexities provided by our analysis with earlier
works [6, 7]. It turns out that in all cases, the data complexities obtained by our methods is higher than what
has been previously reported. For the analysis with the independence assumption, the data complexities are
close, while for the analysis without the independence assumption, the new data complexity turns out to be
significantly higher. There are two take-aways from these experimental results. First, if a cryptanalyst does not
wish to rely on approximations which have not been rigorously analysed, then one will have to satisfied with
the conservative estimates of the data complexity. Second, if one does not want to rely on a somewhat ad-hoc
independence assumption, then one will have to be prepared for handling a much higher data complexity.

Previous and Related Works: Differential cryptanalysis was first proposed by Biham and Shamir in [3] for
cryptanalysis of DES. Later in [4], the same authors improved upon the earlier version by considering multiple
differentials with the same output difference. Knudsen [16] introduced truncated differential cryptanalysis. Other
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variants of differential cryptanalysis have been proposed. These include higher order differentials [17], cube
attack [9], boomerang attack [25], impossible differential attack [2] and the improbable differential attack [24].

A statistical analysis of multiple differential attack with a single input difference was given in [20]. Selçuk [23]
derived an expression for the data complexity of single differential cryptanalysis using the ranking methodology.
The technique used by Selçuk was subsequently used by Blondeau et al. in [7] to derive data complexity of
differential cryptanalysis using the log-likelihood (LLR) and chi-squared test statistic. This work considered
differentials with a single input difference.

As mentioned earlier, the most general framework for differential cryptanalysis was considered in [6], where
differentials were considered without any restrictions. The work proposed a new test statistic and showed that
the distribution of the test statistic can be approximated by a Poisson distribution. It was subsequently pointed
out that the Poisson approximation is not good for the tail probabilities and hence the technique of [8] was used
to approximate the tail probabilities.

The task of deriving data complexity expressions without using approximations was carried out in [22] for
several types of block cipher attacks. Chernoff bounds and the theory of martingales were used for this purpose.
The present work employs these techniques to analyse the tail probabilities of the test statistic proposed in [6].
This leads to the aforementioned results on data complexities obtained here. For problematic issues regarding
the use of approximations in cryptanalysis we refer the reader to [21].

2 Background

Let E : {0, 1}k × {0, 1}n 7→ {0, 1}n be a block cipher so that for each K ∈ {0, 1}k, the function EK(·) ∆
= E(K, ·)

is a bijection. Here K is called the secret key, the n-bit input to EK is called the plaintext and the n-bit output
of EK is called the ciphertext.

We consider iterated block ciphers which are constructed by composing round functions. Let R
(0)

k(0)
, R

(1)

k(1)
, . . .

be the round functions, where k(0), k(1), . . . denote the round keys. These round keys are produced by applying
an expansion function on the secret key K, called the key scheduling algorithm. For a fixed key, the round
functions are also bijections.

Denote by K(i) the concatenation of the first i round keys, i.e., K(i) = k(0) || · · · || k(i−1) and by E
(i)

K(i) the
composition of the first i round functions, i.e.,

E
(1)

K(1) = R
(0)

k(0)
; E

(i)

K(i) = R
(i−1)

k(i−1) ◦ · · · ◦R
(0)

k(0)
= R

(i−1)

k(i−1) ◦ E
(i−1)

K(i−1) ; i ≥ 1.

Consider an attack on the first (r+ 1) round of the block cipher EK . For a plaintext P , denote by B the output

after r rounds, i.e., B = E
(r)

K(r)(P ) and by C the output after r + 1 rounds, i.e., C = E
(r+1)

K(r+1) = R
(r)

k(r)
(B).

2.1 Differential Cryptanalysis

Let δ0 and δr be n-bit strings where δ0 is not the all-zero string. For a plaintext P , denote P ′ = P ⊕ δ0. Since
δ0 6= 0n, P ′ 6= P . Let B and B′ denote the output after r rounds corresponding to P and P ′ respectively. From
the bijectivity of the round functions, it follows that B 6= B′. For a fixed K, the quantities P ′, B and B′ are
completely determined by P .

Let P be chosen uniformly at random and let p be such that p = Pr[B ⊕ B′ = δr]. On the other hand, if
B and B′ are chosen uniformly and without replacement from {0, 1}n, then Pr[B ⊕ B′ = δr] = 1/(2n − 1). Let
pw = 1/(2n− 1). The first and a non-trivial step of a differential cryptanalysis is to make a detailed study of the
block cipher to unearth δ0 and δr such that p is ‘significantly’ different from pw.
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Target sub-key: Suppose there are m bits of the key such that knowledge of these m bits is sufficient to invert
the last round and obtain B from C. These m bits could be a subset of bits of the last round key. If it turns
out that m < n, then a differential cryptanalysis can be attempted. We will call this set of m bits as the target
sub-key. There are 2m possible choices of the target sub-key out of which only one is correct. We will denote the
correct choice of the target sub-key as κ∗. The goal of the attack is to find κ∗.

