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Summary

Polymorphic encryption and Pseudonymisation, abbreviated as PEP, form a
novel approach for the management of sensitive personal data, especially in
health care. Traditional encryption is rather rigid: once encrypted, only one
key can be used to decrypt the data. This rigidity is becoming an every greater
problem in the context of big data analytics, where different parties who wish
to investigate part of an encrypted data set all need the one key for decryption.

Polymorphic encryption is a new cryptographic technique that solves these
problems. Together with the associated technique of polymorphic pseudonymi-
sation new security and privacy guarantees can be given which are essential
in areas such as (personalised) healthcare, medical data collection via self-
measurement apps, and more generally in privacy-friendly identity management
and data analytics.

The key ideas of polymorphic encryption are:

1. Directly after generation, data can be encrypted in a ‘polymorphic’ man-
ner and stored at a (cloud) storage facility in such a way that the storage
provider cannot get access. Crucially, there is no need to a priori fix who
gets to see the data, so that the data can immediately be protected.

For instance a PEP-enabled self-measurement device will store all its mea-
surement data in polymorphically encrypted form in a back-end data base.

2. Later on it can be decided who can decrypt the data. This decision will
be made on the basis of a policy, in which the data subject should play a
key role.

The user of the PEP-enabled device can, for instance, decide that doctors
X,Y, Z may at some stage decrypt to use the data in their diagnosis, or
medical researcher groups A,B,C may use it for their investigations, or
third parties U, V,W may use it for additional services, etc.

3. This ‘tweaking’ of the encrypted data to make it decryptable by a specific
party can be done in a blind manner. It will have to be done by a trusted
party who knows how to tweak the ciphertext for whom.

This PEP technology can provide the necessary security and privacy infras-
tructure for big data analytics. People can entrust their data in polymorphically
encrypted form, and each time decide later to make (parts of) it available (de-
cryptable) for specific parties, for specific analysis purposes. In this way users
remain in control, and can monitor which of their data is used where by whom
for which purposes.

The polymorphic encryption infrastructure can be supplemented with a
pseudonymisation infrastructure which is also polymorphic, and guarantees that
each individual will automatically have different pseudonyms at different parties
and can only be de-pseudonymised by participants (like medical doctors) who
know the original identity.
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This white paper provides an introduction to Polymorphic Encryption and
Pseudonymisation (PEP), at different levels of abstraction, focusing on health
care as application area. It contains a general description of PEP, explaining
the basic functionality for laymen, supplemented by a clarification of the le-
gal framework provided by the upcoming General Data Protection Regulation
(GDPR) of the European Union. The paper also contains a more advanced,
mathematically oriented description of PEP, including the underlying crypto-
graphic primitives, key and pseudonym managment, interaction protocols, etc.
This second part is aimed at readers with a background in computer security
and cryptography. The cryptographic basis for PEP is ElGamal public key en-
cryption, which is well-known since the mid 1980s. It is the way in which this
encryption is used — with re-randomisation, re-keying and re-shuffling — that
is new.

The PEP framework is currently elaborated into an open design and open
source (prototype) implementation at Radboud University in Nijmegen, The
Netherlands. The technology will be used and tested in a real-life medical
research project at the Radboud University Medical Center.
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Chapter 1

An introduction to PEP

This report is not a scientific research paper describing new deep mathematical
results. Instead, it is meant to explain. It explains a novel approach to se-
cure data management, called Polymorphic Encryption and Pseudonymisation
(PEP). The underlying mathematical basis is surprisingly simple — for people
with a reasonable background in cryptography — but at the same time surpris-
ingly powerful. Its power lies in the new paradigm that it provides, and in the
new applications that it enables. Hence the value of the work lies not so much
in the depth of its cryptographic basis but in the breadth of the application
scenarios. They may change the way we secure data in the era of big data
analytics, with data coming from multiple sources.

A motivating aim for the development of PEP is to advance the security
and privacy-friendliness of personalised medicine. This new trend in healthcare
develops fine-grained personalised treatment methods based on statistical out-
comes of large scale analysis of patient data. In personalised healthcare one has
to deal with at the same time:

• identifyable medical data for the diagnosis and treatment of individual
patients;

• pseudonymised patient data for large scale medical research;

• the need to ensure confidentiality, integrity, authenticity and availability
of patient data;

• the ability to handle multiple sources of patient data, including in partic-
ular (wearable) self-measurement devices and apps.

The PEP framework is designed for this situation. It offers unprecented privacy-
protection via encryption and pseudonymisation and at the same time it sup-
ports the basic data-access functionality for both treatment and research in
personalised healthcare. Among the security goals listed in the third bullet, the
PEP system concentrates on confidentiality. In a comprehensive approach, the
other goals will have to be guaranteed via other means.
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The PEP approach is applicable in many other areas than healthcare. How-
ever, this report concentrates on health informatics: it uses illustrations only
from the healthcare sector and leaves it to the imagination of the reader to trans-
fer the methodology to other sectors, for instance to handle sensor or surveillance
data in the internet of things.

This report pays ample attention to explaining the new paradigm of ‘poly-
morphic’ encryption and pseudonymisation, together with its applications, es-
pecially in health care. The current first chapter is aimed at interested professi-
nals: medical doctors, lawyers, managers, etc. It explains the relevant ideas via
pictures, representing encryption of data as locking the data in a chest. The
polymorphic character of our approach is described in terms of (blindly) tweak-
ing (manipulating) of not only locks but also the content of these chests. The
second chapter describes the underlying cryptographic ideas, which basically
amount to clever use of the homomorphic properties of ElGamal encryption.
That chapter is written for specialists in computer security and cryptography.

1.1 The rigidity of traditional encryption

Many people nowadays use self-measurement devices and apps for keeping track
of their health and activities, for instance via watches that count steps, measure
blood pressure, or even take electrocardiograms (ECGs). These devices and
apps handle sensitive behavioural or medical data. Article 8 of the European
Data Protection Directive (95/46/EC) qualifies health data as a special category
of data to which a higher level of data protection applies. Processing of special
categories of data is prohibited, unless an exception applies.

Many of these apps and devices transfer the measurements to some central
database ‘in the cloud’ that is operated by (or on behalf of) the manufacturer.
The data are then accessible for the user via special apps or web-based accounts.
Duty of care applies. The transfer of data should only happen in encrypted form,
as protection against eavesdropping. Once transferred, the data is ideally stored
in encrypted form too, so that a possible security incident does not immediately
lead to loss of (plain, unencrypted) data. The party that possesses the de-
cryption keys will have access to the sensitive data. These keys are needed to
give users access to their own data. Hence it is usually the manufacturer who
possesses the keys, and has access to all user data.

In modern data science, or (big) data analytics, data is useful for many
purposes. Such flexible use of the data is hindered by encryption. Indeed,
traditional encryption is always ‘for a particular party’, namely for the party
that has the decryption key. No-one else can decrypt. The decision who can
decrypt has to be taken at the moment of encryption. In a multiple-use scenario,
where data are encrypted, many parties must have the key. This undermines
the protection level.

The main benefit of polymorphic encryption is that it allows more flexible
usage scenarios, where the choice who is allowed to decrypt can be postponed,
while retaining data protection. This will be explained pictorially in the next
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section.

1.2 Traditional and polymorphic encryption, pic-
torially

Encryption is a mathematical technique that makes data or messages unread-
able, but in such a way that anyone in possession of a specific ‘cryptographic’
key can make the encrypted message readable again. We shall abstract from
the method of encryption and describing it pictorially as putting a message in a
chest with a lock. Only people with the appropriate key can open the lock and
thus read the message.

Thus, encryption of a message M can be described as:

+ M + −−−−−−−→ (1.1)

The suggestion is that the message M is now inside the chest, securely locked.
The locked chest can remain in store, where it is, or it can be transported to
another location.

The reverse process of decryption is depicted as unlocking the chest:

+ −−−−−−−→ + M (1.2)

By opening the chest the original message M pops out. This opening can be
performed only by someone who possesses the single key that fits the lock. We
consider the ideal situation where the right key is absolutely necessary, and the
chest cannot be openend in any other way, for instance by force. It may be
possible though that multiple people have a copy of the single key that opens
the lock.

Via this chest metaphore we can explain some basic cryptographic terminol-
ogy. The message M is called the plaintext. In encrypted form, locked inside
the chest, it is called the ciphertext. The open lock is called a public key, and
the key that opens the lock is the associated private key.

When I’m the only person that has such key , then I can distribute many
open locks for this particular key publicly available, so that others can use
it to encrypt message for me as in (1.1), which only I can decrypt, as in (1.2).
This is the essence of what is called ‘public key’ encryption.

An important point is: once the lock is closed , there is only one key that
can open it. This is the ‘rigidity’ that we discussed in Section 1.1: if multiple
people need access, they all need a copy of the key. We would like to have more
flexibility.

6
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Next we consider a similar metaphore for polymorpic locks. We depict this
new concept as a lock with a wheel:

and multiple keys • • •

The wheel on the lock is not some additional protection measure, like a dial on
a safe. Instead, by turning the wheel different keys fit and open the lock.

• • •

Notice the different positions of the wheel. If it is ‘up’, only the brown key on
the left opens the lock. But if the wheel is moved one notch to the right, the
grey key in the middle fits, and no longer the brown one. And if the wheel is
moved another notch, the black key on the right fits exclusively. The technique
allows an unlimited number of such notches — and thus an unlimited number
of corresponding keys — for a single polymorpic lock. In principle, anyone
can turn this wheel, but special knowledge is needed to select the right wheel
position, out of the many possible ones, so that a particular key fits.

How such polymorphic locks can be realised mathematically will be described
in Chapter 2. Here we illustrate how they can be used. We start with a simple
scenario where sensitive data from some self-measurement device, like a watch,
need to be stored securely in some cloud Storage Facility. We consider the
situation where the data is put in a chest, with a polymorphic lock, as described
above:

−−−−−−−−−−−−−−−−−−−−−−−→ (1.3)

The cloud provider cannot access the data from the watch, since they are en-
crypted in a polymorphic manner.

Next we consider the situation where a medical doctor, denoted abstractly
as doctor D, needs to get access to the data from this device. This can be
realised via an intermediate party called the Tweaker. It is a central converter
who exclusively knows how to turn the wheel on a polymorphic lock so that
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keys of specific parties fit. We describe the interaction as follows.

−−−−−−−−−−−−→
copy

Tweaker

set to D

−−−−−−−−−−−−→ doctor D (1.4)

The process of turning the wheel on the lock will be called re-keying, see
Lemma 2.1.2 (2) on page 25 for a mathematical description.

In these diagrams (1.3) and (1.4) we see the power of polymorphic encryp-
tion: data is stored in encrypted form, where the cloud storage provider cannot
get access. Who does get access can be decided later, by suitably turning the
wheel on the lock. In the illustration it is doctor D, but it can well be doctor
E at some other stage, or a medical researcher, or a service provider.

There is this (trusted) intermediate party, called the Tweaker, who knows
how to turn locks in a specific manner, so that specific participants can open
the lock. Thus the Tweaker has a crucial, powerful position. But the Tweaker
works blindly: it cannot see the data (the contents of the chest); it can only
turn the wheel on a lock, on the outside of the chest. (Here we implicitly assume
that the Tweaker is not in possession of any of the possible keys.)

When a suitable authentication and access infrastructure is added, the user
can set rules for the Tweaker and control usage of the data. The user can then
make his/her own data available, for instance for (public) scientific research, but
not for (private) commercial research. Or (s)he may control which members of
the medical profession can(not) access which data. This will be elaborated in
Section 1.4 below.

If this PEP approach develops into a standard, and ‘PEP-compliant’ wear-
ables and apps become available, users can be in control of their data. The novel
idea is that polymorphic encryption works in a generic manner, and the deci-
sions about who can decrypt need not be taken at the time of encryption. The
encrypted ciphertext can be tweaked later, in a blind manner, so that chosen
participants can decrypt and get access to the data.

1.3 Polymorphic pseudonymisation

The PEP methodology consists of both encryption and pseudonymisation, in
polymorphic form. This section explains pseudonymisation, also via pictures
with chests, but with an extra wheel, on the chest itself.

First we have to look at identities and pseudonyms. We assume that each
participant in the system has a unique (personal) identity, written as pid. This
is typically a special number, like a social security number or some other (med-
ical) registration number or identifier. We abstract away from the details: for
participant A we shall write pidA for an identifier that is uniquely associated

8
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with A. Such ‘global identifiers’ are useful for linking data accross different
databases, but they form serious privacy risks — since they make it possible to
break local contexts [16] — and also security risks — for instance in the form
of identity fraud.

These pid’s form the basis for ‘local’ pseudonyms. Each participant will
have a different pseudonym at different parties. For instance, I will have dif-
ferent pseudonyms at doctors X,Y, Z, and at medical research groups U, V,W .
The reason is as follows. These parties could somehow loose their data, or even
maliciously combine data with others. If different parties use different pseudo-
nyms for the same patient, it is in principle not possible to combine the data
— at least not on the basis of identifiers. In general, one speaks of ‘domain-
specific’ pseudonyms; they make it impossible to link identities accross different
domains.

We shall write:

pidA@B for the pseudonym of A at B.

