Automatic Search for Key-Bridging Technique: Applications to LBlock and TWINE (Full Version) ${ }^{\star}$

Li Lin, Wenling Wu, and Yafei Zheng
${ }^{1}$ TCA Laboratory, SKLCS, Institute of Software, Chinese Academy of Sciences, Beijing, China
${ }^{2}$ State Key Laboratory of Cryptology, P.O.Box 5159, Beijing 100878, China
${ }^{3}$ Graduate University of Chinese Academy of Sciences, Beijing 100190, China
\{linli, wwl, zhengyafei\}@tca.iscas.ac.cn

Abstract

Key schedules in block ciphers are often highly simplified, which causes weakness that can be exploited in many attacks. At ASIACRYPT 2011, Dunkelman et al. proposed a technique using the weakness in the key schedule of AES, called key-bridging technique, to improve the overall complexity. The advantage of key-bridging technique is that it allows the adversary to deduce some sub-key bits from some other sub-key bits, even though they are separated by many key mixing steps. Although the relations of successive rounds may be easy to see, the relations of two rounds separated by some mixing steps are very hard to find. In this paper, we describe a versatile and powerful algorithm for searching key-bridging technique on word-oriented and bit-oriented block ciphers. To demonstrate the usefulness of our approach, we apply our tool to the impossible differential and multidimensional zero correlation linear attacks on 23-round LBlock, 23-round TWINE-80 and 25round TWINE-128. To the best of our knowledge, these results are the currently best results on LBlock and TWINE in the single-key setting.

Keywords: Block Ciphers, Key-Bridging Technique, Automatic Search, Impossible Differential Cryptanalysis, Zero-Correlation Linear Cryptanalysis, LBlock, TWINE.

1 Introduction

A key schedule is an algorithm that expands a relatively short master key to a relatively large expanded key for later use in encryption and decryption algorithms. The key schedules in block ciphers are often highly simplified, which causes weakness that can be exploited in many attacks, especially for lightweight

[^0]block ciphers. In these lightweight block ciphers, the security margin that conventional block ciphers are equipped with is reduced as much as possible in order to optimize the software and hardware efficiency. One obvious sacrifice is that the key schedules are highly simplified for saving memory. Some key schedules have round-by-round iterations with low diffusion $[5,27,23]$. Some key schedules do simple permutations or linear operations with low diffusion $[1,15]$. Some have no key schedules, and just use master keys directly in each round [13,17]. These key schedules are succinct but responsible for many attacks, especially related-key attacks $[4,18]$ and meet-in-the-middle attacks $[2,6]$.

AES [9] is the most significant standard for block ciphers, so its security is of paramount importance. However, the key schedule of AES has clear weakness that directly assists the execution of some effective attacks. Especially in recent years, meet-in-the-middle cryptanalysis with differential enumeration technique [12] has shown to be a very powerful form of cryptanalysis against 7 -round AES-128 [10], 9-round AES-192 [19] and 10-round AES-256 [20], which are the best single-key attacks on all versions of AES so far. A technique using the weakness of the key schedule on AES, called key-bridging technique, is used in these attacks to improve the overall complexity. Key-bridging technique is proposed by Dunkelman et al. at ASIACRYPT 2011 [12]. The advantage of keybridging technique is that it allows the adversary to deduce some sub-key bytes from some other sub-key bytes, even though they are separated by many key mixing steps. Although the relations of successive rounds may be easy to see, the relations of two rounds separated by some mixing steps are very hard to find. The main novelty in this observation is that it exploits the weak key schedule of AES-192 in order to provide a surprisingly long "bridge" for two sub-keys which are separated by 8 key mixing steps. The key-bridging technique considerations reduce the time complexity in the online phase of the attack on 8-round AES-192 by a factor of 2^{32} and 8 -round AES-256 by a factor of 2^{8}. At FSE 2014, Li et al. introduce a new application of key-bridging technique called key-dependent sieve technique, which filters the wrong states based on the key relations, to further reduce the complexity in the precomputation phase [19]. Besides, they introduce another application of key-bridging technique to split the whole attack into some weak-key attacks according to the relations between the sub-keys in the online phase and the precomputation phase.

Besides AES, the key-bridging technique helps improve the attack complexities of other block ciphers. For example, at FSE 2015, Biryukov et al. apply the key-bridging technique to 25 -round TWINE-128, and get a meet-in-the-middle attack and an impossible differential attack [2]. At ACISP 2014, Wang et al. give multidimensional zero-correlation linear attacks on LBlock and TWINE. In the online phase of their attacks, the key-bridging technique is used to improve the attack complexity [24].
Our contribution. In this paper, we describe versatile and powerful algorithms for searching key-bridging technique on word-oriented and bit-oriented block ciphers. Our tool tries to find key-bridges automatically by dealing with a system of equations. It takes as input a system of equations that describes the key schedule and a set \mathbb{K}_{0} of some key variables that we want to build key-bridges
among. It is made up of two phases: knowledge-propagation phase and relationderivation phase. In the knowledge-propagation phase, we can derive a set \mathbb{K} that \mathbb{K}_{0} can propagate to. In the relation-derivation phase, the relations of the variables in \mathbb{K}_{0} can be known from \mathbb{K}.

To demonstrate the usefulness of our approach, we apply our tool to LBlock and TWINE. We automatize the search for the best impossible differential attacks by combining our key-bridging tool with the tool of Wu et al. [26]. Using Wu's tool, we can get all the impossible differential distinguishers with certain rounds [22]. Using our key-bridging tool, we can get all the key-bridges to reduce the complexity in the key-sieving phase. With these two tools, we get a 23 -round impossible differential attack on LBlock with time complexity of $2^{74.5} 23$-round LBlock encryptions, memory complexity of $2^{74.3}$ bytes and data complexity of $2^{59.5}$ chosen plaintexts. For TWINE-128, we get in total twelve 25 -round impossible differential attacks with the same complexity as Biryukov et al.'s attack in [2].

For multidimensional zero-correlation linear cryptanalysis, we use the same attack model Wang et al. proposed in [24] and get more key-bridges to improve the overall complexity with our key-bridging tool. For the 23 -round attack on TWINE-80, we find that the key-bridges Wang et al. used in their attack do not exist. This will make the time complexity of their attack greater than exhaustively search. We use another zero-correlation linear distinguisher to fix this error and get an attack on 23 -round TWINE- 80 with time complexity of $2^{73} 23$-round TWINE- 80 encryptions, memory complexity of 2^{60} bytes and data complexity of $2^{62.1}$ known plaintexts. For the 25 -round attack on TWINE-128, we first get some more key-bridges to improve the time complexity of Wang's work. Then, we use another distinguisher with more key-bridges in the first two steps of the attack, and get an attack with time complexity of $2^{119} 25$-round TWINE-128 encryptions, memory complexity of 2^{60} bytes and data complexity of $2^{62.1}$ known plaintexts. For the 23 -round multidimensional zero-correlation linear attack on LBlock, we find a distinguisher with more key-bridges than Wang et al. in [26], and get an attack with time complexity of $2^{72} 23$-round LBlock encryptions, memory complexity of 2^{60} bytes and data complexity of $2^{62.1}$ known plaintexts. For 25 -round TWINE-128, we also find some meet-in-the-middle attacks with the same complexity as Biryukov et al.'s attack in [2], even with one attack which starts with two inactive nibbles at the beginning of distinguisher. This distinguisher is useful when we want to get less false positive. To the best of our knowledge, these results are the currently best results on LBlock and TWINE.