The attack will proceed by testing each possible value of the target sub-key. If the choice of the target sub-key
is correct, then Pr[B ⊕ B′ = δr] will be equal to p. On the other hand, if the choice of the target sub-key is
incorrect, then it is conventional to assume that the block cipher behaves like a random permutation and so in
this case, Pr[B ⊕B′ = δr] will be equal to pw.

Multiple differentials: We follow [6] in considering multiple differentials. Our notation, though, is somewhat
different.

In the above, we have considered a single pair (δ0, δr). More generally, one can consider a set ∆ of such
pairs. An attack which aims to utilise such a set of differentials is called a multiple differential attack. Let
ν = |∆|. Define ∆0 = {δ0 : there is a δr such that (δ0, δr) ∈ ∆}. In other words, ∆0 consists of the set of all
n-bit strings which occur as the first component of some pair in ∆. These are all the distinct input differences.

Let ν0 = |∆0| and enumerate the input differences in ∆0 as ∆0 = {δ(1)
0 , . . . , δ

(ν0)
0 }. For δ

(i)
0 , define ∆

(i)
r as

∆
(i)
r = {δr : (δ

(i)
0 , δr) ∈ ∆}. The set ∆

(i)
r consists of the set of all possible output difference corresponding to the

input difference δ
(i)
0 . Let νi = |∆(i)

r | and enumerate the set ∆
(i)
r as ∆

(i)
r = {δ(i,1)

r , . . . , δ
(i,νi)
r }. Then the set of

differentials can be written as

∆ = {(δ(i)
0 , δ(i,j)

r ) | i = 1, . . . , ν0 and j = 1, . . . , νi}.

Suppose P is chosen uniformly at random. For a particular choice κ of the target sub-key and δ
(i)
0 , let Sκ,i

be the following random variable.

Sκ,i =
(
R(r)
κ

)−1
(EK(r)(P ))⊕

(
R(r)
κ

)−1 (
EK(r)(P ⊕ δ(i)

0 )
)
. (1)

Here
(
R

(r)
κ

)−1
refers to the inversion of the r-th round using κ as the value of the target sub-key.

Extending the probability notions from the case of a single differential, for i = 1, . . . , ν0 and j = 1, . . . , νi, we
define

Pr
[
Sκ,i = δ

(i,j)
r

]
=

{
pi,j if κ = κ∗;
qi,j otherwise;

qi,j = 1/(2n − 1);
pi =

∑νi
j=1 pi,j ;

p̂ = (
∑ν0

i=1 pi) /ν0;
qi =

∑νi
j=1 qi,j ;

q̂ = (
∑ν0

i=1 qi) /ν0.

(2)

We note that the analysis of the block cipher will provide the set ∆ and also the probabilities pi,j for i = 1, . . . , ν0

and j = 1, . . . , νi. These form the starting point of a statistical analysis.

Setting of the attack: Suppose that P1, . . . , PN are chosen independently and uniformly at random from
{0, 1}n. For each η = 1, . . . , N , the adversary obtains the ciphertext Cη corresponding to the encryption of Pη

under some key K. Further, for each input difference δ
(i)
0 ∈ ∆0 the adversary obtains the encryption of P ⊕ δ(i)

0

under the same key K. So, in total the adversary has (ν0 + 1)N pairs of plaintext and ciphertexts. Therefore,
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N denotes the number of independently and uniformly chosen plaintexts whereas the number of encryptions
required is (ν0 + 1)N . By data complexity we will denote N .

Recall that κ∗ is the correct choice of the target sub-key corresponding to K. The goal of the adversary is to
obtain κ∗.

We extend the definition of Sκ,i in the following manner. For a choice κ of the target sub-key, i = 1, . . . , ν0

and η = 1, . . . , N , define

Sκ,i,η =
(
R(r)
κ

)−1
(EK(r)(Pη))⊕

(
R(r)
κ

)−1 (
EK(r)(Pη ⊕ δ(i)

0 )
)
. (3)

Since P1, . . . , PN are independent, the random variables Sκ,i,1, . . . , Sκ,i,N are also independent and each of these
is distributed as Sκ,i.

Define a binary valued random variable Tκ,i,η as follows: Tκ,i,η = 1 if Sκ,i,η is in ∆
(i)
r and it is 0 otherwise. It

follows that Tκ,i,1, . . . , Tκ,i,N are also independent. For a fixed κ, i and η, the random variable Sκ,i,η can take at

most one value in ∆
(i)
r . As a result,

Pr[Tκ,i,η = 1] =

{ ∑νi
η=1 pi,j = pi if κ = κ∗;

νi/(2
n − 1) = qi if κ 6= κ∗.