Thus, the different pseudonyms of patient A at doctors X,Y, Z are written as
pidA@X,pidA@Y,pidA@Z respectively. They will sometimes be called ‘local’
pseudonyms, since they are local to these different doctors. Doctors will thus
store both the real name/identity of their patients and their local pseudonyms.
Researchers will only have (their own) local pseudonyms, but not identities of
patients.

The Tweaker plays a central role in forming these local pseudonyms, in a
blind manner. We represent this again via a chest with a (polymorphic) lock:

These new chests have a different color: we use these red chests for pseudonyms,
and, like before, the blue chests for data.

But more importantly, these pseudonym chests have a wheel themselves:
there is not only a wheel on the lock, to make it polymorphic, but also a wheel
on the side of the chest, next to the position of the lock. By turning this second
wheel, the contents of the chest can be changed, in a blind manner, without
opening the chest. We use this as follows.

A polymorphic pseudonym for participant A is formed by putting A’s
personal identifier pidA locked in a red chest with a polymorphic lock:

+ + pidA −−−−−−−→ (1.5)

The two main points are:

• a local pseudonym pidA@B can now be constructed inside the chest by
turning the wheel on the chest to position B; this process will be called
re-shuffling, see Lemma 2.1.2 (3) later on;

9
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• if the wheel on the lock is also put in position B, then B can open the
locked chest and find the local pseudonym pidA@B.

The resulting box, with both wheels suitably turned, will be called an encrypted
pseudonym.

This set-up is extremely useful, as will be illustrated next. We return to the
smart watch scenario from the previous section, but extend the protocol with
the identity of the user.

Let A be the user/owner of the smart watch. Assume that the watch
somehow contains the identity pidA of the owner, in a chest (as polymorphic
pseudonym). When the watch needs to off-load (senstive) data to a Storage
Facility, it sends two chests to the Tweaker:

−−−−−−−−−−−−−−−−−−−−→
data pidA

Tweaker (1.6)

The Tweaker does not touch the first (blue) data chest. But it turns the two
wheels on the second (red) identity chest, both to position SF , for the Storage
Facility. As a result, the red chest contains the local pseudonym pidA@SF of
user A at the Storage Facility. The Tweaker then passes both chests on, for
storage:

Tweaker −−−−−−−−−−−−−−−−−−−−→
data pidA@SF

(1.7)

Because the wheel on the lock of the identity chest has also been turned to po-
sition SF, the Storage Facility can open this chest, so that the local pseudonym
pidA@SF pops out. SF uses this pseudonym as a database key, where the blue
data chest is stored, see Figure 1.2 below for more information.

The same procedure is followed the next time that the watch needs to off-
load data. The same pseudonym pidA@SF pops out on the SF side, and the
new blue chest is stored, under the same database key, next to the earlier blue
chest. In fact, the same procedure is also followed when a medical doctor has
examined A and wants to store the diagnosis. The doctor — or, the computer
of the doctor — puts the diagnosis data in a blue chest with a polymorphic
lock, and the patient identifier pidA in a red chest and sends both of them off
to the Tweaker, as in (1.6). The Tweaker then proceeds as in (1.7), so that the
encrypted diagnosis data is added to the database record with the watch data,
under the same database key. Figure 1.2 gives a sketch of such a record.

Next we look at a retrieval scenario. We assume that person A visits a
medical doctor B, who needs to retrieve some files about A from the Storage
Facility. At this stage we ignore the issue of file selection, and assume that it is
somehow known how the appropriate file (in a chest) must be chosen. Doctor B

10
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knows (or gets) the identifier pidA of A, and sends it off in a red identity chest
to the Storage Facility, via the Tweaker:

Doctor −−−−−−−−−→
pidA

Tweaker −−−−−−−−−→
pidA@SF

(1.8)

As before, the Tweaker sets both wheels, on the chest and on the lock, to position
SF , so that SF can open the chest and find the local pseudonym pidA@SF. The
Storage Facility then looks up the requested data, in a blue data chest, and
returns the locked chest via the Tweaker. The Tweaker changes the polymorphic
lock so that the key of the doctor fits, like in (1.4):

−−−−−−−−−→
data
(copy)

Tweaker −−−−−−−−−→
data

(tweaked)

Doctor (1.9)

To summarise, the PEP methodology provides:

1. storage of encrypted, pseudonymised data, so that an inquisitive, ma-
licious, or poorly protected Storage Facility can do little to harm the
confidentiality of the data;

2. combined storage of data stemming from the same person but via different
sources/devices;

3. retrievablility of the data for a specific person, by an authorised doctor or
by the person him/herself.

There is more functionality that we do not discuss in this informal description.
An important one is ‘pseudonymous data sharing’, where medical researchers
can get access — typically after approval of their research plan by some oversight
committee — to pseudonymised but unencrypted data. It may happen that
during medical research, a beneficial or alarming signal is found in the medical
data of a particular person, say A. In case of such a ‘coincidental finding’
the pseudonym of A at the research group can be translated back to the local
pseudonym for a medical doctor of A, who can link the pseudonym to the real
identity, and inform A. Thus, de-pseudonymisation can only happen by parties
who already know the original identity, see Subsection 2.3.3 below for details.

An overview of the different parties and of the data flows between them is
given in Figure 1.1.

1.4 Authentication, authorisation, and selection

The above informal description covers the core functionality of the PEP ap-
proach. In order to develop PEP into a practical system with appropriate

11
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Storage
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>>

Doctor Patient

Figure 1.1: An overview of the interactions via the Tweaker, who can tweak
locks and pseudonyms

guarantees more functionality needs to be added. In particular, an infrastruc-
ture must be added ‘around’ the Tweaker in Figure 1.1 for authentication and
authorisation of the various parties involved, and also for logging. This section
briefly discusses these matters at a conceptual level.

First we should say a bit more about data storage. So far we have mentioned
only that local pseudonyms pidA@SF at the Storage Facility are used as database
keys. We have not said anything about the structure of database records. The
medical content of each record will be encrypted, via the blue data chests used
above, but some metadata needs to be added, so that doctors, researchers or
others can access the appropriate data parts. A very simple picture of such a
database entry is described in Figure 1.2, in order to convey the idea.

Thus, every blue chest that is stored, like in (1.6) and (1.7), must be ac-
compagnied by appropriate metadata (labels, dates, sources), so that it can be
placed appropriately in this table. Similarly, every retrieval request in (1.8)
should involve a description of the specific data that is requested in terms of
the entries in Figure 1.2.

The precise organisation of these database records is not relevant in the
current context. Instead of the rather arbitrarily chosen labels in the left column
in Figure 1.2, a standard medical classification system should be used. The
meta-data could also be cryptographically protected, to make them invisible to
the Storage Facility. We will not go into this matter here.

Instead, we turn to authentication. Consider the situation in Figure 1.1
where a patient A wants to see the data that are stored about him/herself.
This requires A to prove that (s)he really is A, via a properly strong authen-

12
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pidA@SF date source content

Identity
insurance

1/6/2003 doctor X

ECG 20/3/2016 watch

Pulse 20/3/2016 watch

Radiology 15/2/2015 UMCRadboud

...
...

...
...

Figure 1.2: Sketch of a database record, with local pseudonym pidA@SF as
database key.

tication mechanism, so that A can only see his/her own files. The (technical)
details of this authentication mechanism are not relevant here. It should give an
acceptable level of certainty that pidA really is A’s personal identifier, so that
it can be used to retrieve data, like in protocols (1.8) and (1.9), where the final
recepient is not ‘Doctor’, but A. This means that A should have his/her own
private key and client-side software to decrypt, that is, to open blue chests.

Additionally we foresee that, after authentication, user A gets access to a
‘dashboard’ that gives an overview of, among other things:

• what data is stored about A, that is, a listing of the record pidA@SF, as
in Figure 1.2;

• log files, describing who has accessed which data of A at which time;

• a configurable set of access rules, where user A can decide which medical
staff can get access to which data; these rules may for instance be based
on white listing, on black listing, or on a combination;

• a similar set of rules for other use of the data, together with purpose
descriptions. This ‘other’ usage may include, for instance, commercial or
non-commercial medical research, or additonal services, based on a Data
Licensing Agreement (DLA), see Section 1.5. In principle, the whole set-
up also allows that users sell their data in pseudonymous form, but still
get the revenues individually.

The precise organisation of such a dashboard involves many policy decisions
that are outside the scope of this paper.

We have discussed authentication of patients. In a similar way, medical staff
will have to authenticate itself, not only for access control but also for logging
purposes, see Section 2.4 for further discussion.

Finally, before moving on to the cryptographic details, we like to emphasise
the following points.

13
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1. Pseudonymisation in the PEP framework only concentrates on crypto-
graphic protection of identifiers. Possible de-pseudonymisation (or ‘re-
identification’) via the data is a totally different matter (see e.g. [7]), which
is very important, but out of scope. Such de-pseudonymisation may hap-
pen simply because data contain identifiers — which happens for instance
frequently with radiological images, where the names of the patients are
embedded — or because combinations of data lead to a profile that fits
only one or a few people. There are many studies — see e.g. [15] about the
famous Netflix and AOL cases — showing that re-identification is often
easier than expected, especially in combination with other databases or
with public information — for instance from social media. This issue is
highly relevant in a medical setting, see e.g. [9].

2. In the PEP framework the user is not in complete control over his/her
data. For instance, a fraud-monitor entity may be added to the picture
in Figure 1.1. If certain conditions determined by an anti-fraud policy are
met, the Tweaker can be ordered to turn wheels on locks in such a way
that the fraud-monitor can decrypt. Such a set-up can be understood as
a backdoor into the encryption. It may be defendable, or even desirable,
in some situations. In that case we advocate maximal transparancy and
accountability.

1.5 Legal framework

The Polymorphic Encryption and Pseudonymisation (PEP) framework addresses
the issue of an individual’s control over his/her sensitive personal data. Art. 9
of the General Data Protection Regulation (GDPR) defines the following data
as sensitive: ‘personal data revealing racial or ethnic origin, political opinions,
religious or philosophical beliefs, or trade-union membership, and the processing
of genetic data, biometric data for the purpose of uniquely identifying a natural
person, data concerning health or data concerning a natural person’s sex life or
sexual orientation’. The processing of such data is prohibited by default; the
main exception for this prohibition is explicit consent for one or more specific
purposes (though other exceptions may be relevant in the context of health,
see e.g. art. 9.2 (h) and 9.3 — mainly concerning processing of health data by
medical practitioners under an obligation of confidentiality).

In the context of medical research patients are often confronted with so-
called ‘blanket’ of ‘broad’ informed consent forms. When analysing such forms
the consent is not really blanket but may indeed be overly broad. The purpose
specified in such consent forms is clearly medical research in the context of a
particular disease or medical field. If well explained this forms an appropriate
purpose. The broadness resides in the inclusion of secondary use for compatible
purposes regarding similar medical research, either in the course of a longitudinal
study or for other studies. The latter easily turns the consent into an ambiguous
consent if one is not aware of samples being used for entirely different types

14



1.5. Legal framework 151.5. Legal framework 151.5. Legal framework 15

of medical issues. More problematic is the inclusion of consent to share data
with commercial partners who may even vest intellectual property rights in
the results. In the case of PEP this should be excluded as each new entity
processing the data will require its own access. In the final paragraph, when
discussing Data Licensing Agreements we will return to this point.

When up and running, the PEP system will afford a service that enables
a person to ensure that any data (s)he wishes to store and make available to
other service providers is immediately encrypted and kept in store for future
use. The data may have been submitted by the data subject or e.g. by his/her
doctor or teacher, but it may also have been captured by applications that
track behavioural data (as with health dedicated social networking sites, or
quantified self applications). The PEP framework thus enables a service that is
also provided by a number of other so-called personal data management systems,
but on top of that, PEP provide two crucial additional functionalities: it affords
(1) targeted reuse of sensitive data for big data analysis, in combination with,
and based on, (2) the sharing of dedicated pseudonymous datasets. Both will
be discussed below with reference to the upcoming General Data Protection
Regulation (GDPR), to show how PEP will contribute to legal compliance and
data protection by design. This will be followed by a discussion of three further
points of relevance with regard to the GDPR, notably the special regime for
pseudonymisation, the requirement of data protection by design and the idea of
a modular data licensing agreement.

Targeted reuse of sensitive data for big data analytics First, the PEP
framework enables a person to decide at any moment in time to share (parts
of) his/her stored data with any specified and identified third party, based
on a targeted consent that specifies for what purpose the data may be used
(art. 6.1 (a) GDPR stipulates that consent can only be given for one or more
unambiguously specified purposes). This consent concerns either historical data,
streaming data or future data or any combination thereof and should preferably
be part of a license to use the data for a specific period of time, after which they
must be deleted (if consent is not renewed). To the extent that the consent
is well-informed this provides a valid legal ground to process sensitive data
(art. 8 (a) and 9.2 (a) GDPR), and to the extent that the purpose is explicitly
specified data controllers will have complied with another core condition for fair
and lawful processing of personal data (art. 5.1 (b) GDPR). Obviously, once the
specified purpose is exhausted the data must be deleted. Processing for another,
compatible purpose must be communicated to the data subject, and processing
for another, incompatible purpose is prohibited. The latter will require a new
consent and/or personal data licensing agreement, and a new decryption key.