We present here a summary of our attack results on LBlock and TWINE, and compare them to the best attacks known for them. This summary is given in Table 1. The source code of some of these attacks is available at http://1drv. $\mathrm{ms} / 1 \mathrm{kHlhxt}$.
Organization of this paper. The rest of this paper is organized as follows. Section 2 presents the input of our tool and the previous works on key-bridging technique. Section 3 gives our automatic search tool for key-bridging technique. Section 4 (resp. section 5) applies our tool to the impossible differential and mul-

Table 1. Summary of the best attacks on LBlock and TWINE-80/128.

Cipher	Attack type	Rounds	Data	Memory (Bytes)	Time (Enc)	Source
LBlock	Impossible Diff.	23	$2^{59} \mathrm{CPs}$	2^{74}	$2^{75.36}$	$[7]$
	Impossible Diff.	23	$2^{59.5} \mathrm{CPs}$	$2^{74.3}$	$2^{74.5}$	Sec.4.2
	Multidim. ZC	23	$2^{62.1} \mathrm{KPs}$	2^{60}	2^{76}	$[24]$
	Multidim. ZC	23	$2^{62.1} \mathrm{KPs}$	2^{60}	2^{72}	Sec. 4.3
TWINE-80	Impossible Diff.	23	$2^{57.85} \mathrm{CPs}$	$2^{84.06}$	$2^{79.09}$	$[28]$
	Multidim. ZC	23	$2^{62.1} \mathrm{KPs}$	2^{60}	2^{73}	Sec. 5.2
TWINE-128	Impossible Diff.	25	$2^{59.1} \mathrm{CPs}$	$2^{78.1}$	$2^{124.5}$	$[2]$
	MITM \star	25	$2^{48} \mathrm{CPs}$	2^{109}	$2^{124.7}$	$[2]$
	Multidim. ZC	25	$2^{62.1} \mathrm{KPs}$	2^{60}	$2^{122.12}$	$[24]$
	Multidim. ZC	25	$2^{62.1} \mathrm{KPs}$	2^{60}	2^{119}	Sec. 5.2

KPs: Known-Plaintexts. CPs: Chosen-Plaintexts.
\star : Find the other attacks with the same complexity in Sec. 5.3.
tidimensional zero-correlation linear cryptanalysis on LBlock (resp. TWINE). Finally, section 6 concludes this paper.

2 Preliminaries

In this section, we introduce the definitions and related works of key-bridging technique. First of all, let's give some notations used throughout this paper.

2.1 Notations

In this paper, $W K_{i}$ denotes the $i^{t h}$ round key register, $W K_{i}^{j}$ denotes the $j^{\text {th }}$ word of $W K_{i}, W K_{i}^{j_{0}-j_{1}}$ denotes the $j_{0}^{t h}$ word to $j_{1}^{t h}$ word of $W K_{i}, W K_{i}[k]$ denotes the $k^{t h}$ bit of $W K_{i}, W K_{i}^{j}[k]$ denotes the $k^{t h}$ bit of $W K_{i}^{j}$ and $W K_{i} \lll b$ denotes b-bit left cyclic shift of $W K_{i}$.

2.2 The Key Schedule Functions

The input of our tool is a system of equations that describes the key schedule and the key variables which we want to find relations among. Since our tool is useful not only for the word-oriented key schedules (e.g., AES), but also for the bitoriented key schedules (e.g., PRESENT), we describe the systems of equations for these two kinds of key schedules here. We take the key schedules of AES-192 and PRESENT-80 as examples.

The key schedule of AES-192 takes the 192-bit master key $W K_{0}$ and extends it into 9 key registers $W K_{0}, W K_{1}, \cdots, W K_{8}$ of 192-bit each using a key schedule algorithm given by the following equations [9]:

$$
K S_{i}:\left\{\begin{array}{l}
W K_{i}^{j}+W K_{i}^{j-4}+W K_{i-1}^{j}=0, j=4, \cdots, 23 \\
W K_{i}^{0}+W K_{i-1}^{0}+S\left(W K_{i-1}^{2}\right)+R C O N_{i}=0 \\
W K_{i}^{1}+W K_{i-1}^{1}+S\left(W K_{i-1}^{2}\right)=0 \\
W K_{i}^{2}+W K_{i-1}^{2}+S\left(W K_{i-1}^{23}\right)=0 \\
W K_{i}^{3}+W K_{i-1}^{3}+S\left(W K_{i-1}^{20}\right)=0
\end{array}\right.
$$

where S represents the S-box of the SubBytes transformation and "+" represents xor. These 9 key registers are used to get 13 sub-keys $R K_{-1}, R K_{0}, \cdots, R K_{11}$ of 128 -bit each (only the first 128 -bit of $W K_{8}$ is used to get $R K_{11}$).

In some cases, we are interested in interchanging the order of the MixColumns and AddRoundKey operations. As these operations are linear, they can be interchanged by first xoring the data with an equivalent key u_{i} and then applying the MixColumns operation.

The key schedule of PRESENT-80 takes the 80-bit master key $W K_{0}$ and extends it into 32 key registers $W K_{0}, W K_{1}, \cdots, W K_{31}$ of 80 bits each using a key schedule algorithm given by the following equations [5]:

$$
K S_{i}:\left\{\begin{array}{l}
W K_{i}[0-3]+S\left(W K_{i-1}[61-64]\right)=0, \\
W K_{i}[60-64]+W K_{i-1}[41-45]+[i-1]=0, \\
W K_{i}[j]+W K_{i-1}[(j+19) \bmod 80]=0, \quad j=4, \cdots, 40,46, \cdots, 79
\end{array}\right.
$$

At round i, the 64 -bit round key $R K_{i}=R K_{i}[0] R K_{i}[1] \cdots R K_{i}[63]$ consists of the 64 leftmost bits of the current content of register $W K_{i}$.

The key schedules of other bit-oriented and word-oriented block ciphers can be treated as before. To simplify the statement, we ignore the round constants in this paper since they are known to us.

2.3 Key-Bridging Technique on AES

In [12], Dunkelman et al. proposed the key bridging technique on AES-192. The advantage of key-bridging technique is that it allows the adversary to deduce some sub-key bytes from some other sub-key bytes, even though they are separated by many key mixing steps. Although the relations of successive rounds may be easy to see, the relations of two rounds separated by some mixing steps are very hard to find. The main novelty in this observation is that it exploits the weak key schedule of AES-192 in order to provide a surprisingly long "bridge" for two sub-keys which are separated by 8 key mixing steps (applied in reverse direction). This observation is shown in Observation 1.

Observation 1 (Key-Bridging Technique on AES, [12]) By the key schedule of AES-192, knowledge of columns 0, 1, 3 of the sub-key $R K_{7}$ allows to deduce column 3 of the whitening key R_{-1} (which is actually column 3 of the master key).

Given $R K_{7}^{0-3}$ and $R K_{7}^{4-7}$, it is possible to compute $R K_{5}^{12-15}$; given $R K_{7}^{4-7}$ and $R K_{7}^{12-15}$, it is possible to compute $R K_{4}^{12-15}$. From these two values, it is possible to compute $R K_{-1}^{12-15}$. We refer to [11] the detailed proof and reasoning.

The key-bridging technique considerations reduce the time complexity of the online phase of the attacks on 8 -round AES-192 by a factor of 2^{32} and 8-round AES-256 by a factor of 2^{8} [11], and also improve the SQUARE attack and related-key impossible differential attack on AES-192.

At EUROCRYPT 2013, Derbez et al. gave improved attacks on 7-round AES128, 8-round AES-192 and 9-round AES-256 [10]. In the online phase of their
attack on 8-round AES-192, the use of the key-bridging technique saves a large amount of time.