(4)

From the (ν0 + 1)N plaintext-ciphertext pairs; for i = 1, . . . , ν0; and for each choice κ of the target sub-key; the
adversary can compute the values of Tκ,i,1, . . . , Tκ,i,N in time Nν02m.

The test statistic: For a choice κ of the target sub-key and η = 1, . . . , N , define

Tκ,η =

ν0∑
i=1

Tκ,i,η. (5)

For a choice κ of the target sub-key, the test statistic is defined to be

Tκ =

N∑
η=1

Tκ,η =

ν0∑
i=1

N∑
η=1

Tκ,i,η. (6)

Success probability and advantage of an attack: An attack will ultimately provide a list of candidate
values of the target sub-key. The attack is said to be successful, if κ∗ is in the list and the probability of this
event is said to be the success probability. This probability is denoted as PS . The size of the list is another factor
which determines the efficacy of an attack. The attack is said to have advantage a, if the size of the list is 2m−a.

The goal of a statistical analysis is to obtain an expression for the data complexity in terms of the success
probability and the advantage of an attack.

2.2 Summary of the Blondeau-Gèrard Analysis

In [6], Blondeau and Gèrard provided a statistical analysis of multiple differential attack as outlined above. Their
analysis used the following assumption.

Assumption 1 ([6, Hypothesis 2]). For any sub-key κ (including κ∗) and for any η = 1, . . . , N , the random
variables Tκ,1,η, . . . , Tκ,ν0,η are independent.

Based on this assumption and using an asymptotic result it was shown that each of the random variables
Tκ,η follow a Poisson distribution with parameter λ =

∑ν0
i=0 pi for κ = κ∗ and follows a Poisson distribution with

parameter λ =
∑ν0

i=0 qi for κ 6= κ∗ [6, Theorem 1]. Since Tκ =
∑N

η=1 Tκ,η and Tκ,1, . . . , Tκ,N are independent,
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Tκ also follows a Poisson distribution with parameter Nλ. It was further mentioned that this approximation
does not give a good estimate of the tails of the cumulative distribution function of the test statistic Tκ. Hence,
they used another approximation to get the tail of the distribution. Eventually, the full distributions for both
the correct and the incorrect choice of the target sub-key were given. It was found that these distributions are
similar to the distributions of [8]. Therefore, the framework from [8] was used to estimate the data complexity
and the success probability of the multiple differential cryptanalysis. We restate the results here.

Corollary 1 of [6]. The data complexity of multiple differential cryptanalysis with success probability close
to 0.5 is given by

N = −2 · ln(2ι
√
π2−m)

ν0D(p̂ || q̂)
; (7)

where ι is the size reduced list of the candidate keys and D(p̂ || q̂) is the Kullback-Leibler divergence between
the distributions (p̂, 1− p̂) and (q̂, 1− q̂). Typically, ι = 2m−a for an attack with a-bit advantage.

Corollary 2 of [6]. Let G∗(x) (resp. G(x)) be the estimate of the cumulative distribution function of Tκ∗

(resp. , Tκ) defined by [6, Proposition 1]. The success probability, PS , of a multiple differential cryptanalysis is
given by

PS ≈ 1−G∗
(
G−1

(
1− ι− 1

2m − 2

)
− 1

)
; (8)

where the pseudo-inverse of G is defined by G−1(y) = min{x | G(x) ≥ y}.

Remark 1: Putting ι = 2m−a in (7), we have

N = −2 · ln(2
√
π/2a)

ν0D(p̂ || q̂)
. (9)

Therefore, N > 0 only for a > lg(2π) = 1 + lg π. So, the data complexity expression given by equation (7) is not
meaningful for small values of ‘a’.

3 Hypothesis Testing Framework

We briefly outline the hypothesis testing framework that we use to perform the statistical analysis of multiple
differential attack.

The test statistic is Tκ. Let µ0 = E[Tκ∗ ] and µ1 = E[Tκ] for κ 6= κ∗. Assume that µ0 > µ1 and consider the
following test of hypothesis.

Hypothesis Test-1:
H0: “κ is correct” versus H1: “κ is incorrect.”
Decision rule: Reject H0 if Tκ ≤ t, where t is a value in (µ1, µ0).

Note: If µ0 < µ1, then the decision rule is to reject H0 if Tκ ≥ t for some t in (µ0, µ1). The analysis of this
case is similar to the case of µ0 > µ1 and provides the same expression for the data complexity. So, we do not
consider the details of this case.

The Type-1 error probability is defined to be Pr[Type-1 Error] = Pr[Tκ ≤ t|H0 holds] and the Type-2 error
probability is defined to be Pr[Type-2 Error] = Pr[Tκ > t|H1 holds]. We obtain (upper bounds) on the Type-1
and Type-2 error probabilities which are denoted as α and β respectively. These expressions involve both t and
N and it turns out to be possible to obtain expressions for t and N in terms of α and β.
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The test is applied with all the 2m values of the target sub-key and a list of values of κ for which H0 is
not rejected is returned. If a Type-1 error occurs, then the list does not contain the correct value of the target
sub-key and so the success probability of the attack is 1−Pr[Type-1 Error]. In particular, we set PS = 1− α so
that if α is an upper bound on the Type-1 error probability, then PS is a lower bound on the success probability.