The same data or parts thereof can be licensed to different third parties, each
of whom will have an ‘own’, unique decryption key that is linked to specific data,
a specified purpose and an identified data controller. To ensure the reliability
and lawfulness of the system the consent as well as the license should prohibit
any party from sharing the data with others. Any party wishing to process the
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data will have to connect with the system to obtain its own key, specifying its
own specific purpose and clarifying the time period for which it seeks permission.

By checking into the system, a data subject can see — via the dashboard
from the previous section — which of her data she has licensed to what identified
parties for what purposes. She can also check what consent she has withdrawn
(art. 7.3 GDPR stipulates that ‘consent can be withdrawn at any time’).

Sharing dedicated pseudonymous datasets: to have one’s cake and eat
it too Second, the PEP framework entails that the data that are shared are
pseudonymised, meaning that they cannot directly identify the data subject to
which they relate. This reduces the risk of re-identification, thus contributing to
data minimisation (art. 5.1 (c) GDPR stipulates that data processing must be
‘adequate, relevant and limited to what is necessary in relation to the purposes
for which they are processed’, which is qualified as ‘data minimisation’). In
fact, the PEP system constitutes a form of data protection by default (DPbD),
thus ensuring compliance with the GDPR, which requires such DPbD in art. 25.
The pseudonymisation thus enables big data analysis without access to the ‘raw’
data that contains sensitive personal information. Because each data controller
has an ‘own’, unique key, data cannot easily be linked between different data
controllers, further reducing the risk of re-idenfication, while affording the shar-
ing of dedicated pseudonymous datasets (dedicated to processing for a specific
purpose by an identified data controller).

The PEP system has the added advantage that, if analysis of the data gen-
erates specific risks in the data set with regard to an unidentified individual
(e.g. health risks), the person who submitted the raw data can be notified, en-
abling re-identification. This will be either the data subject, or e.g. the doctor
that submitted medical data in the first place.

In a sense, PEP enable us to have our cake and eat it too: we have privacy,
but we also enable epidemiological research that would otherwise infringe our
privacy, and under specified conditions re-identification is possible.

The role of pseudonymisation in the GDPR In recital 28 the GDPR
states that ‘[t]he application of pseudonymisation to personal data can re-
duce the risks to the data subjects concerned and help controllers and pro-
cessors to meet their data-protection obligations’. Art. 4.5 of the GDPR defines
pseudonymisation as ‘the processing of personal data in such a way that the
data can no longer be attributed to a specific data subject without the use of
additional information, as long as such additional information is kept separately
and subject to technical and organisation measures to ensure non-attribution to
an identified or identifiable person’. This definition clarifies that pseudonymous
data is by definition personal data, meaning that the GDPR applies. Based on
recital 26 we can conclude that encryption is a form of pseudonymisation, even
if the data controller cannot access the additional data (identifier); as long as
someone has a key de-identification is not irreversible and therewith the data are
not considered anonymous. Pseudonymisation is, however, explicitly qualified
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as ‘data protection by default’, which refers to architecting data minimisation
into the relevant technical systems, and similarly qualified as what could be
coined as an example of ‘security by design’ in art. 33.1 (a) GDPR. Obviously
the extent to which pseudonymisation ‘counts as’ effective data protection will
depend on the potential for its reversal. Recital 75 refers to this when summing
up how data controllers should assess the risks of their processing operations for
the rights and freedoms of data subjects: ‘The risk to the rights and freedoms
of natural persons, of varying likelihood and severity, may result from personal
data processing which could lead to physical, material or non-material damage,
in particular: where the processing may give rise to discrimination, identity
theft or fraud, financial loss, damage to the reputation, loss of confidential-
ity of personal data protected by professional secrecy, unauthorised reversal
of pseudonymisation, or any other significant economic or social disadvantage;
where data subjects might be deprived of their rights and freedoms or pre-
vented from exercising control over their personal data; where personal data
are processed which reveal racial or ethnic origin, political opinions, religion
or philosophical beliefs, trade-union membership, and the processing of genetic
data, data concerning health or data concerning sex life or criminal convictions
and offences or related security measures; where personal aspects are evalu-
ated, in particular analysing or predicting aspects concerning performance at
work, economic situation, health, personal preferences or interests, reliability or
behaviour, location or movements, in order to create or use personal profiles;
where personal data of vulnerable natural persons, in particular of children, are
processed; or where processing involves a large amount of personal data and
affects a large number of data subjects’ (own emphasis).

The pseudonymisation that PEP enables will not always constitute pseudonymi-
sation in the legal sense. This is due to the fact that in this case only the
identifier is replace byd a pseudonym, while the data may enable identification
due to its linkability with other data (within the same database or after fusing
databases) or due to unique attributes that make possible the singling out of the
individual (which may also relate to the size of the data base). This means that
those gaining access to data via the PEP framework still have a duty of care to
ensure the security of the data and — obviously — the legitimacy of its pro-
cessing. The risks that processing these data pose to the rights and freedoms of
data subjects are, however, substantially reduced by pseudonymisation, which
will most probably count as a form of data protection by design (and contribute
to compliance with the requirement of technical and organisation measure re-
quired in art. 24 and 32 of the GDPR).

The role of Data Protection by Design and Default in the GDPR
Data Protection by Design (DPbD) must not be confused with Privacy by De-
sign (PbD), despite numerous links and overlaps. The core distinction is that
whereas PbD may be an ethical requirement, DPbD will soon be a legal require-
ment. It is also important to note that privacy is a freedom right, making it
very hard to define, let alone design or engineer. DPbD requires building data
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protection into the technical and organizational architecture of personal data
processing systems. It differs from e.g. privacy enhancing technologies (PETs)
in that DPbD is not about add-ons but about requirements that should inform
the construction of the system from its inception.

Art. 25.1 GDPR (data protection by default) states: ‘Taking into account
the state of the art, the cost of implementation and the nature, scope, context
and purposes of processing as well as the risks of varying likelihood and severity
for rights and freedoms of natural persons posed by the processing, the con-
troller shall, both at the time of the determination of the means for processing
and at the time of the processing itself, implement appropriate technical and
organisational measures, such as pseudonymisation, which are designed to im-
plement data-protection principles, such as data minimisation, in an effective
manner and to integrate the necessary safeguards into the processing in order to
meet the requirements of this Regulation and protect the rights of data subjects
(my emphasis)’.

Art. 25.2 GDPR (data protection by design) states: ‘The controller shall
implement appropriate technical and organisational measures for ensuring that,
by default, only personal data which are necessary for each specific purpose of
the processing are processed. That obligation applies to the amount of personal
data collected, the extent of their processing, the period of their storage and
their accessibility. In particular, such measures shall ensure that by default per-
sonal data are not made accessible without the individual’s intervention to an
indefinite number of natural persons (our emphasis)’. The PEP approach ar-
guably and demonstrably provide appropriate technical measures to contribute
to compliance with both data protection by default and by design.

Data Licensing Agreement (DLA) The processing of personal data can be
based on one of six legal grounds (art. 6.1 GDPR). Since many entities involved
in big data analysis are not aware of this (thinking there is only consent), these
six ground are summed up below.

a). ‘the data subject has given consent to the processing of his or her personal
data for one or more specific purposes;

b). processing is necessary for the performance of a contract to which the data
subject is party or in order to take steps at the request of the data subject
prior to entering into a contract;

c). processing is necessary for compliance with a legal obligation to which the
controller is subject;

d). processing is necessary in order to protect the vital interests of the data
subject or of another natural person;

e). processing is necessary for the performance of a task carried out in the
public interest or in the exercise of official authority vested in the con-
troller.
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f). Processing is necessary for the purposes of the legitimate interests pursued
by the controller or by a third party, except where such interests are over-
ridden by the interests or fundamental rights and freedoms of the data
subject which require protection of personal data, in particular where the
data subject is a child.

Point (f) of the first subparagraph shall not apply to processing carried out by
public authorities in the performance of their tasks’ (own emphasis).

PEP can be based on the first ground, consent, which is usually combined
with a privacy policy or terms of service. We believe that its aims are better
achieved by the introduction of a (modular) ‘data licensing agreement’ (DLA)
that makes sure that data are only processed insofar as necessary for the per-
formance of the agreement by a party that is not allowed to share the data with
other parties. The latter should always conclude their own DLA to obtain their
own key. This ensures that data subjects have a clear overview of the parties
that process their sensitive data.

The DLA can be short and comprehensive, containing a series of general
clauses and a set of modular clauses part of which are optional, see under (A)
and (B) below. To ensure that the data subject is aware of each stipulation it
can best be accessed online such that each clause is shown on a separate screen.
This gives people the option to quickly click through the entire DLA, but at the
same time they are tempted to read each clause with attention. Various types
of animation can be designed to make the content accessible and easy to grasp.
The contract should be available behind a button on the platform of the PEP
framework provider.

A). General clauses The DLA starts with identifying the parties to the
contract: (1) the data subject: a patient or e.g. a user of a health App; and
(2) the data controller(s): an identified health-App service provider, doctor,
medical specialist or e.g. a hospital, insurance company, research institute or
pharmaceutical company.

Next, the DLA will stipulate the obligations of the data subject and the data
controller(s). The data subject:

• licenses the identified data controller(s) who is (are) a party to the DLA
to use (process):

– a specified set (stream) of her or his personal data;

– for explicitly specified purpose(s);

– clearly expressing unambiguous and informed consent for the process-
ing of his or her sensitive data for the explicitly specified purpose(s).

The data controller(s):

• will use (process) the data:

– only for the specified purpose(s) and — if necessary — for purposes
that are deemed compatible (no re-use out of context);
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– employing additional techniques of anonymisation and pseudonymi-
sation (if the data enables re-identification because it is linked with
other data, or if it is unique within the dataset);

– deleting the data once the purpose is exhausted;

– but always within a specified time period (which can be extended
with a renewal of the DLA if the purpose has not yet been exhausted);

– confirming that the data subject has the right to withdraw her con-
sent at any time (which only regards future processing);

– providing an easy way to withdraw consent;

– providing an easy way to receive an electronic copy of the data pro-
cessed;

– explicitly confirming that it (they) will comply with all relevant data
protection stipulations, notably those concerning the provision of in-
formation and taking note of the data subject’s right to object against
excessive or incorrect processing (which any data controller is legally
obliged to do anyway);

• will not share the data with any third party, confirming it (they) will refer
any third party to the PEP provider to obtain its (their) own key, specify
its (their) own purpose(s) and conclude its (their) own DLA.

As indicated above, the latter should prevent all-or-nothing consent and provide
patients with a fair and clear choice of whom to give access to their sensitive
data. Indeed, without strict implementation of this clause most of the added
value of PEP is lost.

B). Modular clauses The modular clauses may, for instance:

• specify the identity of the data processor(s), and/or

• specify whether data may be processed outside the EU (based on what
legal safeguards), and/or

• stipulate with whom the abstract results (which are not personal data)
may or may not be shared, notably whether or not these abstract results
(such as profiles) may be shared with commercial companies, and/or

• specify the type of analytics that will be employed, and/or

• specify the potential consequences of applying the inferences back to the
data subject or to others.

The modularity of the DLA will prevent overly broad consent forms. For in-
stance, patients may stipulate that abstract results based on the processing of
their data cannot be shared with commercial partners. Some may find this
highly problematic, because commercial partners fund medical research. The

20



1.5. Legal framework 211.5. Legal framework 211.5. Legal framework 21

question is whether it is fair that data subjects — at this moment — have no
voice whatsoever in how the results of the analytics are distributed and mone-
tized.

In terms of private law, the DLA would be an obligatory agreement, involving
freely given unambiguous consent on both sides. The DLA assumes that in the
case of joint controllers these conclude a prior contract that binds each of them
to the DLA.

The advantage of having a DLA instead of a dynamic consent or permission
system is that the articulation and signing of the DLA creates awareness of
the direct relationship between the data subject and the party that wishes to
process his/her data as part of big data analytics. This prevents undesirable
network effects of secondary use by unidentified parties. It will also give data
subjects easy access to an overview of who can lawfully process which of her
pseudonymous data how for what purposes and for how long1.

1For further reading on the use of DLAs see www.usemp-project.eu.
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Chapter 2

The cryptographic basis of
PEP

The description given below is definitely more technical than in the previous
chapter, but it is not an implementation manual for PEP. Our focus is still on
explaining the ideas and techniques. We occasionally allow ourselves to deviate
from what will or should be done in practice, to order to avoid unnecessary
complications that distracts from the essentials. In those cases we typically
insert a ‘warning’ paragraph.

A naive form of local pseudonymisation is described in [20], via a combined
hash of a name and a domain: a local pseudonym of A at B is obtained via a
hash H(pidA, B). This hash value is stored at a central party, together with the
personal identifier pidA, for de-pseudonymisation. The current approach is far
more advanced. It is based on [21], see also [12]. Our aims are very much in
line with [13] but our realisation provides better privacy protection, for instance
through domain-specific (local) pseudonyms. However, we do not include the
verification features from [4], which provide guarantees that the various partic-
ipants include the right identity information into the various encryptions.