At FSE 2014, Li et al. introduced a new application of key-bridging technique called key-dependent sieve technique, which filters the wrong states based on the key relations, to further reduce the complexity in the precomputation phase [19]. More specifically, as shown in Fig. 1, the precomputation procedure allows to deduce $u_{2}^{3,6,9,12}$ and $R K_{3}$ independently. Meanwhile, by the key schedule of AES-192, it is obviously that the knowledge of $R K_{3}$ allows to deduce columns 0 and 1 of $R K_{2}$. This means that the value of the equivalent sub-key $u_{2}^{3,6}$ can be known by $R K_{3}$. Thus there exists a contradiction between $u_{2}^{3,6}$ and $R K_{3}$ with a probability of 2^{-16}. Therefore, the size of lookup table is improved by a factor of 2^{16}.

Besides, the whole attack can be split up into some weak-key attacks according to the relations between the sub-keys in the online phase and the precomputation phase. This can be seen as another application of key-bridging technique. More specifically, suppose the sub-keys guessed in the precomputation phase and online phase are k^{\prime} and \hat{k}, respectively. Assuming m bits value $\tilde{k} \subset\left(k^{\prime} \cap \hat{k}\right)$, since there exist some linear relations between k^{\prime} and \hat{k}. We first split the precomputation table with the index of \tilde{k} into 2^{m} sub-tables. Thus, in the online phase, for each guessed sub-key \hat{k} and its sequence, instead of checking all precomputation table, we only need to detect a sub-table in the line with the index value \tilde{k}. Furthermore, we also split the sequences computed in the online phase to 2^{m} subsets with the same index \tilde{k}. Then for all sequences that belong to a subset, we only need to detect a sub-table, and it is meaningless to check whether they belong to other sub-tables.

In [20], Li et al. gave an attack on 10-round AES-256. In their works, they use key-bridging technique both in the precomputation phase and the online phase.

Fig. 1. Key-dependent sieve technique based on the key schedule algorithm of AES-192

2.4 Key-Bridging Technique on Other Block Ciphers

At FSE 2015, Biryukov et al. applied the key-bridging technique to 25 -round TWINE-128, and got a meet-in-the-middle attack and an impossible differential attack [2].

In the meet-in-the-middle attack, 58 state nibbles are needed to perform the online phase. Hopefully, the key schedule equations reduce the amount of
possible values from $2^{4 \times 58}=2^{232}$ to 2^{124}. Indeed, knowing 23 out of 24 nibbles of one sub-key leads to the knowledge of enough key material to partially encrypt and decrypt the plaintext and the ciphertext in order to obtain the value of the required state variables. This can be seen as 37 key-bridges among the 68 relevant sub-key nibbles. The same technique is applied to the impossible differential attack.

At ACISP 2014, Wang et al. gave multidimensional zero-correlation linear attacks on LBlock and TWINE. In the online phase of their attacks, the keybridging technique is used to reduce the overall complexity [24].

Most attacks on block ciphers can be split into three consecutive parts of r_{1}, r_{2} and r_{3} rounds, $r=r_{1}+r_{2}+r_{3}$, such that a particular set of messages may verify a certain property in the middle r_{2} rounds by guessing some key-bits in the first r_{1} and last r_{3} rounds. These key-bits may have some relations by the key schedule. If we can get these relations automatically, it can not only give better attacked-rounds and complexity, but also a better understanding of the design of block ciphers. Therefore, we give our automatic search tool for key-bridging technique in the next section.

3 An Automatic Search Tool for Key-Bridging Technique

In this section, we introduce our automatic search tool for key-bridging technique on word-oriented and bit-oriented block ciphers.

3.1 Outline of the Tool

Let us denote by $\mathcal{V}(X)$ the vector space spanned by $1, x, S(x)$ for all $x \in X$, for any set of variables X. If we denote by \mathbb{X} the set of all internal key variables, then the key schedule equations can be seen as a subspace of $\mathcal{V}(\mathbb{X})$. We introduce the notation \mathbb{K}_{0} to denote the set of original variables that we want to build keybridges among. We also introduce \mathbb{K} to denote the set of variables that \mathbb{K}_{0} can propagate to. And $|X|$ means the number of variables in a set X.

Our goal is to find relations among a set of variables. The difficulty in finding such relations is how to get more information from \mathbb{K}_{0} and how to use this information to retrieve the relations. In this section, we present a tool that finds such attacks automatically. It takes as input a system of equations $\mathbb{E} \subseteq$ $\mathcal{V}(\mathbb{X})$ that describes the key schedule and a set of variables \mathbb{K}_{0} that we want to find relations among. This tool consists of two phases: knowledge-propagation phase and relation-derivation phase. In the knowledge-propagation phase, we can derive a set \mathbb{K} that \mathbb{K}_{0} can propagate to. In the relation-derivation phase, the relations of the variables in \mathbb{K}_{0} can be known from \mathbb{K}.

In the knowledge-propagation phase, if we substitute the values of \mathbb{K} into the original equations \mathbb{E}, we would indeed get a system of equations with less variables. In fact, this reduced system is the subspace $(\mathbb{E}+\mathcal{V}(\mathbb{K})) / \mathcal{V}(\mathbb{K})$ of the quotient space $\mathcal{V}(\mathbb{X}) / \mathcal{V}(\mathbb{K})$: starting from an equation $f \in \mathbb{E}$, its equivalence class $[f]$ in the quotient contains a representative where all the variables in \mathbb{K} have
disappeared. Let's denote by \mathscr{L} a linear combination of some variables in $\mathcal{V}(\mathbb{K})$. The variable x can be deduced from \mathbb{K} if there exists an \mathscr{L} such that $x+\mathscr{L} \in \mathbb{E}$, $S(x)+\mathscr{L} \in \mathbb{E}$ or the linear combination of $x, S(x)$ and \mathscr{L} belongs to \mathbb{E}, and we will write $x \in \operatorname{Propagate}(\mathbb{K})$ when it is the case. It follows that in any solution of the equations \mathbb{E}, the value of x (resp. $S(x)$) is the value of \mathscr{L}. Therefore, it just has to evaluate \mathscr{L} to uniquely determine the value of x.

In the relation-derivation phase, the subspace $\mathbb{E} \cap \mathcal{V}(\mathbb{K})$ of $\mathcal{V}(\mathbb{K})$ should be derived. Then the linear relations among \mathbb{K}_{0} can be known by dealing with the quotient space $(\mathbb{E} \cap \mathcal{V}(\mathbb{K})) / \mathcal{V}\left(\mathbb{K}_{0}\right)$.

3.2 A Tool for Word-Oriented Ciphers

Knowledge-Propagation Phase. ${ }^{4}$ Let's denote by \mathbb{M} the coefficient matrix made by the key schedule equations \mathbb{E}. Each row is a function, and each column is a variable. The order of variables is $(\mathbb{X}-\mathbb{K}, \mathbb{K}, c)$, where $\mathbb{X}-\mathbb{K}$ means the supplementary set of \mathbb{K} in \mathbb{X}. We ignore the constant column in the matrix to better describe and express our tool in the rest of this paper. We can also view the constant column as a special column vector which always exists in the last of the matrix.

Given \mathbb{K}_{0}, we may propagate knowledge and derive the values of new variables, and this yields a new set \mathbb{K}. But it may turn out that new variables may again be derived from \mathbb{K}. The problem boils down to getting new variables and using these variables to get more information.