Each Type-2 error results in classifying an incorrect value of κ as a candidate key. Since the tests with the
2m − 1 incorrect choices of the target sub-keys are independent, the expected number of wrong keys returned
is (2m − 1) × Pr[Type-2 error]. If β is an upper bound on Pr[Type-2 Error], then the expected number of mis-
classifications is at most (2m− 1)β < 2mβ. For an attack with advantage a, the size of the returned list is 2m−a.
Setting 2mβ = 2m−a gives β = 2−a. So, if the Type-2 error probability is at most 2−a, then the attack has
expected advantage at least a.

Upper Bounds: The hypothesis test is applied to a particular test statistic. The corresponding data complex-
ity obtained is a lower bound on the number of plaintexts to achieve specified (upper bounds on the) Type-1 and
Type-2 error probabilities, if the particular test statistic is used. This leaves open the possibility that there may
be other test statistics for which the (lower bound on the) data complexity required to achieve the same Type-1
and Type-2 error probabilities is lower. So, the expressions that we obtain are upper bounds on the minimum
possible data complexities to achieve specified error probabilities.

4 Single Input Difference

In this section, we analyze the particular case of ν0 = 1, i.e., the case where all the differentials have the same
input difference. The number of differentials in ∆ can be 1 or more, i.e., ν ≥ 1, but, for all of these the input
difference will be the same. This case is the same as the one studied in [7] and later in [22].

Since ν0 = 1, it follows that ν1 = ν. So, for every κ ∈ {0, 1}m and η = 1, . . . , N , there is a single random

variable Tκ,1,j . This variable takes the value 1 if Sκ,1,η ∈ ∆
(1)
r and 0 otherwise. As mentioned earlier, Pr[Tκ,1,η =

1] = p1 if κ = κ∗ and Pr[Tκ,1,η = 1] = q1 = ν/(2n − 1) if κ 6= κ∗. Further, for any fixed κ, the random variables
Tκ,1,1, . . . , Tκ,1,N are independent. Being independently distributed binary valued random variables, these can
be considered the outcomes of Poisson trials.

The test statistic Tκ in this case becomes

Tκ = Tκ,1,1 + · · ·+ Tκ,1,N . (10)

We define

µ0 = E[Tκ] = Np1 if κ = κ∗;

µ1 = E[Tκ] = Nq1 if κ 6= κ∗.

Suppose µ0 > µ1. Hypothesis Test-1 is applied with the test statistic Tκ as described in Section 3. For the
analysis of Hypothesis Test-1, we need to determine the Type-1 and Type-2 error probabilities. Since Tκ is the
sum of independent Bernoulli distributed random variables, the Chernoff bounds can be used to obtain bounds
on the tail probabilities of Tκ for both correct and incorrect choices of κ. We refer to Appendix A for the precise
statement of the Chernoff bounds. We have the following result.

Proposition 1. Suppose that ν0 = 1, i.e., there is only a single input difference. Let 0 < α, β < 1 and N be
such that

N ≥
3
(√

p1 ln(1/α) +
√
q1 ln(1/β)

)2

(p1 − q1)2
. (11)
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Then the probabilities of the Type-1 and Type-2 errors in Hypothesis Test-1 are upper bounded by α and β
respectively. Putting α = 1− PS and β = 2−a, it follows that for

N ≥
3
(√

p1 ln(1/(1− PS)) +
√
aq1 ln 2

)2

(p1 − q1)2
. (12)

the success probability will be at least PS and the advantage will be at least a.

Proof. Recall that t ∈ (µ1, µ0) and H0 is rejected if Tκ ≤ t. Let γ0 = 1− t/µ0 and so γ0 ∈ (0, 1).

Pr[Type-1 Error] = Pr[Tκ ≤ t | H0 holds] = Pr[Tκ ≤ (1− γ0)µ0]

≤ exp
(
−µ0γ

2
0/2
)
≤ exp

(
−µ0γ

2
0/3
)

= exp

(
−(µ0 − t)2

3µ0

)
= α; (say)

⇒ t = µ0 −
√

3µ0 ln(1/α). (13)

Similarly, define γ1 = t/µ1 − 1 so that γ1 ∈ (0, 1).

Pr[Type-2 Error] = Pr[Tκ > t | H1 holds] = Pr[Tκ > (1 + γ1)µ1]

≤ exp
(
−µ1γ

2
1/3
)

= exp

(
−(t− µ1)2

3µ1

)
= β; (say)

⇒ t = µ1 +
√

3µ1 ln(1/β). (14)

Eliminating t from equations (13) and (14) and using µ0 = Np1, µ1 = Nq1, we obtain an expression for N which
is given by the right hand side of (11). For any N greater than this value, the probabilities of Type-1 and Type-2
errors are at most α and β respectively.