This chapter starts by recalling the basics of ElGamal encryption and by fix-
ing notation. It is shown how three basic functions can be applied to ElGamal
ciphertexts, for re-randomisation, for re-keying, and for re-shuffling. How these
operations are applied is explained in Section 2.2, for the basic functionality of
storing and retrieving data. Protocols for additional functionality is described
in Section 2.3. Next, Section 2.4 proposes how to organise authentication, au-
thorisation and logging in the PEP framework. Once this basic machinery is in
place, we discuss two possible cryptographic enhancements in Section 2.5.

2.1 ElGamal revisited

The expression ‘ElGamal’ is used for one of the first asymmetric, public key
crypto algorithms, named after its inventor [8]. It can be used both for en-
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cryption and for digital signatures. Here we only use the encryption version.
This section recalls the basic definitions and results, assuming familiarity only
with elementary group theory. In particular, it describes three operations on
ElGamal ciphertexts that form the basis for PEP.

ElGamal works in a cyclic group. Its security depends on the discrete log-
arithm (DL) problem in the group. In practice we shall use (subgroups of)
elliptic curves [19] as groups, and so we prefer additive notation for a group
G = (G,+, 0). A possible instance of G is the Edwards Elliptic Curve denoted
by Curve255191, which offers 128 bits of security, see Example 2.1.1 below for
some more background information.

Translated to additive notation, the DL problem says:

Let g ∈ G be a fixed group element; given n · g ∈ G, for some
unknown number n ∈ N, it is in general computationally infeasible
to find n.

We use the dot notation n · g, or sometimes simply ng, for the n-fold sum
g + · · ·+ g ∈ G. The following basic equations hold.

n · 0 = 0 0 · g = 0 (n+m) · g = n · g +m · g
n · (g + g′) = n · g + n · g′ 1 · g = g (n ·m) · g = n · (m · g).

We recall the basics of ElGamal encryption. In this case we assume that G
is a group and that g ∈ G is a fixed generator, or basepoint, for a subgroup, of
(non-zero) order N ∈ N. This means that N is the least number with N · g = 0.
We write |g| = N for the order of g, and typically assume that N is a prime
number. One writes 〈g〉 ⊆ G for the subgroup of order N generated by g, with
elements of the form n · g, for 0 ≤ n < N . In some cases G = 〈g〉, but this is
not necessary in what follows. If the order of g is a prime number p, then the
generated subgroup 〈g〉 is isomorphic to the field Fp of numbers {0, 1, . . . , p−1}
below the prime p, via the mapping Fp → 〈g〉 given by i 7→ i · g. In fact, scalar
multiplication i · g makes 〈g〉 a vector space over the field Fp.

Example 2.1.1. As intermezzo, we briefly illustrate what these groups can look
like in practice, for the earliermentioned group G = Curve25519. This elliptic
curve is a subset of points in the vector space Fp × Fp over Fp, for the prime
number:

p = 2255 − 19 (whence the name Curve25519)

= 57896044618658097711785492504343953926634992332820282019728792003956564819949.

The curve itself is given by the equation −x2 + y2 = 1 + dx2y2, for the number:

d = − 121665
121666 mod p

= 37095705934669439343138083508754565189542113879843219016388785533085940283555

1See https://cr.yp.to/ecdh.html for more information.
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The default generator g of a subgroup of Curve25519 is the point on the curve
with coordinates:

( 15112221349535400772501151409588531511454012693041857206046113283949847762202,

46316835694926478169428394003475163141307993866256225615783033603165251855960 )

The generated subgroup 〈g〉 has cofactor 4, which means that it contains a
quarter of the points on the curve.

We continue to describe the essentials of ElGamal encryption.

Private key The private key of a user is a natural number below the order
of g ∈ G. It is typically written as x, with x < p = |g|. Hence x ∈ Fp.

Public key The public key y ∈ G associated with private key x ∈ Fp is the
group element y = x · g ∈ 〈g〉 ⊆ G. Due to the DL problem, x cannot (feasibly)
be obtained from y.

Encryption Let M ∈ G be the message that we wish to encrypt, with public
key y ∈ 〈g〉. ElGamal encryption is ‘randomised’ or ‘probabilistic’: it uses
randomness in each encryption so that encrypting the same message twice gives
different ciphertexts. We choose a random number r ∈ N, below the order of g,
and use as ElGamal encryption of M the pair of group elements:

〈 r · g, r · y +M 〉. (2.1)

We recall that a fresh (new) random number r should be used for each encryp-
tion.

Decryption Let a ciphertext pair 〈b, c〉 ∈ G×G be given. Let x ∈ Fp be the
private key, corresponding to the public key y = x · g that has been used for the
encryption. The ElGamal decryption of 〈b, c〉 is the group element:

c− x · b. (2.2)

(We use the letters b for blinding and c for cipher.)

Correctness First encrypting, then decrypting returns the original: if we
start from plaintext M ∈ G, and encrypt it with public key y = x · g and
random r, giving ciphertext 〈b, c〉 = 〈r · g, r · y + M〉, then decryption with
private key x yields the original message M , since:

c− x · b = r · y +M − x · r · g = r · x · g +M − x · r · g = M.
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Notation We shall write EG for the ElGamal encryption function, but with a
minor twist. We define:

EG(r,M, y) = 〈 r · g, r · y +M, y 〉. (2.3)

As before r is the random number that needs to be different each time, g ∈ G is
the generator of the underlying cyclic group 〈g〉, M is the plaintext message that
we wish to encrypt, and y ∈ 〈g〉 is the public key that is used in the encryption.

Notice that the function EG produces a 3-tuple in (2.3), instead of a 2-tuple
in (2.1): its type is EG : Fp×G×G −→ G×G×G. This is purely for burocratic
reasons: it makes it easier to formulate the results in Lemma 2.1.2 below.

Decryption still works essentially as in (2.2): given a ciphertext 〈b, c, y〉 =
EG(r,M, y) we decrypt it to c−x·g. We do not use a special function or notation
for decryption.

We now describe the three homomorphic properties of ElGamal that form
the basis of PEP. They are used in the operations of re-randomising, re-keying,
and re-shuffling that act on ciphertexts. The proofs of the relevant properties
are simple calculations, but are included for convenience.

Lemma 2.1.2. Let g ∈ G be a group element whose order p = |g| is a prime
number. We shall define three functions RR,RK,RS each with type:

G3 × Fp −−−−→ G3

and describe their properties.

1. The re-randomisation of a triple 〈b, c, y〉 ∈ G3 with random number
s < p = |g| is defined via the function:

RR(〈b, c, y〉, s) def
= 〈 s · g + b, s · y + c, y 〉. (2.4)

If the input 〈b, c, y〉 is an ElGamal ciphertext, then so is the output:

RR
(
EG(r,M, y), s

)
= EG(s+ r,M, y). (2.5)

Hence this output decrypts to the original message M via the original
private key x (for which y = x · g): the only effect of re-randomisation is
to change the appearance of the ciphertext.

2. The re-keying with non-zero number k < |g| is defined via the function:

RK(〈b, c, y〉, k)
def
= 〈 1

k · b, c, k · y 〉, (2.6)

where 1
k is the multiplicative inverse of k in the field Fp. We then have:

RK
(
EG(r,M, y), k

)
= EG( r

k ,M, k · y). (2.7)

This ciphertext decrypts to the orignal message M via a different private
key k · x.
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3. The re-shuffling with number n ∈ Fp is defined as a function:

RS(〈b, c, y〉, n)
def
= 〈n · b, n · c, y 〉. (2.8)

Then:

RS
(
EG(r,M, y), n

)
= EG(n · r, n ·M,y). (2.9)

Hence in this case we can decrypt with the original private key to a re-
shuffled message n ·M .

Proof All results (2.5), (2.7) and (2.9) are obtained by easy calculations.

1. We prove that equation (2.5) holds: re-randomisation (2.4) on an ElGamal
encryption yields a new ElGamal encryption of the same message with the
same public key, but with random s+ r, since:

RR
(
EG(r,M, y), s

) (2.1)
= RR(〈r · g, r · y +M,y〉, s)

(2.4)
= 〈s · g + r · g, s · y + r · y +M,y〉
= 〈(s+ r) · g, (s+ r) · y +M,y〉
= EG(s+ r,M, y).

2. Re-keying of an encryption yields an encryption with a different key:

RK
(
EG(r,M, y), k

) (2.1)
= RK(〈r · g, r · y +M,y〉, k)

(2.6)
= 〈 1k · (r · g), r · y +M,k · y〉
= 〈 rk · g,

k
k · (r · y) +M,k · y〉

= 〈 rk · g,
r
k · (k · y) +M,k · y〉

= EG( r
k ,M, k · y)

The adapted private key k · x ∈ Fp has as associated public key (k · x) ·
g = k · (x · g) = k · y, so it can be used to decrypt the manipulated
ciphertext (2.6), giving the original message M .

3. We now have:

RS
(
EG(r,M, y), n

) (2.1)
= RS(〈r · g, r · y +M,y〉, n)

(2.8)
= 〈n · (r · g), n · (r · y +M), y〉
= 〈(n · r) · g, (n · r) · y + n ·M,y〉
= EG(n · r, n ·M,y). �

Sometimes we shall combine the re-keying and re-suffling operations. The
next result tells that the order of such combinations does not matter.
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Lemma 2.1.3. The re-keying and re-shuffling operations RK and RS from
Lemma 2.1.2 commute. Explicitly:

RS
(
RK(〈b, c, y〉, k), n

)
= RK

(
RS(〈b, c, y〉, n), k

)
.

Proof This follows from an easy calculation:

RS
(
RK(〈b, c, y〉, k), n

)
= RS

(
〈 1k · b, c, k · y〉, n

)
= 〈n · ( 1

k · b), n · c, k · y〉
= 〈 1k · (n · b), n · c, k · y〉
= RK

(
〈n · b, n · c, y〉, k

)
= RK

(
RS(〈b, c, y〉, n), k

)
. �

Based on the above lemma we can combine re-keying and re-shuffling into a
single function RKS : G3 × F2

p → G3 by:

RKS(〈b, c, y〉, k, n) = 〈nk · b, n · c, k · y〉. (2.10)

However, for the time being we shall use these functionsRK andRS for re-keying
and re-shuffling separately. We return to this combination in Subsection 2.5.2.

Re-randomisation does not commute with re-keying, and also not with re-
shuffling. But repeated re-randomisations can be combined, as in:

RR(RR(〈b, c, y〉, s), s′) = RR(〈b, c, y〉, s′ + s).

Since RR(〈b, c, y〉, 0) = 〈b, c, y〉 we see that re-randomisation forms an action of
the group Fp on G3.

2.2 Storing and retrieving data

This section illustrates how the three ciphertext manipulations RR,RK and
RS from Lemma 2.1.2 can be used to realise the basic PEP functionality of
storing and retrieving data. The illustrations form a technical elaboration of
the ‘picture’ examples from Sections 1.2 and 1.3. This section first explains
in some detail the protocols for storing and retrieving data. The next section
elaborates several other protocols.

Throughout we shall assume that there is a secret master private key x, with
associated master public key y = x · g, for a fixed group element g. This master
key x is securely stored by a trusted Key Server, in secure hardware, but it is
never used for decryption, see Subsection 2.3.1. An overview of notation and
terminology is given in Figure 2.1

Warning 2.2.1. We shall use the above key pair (x, y) for encryption of both
data and identities, that is, in the terminology of Chapter 1, both for blue and
for red chests. In practice we should use a separate key pair for each of these,
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in order to exclude unintended mixing of encryptions. However, having distinct
key pairs only clutters up the description and does not contribute much. It is
important to be aware of this simplicification.

The protocol examples that we describe below are only meant to illustrate
the re-randomisation, re-keying and re-shuffling operations. Many aspects are
still missing that are important in actual use — notably authentication, see
Section 1.4.

Example 2.2.2. We shall consider some elements from the scenario where a
smart watch W of a certain user A periodically stores its behavioural/medical
data in the Storage Facility. At first we only look at the interaction between
the watch and the Tweaker T . We assume that the user/owner A of the watch
has a personal identity pidA ∈ G which is somehow embedded into the watch
as a ‘polymorphic pseudonym’:

ppidA = EG(r, pidA, y).

As before, r is a random number, and y is the master public key that is known
to all parties.

Each time that the Watch needs to store some encrypted data D externally,
it will send a message to the Storage Facility via the Tweaker. The first step is
described via the following message sequence chart. It corresponds to the earlier
picture (1.6).

W

Watch

T

Tweaker

RR(ppidA, r
′), EG(s,D, y)

The first part RR(ppidA, r
′) of this message is a re-randomised version of the

polymorphic pseudonym ppidA = EG(r, pid, y), with an additional random num-
ber r′. By Lemma 2.1.2 (1) we have RR(ppidA, r

′) = EG(r′+ r, pidA, y). In this
way the watch presents the same (encrypted) identifier each time in a different
form, so that the Tweaker cannot link multiple messages from the same watch.

The second part EG(s,D, y) of the message is an ElGamal encryption of the
data D from the watch. Notice that the master public key y is used for this
‘polymorphic’ encryption — with s a random number. As we shall see below,
this polymorphically encrypted message EG(s,D, y) can be tweaked at some
later stage, via re-keying, so that it can be decrypted by a chosen participant.