Gauss-Jordan Elimination $(G J E)$ is introduced to propagate knowledge [29,25]. $G J E$ is an algorithm for solving systems of linear equations. It is usually understood as a sequence of elementary row operations performed on the associated matrix of coefficients. This method can also be used to find the rank of a matrix, and to convert a matrix into reduced row echelon form. $G J E(\mathbb{M})$ means that we convert a matrix \mathbb{M} into reduced row echelon form by Gauss-Jordan Elimination. $G J E_{n}(\mathbb{M})$ means that we only convert the first n columns into reduced row echelon form by the row operations of the whole \mathbb{M}.

Since the equations \mathbb{E} can be completely linear (e.g., key schedule of Simon) or partial-nonlinear (e.g., key schedule of AES), some variables appear both linearly and under the S-box. The following three situations can be used to propagate knowledge:

1. If either x or $S(x)$ belongs to \mathbb{K}, then the other one can be deduced.
2. If there exists a linear combination \mathscr{L} of $\mathcal{V}(\mathbb{K})$ such that for one variable $x \notin \mathbb{K}, x+\mathscr{L} \in \mathbb{E}$, then x can be deduced from \mathbb{K}.
3. If there is a linear combination \mathscr{L} of $\mathcal{V}(\mathbb{K})$ such that there is a linear combination of $x(x \notin \mathbb{K}), S(x)(S(x) \notin \mathbb{K})$ and \mathscr{L} belonging to \mathbb{E}, then x can be deduced from \mathbb{K}.

Gauss-Jordan Elimination is used to deal with situation 2 and situation 3.
Lemma 1. Situation 2 holds if and only if there is only one non-zero variable in the first $|\mathbb{X}-\mathbb{K}|$ columns of one row in $G J E_{|\mathbb{X}-\mathbb{K}|}(\mathbb{M})$.

[^1]Proof. If there is only one non-zero variable x in the first $|\mathbb{X}-\mathbb{K}|$ columns of one row in $G J E_{|\mathbb{X}-\mathbb{K}|}(\mathbb{M})$. Then x can be represented by a linear combination of variables in \mathbb{K}.

Besides, if there exists a linear combination \mathscr{L} of $\mathcal{V}(\mathbb{K})$ such that for one variable $x, x+\mathscr{L} \in \mathbb{E}$, then $x+c_{i} k_{i}+\cdots+c_{1} k_{1}+c_{0}=0$ (here $x \notin \mathbb{K}, k_{1}, \cdots, k_{i} \in$ \mathbb{K} and c_{0} is a constant). By the order of variables, x is a pivot element in $G J E_{|\mathbb{X}-\mathbb{K}|}(\mathbb{M})$ and only this row has non-zero coefficient of x, then there is only one non-zero variable in the first $|\mathbb{X}-\mathbb{K}|$ columns of one row in $G J E_{|\mathbb{X}-\mathbb{K}|}(\mathbb{M})$.

Lemma 2. Situation 3 holds if and only if one of the following two cases holds in $G J E_{|\mathbb{X}-\mathbb{K}|}(\mathbb{M})($ for x and $S(x))$:
(i) The coefficients of x and $S(x)$ are both pivot elements, and the corresponding rows are $(\underbrace{0, \cdots, 0}_{t_{1}}, e_{x}, e_{t_{1}+1}, \cdots, e_{n-1})$ and $(\underbrace{0, \cdots, 0}_{t_{2}}, e_{S(x)}^{\prime}, e_{t_{2}+1}^{\prime}, \cdots, e_{n-1}^{\prime})$ $\left(t_{1}<t_{2}\right)$, where $e_{t_{1}+1}=e_{t_{1}+1}^{\prime}=\cdots=e_{t_{2}-1}=e_{t_{2}-1}^{\prime}=0, e_{i}=c \cdot e_{i}^{\prime}$ for $i=t_{2}+1, \cdots, n-|\mathbb{K}|-1$.
(ii) One of the coefficients of x and $S(x)$ is pivot element (e.g., x) and the corresponding row is $(\underbrace{0, \cdots, 0}_{t_{1}}, e_{x}, \underbrace{0, \cdots, 0}_{t_{2}}, e_{S(x)}, \underbrace{0, \cdots, 0}_{n-2-t_{1}-t_{2}-|\mathbb{K}|}, e_{n-|\mathbb{K}|}, \cdots, e_{n-1})$.

Proof. If (i) holds, then by some elementary row operations, a row as $(\underbrace{0, \cdots, 0}_{t_{1}}, p$. $e_{x}, \underbrace{0, \cdots, 0}_{t_{2}}, q \cdot e_{S(x)}, \underbrace{0, \cdots, 0}_{n-2-t_{1}-t_{2}-|\mathbb{K}|}, e_{n-|\mathbb{K}|}, \cdots, e_{n-1})$ can be known, where p and q are numbers in finite field. This is what (ii) gives.

If (ii) holds, there exits a linear combination \mathscr{L} of $\mathcal{V}(\mathbb{K})$ with $e_{n-|\mathbb{K}|}, \ldots, e_{n-1}$ as coefficients such that $e_{x} \cdot x+e_{S(x)} \cdot S(x)+\mathscr{L} \in \mathbb{E}$, i.e., situation 2 holds.

If there are situations in $G J E_{|\mathbb{X}-\mathbb{K}|}(\mathbb{M})$ that situation 3 holds, the pivot elements of these rows should be the coefficients of x or $S(x)$. Otherwise, these elements can't be get rid of. So only two cases can make this happen, i.e., (i) and (ii).

When a new variable x (resp. $S(x)$) becomes a member of \mathbb{K}, we have to move the column that x (resp. $S(x)$) represents in \mathbb{M} to the last few columns to make the order of variables $(\mathbb{X}-\mathbb{K}, \mathbb{K}, c)$ unchanged. If one of these coefficients is pivot element, then moving it may leave the matrix not in reduced row echelon form. This can be fixed through simple column permutations in some cases. In some other cases, a new column has to be recomputed. The following lemma will make sure that the column operations don't change the property of linear relations.

Lemma 3. Column operations keep the linear relations we get from situation 2 and 3 unchanged, i.e., these relations can be recovered from the last $|\mathbb{K}|+1$ columns of $G J E_{|\mathbb{X}-\mathbb{K}|}(\mathbb{M})$.

Proof. If situation 2 holds, then there is one new $x \in \operatorname{Propagate}(\mathbb{K})$. After moving the corresponding column and getting a new \mathbb{K}, there exists a vector α such that $\mathbb{K} \cdot \alpha^{T}=c$ and the component of α for x is non-zero (here we treat \mathbb{K} as a vector and α is not unique).

$$
\text { After } G J E_{|\mathbb{X}-\mathbb{K}|} \text {, the matrix can be represented as block matrix }(\overbrace{\left(\begin{array}{cc}
A_{0} & A_{1} \\
0 & A_{2}
\end{array}\right)}^{|\mathbb{X}-\mathbb{K}|} \overbrace{\mid}^{|\mathbb{K}|}
$$

. Since $\mathbb{K} \cdot \alpha^{T}$ has no variables in $\mathbb{X}-\mathbb{K}$, the row represents this equation must exist in A_{2}. If not, there must be a pivot element in $\mathbb{X}-\mathbb{K}$.

Situation 3 can be got for the same reason.

The pseudo-code of the knowledge-propagation phase is shown in Algorithm 1. The inputs are a set of all internal key variables, a set of original variables that we want to build key-bridges among and a coefficient matrix made by the key schedule equations. The algorithm returns a set of variables that \mathbb{K}_{0} can propagate to and a block matrix $(\overbrace{\left(\begin{array}{cc}A_{0} & A_{1} \\ 0 & A_{2}\end{array}\right) \text { in order to recover all the relations } \overbrace{}^{|\mathbb{X}-\mathbb{K}|}|\mathbb{K}|}$ in \mathbb{K}_{0}.