5 Multiple Input Differences Under Assumption 1

Under Assumption 1, for each κ and η, the random variables Tκ,1,j , . . . , Tκ,ν0,j are independent. If we further
consider the values of η from 1 to N , we get that the following sequence of binary valued random variables are
independent:

Tκ,1,1 Tκ,2,1 · · · Tκ,ν0,1
Tκ,1,2 Tκ,2,2 · · · Tκ,ν0,2
· · · · · ·

Tκ,1,N Tκ,2,N · · · Tκ,ν0,N .

(15)

So, these can be considered as the outcomes of Nν0 Poisson trials. The test statistic Tκ is the sum of the above
random variables and hence the Chernoff bounds can be applied to Tκ. Let as before µ0 = E[Tκ] when H0 holds
and µ1 = E[Tκ] when H1 holds. Then, we have

µ0 = E[Tκ | H0 holds]

= E
[∑N

η=1

∑ν0
i=1 Tκ,i,η | H0 holds

]
=

∑N
η=1

∑ν0
i=1E[Tκ,i,η | H0 holds]

=
∑N

η=1

∑ν0
i=1 pi =

∑N
η=1 ν0p̂ = Nν0p̂;

Similarly, µ1 = E[Tκ | H1 holds] = Nν0q̂.

(16)

With these values of µ0 and µ1 and following the proof of Proposition 1 almost verbatim we obtain the following
result.
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Proposition 2. Suppose that ν0 ≥ 1 and Assumption 1 holds. Let 0 < α, β < 1 and N be such that

N ≥
3
(√

p̂ ln(1/α) +
√
q̂ ln(1/β)

)2

ν0(p̂− q̂)2
. (17)

Then the probabilities of the Type-1 and Type-2 errors in Hypothesis Test-1 are upper bounded by α and β
respectively. Putting α = 1− PS and β = 2−a, it follows that for

N ≥
3
(√

p̂ ln(1/(1− PS)) +
√
aq̂ ln 2

)2

ν0(p̂− q̂)2
. (18)

the success probability will be at least PS and the advantage will be at least a.

For ν0 = 1, Proposition 2 reduces to Proposition 1. Note that for ν0 = 1, Assumption 1 is vacuous.

6 Multiple Input Differences Without Independence Assumption

It is not clear that Assumption 1 holds in general. In this section, we consider the problem of deriving an
expression for data complexity without using Assumption 1. Without this assumption, we can no longer assume
that the rows of (15) are independent and so Tκ cannot be written as the sum of outcomes of Possion trials.
This, in particular, means that we cannot apply the Chernoff bounds to bound the tail probabilities of Tκ.

To tackle this situation, we use the theory of martingales as utilised in [22]. Appendix B provides a brief
review of the relevant theory of martingales. The test statistic is still Tκ and Hypothesis Test-1 is applied. The
analysis of Type-1 and Type-2 error probabilities change.

Proposition 3. Suppose that ν0 ≥ 1. Let 0 < α, β < 1 and N be such that

N ≥
2
(√

ln(1/α) +
√

ln(1/β)
)2

(p̂− q̂)2
. (19)

Then the probabilities of the Type-1 and Type-2 errors in Hypothesis Test-1 are upper bounded by α and β
respectively. Putting α = 1− PS and β = 2−a, it follows that for

N ≥
2
(√

ln(1/(1− PS)) +
√
a ln 2

)2

(p̂− q̂)2
. (20)

the success probability will be at least PS and the advantage will be at least a.

Proof. Since the computation of the expectation of a sum of random variables does not depend on whether these
random variables are independent, the values of µ0 = E[Tκ|H0 holds] and µ1 = E[Tκ|H1 holds] are still given
by (16).

Recall that for κ ∈ {0, 1}m and 1 ≤ η ≤ N , Tκ,η =
∑ν0

i=1 Tκ,i,η. Note that Tκ,η takes values from the set
{0, . . . , ν0}. Define a sequence of random variables as follows.

Z0 = E[Tκ,1 + · · ·+ Tκ,N ] = E[Tκ],

Zη = E[Tκ | Tκ,1, . . . , Tκ,η]; 1 ≤ η ≤ N.

It can be shown that the sequence of random variables {Zη}Nη=0 forms a Doob Martingale with respect to the

sequence {Tκ,η}Nη=1. We refer to Appendix B for more details.
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Let f(x1, . . . , xN ) = x1 + · · · + xN ; where xη ∈ {0, 1, . . . , ν0} and η = 1, . . . , N . Let x1, . . . , xN , x
′
η be any

N + 1 elements from the set {0, 1, . . . , ν0}. Then,

|f(x1, . . . , xη−1, xη, xη+1, . . . , xN )− f(x1, . . . , xη−1, x
′
η, xη+1, . . . , xN )| = |xη − x′η| ≤ ν0.