Warning 2.2.3. In practice it makes sense to do this data encryption EG(s,D, y)
slightly differently. It is computationally more efficient, certainly for large data

28



2.2. Storing and retrieving data 292.2. Storing and retrieving data 292.2. Storing and retrieving data 29

name notation description known by

master
private key

x element of Fp Key Server

master
public key

y y = x · g everyone

key factor
for participant A

KA element of Fp Tweaker

private key
of participant A

xA xA = KA · x A

public key
of participant A

yA
yA = xA · g

= KA · y
everyone

identity of
participant A

pidA element of G A,
medical staff

pseudonym factor
for participant A

SA element of Fp Tweaker

pseudonym of A
at participant B

pidA@B pidA@B = SB · pidA B

polymorphic
pseudonym of A

ppidA EG(r, pidA, y)
A,

medical staff

encrypted
pseudonym of A
at participant B

epidA@B
epidA@B =

EG(r, pidA@B, yB)
B

Figure 2.1: Names and notation, assuming a group element g ∈ G of prime
order p = |g| ∈ N

blocks D, to use ElGamal encryption EG(s,K, y) only for a symmetric session
key K, and use this K to encrypt the actual data D. This is convenient because
asymmetric (public key) encryption is generally much slower than symmetric
encryption. However, to keep things simple, we shall write ElGamal encryption
for data too.

Here we see that our polymorphic encryption is actually polymorphic asym-
metric encryption. It would be useful to als have polymorphic symmetric en-
cryption.

Example 2.2.4. We continue the story from Example 2.2.2 for storing data
from a watch and look at the subsequent interaction between the Tweaker and
the Storage Facility (SF ). The encrypted data EG(s,D, y), abbreviated as E
below, is simply passed on by the Tweaker. The Tweaker also passes on the
encrypted identity of the user A, but only after manipulating it so that SF can
decrypt the result to its local pseudonym pidA@SF of the user. We first present
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the earlier pictorial descriptions (1.6) and (1.7) as a chart, and then explain
mathematically what is going on.

W

Watch

T

Tweaker

SF

Storage
Facility

PP = RR(ppidA, r
′)

E = EG(s,D, y) RS(RK(PP,KSF), SSF), E

decrypt to
pidA@SF,
store E

The numbers KSF and SSF are the key-factor and the pseudonym factor for the
Storage Facility, see Figure 2.1 for an overview. These numbers are secret, and
only known to the Tweaker.

• The key-factor KSF is generated when the SF joins the system, see Sub-
section 2.3.1 for details. This factor is used to compute the private key
xSF ∈ Fp of the storage facility as:

xSF = KSF · x mod p. (2.11)

The associated public key in G is:

ySF = xSF · g = KSF · x · g = KSF · y.

The DL assumption guarantees that KSF cannot be computed from both
y and ySF. The Tweaker knows KSF but cannot compute the private key
xSF since it does not know the master private key x.

• The pseudonym-factor SSF for the Storage Facility is also generated and
distributed when SF joins. It determines the pseudonym pidA@SF of user
A with identity pidA at the Storage Facility as:

pidA@SF = SSF · pidA ∈ G. (2.12)

In general, the local pseudonym pidA@B of A at B is defined2 as SB ·pidA,
see Figure 2.1 for an overview.

2Instead of using SB · pidA as local pseudonym one can also use for instance SB · h(pidA),
where h is some (keyed) has function. In this way one can prevent that the Tweaker, if it ever
sees a local pseudonym at B, can compute the actual identity pidB , via division by SB .
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With these numbers KSF and SSF explained, we can now understand what
the tweaked message in the above protocol contains:

RS(RK(PP,KSF), SSF) = RS
(
RK
(
EG(r′ + r, pidA, y),KSF

)
, SSF

)
(2.7)
= RS

(
EG( 1

KSF
· (r′ + r),pidA,KSF · y), SSF

)
(2.9)
= EG( SSF

KSF
· (r′ + r), SSF · pidA,KSF · y)

= EG( SSF

KSF
· (r′ + r),pidA@SF, ySF)

= epidA@SF.

The one-but-last equation holds by (2.11) and (2.12). We see that the recipient
of this message, the Storage Facility, obtains an encrypted pseudonym epidA@SF
of A. It can decrypt the message, with its private key xSF, and obtain the local
pseudonym pidA@SF for user A with identity pidA. The Storage Facility will
store the encrypted data E in a database record, using this pseudonym pidA@SF
as database key, as sketched in Figure 1.2.

The SF learns nothing about the data, nor about its origin. A next batch
of data from the watch will arrive at SF with the same pseudonym, so that SF
can store it together with previous data, in the same database record. Even if
new data arrives from a different source, say from a medical doctor who has
examined user A, the resulting (encrypted) data will be added under the same
pseudonym/database key pidA@SF to the same record, as long as the doctor
sends it in with the appropriate (polymorphically encrypted) identifier pidA.

In the end one may ask: why does the watch need to communicate via the
Tweaker? It could send the data directly to Storage Facility, if it contains the
encrypted pseudonym EP = EG(r, pidA@SF, ySF). The storage protocol can
then be simplified to:

W

Watch

SF

Storage
Facility

RR(epidA@SF, r′), EG(s,D, y)

The first part RR(epidA@SF, r′), for a fresh random number r′, is equal to
EG(r′+r, pidA@SF, ySF). It can be decrypted by SF, giving the local pseudonym
pidA@SF that is used as database key for the record in which the encrypted data
EG(s,D, y) should be placed.

In our overview picture in Figure 1.1 all communication goes via the Tweaker.
This makes it possible to integrate authentication and logging with the activities
of the Tweaker — as will be described in Section 2.4. The main disadvantage

31



2.2. Storing and retrieving data 322.2. Storing and retrieving data 322.2. Storing and retrieving data 32

of the above direct storage protocol is that it circumvents such logging and au-
thentication. This may be acceptable for some of the relatively innocent data
from a watch, but not for more senstive data from, for instance, an MRI scan.

Let’s step back and see how and why this works. The main trick is to use
‘diversified’ private keys, which are derived from the master private key x, as
xA = KA · x, for participant A. The Tweaker knows these key factors KA,
and can thus re-key messages encrypted with the public master key y, without
learning the content. Again, the Tweaker does not know x, and hence it also
does not know the secret keys xA = KA · x of participants A. This corresponds
to turning the wheel on a blue box from Section 1.2.

Similarly, for each participant B there is a pseudonym factor SB such that
the local pseudonym-of-A-at-B, written as pidA@B, is derived from the identity
pidA ∈ G as pidA@B = SB ·pidA ∈ G. In this way each participant — including
the Storage Facility, as we have seen in Example 2.2.4 — has its own pseudonym
for each user. Figure 2.1 gives an overview. This local pseudonym is created for
B in a blind way, by re-shuffling and re-keying, that is, by turning both wheel
on a red box and on its lock, like in Section 1.3.

We single out the most important operation, which we call PP2EP conver-
sion.

Definition 2.2.5. Let participant A have personal identifier pidA and associ-
ated polymorphic pseudonym ppidA = EG(r, pidA, y). What we call the PP2EP
conversion for another participant B is the re-keying and re-shuffle application:

RK
(
RS(ppidA, SB),KB

)
.

This PP2EP conversion can be performed by the Tweaker (who knows SB ,KB)
and produces the encrypted pseudonym epidA@B = EG( SB

KB
·r, pidA@B, yB) which

can be decrypted by B, to its local pseudonym pidA@B of A.

We conclude this section with one more scenario.

Example 2.2.6. Consider a doctor B who wants to retrieve some data from
the Storage Facility SF about a particular patient A. We assume that the doc-
tor knows the identity pidA of the patient, and can thus form the polymorphic
pseudonym ppidA = EG(r, pidA, y). Figure 2.2 describes the informal descrip-
tions (1.8) and (1.9) in a precise manner.

In Example 2.2.4 we have already seen how SF obtains the local pseudonym
pidA@SF. In Figure 2.2 SF uses this pseudonym to locate the requested (en-
crypted) data EG(r,D, y), and send them back to the Tweaker. These returned
data are re-randomised to E = RR(EG(s,D, y), s′) = EG(s′ + s,D, y), so that
they become unlinkable. This Tweaker then re-keys this message E to doctor
B, who can decrypt the result using his/her own private key xB since:

RK(E,KB) = RK(EG(s′ + s,D, y),KB)
(2.7)
= EG( s′+s

KB
, D,KB · y)

= EG( s′+s
KB

, D, yB).
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B

Doctor

T

Tweaker

SF

Storage
Facility

ppidA = EG(r, pidA, y)

RS(RK(ppidA,KSF), SSF)

= epidA@SF

decrypt to
pidA@SF,
find data

E = RR(EG(s,D, y), s′)

RK(E,KB)

decrypt to D

Figure 2.2: Retrieval protocol

33



2.3. Further protocol descriptions 342.3. Further protocol descriptions 342.3. Further protocol descriptions 34

Of course, in a realistic version of this protocol additional metadata should
be included in the request of the doctor so that the right encrypted data is
sent by SF . These matters are briefly discussed in the beginning of Section 1.4,
see especially Figure 1.2. Additionally, the data request must be logged and
checked, to verify that B is entitled to access data about A, see Section 2.4
below.

Finally, note that the whole PEP set-up works because private keys and local
pseudonyms of participants have a particular form, namely K · x and S · pidA,
using key and pseudonym factors K and S. The precise management of these
numbers K and S for all participants is a security-critical matter to which we
return in Subsection 2.3.1.

2.3 Further protocol descriptions

In this section we elaborate some basic protocols that are needed in the deploy-
ment of PEP.

2.3.1 Key and pseudonimisation factor generation and dis-
tribution

As we have seen in the previous section, private keys for the different participants
are all derived from a master private key x, via scalar multiplication K · x. We
put this sensitive task in the hands of a separate trusted Key Server KS who
is the sole party that possesses the master private key x. This private key x is
never used for decryption, but is only used to generate diversified keys for the
various parties, as will be described below.

(It is possible to split this Key Sever into two parties, where each of them
posses a part xi of the private master key x = x1 · x2. In this way one can
distribute trust, at the expense of simplicity. We shall not follow this idea and
use a single Key Server.)

In the descriptions below we implicitly assume that all connections are au-
thenticated and encrypted. We start with a naive protocol that explains what
should be achieved.
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A

Newcomer

KS

Key Server

T

Tweaker

pidA

generate KA

xA = KA · x
pidA,KA

generate SA

The numbers KA and SA are the key-factor and pseudonym-factor respectively
for A. They are random numbers in Fp, freshly generated by the Key Server and
the Tweaker. These numbers are typically generated in a Hardware Security
Module (HSM) as KA = KDF(K, ‘A’), via some key derivation function KDF,
a master secret K, and the identity of A. The resulting private key xA = KA ·x
of A must of course be sent to A. The Tweaker must know the key factor KA

for A, so that it can appropriately re-key messages that A should decrypt. The
pseudonym-factor SA for A only needs to be known to the Tweaker.

An issue with this naive protocol is that KS knows everyone’s private key.
In a secure implementation this generation of the numbers KA, SA is done in
an HSM, which reduces the risks. However, there are various ways to improve
the situation. For instance the Key Server can be split into two parties, as
already mentioned, where each of them contributes a one of L1, L2 to the key
factor KA = L1 · L2. We present a different approach in Figure 2.3, where the
Tweaker participates in the key generation via a random contribution R ∈ Fp.
In this situation neither the Tweaker nor the Key Server learns the new private
key xA for A — unless they collude.

Of course, the Key Server still owns the super-sensitive master private key
x — for the master public key y = x · g. Hence KS can decrypt all polymorphic
pseudonyms ppidA = EG(r, pidA, y). Despite the improvements in Figure 2.3,
KS remains a highly trusted party.

2.3.2 Patient registers at doctor

We consider the situation where a patient A comes for the first time to a med-
ical doctor B — or some other medical practitioner. In this case the patient
A somehow proves that pidA is his/her own identifier. Also, the patient A and
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A

Newcomer

T

Tweaker

KS

Key Server

pidA

pidA

generate
R,SA generate K

R

pidA,K

x′ = K · x

set
xA = R · x′

set
KA = R ·K

Figure 2.3: Key generation and distribution with participation of the Tweaker

36



2.3. Further protocol descriptions 372.3. Further protocol descriptions 372.3. Further protocol descriptions 37

doctor B somehow register an agreement that B gets access to (part of) the
existing and new medical data about A that are stored at the Storage Facil-
ity SF . At this initial stage the doctor not only stores pidA in his/her own
registration, but also the local pseudonym pidA@B of A at the doctor B. This
pseudonym is needed later, when B needs to link messages with this pseudonym
pidA@B to the actual identity pidA, and thus to the patient A — especially in
de-pseudonymisation, see the end of Subsection 2.3.3. For this goal the doctor
engages in the following one-time interaction with the Tweaker.

B

Doctor

T

Tweaker

ppidA = EG(r, pidA, y)

epidA@B =

RK(RS(EG(r,pidA, y), SB),KB)

decrypt to
pidA@B

The return message decrypts to SB · pidA = pidA@B by (2.9). The Tweaker
learns nothing.