From Lemma 1 and Lemma 2, we can conclude that \mathbb{K} is the maximum set \mathbb{K}_{0} can propagate to. From Lemma 3, all the relations can be recovered from \mathbb{M}.

Relation-Derivation Phase. The input of this phase is the output of Algorithm 1. First of all, we should derive the linear relations among \mathbb{K}. Since

$$
\overbrace{}^{|\mathbb{X}-\mathbb{K}|}
$$

the output matrix \mathbb{M} of Algorithm 1 has the form $\left(\begin{array}{cc}A_{0} & A_{1} \\ 0 & A_{2}\end{array}\right)$, due to the
proof of Lemma 3, all the linear relations among $|\mathbb{K}|$ exist in A_{2}. Meanwhile, $\operatorname{Rank}(\mathbb{M})=\operatorname{Rank}\left(A_{0}\right)+\operatorname{Rank}\left(A_{2}\right)$. We should test the existence of linear relations among \mathbb{K} by testing whether $\operatorname{Rank}(\mathbb{M})$ equals $\operatorname{Rank}\left(A_{0}\right)$. If $\operatorname{Rank}\left(A_{2}\right) \neq 0$, change the order of columns in A_{2} to make sure that the order of variables is $\left(\mathbb{K}-\mathbb{K}_{0}, \mathbb{K}_{0}, c\right)$.

Denote by $\mathbb{E}_{\mathbb{K}}$ the subspace of \mathbb{K} spanned by the row vectors of A_{2}. Indeed, $\mathbb{E}_{\mathbb{K}}$ is the subspace $\mathbb{E} \cap \mathcal{V}(\mathbb{K})$ of $\mathcal{V}(\mathbb{K})$. By Gauss-Jordan Elimination, the linear relations among \mathbb{K}_{0} can be known by block matrix. However, more information can be known by S-box operations.

If there exist an $x \in \mathbb{K}-\mathbb{K}_{0}$ and a linear combination $\mathscr{L}^{\prime} \in \mathcal{V}\left(\mathbb{K}_{0}\right)$ such that $x+\mathscr{L}^{\prime} \in \mathbb{E}_{\mathbb{K}}$, then one can get $S(x)=S\left(\mathscr{L}^{\prime}\right)$. Since $\mathscr{L}^{\prime} \in \mathcal{V}\left(\mathbb{K}_{0}\right), S\left(\mathscr{L}^{\prime}\right)$ can be also deduced by variables in \mathbb{K}_{0}. Add $S\left(\mathscr{L}^{\prime}\right)$ to \mathbb{K} and \mathbb{K}_{0} (also add a new column corresponding to $S\left(\mathscr{L}^{\prime}\right)$), and add a new row corresponding to $S(x)+S\left(\mathscr{L}^{\prime}\right)$ to A_{2} at the same time (make sure the order of variables is still

```
Algorithm 1 Pseudo-Code for Knowledge-Propagation Phase
    function Propagate( \(\mathbb{X}, \mathbb{K}, \mathbb{M})\)
        Flag \(\leftarrow\) true
        while Flag do
            Flag \(\leftarrow\) false
            \(\mathbb{M} \leftarrow G J E_{|\mathbb{X}-\mathbb{K}|}(\mathbb{M})\)
            for all rows \(\mathbf{r}\) in \(\mathbb{M}\) do
                if only one non-zero variable in the first \(|\mathbb{X}-\mathbb{K}|\) columns then
                    Flag \(\leftarrow\) true
                                    \(\triangleright\) situation 2
                    if \(S(x) \in \mathbb{X}\) then
                        Change columns for \(x\) and \(S(x)\) in \(\mathbb{M}\)
                    \(\mathbb{K} \leftarrow \mathbb{K} \cup\{x, S(x)\}\)
                    go to line 3
                    else
                    Change columns for \(x\) in \(\mathbb{M}\)
                    \(\mathbb{K} \leftarrow \mathbb{K} \cup\{x\}\)
                    go to line 3
                    end if
                end if
                if case (ii) of Lemma 2 happens in \(\mathbf{r}\) then
                Flag \(\leftarrow\) true \(\quad \triangleright\) situation 3
                Change columns for \(x\) and \(S(x)\) in \(\mathbb{M}\)
                \(\mathbb{K} \leftarrow \mathbb{K} \cup\{x, S(x)\}\)
                go to line 3
                end if
                end for
                for all pairs \((x, S(x))\) in \(\mathbb{X}\) do
            if case \((i)\) of Lemma 2 happens in \(\mathbb{M}\) then
                Flag \(\leftarrow\) true \(\quad \triangleright\) situation 3
                    Change columns for \(x\) and \(S(x)\) in \(\mathbb{M}\)
                    \(\mathbb{K} \leftarrow \mathbb{K} \cup\{x, S(x)\}\)
                    go to line 3
            end if
                end for
        end while
        return \((\mathbb{K}, \mathbb{M})\)
    end function
```

$\left.\left(\mathbb{K}-\mathbb{K}_{0}, \mathbb{K}_{0}, c\right)\right)$. The reason to do this is that if there is a linear combination of $\mathscr{L}^{\prime \prime} \in \mathcal{V}\left(\mathbb{K}_{0}\right)$ such that $S(x)+\mathscr{L}^{\prime \prime} \in \mathbb{E}_{\mathbb{K}}$, then $S\left(\mathscr{L}^{\prime}\right)$ and $\mathscr{L}^{\prime \prime}$ can form a linear relation we want. Besides, if there is a linear combination of $\mathscr{L}^{\prime \prime} \in \mathcal{V}\left(\mathbb{K}_{0}\right)$ such that $S(x)+e_{y} \cdot y+\mathscr{L}^{\prime \prime} \in \mathbb{E}_{\mathbb{K}}\left(y \notin \mathbb{K}_{0}\right)$, then $e_{y} \cdot y+S\left(\mathscr{L}^{\prime}\right)+\mathscr{L}^{\prime \prime} \in \mathbb{E}_{\mathbb{K}}$. So y can be used to gain more information just as x. This can be also applied to $S(x)$. This step is called new-variable-adding.

$$
\text { After the step above, a matrix as }(\overbrace{\left.\begin{array}{cc}
B_{0} & \overbrace{B_{1}} \\
0 & B_{2}
\end{array}\right) \text { can be known, } \operatorname{Rank}\left(B_{2}\right) \text {. } \mathbb{K}_{0} \mid}^{\left|\mathbb{K}_{0}\right|} \text {. }
$$

linear independent relations among \mathbb{K}_{0} can be recovered from B_{2}.