This shows that f is ν0-Lipschitz.
Note that Tκ = f(Tκ,1, . . . , Tκ,N ). Since f is ν0-Lipschitz and Tκ,η’s are independent, it follows that |Zη −

Zη−1| ≤ ν0 for all η = 1, . . . , N . Further, ZN = E[Tκ,1 + · · · + Tκ,N | Tκ,1, . . . , Tκ,N ] = Tκ; Z0 = µ0 if H0 holds
and Z0 = µ1 if H1 holds.

Pr[Type-1 Error] = Pr[Tκ ≤ t | H0 holds]

= Pr[ZN − Z0 ≤ −(Z0 − t) | H0 holds]

= Pr[ZN − µ0 ≤ −(µ0 − t)]

≤ exp

(
−(µ0 − t)2

2Nν2
0

)
= α (say); [By Azuma-Hoeffding inequality]

⇒ t = µ0 − ν0

√
2N ln(1/α); (21)

Pr[Type-2 Error] = Pr[Tκ > t | H1 holds]

= Pr[ZN − Z0 > t− Z0 | H1 holds]

= Pr[ZN − µ1 > (t− µ1)]

≤ exp

(
−(t− µ1)2

2Nν2
0

)
= β (say); [By Azuma-Hoeffding inequality]

⇒ t = µ1 + ν0

√
2N ln(1/β). (22)

Eliminating t from equation (21) and (22) and using µ0 = Nν0p̂, µ1 = Nν0q̂ gives the expression in the right
hand side of (19). For any N which is at least this quantity, the Type-1 and Type-2 error probabilities are at
most α and β.

7 Comparison and Experimental Results

From a theoretical angle, our analysis provides the following advantages over the previous work of Blondeau and
Gèrard [6].

No use of approximations: The analysis of [6] is based on several approximations. One place where this
issue shows up is in the non-applicability of the data complexity expression in (9) for small values of a as has
been discussed in Remark 1. Further, the accuracy of the estimate for other larger values of a has not been
theoretically studied. Some experimental evidence of its accuracy has been provided in [6] for a particular toy
cipher. Whether this extends to other real-life ciphers is not known.

Our analysis, on the other hand, does not make any approximations for the statistical analysis. As such, the
data complexity expression applies to all ciphers and for all values of a and PS .

Generality of the expression for data complexity: In [6], separate expressions for the data complexity
and success probability is obtained. The data complexity is stated to hold for success probability close to 0.5
and the expression for the success probability is quite complicated. In contrast, our analysis results in a single
expression for the data complexity which is explicitly expressed in terms of the success probability and the
advantage. No such expression for the data complexity is provided in [7]. For example, if one were to require
the success probability to be 0.95, then the corresponding data complexity cannot be derived from the analysis
in [7].
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Analysis without independence assumption: Assumption 1 is used for the analysis in [7]. We also use
Assumption 1 for one of our analysis. Whether Assumption 1 holds in general is not known. We show how to
obtain an expression for the data complexity without using Assumption 1. There is no previous work in the
literature which does this.

7.1 Experimental Comparison

We provide an experimental comparison of the data complexities obtained using our method and the methods
available in previous works.

The experiments have been conducted using the set of differentials of the 64-bit toy block cipher SMALLP-
RESENT [8], that was given in [6, Table 6]. The table gives 3 estimates of the probabilities for the same input
and output differences, namely, theoretical, 40-bit key schedule and 80-bit key schedule. In our experiments, we
have made comparisons for each of these 3 probability estimates. The target sub-key size was 32 bits. So, n = 64
and m = 32.

Comparison when ν0 > 1: The only prior work which analysed this case is [6] and the data complexity
expression obtained in [6] is given by (7). This expression holds for success probability close to 0.5. Denote by
NBG the data complexity given by (9).

For ν0 > 1, we have obtained two expressions for the data complexity. One using Assumption 1, based on
the Chernoff bound and is given by the right hand side of (18). The other does not require Assumption 1, is
based on the theory of martingales and is given by the right hand side of (20). Denote the data complexity given
by (18) as NCher and the data complexity given by (20) as NMar. The expressions for NCher and NMar do not
require PS to be necessarily 0.5. However, since NBG requires this, we set PS = 0.5 for these expressions.

Table 1 gives a comparison between the data complexities NBG, NCher and NMar for a = 20 and PS =
1 − α = 0.5. From the table one can see that NCher is only slightly greater than NBG. So, if Assumption 1
can be assumed to hold, then it is better to use the data complexity given by NCher since it is more generally
applicable. On the other hand, if Assumption 1 cannot be assumed to hold, then one has to use NMar and the
corresponding data complexity is much higher.