As the protocol stands, B can obtain local pseudonyms of everyone of whom
(s)he nows the identity pid. The protocol needs to be extended with authen-
tication for B. In addition, the pseudonym request must be logged, so that it
can be inspected later, see Section 2.4.

2.3.3 Research group gets pseudonymised data

We consider the situation where a Research Group RG has submitted a medical
research proposal to an oversight committee and that the enclosed request for
data has been approved. The Storage Facility then has to provide the relevant
data, via the Tweaker. We assume that the Research Group has registered, as
in Subsection 2.3.1, and has obtained its own private key xRG = KRG ·x, where
the Tweaker knows the key-factor KRG. The relevant encrypted data items that
RG should get access to are of the form EG(ri, Di, y), stored at SF under local
pseudonym pidAi

@SF, for i = 1, . . . , n. The data delivery protocol then works
as follows.
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SF

Storage
Facility

T

Tweaker

RG

Research Group

Ni = RR(epidA@SF, si)

Ei = RR(EG(ri, Di, y), r′i)
Ni, Fi = RK(Ei,KRG)

decrypt
Fi to Di

The re-randomisations Ni are still encrypted pseudonyms of Ai at SF. In the
second step, the re-randomisation and re-keying operations yield a ciphertext:

Fi = RK(Ei,KRG) = RK(RR(EG(ri, Di, y), r′i),KRG)

= RK(EG(r′i + ri, Di, y),KRG)

= EG(
r′i+ri
KRG

, Di,KRG · y)

= EG(
r′i+ri
KRG

, Di, yRG).

It can thus be decrypted by RG . The re-randomised encrypted pseudonyms Ni

are used as names/identifiers for the data Di, and are stored together, as pairs
〈Ni, Di〉 by RG .

Possibly, the Research Group chooses — or has a contractual obligation —
to store their findings about the data back into the Storage Facility, and make
them accessible by others. This can be done as follows. Let D′i be the enhanced
version of data Di. Using Ni as above, we get:

SF

Storage
Facility

RG

Research
Group

Ni, EG(ti, D
′
i, y)

decrypt
Ni to pidAi

@SF
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The Storage Facility can decrypt Ni = RR(pidAi
@SF, si) with its own private

key xSF to the original local pseudonym pidAi
@SF, and store the encrypted

enhanced data EG(ti, D
′
i, y) under database key pidAi

@SF, where others can
retrieve it. Notice that in this case the Tweaker is not needed as intermediate
party.

A more interesting scenario arises when there is a coincidental finding by
RG , which should be reported back to the doctor and patient. Let’s assume
this happens in data D for name N = EG(s,pidA@SF, ySF). Let’s further assume
that it is somehow clear from the metadata stored at SF that B is the doctor
for patient A and the source of the data D. The path back to doctor B then
works as follows.

B

Doctor

T

Tweaker

SF

Storage
Facility

RG

Research
Group

N,E =

EG(t,D, y)

decrypt
N to pidA@SF

N ′ = EG(r, pidA@SF, y)

E
RK(RS(N ′, SB

SSF
),KB)

RK(E,KB)

decrypt to
pidA@B,D

Doctor B can decrypt RK(E,KB) to data D by (2.7). But B can also obtain
the local pseudonym pidA@B for patient A by decrypting:

RK
(
RS
(
N ′, SB

SSF

)
,KB

)
= RK

(
RS
(
EG(r, pidA@SF, y), SB

SSF

)
,KB

)
= RK

(
RS
(
EG(r, SSF · pidA, y), SB

SSF

)
,KB

)
(2.9)
= RK

(
EG( SB

SSF
· r, SB

SSF
· SSF · pidA, y),KB

)
= RK

(
EG(SB ·r

SSF
, SB · pidA, y),KB

)
(2.7)
= EG( SB ·r

KB ·SSF
,pidA@B,KB · y)

= EG( SB ·r
KB ·SSF

,pidA@B, yB).
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By this ‘EP to EP’ conversion, Doctor B gets his/her own local pseudonym
pidA@B and can find the corresponding patient identifier pidA in his/her own
administration, via the stored link to the local pseudonym pidA@B, see Sub-
section 2.3.2; B can then contact patient A about the reported findings in D.
Notice that the other parties in the above protocol do not know the identity of
patient A.

The ‘EP to EP’ conversion can be avoided if the data record of patient A
also stores for each contributing doctor B also his/her local pseudonym pidA@B
of A at B. The Storage Facility can then simply include this pseudonym when
it reports the coincidental finding back to doctor B.

2.3.4 Data Sanitation

The data stemming from current wearable devices are sent to the database of the
operator. The data are typically encrypted during transfer. Once transferred,
they are made available again to the owner of the device, via some webinterface.
The stored data can also be accessed by the operator, for various additional
services and other commercial purposes — such as sale to third parties. There
is often one good reason why the operator needs to get access to the ‘raw’
data from the device, namely in order to sanitise the data. Such sanitisation
may involve consistency checks or improvements which are computationally too
intensive to perform on the wearable device itself.

In the PEP setup all (sensitive) data from a wearable device are immediately
encrypted on the device, and sent to a storage provider (via the Tweaker), see
Example 2.2.2, or the informal description in (1.6). Can the operator then still
sanitise the data, if needed?

Sanitation is stil possible in a PEP framework via protocols like in Subsec-
tion 2.3.3, where a research group gets access to selected pseudonymised data
D, and returns an ‘improved’ version D′. This D′ can also be a sanitised version
of D. By doing such sanitations in a batchwise manner the operator can still
get statistical information about certain data (groups), but cannot get informa-
tion about identifiable users. Such a set-up is only possible in close cooperation
with the device manufacturers/operators. They may be interested to adapt
their devices to a PEP framework for instance under pressure from health care
providers, from consumers or from data protection regulators, or simply because
they themselves wish to operate in a privacy-friendly manner.

2.4 Authentication, authorisation, and logging

So far we have concentrated on protocols for the basic PEP functionality. In a
wider eco-system these protocols will have to be complemented with mechanisms
for authentication, authorisation and logging. These topics will be addressed
in the current section. We start with a description of the issues involved, and
continue with a more operational description.
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Authentication We use the word ‘authentication’ for the procedure of prov-
ing certain properties about oneself. Authentication may apply to both humans
and to computers. In a narrow sense authentication is about proving your iden-
tity, for instance by showing your passport, or by provinding the right password
or PIN — proving that you are identified by the corresponding login name, or
bank account number.

In the PEP framework there is an obvious necessity to authenticate, for
instance when a patient wants to see his/her own files, or when a medical doctor
or researcher needs to access certain files with personal information. The above
description uses an abstract personal identifier pidA of person A. Concretely,
the authentication goal is to prove that pidA really belongs to A.

Authentication of devices is also an issue in the PEP framework, especially
for wearables for self-measurement. On the one hand, some level of authentica-
tion is needed, to exclude arbitrary devices sending data into the system, which
could lead to overload and denial-of-service (DoS). On the other hand, the au-
thentication requirements for devices should not undermine pseudonymisation.

In identity management one distinguishes different quality assurance lev-
els for authentication, as developed for instance in the context of STORK3 or
ISO/IEC 291154. These two frameworks each have four levels of ‘entity au-
thentication assurance’, roughly indicated as ‘low’ (level 1), ‘medium’ (level 2),
‘high’ (level 3), ‘very high’ (level 4). In health care one typically requires the
last two levels of assurance.

It may be useful to build authentication not only on a single identifier,
like pid, but to use more general attributes, like ‘medical doctor’, ‘assessor’,
‘nurse’, possibly extended with medical areas of expertise. Such attribute-based
authentication is seen as a promising direction in identity management, see for
instance the work on U-prove [3] or Idemix [5, 2, 1], or relevant standardisation
efforts5.

Authorisation The process of authorisation tells whether an already authen-
ticated user is permitted to have access to a certain resource. Roughly, one can
distinguish ‘read’ access from ‘write’ access. This ‘write’ access can be divided
further into ‘modification’, or ‘addition-only’; the latter form preserves the his-
tory of a file, and is sometimes preferred in a medical setting. Typically, nurses
and patients only have read access to a personal medical dosssier, and only
doctors have write access.

Authorisation is not a straightforward matter.

• Obviously, patients should be permitted to read their own dossier. But in
some cases person A should also be permitted to read the dossier of person
B, for instance when B is a minor and A is a parent or legal custodian.

3See www.eid-stork.eu/
4See www.iso.org/iso/catalogue_detail.htm?csnumber=45138
5For instance by NIST, see https://nccoe.nist.gov/projects/building_blocks/

attribute_based_access_control
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Such a guardianship may also occur in other situations, like when someone
suffers from dementia or Alzheimer.

• Access to a dossier by medical staff should be permitted only if there is
a ‘treatment relation’. But it is surprisingly hard to formalise such a re-
lationship, for instance because of (temporary) absence, second opinions,
external advice or assistance, etc. In practice it has become clear that for-
mal authorisation rules are too rigid. Instead, one sometimes sees medical
systems giving a warning or asking for explicit motivations in situations
that look non-standard. At the same time each dossier access is logged.

Logging The activity of recording each event or transaction of a certain kind
in a special ‘log’ file is called logging. It is useful for abuse detection and for
reconstructing what went wrong after an incident. Logging in privacy-friendly
systems is a delicate matter, since confidentiality should be maintained. One
possible solution is to cryptographically protect the log files and to grant ac-
cess only to a trusted party — only under specific circumstances, or only on a
statistical basis.

In the PEP set-up we aim to give each participant A access to the transac-
tions in the log file in which A occurs. In particular, this means that patients
get to see who has accessed their dossiers at which stage, possibly also with
which purpose. This is done primarily for transparancy reasons, but may also
be useful for anomaly detection.

In the remainder of this section we give two protocols in which authentication
and logging are made explicit. This will happen via two new trusted parties,
called the Access Manager AM and the Logger L.

We first reconsider the retrieval of patient data by a doctor. The extended
version of the earlier protocol in Figure 2.2 is described in Figure 2.4. We shall
step through this protocol. First, Doctor B authenticates him/herself to the
Access Manager. The authentication message uses pidB as personal identifier,
which, in this case, is typically a medical registration numbers. This yields some
ticket, which is not written explicitly6, that is used in the next step, where
the doctor sends his/her own identity B, the query Q, and the polymorphic
pseudonym ppidA = EG(r, pidA, y) to the Tweaker. The Tweaker does two
things.

• It applies the PP2EP conversion to the polymorphic pseudonym ppidA,
giving the encrypted pseudonym epidA@L for the Logger. It then passes on
the triple B,Q, epidA@L to the Logger. This Logger can decrypt epidA@L
to the local pseudonym pidA@L, which is stored together with B and Q
as retrieval request in the log file. Optionally, the identity B of the doctor
is not logged in the clear, but also in encrypted form, as polymorphic
pseudonym ppidB = EG(s,pidB , y).

6This ticket is also used to link the various messages in the protocol.

42



2.4. Authentication, authorisation, and logging 432.4. Authentication, authorisation, and logging 432.4. Authentication, authorisation, and logging 43

B

Doctor

AM

Access
Manager

T

Tweaker

SF

Storage
Facility

L

Logger

pidB

authenticate

pidB , Q, ppidA
pidB , Q, epidA@L

decrypt to
pidA@L,

store with
pidB , Q

confirm
pidB , epidA@AM

decrypt to
pidA@AM,

check access
of B to A

confirm
Q, epidA@SF

decrypt to
pidA@SF,
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E =

RR(EG(s,D, y), s′)RK(E,KB)

decrypt to D

Figure 2.4: Retrieval protocol from Figure 2.2 extended with access control and
logging
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• The Tweaker similarly turns the polymorphic pseudonym ppidA into an
encrypted pseudonym epidA@AM of A for the Access Manager. The latter
can decrypt epidA@AM to the local pseudonym pidA@AM of A, and check
if there are rules that permit/exclude access of B to A. Notice that these
rules will have to be formulated in terms of local pseudonyms of patients,
so that the Access Manager does not learn the identities of the patients
involved. Optionally, the query Q can also be sent to the Access Manager,
to be part of the decision process. (In this set-up we assume that the
Access Manager does not keep any logs.)

After an (authenticated) confirmation message from the Access Manager, the
Tweaker proceeds to compute the encrypted pseudonym epidA@SF of A at the
Storage Facility and to pass it on together with the original query Q. Notice that
the Storage Facility learns nothing about the source B of the query. It decrypts
the encrypted pseudonym, finds the associated database record, and selects the
relevant encrypted data using the query Q. These encrypted data are of the
form EG(s,D, y), and are passed on to the Tweaker, in re-randomised form, who
re-keys them to Doctor B, like in the first version of the protocol in Figure 2.2.
In total, the Tweaker performs three PP2EP conversions. In this protocol the
Storage Facility is trusted to return the right encrypted data, corresponding to
query Q. We shall reconsider this assumption in Subsection 2.5.1.

Our second protocol is inspection of log files by a participant A, see Fig-
ure 2.5. After authentication, the Access Manager passes the identity A on to
the Tweaker. It produces an encrypted pseudonym for the Logger, who can
decrypt the latter to its own local pseudonym pidA@L for A. It logs the request
itself, and finds all log entries Ei in which the local pseudonym occurs. These
entries are returned to the Tweaker, in polymorphically encrypted form. The
Tweaker remembers that they should be re-keyed to A, and passes them on.
In this way the Logger does not learn who requests the log entries, and the
Tweaker cannot read the selected entries.