The pseudo-code of the relation-derivation phase is shown in Algorithm 2. The inputs are the outputs of Algorithm 1. The function returns a set of relations among the variables of \mathbb{K}_{0}.

```
Algorithm 2 Pseudo-Code for Relation-Derivation Phase
    function Derivation \(\left(\mathbb{K}_{0}, \mathbb{K}, A_{2}\right)\)
        Flag \(\leftarrow\) true
        Change the order of columns in \(A_{2}\)
        while Flag do
            Flag \(\leftarrow\) false
                \(\mathbb{A}_{2} \leftarrow G J E_{\left|\mathbb{K}-\mathbb{K}_{0}\right|}\left(A_{2}\right)\)
                for all rows \(\mathbf{r}\) in \(A_{2}\) do \(\quad \triangleright\) new-variable-adding
            if only one non-zero variable \(x\) in the first \(\left|\mathbb{K}-\mathbb{K}_{0}\right|\) columns then
                Flag \(\leftarrow\) true
                    if \(x\) is input of S-box then
                    Let \(S\left(\mathscr{L}^{\prime}\right)\) be a new variables
                    \(\mathbb{K} \leftarrow \mathbb{K} \cup\left\{S\left(\mathscr{L}^{\prime}\right)\right\}\) and \(\mathbb{K}_{0} \leftarrow \mathbb{K}_{0} \cup\{S(\mathscr{L})\}\)
                    Add a new column for \(S\left(\mathscr{L}^{\prime}\right)\) and a new row for \(S(x)+S(\mathscr{L}\),
                    go to line 4
                    else
                    Let \(S^{-1}(\mathscr{L})\) be a new variables
                    \(\mathbb{K} \leftarrow \mathbb{K} \cup\left\{S^{-1}\left(\mathscr{L}^{\prime}\right)\right\}\) and \(\mathbb{K}_{0} \leftarrow \mathbb{K}_{0} \cup\left\{S^{-1}\left(\mathscr{L}^{\prime}\right)\right\}\)
                    Add a new column for \(S^{-1}\left(\mathscr{L}^{\prime}\right)\) and a new row for \(S^{-1}(x)+S^{-1}\left(\mathscr{L}^{\prime}\right)\)
                    go to line 4
                    end if
                end if
                end for
        end while
        RelationSet \(\leftarrow \emptyset\)
        \(A_{2} \leftarrow G J E\left(A_{2}\right)\)
        for all row \(\mathbf{r}\) in \(B_{2}\) do
            Derive relation from \(\mathbf{r}\)
            Add this relation to RelationSet
        end for
        return RelationSet
    end function
```


3.3 A Tool for Bit-Oriented Ciphers

The key schedules of some block ciphers have operations on word-level (e.g., S-box) and bit-level (e.g., cyclic shift), such as PRESENT, LBlock and so on. This tool is slightly different from the tool for word-oriented ciphers since it has operations both on words and bits. It also consists of two phases: knowledgepropagation phase and relation-derivation phase.

In the knowledge-propagation phase, since S-box permutation treats b bits as a union, situations 1 and 3 of section 3.2 are no longer suitable for bit-oriented ciphers. The following lemma is used to deal with this situation.

Lemma 4. Let $S\left[w_{0}^{I} \cdots w_{b-1}^{I}\right]=\left[w_{0}^{O} \cdots w_{b-1}^{O}\right]$, where w_{i}^{I} and w_{i}^{O} are 1 -bit variables, respectively. If the values in any b out of $2 b$ input/output bits of one S-box
are known, then the values in the other b bits are uniquely determined, and can be computed efficiently.

This situation can be dealt with by Gauss-Jordan Elimination as follows.
Lemma 5. Let \mathbb{S} be a set of input and output bit-variables of one S-box. If the order of variables in \mathbb{M} is $(\mathbb{X}-\mathbb{K}-\mathbb{S}, \mathbb{S}, \mathbb{K})$ and $G J E(\mathbb{M})$ can be represented as:

$$
\begin{aligned}
& \overbrace{}^{|\mathbb{X}-\mathbb{K}-\mathbb{S}|} \overbrace{}^{|\mathbb{S}|} \\
& \left(\begin{array}{ccc}
D_{0} & D_{1} & D_{2} \\
0 & D_{3} & D_{4}
\end{array}\right)
\end{aligned}
$$

then the bit-variables of \mathbb{S} can be uniformly determined if and only if $\operatorname{Rank}\left(D_{3}\right) \geq$ $b-n_{k}$, where n_{k} is the number of bits in \mathbb{S} which are already in \mathbb{K}.

It is easy to see that since \mathbb{S} is the set of input and output bit-variables of one S-box, the entropy of these bits is b. $\operatorname{Rank}\left(D_{3}\right)=b-n_{k}$ means $b-n_{k}$ linearly independent relations can be built among variables in \mathbb{S} and \mathbb{K}, and these relations are enough to reduce the entropy to 0 .

This property is used in Algorithm 1 to get more information from S-box instead of situation 1 and 3 of section 3.2

In the relation-derivation phase, suppose the order of variables in \mathbb{K} is (\mathbb{K} -$\left.\mathbb{K}_{0}-\mathbb{S}, \mathbb{S}, \mathbb{K}_{0}\right)$ and $G J E\left(\mathbb{A}_{2}\right)$ can be represented as:

$$
(\overbrace{\left.\begin{array}{ccc}
E_{0} & E_{1} & E_{2} \\
0 & E_{3} & E_{4}
\end{array}\right) . \overbrace{i}^{\left|\mathbb{K}-\mathbb{K}_{0}-\mathbb{S}\right|} \left\lvert\, \begin{array}{c}
|\mathbb{S}| \\
\left|\mathbb{K}_{0}\right|
\end{array}\right.) .}
$$

If $\operatorname{Rank}\left(E_{3}\right) \geq b-n_{k}$, since $b-n_{k}$ linearly independent relations are enough to reduce the entropy to $0,2 b-n_{k}-\operatorname{Rank}\left(E_{3}\right)$ new functions with the form $x_{i}+\mathscr{L}^{\prime}$ can be added to A_{2}, where $x_{i} \in \mathbb{S}$ is not a pivot element of E_{3} and \mathscr{L}^{\prime} is a variable denoting how x_{i} can be known from \mathbb{S} and \mathbb{K}_{0}. Add \mathscr{L}^{\prime} to \mathbb{K}_{0} and \mathbb{K} at the same time. This step is used to replace the new-variable-adding step of Algorithm 2.

If $\operatorname{Rank}\left(E_{3}\right)>b-n_{k}$, since $b-n_{k}$ linearly independent relations are enough to reduce the entropy to 0 , the other $\operatorname{Rank}\left(E_{3}\right)-\left(b-n_{k}\right)$ relations can be used to filter the variables in \mathbb{K}_{0}. Use the variables in \mathbb{K}_{0} to deduce these relations, only $2^{b-\operatorname{Rank}\left(E_{3}\right)}$ of them can satisfy the S-box table. For example, if we can get $b+1$ S-box input/output bit-variables from \mathbb{K}_{0}, we can get 1 bit relation among the variables in \mathbb{K}_{0}, and it is obliviously one key-bridge we want. This property is used to get key-bridges in Algorithm 2.

We apply our automatic search tool to the attacks on LBlock and TWINE in the following sections.

4 Applications to LBlock

4.1 Description of LBlock

LBlock is a lightweight 64-bit block cipher designed by Wu et al. in 2011 [27] and is based on a variant of Feistel Network. It supports key size of 80 bits and
the total number of iterations is 32 . The Feistel function of LBlock is made up of a key addition $A K$, an S-box layer S made up of 84 -bit S-boxes and a nibble permutation P. LBlock's function design can be visualized in Fig. 2. The key schedule of LBlock is rather simple. The 80 -bit master key $W K_{0}$ is stored in a key register and represented as $W K_{0}=W K_{0}[0] \cdots W K_{0}[79]$. At round i, the leftmost 32-bit of current content of register is output as round key. The key schedule of round i can be shown as follows ($i=1, \cdots 31$):

$$
\begin{aligned}
& W K_{i} \leftarrow W K_{i-1} \lll 29 \\
& W K_{i}[0-3] \leftarrow S_{9}\left(W K_{i}[0-3]\right) \\
& W K_{i}[4-7] \leftarrow S_{8}\left(W K_{i}[4-7]\right), \\
& W K_{i}[29-33] \leftarrow W K_{i}[29-33] \oplus[i]_{2}
\end{aligned}
$$

Fig. 2. Round function of LBlock block cipher

4.2 Impossible Differential Cryptanalysis on 23-round LBlock

In INDOCRYPT 2012, Wu et al. presented an automatic search tool to search for the best impossible differential distinguishers [26]. In CRYPTO 2015, Sun et al. proved that this tool could find all impossible differentials of a cipher that are independent of the choices of the S-boxes [22]. In this paper, we automatize the search of the best impossible differential attacks by combining Wu's tool with our tool. Using Wu's tool, we can get all distinguishers with certain rounds. Using our key-bridging tool, we can get all the key-bridges to reduce the complexity in key-sieving phase.