Probability Estimates NBG NCher NMar

expressions 2a ln 2−2 ln 2
√
π

ν0D(p̂||q̂)
3 ln 2(

√
p̂+
√
aq̂)

2

ν0(p̂−q̂)2
2 ln 2(1+

√
a)

2

(p̂−q̂)2

theoretical 2.51×107 4.65×107 7.47×1017

40-bit 1.77×107 3.32×107 3.81×1017

80-bit 6.66×106 1.30×107 5.86×1016

Table 1: Table showing the comparison between the data complexities NBG, NCher and NMar. For compatibility
with NBG, PS has been taken to be 0.5 in NCher and NMar.

Comparison when ν0 = 1: In this case, there is only a single input difference. The data complexity expression
from [6] given in (9) can be specialised to the case ν0 = 1. As before we denote by NBG the data complexity
arising from (9) by setting ν0 = 1. Also, let NCher denote the data complexity given by (12).

Table 6 in [6] provides six groups of differentials with each group having the same input difference. We
separately consider each of these six groups for the three probability estimates. This leads to 18 cases. For
each of the 18 cases, we compare NBG and NCher. Since NBG requires PS = 0.5 we have computed the data
complexities for all the cases with this value of PS . The advantage a was varied from 1 to 32. In each case, the
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comparative nature of the three data complexities are similar and so we report only the data complexities for
a = 20. These are shown in Table 2. From the table, one can see that the data complexities are close and so,
there is not a significant penalty for working with a data complexity expression which applies more generally.

Probability Estimates Input Difference NBG NCher

Theoretical

0x3 2.01×108 3.68×108

0x7 1.09×108 2.04×108

0xD 1.54×108 2.87×108

0x5 1.86×108 3.42×108

0xB 1.99×108 3.65×108

0xF 1.13×108 2.11×108

40-bit

0x3 1.32×108 2.45×108

0x7 8.22×107 1.56×108

0xD 1.08×108 2.03×108

0x5 1.29×108 2.40×108

0xB 1.27×108 2.37×108

0xF 8.40×107 1.59×108

80-bit

0x3 1.42×108 2.63×108

0x7 8.90×106 1.84×107

0xD 1.20×108 2.25×108

0x5 1.28×108 2.39×108

0xB 1.39×108 2.58×108

0xF 8.56×107 1.62×108

Table 2: Table showing the comparison between the data complexities NBG and NCher for SMALLPRESENT
with ν0 = 1, PS = 0.5 and a = 20.

The case ν0 = 1 was earlier studied in [7]. Two approaches were used. One was based on the log-likelihood
ratio (LLR) and the other on the chi-squared statistic and corresponding expressions for data complexities were
obtained. We tried to compare these data complexities with those in Table 2. However, this turned out to
be problematic. For both the LLR and the chi-squared approaches from [7], the values obtained for the data
complexities turned out to be meaningless. We further investigated the reasons for this and came to the following
conclusions.

For the chi-squared based approach in [7], certain conditions are required to hold for the approximations to
be valid. For the distributions of SMALLPRESENT these conditions are violated and so the applicability of the
data complexity expression becomes invalid. The problem with the LLR-based approach from [7] is different. It
turns out that putting PS = 0.5 in the LLR-based data complexity expression given in [7] leads to meaningless
values, while the expression provides meaningful values of data complexity for higher values of PS . This indicates
that the data complexity expression obtained from the LLR-based approach is invalid for PS = 0.5. An earlier
LLR-based data complexity expression for linear cryptanalysis [11, Theorem 2] had explicitly required PS > 0.5.
Though this is not mentioned in the analysis in [7], it seems that this condition still applies.

It is interesting to note that between the different approximate data complexity expressions, the one in [6]
requires PS to be close to 0.5; the LLR-based data complexity expression in [7] requires PS > 0.5 and the chi-
square based data complexity expression does not apply to SMALLPRESENT. This indicates various troublesome
issues in using approximations. As mentioned earlier, the analysis of data complexity carried out in this paper,
does not require any approximations and applies for all values of PS .
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8 Conclusion

This work considered multiple differential cryptanalysis without any restrictions on the input and the output
differences. Expressions for data complexities were derived. These are obtained as closed-form formulas in terms
of the success probability and the advantage of an attack. A main point of the work was to avoid making any
approximation. As a result the obtained expressions are generally applicable.
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A Chernoff Bounds

We briefly recall some results on tail probabilities of sums of Poisson trials that will be used. These results can
be found in standard texts such as [19, 18] and are usually referred to as the Chernoff bounds.

Theorem 4. Let X1, X2, . . . , Xλ be a sequence of independent Poisson trials such that for 1 ≤ i ≤ λ, Pr [Xi = 1] =
pi. Then for X =

∑λ
i=1Xi and µ = E [X] =

∑λ
i=1 pi the following bounds hold:

For any γ > 0, Pr [X ≥ (1 + γ)µ] <

(
e−γ

(1 + γ)(1+γ)

)µ
. (23)

For any 0 < γ < 1, Pr [X ≤ (1− γ)µ] ≤
(

e−γ

(1− γ)(1−γ)

)µ
. (24)

These bounds can be simplified to the following form.