The protocol in Figure 2.5 only describes inspection by individuals. In-
spection may also be performed by health care or data protection authorities.
They may ask different questions, like: about which individuals did health care
professional X retrieve which data? The Logger can only answer with local
pseudonyms pidA@L of individuals A. These pseudonyms may be translated by
the Tweaker to pseudonyms of the inspection authorities, via an ‘EP to EP’
conversion like in Subsection 2.3.3. If the inspection authorities have access to
the real identities pid, they can find out who actually occurred in the log files
— if needed.

2.5 Cryptographic enhancements

The previous sections have described the main lines of the PEP framework.
In a complicated system like this, many variations are possible. The decision
which of them should be implemented depends on many factors, like complexity,
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EG(ri, Ei, y)
EG(ri, Ei, yA)

decrypt
to Ei

Figure 2.5: Protocol for obtaining relevant log file entries
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B AM

Access
Manager

L

Logger

SF

Storage
Facility

pidB , epidA@AM

authentication
and check

pidB , epidA@L,M

write log
f(M) · y

epidA@SF,M, EG(r,D, f(M) · y)

store

Figure 2.6: Protocol for storing encrypted data, linked to metadata

computational overhead, perceived risks, and added guarantees. This section
describes two of such possible variations.

2.5.1 Linking metadata and data

Our first variation addresses the following point, which was briefly mentioned
in the description of the retrieval protocol of Figure 2.4. Given a query for
data, we have to trust the Storage Facility to return the right (encrypted) data,
associated with the query. For instance, a malfunctioning or malicious Storage
Facility could return DNA data when only (body) weight is requested.

A possible solution is to link the metadata, occurring in a query, to the data
itself. In storage protocols, like in Example 2.2.4, we have stored data D via
polymorphic encryption as EG(r,D, y), using the master public key y. Let M
be the metadata for D, describing for instance the source, date, label, format
etc. of D, see Figure 1.2. Our variation is to encrypt D as EG(r,D, f(M) · y)
with a public key f(M) · y which depends on the metadata, via some function
f . One can think of f as some keyed hash function, but what it precisely does
is not relevant.

The important point is: if the Storage Facility returns the wrong encrypted
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)
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Figure 2.7: Protocol for retrieving encrypted data, linked to metadata

data EG(r,D′, f(M ′) · y), not belonging to metadata M , then this ciphertext
cannot be decrypted with the private key belonging to the public key f(M) · y,
associated with the right metadata.

What matters is who computes this function f . We choose to let the Logger
do this, because the Logger also registers the metadata M in a storage or re-
trieval protocol. Our adapted protocols, are described in Figures 2.6 and 2.7. In
the first, storage protocol we have left out the Tweaker, for reasons of simplicity.
It should provide the encrypted pseudonyms epidA@X, for the various parties
X. In the retrieval protocol the Tweaker plays the important role of re-keying,
with factor KC

f(M) . It turns the encryption of D with public key f(M) · y into an

encryption with public key KC · y = yC , so that C can decrypt and obtain D.
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2.5.2 Separating polymorphic and encrypted pseudonyms

We recall from Figure 1.1 that for a participant with identity pidA ∈ G, a
polymorphic pseudonym is an ElGamal encryption ppidA = EG(r, pidA, y) with
the master public key y. An encrypted pseudonym for participant B is of the
form epidA@B = EG(r, pidA@B, yB), where pidA@B = SB ·pidA ∈ G is the local
pseudonym of A for B, and yB = KB · y is the public key of B. This encrypted
pseudonym epidA@B can be obtained from the polymorphic pseudonym ppidA

via re-keying and re-shuffling, called PP2EP conversion, see Definition 2.2.5.
We given an overview of the different conversions.

identity_

encrypt

��

pidA_

by anyone

��
(

polymorphic
pseudonym

)
_

PP2EP

��

ppidA = EG(r, pidA, y)
_

by Tweaker, via re-key/shuffle

��
??

(
encrypted

pseudonym

)
_

decrypt

��

77

epidA@B = EG(r′, SB · pidA,KB · y)
_

by B

��
??

(
local

pseudonym

)
pidA@B = SB · pidA

(2.13)

The diagram on the left contains three additional, dotted arrows, representing
the following options.

1. An encrypted pseudonym epidA@B for B can be turned into an encrypted
pseudonym epidA@C for another participant C. The Tweaker can do this
via re-shuffling with factor SC/SB, like in the ‘EP to EP’ conversion in
Subsection 2.3.3.

2. Also, an encrypted pseudonym epidA@B can even be turned into the
identity pidA if the Tweaker re-shuffles it with factor 1/SB. It yields
EG(r, pidA, yB), which can be decrypted by B.

3. Similarly, the tweaker can transform a pseudonym pidA@B into pidA@C
by using the appropriate pseudonymization factors.

One may argue that these two points give too much flexibility, and that only
the downward direction should be allowed in Diagram 2.13. The ‘EP to EP’
conversion in Subsection 2.3.3 should then be avoided, for instance by keeping a
polymorphic pseudonym ppidA of patient A in its database record — in addition
to the local pseudonym pidA@SF that is used as key of the record.
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We present a way to enforce this downward-direction-only policy by using a
bilinear pairing. Such a pairing is a function of the form:

G×H e // K

where G,H and K are three (additive) groups. The crucial property of the
pairing map e is that the functions e(−, b) : G → K and e(a,−) : H → K are
group homomorphisms. That is,

e(0, b) = 0 e(a, 0) = 0

e(a+ a′, b) = e(a, b) + e(a′, b) e(a, b+ b′) = e(a, b) + e(a, b′),

for all a, a′ ∈ G and b, b′ ∈ H. As a result one has:

e(n · a,m · b) = n ·m · e(a, b),

for all group elements a ∈ G, b ∈ H and numbers n,m ∈ Z. In the present
context we further assume that the groups G and H are generated by elements
g, h, so G = 〈g〉 and H = 〈h〉, where g, h are of the same prime order p. In
addition, we assume that K has order p, and that the element e(g, h) ∈ K is a
generator, hence non-zero and of order p. The Barreto-Naehrig curve BN254 [18]
provides an example. We shall make special use of the group isomorphism7:

G ∼=

i
def
= e(−,h) // K

Below we write i3 : G3 → K3 for the function that sends a triple 〈a, b, c〉 to
〈i(a), i(b), i(c)〉 by applying i coordinatewise. This notation i3 is thus not used
for iteration.

We still assume a master public key x ∈ Fp with associated public key
y = x · g ∈ G. Each participant B still has a private key xB = KB · x. However
the corresponding public key y′B no longer resides in the group G but in K. It
is the i(.) image of the original public key yB = xB · g. That is:

y′B
def
= i(yB) = i(xB · g) = xB · i(g) = xB · e(g, h) ∈ K. (2.14)

The participants no longer need the original public keys yB ∈ G; these original
public keys are only used implicitly, to form their i(.) image. Identities pidA are
still group elements in G, like before, with polymorphic pseudonyms ppidA =
EG(r, pidA, y) ∈ G3.

Our set-up now further changes in the follow way. First of all, the Tweaker
is no longer provided with the original key factor KB of a participant B but
only with a suitably encrypted variant of it. To this end, the Tweaker is given
KB ·h ∈ H instead. Moreover, the original pseudonym factor SB of a participant
B is also provided in an encrypted fashion, in a such a form that no party, even

7We only use that i is an injection.
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the Tweaker, has possession of it — so that, as a result, the ‘dangerous’ dotted
arrows in Diagram (2.13) disappear. To this end, the Tweaker simply selects
a random element hB ∈ H. This implicitly defines a pseudonym factor SB as
the discrete logarithm of hB with respect to h. Below, we will still use the
pseudonym factor SB but in only in an implicit way where it suffices to have
hB .

Our set-up now changes in the follow way.

1. We keep the same notation pidA@B = SB · pidA ∈ G for the original local
pseudonym. The new version pidA@′B is written with a prime (′) and is
now an element of the group K, defined as:

pidA@′B
def
= e(pidA, hB)

= e(pidA, SB · h) assuming hB = SB · h
= SB · e(pidA, h)

= e(SB · pidA, h)

= e(pidA@B, h)

= i
(
pidA@B

)
.

Hence the isomorphism i : G → K maps the old local pseudonym to the
new one — if we know that SB is the discrete log of hB .

The Tweaker is the only party that can compute such local pseudonyms.
In the original set-up, the Tweaker had to know the pseudonymisation
factor SB ∈ Fp. In the current set-up nobody needs to know the num-
ber SB . That is, the Tweaker only needs to posses a randomly selected
element hB ∈ H. Typically this generated by the Tweaker using a secret
embedding into the group H, based on the identity of participant B and
a secret diversification key.

2. Recall that the original encrypted pseudonym is defined as:

epidA@B = EG
(
r, pidA@B, yB

)
∈ G3.

The new version epidA@′B ∈ K3 is defined as an ElGamal encryption in
K, via:

epidA@′B
def
= EG

(
r, pidA@′B, y′B

)
where y′B = i(yB) see (2.14).

We claim that the map i : G → K again preserves this structure, via the
equation: i3

(
epidA@B

)
= epidA@′B. Indeed, using i(g) = e(g, h) ∈ K as
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generator, we have:

epidA@′B = EG
(
r, pidA@′B, y′B

)
= 〈 r · i(g), r · y′B + pidA@′B, y′B 〉
= 〈 i(r · g), r · i(yB) + i(pidA@B), i(yB) 〉
= 〈 i(r · g), i(r · yB + pidA@B), i(yB) 〉
= i3〈 r · g, r · yB + pidA@B, yB 〉
= i3

(
EG(r, pidA@B, yB)

)
= i3

(
epidA@B

)
.

The definitions of re-keying and re-shufflying have to be adapted, and also
their combination as in (2.10). The latter combination is needed since re-keying
and re-shufflying act ‘from G to K’ and there is no way back. So if we wish to
combine them, we have to do it immediately. We shall use primed notation (′)
for the new versions.

Definition 2.5.1. In the above setting, re-keying and re-shuffling and their
combination are defined as functions of type:

G3 × Fp
RK′
// K3 G3 ×H RS′

// K3 G3 × Fp ×H RKS′
// K3

Explicitly:

RK′(〈b, c, y〉, k)
def
= i3

(
RK(〈b, c, y〉, k)

)
= 〈 i( 1

k · b), i(c), i(k · y) 〉
RS ′(〈b, c, y〉, z) def

= 〈 e(b, z), e(c, z), i(y) 〉
RKS ′(〈b, c, y〉, k, z) def

= 〈 e( 1
k · b, z), e(c, z), i(k · y) 〉.

We summarise the situation in terms of commuting diagrams.

Lemma 2.5.2. The new (primed) re-keying and re-shuffling operations from
Definition 2.5.1 make the following three diagrams commute.

G3 × Fp

i3×id

��

RK //

RK′

""

G3

i3

��
K3 × Fp RK

// K3

G3 × Fp

i3×id

��

id×((−)·h)

&&

RS // G3

i3

��

G3 ×H
RS′

$$
K3 × Fp RS

// K3

G3 × Fp × Fp

i3×id×id

��

id×id×((−)·h)

))

RKS // G3

i3

��

G3 × Fp ×H
RKS′

''
K3 × Fp × Fp RKS

// K3
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We recall that the original function RKS is defined in (2.10).

Proof We start with the upper left rectangle. Its upper right triangle commutes
by definition of RK′. Its lower left triangle commutes because:

RK
(
i3〈b, c, y〉, k

)
= RK

(
〈i(b), i(c), i(y)〉, k

)
= 〈 1

k · i(b), i(c), k · i(y) 〉
= 〈 i( 1

k · b), i(c), i(k · y) 〉
= i3〈 1

k · b, c, k · y 〉
= i3

(
RK(〈b, c, y〉, k)

)
= RK′(〈b, c, y〉, k).

We turn to the upper right rectangle. It states that if the element z ∈ H is
of the form z = n · h, then the map i : G→ K also commutes with re-shuffling,
as expressed by the two sub-triangles. They commute since:

RS ′(〈b, c, y〉, n · h) = 〈 e(b, n · h), e(c, n · h), i(y) 〉
= 〈n · e(b, h), n · e(c, h), i(y) 〉
= 〈n · i(b), n · i(c), i(y) 〉
= RS(〈i(b), i(c), i(y)〉, n)

= RS(i3〈b, c, y〉, n)

RS ′(〈b, c, y〉, n · h) = 〈 e(b, n · h), e(c, n · h), i(y) 〉
= 〈n · e(b, h), n · e(c, h), i(y) 〉
= 〈 e(n · b, h), e(n · c, h), i(y) 〉
= 〈 i(n · b), i(n · c), i(y) 〉
= i3〈n · b, n · c, y 〉
= i3(RS(〈b, c, y〉, n)).

Commutation of the third diagram is left to the interested reader. �

In this new set up, participant A has one private key xA ∈ Fp with two
associated public keys, in G and in K, namely:

yA = xA · g ∈ G and i(yA) = xA · i(g) = xA · e(g, h) ∈ K.