Recently, Boura et al. [8] proposed a generic version of impossible differential attacks with the aim of simplifying and helping the construction and verification of this type of cryptanalysis. In particular, they provided a formula to compute the complexity of such an attack according to its parameters. To understand the formula, we first briefly review how an impossible differential attack is constructed. It starts by splitting the cipher into three parts: $E=E_{3} \circ E_{2} \circ E_{1}$ and finding an impossible differential $\left(\Delta_{X} \nrightarrow \Delta_{Y}\right)$ through E_{2}. Then Δ_{X} (resp. Δ_{Y}) is propagated through E_{1}^{-1} (resp. E_{3}) with probability 1 to obtain $\Delta_{\text {in }}$ (resp. $\left.\Delta_{\text {out }}\right)$. We denote by $c_{\text {in }}$ and $c_{o u t}$ the $\log _{2}$ of the probability of the transitions $\Delta_{\text {in }} \rightarrow \Delta_{X}$ and $\Delta_{\text {out }} \rightarrow \Delta_{Y}$, respectively. Finally we denote by $k_{\text {in }}$ and $k_{\text {out }}$ the key materials involved in those transitions. All in all, the attack consists in discarding the keys k for which at least one pair follows the characteristic through
E_{1} and E_{3} and in exhausting the remaining ones. The complexity of doing so is as follows:

- data: $C_{N_{\alpha}}$
- memory: N_{α}
- time: $C_{N_{\alpha}}+\left(1+2^{\left|k_{i n} \cup k_{\text {out }}\right|-c_{\text {in }}-c_{\text {out }}}\right) N_{\alpha} C_{E^{\prime}}+2^{|k|-\alpha}$
where N_{α} is such that $\left(1-2^{-c_{i n}-c_{o u t}}\right)^{N_{\alpha}}<\left(1-2^{-\alpha}\right), C_{N_{\alpha}}$ is the number of chosen plaintexts required to generate N_{α} pairs satisfying $\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right),|k|$ is the key size and $C_{E^{\prime}}$ is the ratio of the cost of partial encryption to the full encryption.

We use this framework to mount an impossible differential attack on 23round LBlock. First we find an impossible differential distinguisher through 14 rounds of LBlock. The input (resp. output) inactive nibble of this distinguisher is at position 12 (resp. 5). It is extended by 4 rounds at the beginning and by 5 rounds at the end in order to attack 23 rounds of the cipher. It can be seen in Fig. 3 that the difference in the plaintexts has to be zero in 8 nibbles such that $c_{\text {in }}+c_{\text {out }}=28+44=72$. The key material $k_{\text {in }} \cup k_{\text {out }}$ is composed of 36 round-key nibbles which can assume 2^{73} values thanks to our key-bridging tool. Specifically, we can find 71 linear independent key-bridges among these 36 round-key nibbles. We show parts of the key-bridges we found in Appendix A.

Fig. 3. Impossible differential attack on 23 rounds LBlock

As a consequence, and according to the above formula, the memory complexity of our attack is $\alpha \cdot 2^{71.5}$, the time complexity is $\alpha \cdot 2^{73} \cdot C_{E^{\prime}}+2^{80-\alpha}$. As we estimate the ratio $C_{E^{\prime}}$ to $36 / 184 \approx 2^{-2.4}$, the value of α minimizing the overall
complexity is 6.8 . So the memory complexity of our attack is $2^{74.3}$ bytes, the time complexity is $2^{74.5}$ 23-round LBlock encryptions and the data complexity is $2^{59.5}$ chosen plaintexts.

Besides this attack, we can get another 2 impossible differential attacks on LBlock with the same complexity, i.e., $((12,0) 5,14,4)$, ($(12,5) 5,14,4)$, where $\left(\left(l_{a}, l_{b}\right) R_{b}, R_{d}, R_{e}\right)$ means that the position of input (resp. output) inactive nibble of R_{d}-round distinguisher is l_{a} (resp. l_{b}), and the number of rounds before (resp. after) the distinguisher is R_{b} (resp. R_{e}).

4.3 Zero-Correlation Cryptanalysis on 23-round LBlock

At ACISP 2014, Wang et al. gave a multidimensional zero-correlation linear attack on 23-round LBlock [24]. The main technique they used to improve the overall complexity is the partial compression technique, i.e., they reduce the complexity of online phase by guessing each sub-key nibble one after another. Since the time complexity of this attack is still greater than exhaustive search, they use 13 key-bridges to make this attack available.

According to their paper, for 14 -round LBlock, if the input mask a of the first round locates at the left branch and the output mask b of the last round locates in the right branch, then the correlation of the linear approximation is zero, where $a, b \in F_{2}^{4}, a \neq 0$ and $b \neq 0$. Indeed, we find in total 21 key-bridges to reduce the overall complexity.

Combining this observation with our key-bridging tool, we find that $((1,12) 4$, $14,5)$ can get a better overall complexity. This is for the reason that we find 21 key-bridges thanks to our key-bridging tool. Since the major complexity of this attack comes from Step 4.1 and 4.2 of their paper, we explain the key-bridges of these 2 steps in detail.

The nibble X_{4}^{1} corresponding to the input non-zero linear mask is affected by 32 bits of plaintext X_{0} and 28 bits of round keys and the expression can be shown as:

$$
\begin{gathered}
X_{4}^{1}=X_{0}^{5} \oplus S\left(X_{0}^{12} \oplus S\left(X_{0}^{0} \oplus W K_{0}^{0}\right) \oplus W K_{1}^{2}\right) \oplus S\left(X_{0}^{15} \oplus S\left(X_{0}^{7} \oplus W K_{0}^{7}\right) \oplus\right. \\
\left.S\left(X_{0}^{4} \oplus S\left(X_{0}^{10} \oplus S\left(X_{0}^{1} \oplus W K_{0}^{1}\right) \oplus W K_{1}^{0}\right) \oplus W K_{2}^{2}\right) \oplus W K_{3}^{3}\right)
\end{gathered}
$$

Similarly, the nibble X_{18}^{12} corresponding to the output non-zero linear mask is affected by 48 bits of plaintext X_{0} and 48 bits of round keys:

$$
\begin{aligned}
X_{18}^{12}= & X_{23}^{6} \oplus S\left(X_{23}^{12} \oplus W K_{22}^{4}\right) \oplus S\left(X_{23}^{15} \oplus S\left(X_{23}^{4} \oplus S\left(X_{23}^{13} \oplus W K_{22}^{5}\right) \oplus W K_{21}^{6}\right) \oplus W K_{20}^{1}\right) \\
\oplus & S\left(X _ { 2 3 } ^ { 1 2 } \oplus S (X _ { 2 3 } ^ { 3 } \oplus S (X _ { 2 3 } ^ { 1 0 } \oplus W K _ { 2 2 } ^ { 2 }) \oplus W K _ { 2 1 } ^ { 5 }) \oplus S \left(X_{23}^{0} \oplus S\left(X_{23}^{9} \oplus W K_{22}^{1}\right) \oplus\right.\right. \\
& \left.\left.S\left(X_{23}^{14} \oplus S\left(X_{23}^{2} \oplus S\left(X_{23}^{8} \oplus W K_{22}^{0}\right) \oplus W K_{21}^{4}\right) \oplus W K_{20}^{0}\right) \oplus W K_{19}^{4}\right) \oplus W K_{18}^{0}\right)
\end{aligned}
$$

Step 4.1. The guessed-keys of Step 4.1 are $W K_{0}^{1}, W K_{0}^{7}, W K_{1}^{0}[3], W K_{0}^{0}$ and $W K_{22}^{1}$. Since $W K_{0}^{7} \Rightarrow W K_{1}^{0}[0-2], W K_{1}^{0}$ can be known. Meanwhile, since $W K_{22}^{1}, W K_{21}[33], W K_{21}[34], W K_{21}[35]$ and $W K_{21}[36]$ are inputs/outpus bits of one S-box, $W K_{21}[33], W K_{21}[34], W K_{21}[35]$ and $W K_{21}[36]$ can be known.