For any 0 < γ ≤ 1, Pr [X ≥ (1 + γ)µ] ≤ e−µγ2/3. (25)

For any 0 < γ < 1, Pr [X ≤ (1− γ)µ] ≤ e−µγ2/2. (26)
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B Martingales

This section gives a brief description of martingales for discrete random variables. Further details can be found
in standard texts such as [10, 18]. We start with the definition of conditional expectation.

Definition 1 (Conditional Expectation). Let X and Y be two random variables such that E [X] <∞. Define

ψ (y)
∆
= E [X|Y = y] =

∑
x

xPr [X = x|Y = y] .

Thus, E [X|Y = y] is a function of y. The conditional expectation of X given Y is defined to be ψ (Y ) and is

written as ψ (Y )
∆
= E [X|Y ]. So, the conditional expectation of X given Y is a random variable ψ (Y ) which is

a function of the random variable Y .

The following are several standard properties of conditional expectation.

Proposition 5. 1. E [E [Y | X]] = E [X] .

2. If X has a finite expectation and if g is a function such that Xg(Y ) has a finite expectation, then E [Xg(Y ) | Y ] =
E [X | Y ] g(Y ).

3. E
[
(X − g(Y ))2

]
≥ E

[
(X − E [X | Y ])2

]
for any pair of random variables X and Y such that X2 and

g(Y )2 have finite expectations.

4. For any function g, such that g(X) has finite expectation, E [g(X) | Y = y] =
∑
x

g(x) Pr [X = x | Y = y] .

5. | E [X | Y ] |≤ E [| X || Y ] .

6. E [E [X | Y,Z] | Y ] = E [X | Y ] .

7. E [E [g(X,Y ) | Z,W ] | Z] = E [g(X,Y ) | Z] .

Definition 2 (Martingale). A sequence of random variables Z1, Z2, Z3, . . . is a martingale with respect to another
sequence of random variables Y1, Y2, Y3, . . . if for all n ≥ 1 the following two conditions hold.

1. E [|Zn|] <∞.

2. E [Zn+1|Y1, Y2, . . . , Yn] = Zn.

If Zn = Yn for all n ≥ 1 then the sequence is a martingale with respect to itself.

The basic Azuma-Hoeffding inequality for martingales is the following.

Theorem 6. Let, Z0, Z1, Z2, . . . be a martingale with respect Y0, Y1, Y2, . . . and suppose that there exists a sequence
υ1, υ2, . . . of real numbers such that for all i ≥ 1, | Zi − Zi−1 |≤ υi. Then for any integer λ > 0 and real δ > 0

Pr [Zλ − Z0 ≥ δ] ≤ e−δ
2/(2

∑λ
i=1 υ

2
i ); (27)

Pr [Zλ − Z0 ≤ −δ] ≤ e−δ
2/(2

∑λ
i=1 υ

2
i ). (28)
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Given a random variable Y with E [| Y |] < ∞ and a sequence of random variables Y0, Y1, . . . Yλ, a simple
way to construct a martingale is the following. Define Zi = E [Y | Y0, Y1, . . . , Yi] for i = 0, 1, . . . , n. It can be
shown through a routine calculation using properties of conditional expectation given in Proposition 5 that the
following condition holds.

E [Zi+1 | Y0, Y1, . . . , Yi] = Zi.

Thus, the sequence of random variables {Zλ} forms a martingale with respect to sequence {Yλ}. A martingale
of this type is called a Doob Martingale.

Recall that the Azuma-Hoeffding inequality can be applied if the differences |Zi − Zi−1| are bounded. A
general technique for obtaining a Doob martingale with bounded differences is as follows. We call a function
f(y1, y2, . . . , yλ) to be υ-Lipschitz condition, if for any i and for any set of values y1, y2, . . . , yλ and y′i,

| f(y1, y2, . . . , yi−1, yi, yi+1, . . . , yλ)− f(y1, y2, . . . , yi−1, y
′
i, yi+1, . . . , yλ) |≤ υ.

In other words, changing the value of any single coordinate changes the value of the function by at most υ. Let
Y1, . . . , Yλ be a finite sequence of random variables. Define,

Z0 = E [f(Y1, Y2, . . . , Yλ)]

Zi = E [f(Y1, Y2, . . . , Yλ) | Y1, Y2, . . . , Yi] .

Then Z0, Z1, . . . , Zλ form a Doob martingale with respect to Y1, . . . , Yλ. Further, assume that the random
variables Yi’s are independent. Then it can be shown that |Zi − Zi−1| ≤ υ. The martingale Z0, . . . , Zλ satisfies
the conditions of Theorem 6 and so the inequality stated in the theorem applies to this martingale.