Encryptions of data are done in G, and encryptions of pseudonyms in K.
A polymorphic pseudonym ppidA = EG(r, pidA, y) is an element of G3. By
re-keying-and-shuffling RKS ′ it yield an encrypted pseudonym epidA@′B =
EG(r, pidA@′B, i(yB)) in K3. It is produced by the Tweaker via its key and
pseudonym factors KB ∈ Fp and hB ∈ H. In this new set up, the dashed arrows
in Diagram 2.13 no longer exist. But the basic PEP functionality can still be
provided.
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What has been achieved is a limitation of the power of the Tweaker, at
the expense of greater cryptographic complexity, via bilinear pairing, and of
stronger security assumptions. One can ask if this is worth it, certainly if the
Tweaker in its original form is implemented in an HSM. Possible abuse is then
controlled by using restricted, secure hardware.

2.6 Ongoing work

This white paper describes the basics of Polymorphic Encryption and Pseudonymi-
sation (PEP). This is an ungoing project involving, research, design, develop-
ment, and deployment. This section gives an impression of some of the ongoing
activities. It will be expanded in later versions of this document.

2.6.1 Informal security analysis

In this subsection we will present an informal security analysis of the basic
protocol (Section 2.2 and 2.3), where we look at how things can go wrong if the
different parties are compromised or if they collude.

The Key Server contains the most sensitive components of the system: the
master private key x. Using this key, all other private keys are generated.
Therefore, if the Key Server is compromised possibly all data and pseudonyms
could be recovered, via decryption of polymorphic pseudonyms EG(r, pid, y) and
polymorphically encrypted data EG(r,D, y) produced by wearables, for instance.

If in addition the Tweaker gets compromised, and key and pseudonym factors
become known, all encryptions with participant keys yA can be undone.

The Tweaker plays an important role in the system as it cryptographically
regulates access to the data — via tweaking of keys. In order to do this it
knows all key and pseudonym factors. When the Tweaker colludes with just
one participant A, the master private key x can already be learned using the
participant’s private key xA and key factor KA as follows: K−1

A · xA = K−1
A ·

KA ·x = x. Now, they can construct all private keys and are able to decrypt any
data or pseudonyms. As the Tweaker knows all pseudonym factors, it is also
possible to retrieve all the original identities pid. The Tweaker can also tweak
all data and pseudonyms to be used by participant A. Original identities can be
learned by not using a pseudonym factor for the recipient. For example, assume
the Tweaker is again colluding with participant A, and together they have the
pseudonym epidC@B. First the Tweaker takes out the pseudonym factor of B:

RS(epidC@B,S−1
B ) = RK(EG(r, pidC@B, yB), S−1

B )

= RS(EG(r, SB · pidC , yB), S−1
B )

= EG(r · S−1
B , SB · pidC · S−1

B , yB)

= EG(r · S−1
B ,pidC , yB)

Now the Tweaker can generate B’s private key to decrypt, or, alternatively,
re-key this result for participant A.
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Colluding parties Result

Key Server and Tweaker
All private keys can be retrieved,
so all data and identities can be
accessed

Access Manager and a researcher
This researcher can get access to
all pseudonymised data

Access Manager and a doctor
This doctor can get access to all
pseudonymised data and can re-
identify his/her own patients

Tweaker and a participant

The master private key can be
retrieved, and all other private
keys too, so all data and iden-
tities can be accessed

Table 2.1: Overview of possible attacks when parties collude

The Access Manager controls who is allowed to access what data. There-
fore it can collude with a participant, say A, and grant A access to all data.
The Tweaker then re-keys data to A and re-shuffles pseudonyms to their local
versions for A. Whether or not A can connect these local pseudonyms to real
identities depends on the role of A. Doctors can make such connections, but
researchers cannot. Such un-intended access by A is registered by the Logger.

An overview of the attacks when the crucial parties (Key Server, Tweaker,
Access Manager) collude, possibly with others, is given in Table 2.1. For any of
the attacks discussed before it is possible to include the Storage Facility to get
direct access to the data and circumvent the Logging and Access Management.
Thus it is clear that at least the Key Server and the Tweaker must be completely
independent and must run their cryptographic tasks and store their key material
in HSMs.

2.6.2 Security assumptions

In this subsection we briefly discuss the cryptographic (number theoretic) as-
sumptions that underlie PEP security. The basic PEP scheme in Section 2.1
uses the ElGamal encryption scheme [8] in the cyclic group G = 〈g〉 of prime
order p. That is, any element in G can be uniquely written as n · g with
n ∈ {0, 1, . . . , p− 1} or equivalently with n an equivalence class modulo p. The
latter classes are called the Galois field of order p denoted by Fp. The security
of the ElGamal scheme depends on two cryptographic assumptions respectively
called the elliptic curve discrete logarithm (ECDL) assumption — as we work
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with elliptic curves — and the computational Diffie-Hellman (CDH) assumption
in G. We already encountered the DL problem, on which the DL assumption
is based, in Section 2.1. It states: given n · g ∈ G find n ∈ Fp. The CDH
assumption relies on a variation (and in fact an relaxation) of the DL prob-
lem. The CDH problem states: given α = n · g, β = m · g determine the value
(n · m) · g. This problem is related to the security of the Diffie-Hellman key
exchange problem [6], the first published public key encryption scheme.

In the context of the ElGamal scheme, if follows from the assumed hardness
of the ECDL problem that one cannot derive the private key x from the public
key y = x · g. Moreover, it follows from the assumed hardness of the CDH
problem that one cannot determine the plaintext M from an ElGamal encryp-
tion EG(r,M, y) without possession of the private key x. In practice however, it
does not suffice that outsiders cannot determine M from its ElGamal encryption
but one additionally requires that outsiders cannot gather ‘any’ information on
M from its ElGamal encryption. This is formalised in semantic security: an
outsider should not be able to determine whether two different ElGamal encryp-
tions under the same public key y contain the same message. That is: given
EG(r1,M, y) and EG(r2, N, y) it should not be feasible to determine whether
M = N . Semantic security of the ElGamal encryption scheme is related to a
third mathematical problem in G called the Decisional Diffie-Hellman (DDH)
problem with respect to g: given g,m · g, n · g, r · g all in G, with random num-
bers m,n, r ∈ Fp, determine if nṁ = r. It is clear that the DDH problem is
weaker than the CDH problem. One can easily show that the CDH problem
is weaker than the ECDL problem in G. Therefore we require a group G in
which the DDH problem is hard in the context of PEP. This requirement is
widely assumed to be met by all groups that are typically used in the context
of ElGamal such as the multiplicative group of a finite field, the NIST elliptic
curves [17] and the Brainpool curves [14].

It directly follows from the semantic security of the ElGamal encryption
scheme that re-randomized versions of polymorphic pseudonyms, encrypted
pseudonyms and encrypted data in the sense of Lemma 2.1.2 are not linkable to
the original version. From the hardness of the elliptic curve Discrete Logarithm
problem in G it also follows that a participant cannot cryptographically link a
local pseudonym with the identity pid of the patient involved. Moreover, from
the Decisional Diffie-Hellman problem in G it follows that local pseudonyms are
not linkable over the participant domains. That is, it is not cryptographically
feasible that two participants, say C,D, can assess whether local pseudonyms
pidA@C and pidB@D correspond to the same person, i.e. whether A = B.

These properties hold under the assumption that the Tweaker and the Key
Server are trusted parties that protect their cryptographic keys and do not
deviate from the protocols described. The consequences of a deviating Tweaker
are already sketched in Subsection 2.6.1.

As already mentioned in Subsection 2.3.1 we envision the usage of Hard-
ware Security Modules (HSMs) to enforce that the Tweaker and Key Server do
not deviate from their cryptographic tasks and responsibilities. The envisioned
HSMs will not only manage the cryptographic keys involved in a non-exportable
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fashion but will also enforce a usage policy. For instance, the Tweaker HSM
will only allow the re-keying and re-shuffling operations from Section 2.1 and
nothing else. Such enforcement is common practice in the smartcard industry,
e.g. in EMV cards [10] used in the financial industry. Inside such card complete,
albeit simple, applications are implemented using cryptographic keys stored in
the card in a specific manner. Modern HSMs also support implementation of
such applications.

In Subsection 2.5.2 we actually mimicked the usage of HSMs in software
using pairing based cryptography. The pairing based context comprises of three
groups G,H and K in which we assumed that all three of the ECDL, CDH and
DDH problems are intractable. This is assumed for the Barreto-Naehrig curves
we mentioned in Subsection 2.5.2. Actually, these curves are assumed to be
so-called Type 3 pairing friendly curves, cf. [11]. This means that in addition
there are no efficiently computable homomorphisms between G and H.

In the pairing based setting explained in Subsection 2.5.2, the Tweaker no
longer has possession of the key factor KA as a number but only in the encrypted
form as a group element KA · h. As the ECDL problem is assumed to be hard
in H, the Tweaker cannot (and in fact no party at all) determine KA from
KA · h. This suggests that a Tweaker colluding with the participant A is no
longer able to derive the secret master private key x. This can be formally
proven under the assumption of the hardness of the co-elliptic curve Discrete
Logarithm (co-ECDL) problem. This problem resembles the regular ECDL
problem but divided over both groups G and H as follows: given g, n · g ∈ G
and h, n · h ∈ H with random n ∈ Fp, determine n. It seems like a reasonable
assumption that the co-ECDL problem is hard in Barreto-Naehrig curves [18].

Additionally, in the pairing based setting, the Tweaker is no longer able to
perform transformations of pseudonyms between domains, as pictured in Di-
agram 2.13. The idea is that the Tweaker is no longer in possession of the
pseudonym factors of the participants required to perform this domain trans-
formation. To determine the pseudonym factor of a participant B the Tweaker
is required to calculate the discrete logarithm of hB with respect to h which we
assumed is intractable. Formally one can show that the ability to perform a do-
main transformation implies solving the DDH problem in H which we assumed
is a hard problem. Therefore, no party is able to perform domain transforma-
tion in the pairing based variant. In a similar fashion one can show that the
Tweaker in the pairing based variant is no longer able to transform an encrypted
pseudonym for participant A to an encrypted pseudonym for another partici-
pant B. We conclude that in the pairing based variant no party, including the
Tweaker, is able to cryptographically conduct domain transformations.

We have indicated that in the pairing based setting the conversions from
polymorphic to encrypted pseudonyms and from encrypted pseudonyms to pseu-
donyms are strict one-way functions. That is, it is not possible to convert (en-
crypted) pseudonyms to other (encrypted) pseudonyms. This suggests a robust
setup.
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2.6.3 Implementation

Currently, a prototype implementation of basic PEP functionality is under de-
velopment. The software is written in C++ and uses RELIC8 as the underlying
crypto library — since it supports pairings. In this preliminary setting all par-
ties (from Figure 1.1) are processes that run on the same machine. During
further development more and more roles will be distributed to other machines
and organisations. The PEP-software will become publicly available, as open
source.

The following code snippet gives an impression. It implements the re-
randomisation function RR from Lemma 2.1.2 (1). The triple of points 〈b, c, y〉
on the curve is an object of the class ElgamalEncryption. It is re-randomised
via the formula (2.4), with randomisation parameter z.

ElgamalEncryption ElgamalEncryption : : rerandomise ( ) const
{

ElgamalEncryption r ;
u i n t 8 t randomness [ 3 2 ] ;

MiscCrypto : : randomBytes ( randomness , 3 2 ) ;
CurveScalar z ( randomness , 3 2 ) ;

r . b = b . add ( CurvePoint : : baseMult ( z ) ) ;
r . c = c . add ( y . mult ( z ) ) ;
r . y = y ;
re turn r ;

}
The following two design goals are intended to contribute to (wide) adoption

of the PEP-framework.

1. Simple adaptation for software developers: minimum effort should be re-
quired to design software extensions of PEP or to modify existing software
for PEP compatibility. Complex cryptography and protocol handling is
abstrated away, so that adoption can be seamless and quick. Additionally,
the PEP code is designed to be highly modular. Hence, developers may
choose to replace certain functionality, e.g. I/O or cryptographic libraries,
with custom implementations should they feel the need to.

2. Low memory footprint: in order to allow for adoption among an extensive
range of (possibly embedded) devices, the amount of memory required is
kept to a minimum.

Furthermore, the implementation includes bindings for several languages
including Java, Python and C#.

Currently, the implementation of PEP is actively developed. Most of the low-
level functionality has been implemented. Simple tests indicate that it performs
well on ordinary consumer-grade hardware.

8See github.com/relic-toolkit
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2.7 Conclusions and future work

We have described the basic ideas and application scenarios for Polymorphic
Encryption and Pseudonymisation (PEP). The underlying mathematics is rel-
atively easy, but the application protocols are complicated. Here is a list of
things that we still wish to do.

• Interact with health care professionals to see which protocols best suit
their mode of work.

• Interact with manufacturers of wearables and health care devices to work
towards integration.

• Develop formal security proofs to substantiate the reasoning in Subsec-
tion 2.6.2.

• Analyse the relevant security protocols with tools like ProVerif9.

• Extend the prototype implementation of the PEP framework, and provide
open APIs to connect to it.

Acknowledgements
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9See http://prosecco.gforge.inria.fr/personal/bblanche/proverif.
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