Since $W K_{21}[34] \Rightarrow W K_{11}[4], W K_{21}[35] \Rightarrow W K_{11}[5], W K_{21}[36] \Rightarrow W K_{11}[6]$, $W K_{0}^{1}[0] \Rightarrow W K_{10}[34], W K_{0}^{1}[1] \Rightarrow W K_{10}[35], W K_{0}^{1}[2] \Rightarrow W K_{10}[36], W K_{0}^{0}[3] \Rightarrow$ $W K_{10}[33]$, and $W K_{11}[4], W K_{11}[5], W K_{11}[6], W K_{10}[34], W K_{10}[35], W K_{10}[36]$, $W K_{10}[33]$ are input/output bits of one S-box, we can get 3-bit information to restrain the values of $W K_{0}^{0}[3], W K_{0}^{1}[0-2]$ and $W K_{22}^{1}$. This is easily done by making a small lookup table.

As the following four equations:

$$
\begin{aligned}
& X_{1}^{5}=X_{0}^{15} \oplus S\left(X_{0}^{7} \oplus W K_{0}^{7}\right) \\
& X_{2}^{2}=X_{0}^{4} \oplus S\left(X_{0}^{10} \oplus S\left(X_{0}^{1} \oplus W K_{0}^{1}\right) \oplus W K_{1}^{0}\right) \\
& X_{1}^{2}=X_{0}^{12} \oplus S\left(X_{0}^{0} \oplus W K_{0}^{0}\right) \\
& X_{22}^{10}=X_{23}^{0} \oplus S\left(X_{23}^{9} \oplus W K_{22}^{1}\right)
\end{aligned}
$$

are true for LBlock, the 80-bit plaintext and ciphertext state value which affects the value of $X_{4}^{1} \| X_{18}^{14}$ can be reduced to 60 -bit after guessing the 14 -bit equivalent key. The time complexity of this step is $N \cdot 2^{14} \cdot 5 \mathrm{~S}$-box accesses.

Step 4.2. The guessed-key of Step 4.2 is $W K_{22}^{0}$. Since $W K_{0}[2] \Rightarrow W K_{10}[32]$, $W K_{0}[1] \Rightarrow W K_{10}[31], W K_{0}[0] \Rightarrow W K_{10}[30], W K_{19}[11] \Rightarrow W K_{11}[3], W K_{19}[10]$ $\Rightarrow W K_{11}[2], W K_{19}[9] \Rightarrow W K_{11}[1], W K_{19}[8] \Rightarrow W K_{11}[0]$ and $W K_{10}[32], W K_{10}$ [31], $W K_{10}[30], W K_{11}[3], W K_{11}[2], W K_{11}[1], W K_{11}[0]$ are input/output bits of one S-box, 3-bit information of $W K_{19}[11], W K_{19}[10], W K_{19}[9]$ and $W K_{19}[8]$ can be known. Meanwhile, $W K_{22}^{1} \Rightarrow W K_{19}^{2}[3], W K_{19}[11], W K_{19}[10], W K_{19}[9]$ and $W K_{19}[8]$ can be known. ${ }^{5}$ Since $W K_{19}[9] \Rightarrow W K_{21}[32], W K_{19}[8] \Rightarrow W K_{21}[31]$, $W K_{19}[7] \Rightarrow W K_{21}[30]$, and $W K_{22}[0], W K_{22}[1], W K_{22}[2], W K_{22}[3], W K_{21}[32]$, $W K_{21}[31], W K_{21}[30]$ are input/output bits of one S-box, 3-bit information of $W K_{22}^{0}$ can be known. Since $X_{22}^{12}=X_{23}^{2} \oplus S\left(X_{23}^{8} \oplus W K_{22}^{0}\right)$, we can obtain a new state with 56 -bit length. The time complexity of this step is $2^{60} \cdot 2^{14+1} \mathrm{~S}$-box accesses.

The time complexity of the following sub-steps will become less and less thanks to our key-bridges. Let $N=2^{62.1}$ as [24] shows, the time complexity of this attack is manipulated by Step 4.1 , which is about $2^{62.1+14} \cdot 5 \cdot 1 / 8 \cdot 1 / 23 \approx 2^{71}$. The total time complexity is $2^{71}+2^{71}=2^{72} 23$-round LBlock encryptions. The data complexity and memory complexity are the same as [24], i.e., the data complexity is $N=2^{62.1}$ known plaintexts, the memory complexity is about 2^{60} bytes.

5 Applications to TWINE

5.1 Description of TWINE

TWINE is a lightweight 64-bit block cipher designed by Suzaki et al. in 2013 [23] and is based on a variant of Type-2 generalized Feistel structure. One version of TWINE uses an 80-bit key, another uses an 128-bit key and we denote these versions TWINE-80 and TWINE-128. The Feistel function of TWINE consists

[^2]of an xor of a sub-key and a call to a unique S-box. TWINE's function design can be visualized in Fig. 4. The key schedule of TWINE-80 is quite simple. The 80 -bit master key $W K_{0}$ is stored in a key register and represented as $W K_{0}=$ $W K_{0}^{0} \cdots W K_{0}^{20}$.

The key schedule of round i can be shown as follows $(i=1, \cdots 35)$:

$$
\begin{aligned}
& W K_{i-1}^{1} \leftarrow W K_{i-1}^{1} \oplus S\left(W K_{i-1}^{0}\right), W K_{i-1}^{4} \leftarrow W K_{i-1}^{4} \oplus S\left(W K_{i-1}^{16}\right), \\
& \left.W K_{i-1}^{7} \leftarrow W K_{i-1}^{7} \oplus 0\left\|C O N S T_{i}^{H}, W K_{i-1}^{19} \leftarrow W K_{i-1}^{19} \oplus 0\right\| C O N S T_{i}^{L}\right), \\
& W K_{i-1}^{0-3} \leftarrow W K_{i-1}^{0-3} \lll 4, \\
& W K_{i} \leftarrow W K_{i-1} \lll 16 .
\end{aligned}
$$

Then $W K_{i}^{1}| | W K_{i}^{3}\left\|W K_{i}^{4}| | W K_{i}^{6}\right\| W K_{i}^{13}\left\|W K_{i}^{14}| | W K_{i}^{15}\right\| W K_{i}^{16}$ is used as the 8 -nibble round key of round i. We use $R K_{i}$ to denote the round key of round i. We refer to [23] for the 128 -bit version of key schedule.

Fig. 4. Round function of TWINE block cipher

5.2 Zero-Correlation Cryptanalysis on TWINE

In [24], Wang et al. also gave multidimensional zero-correlation linear attacks on 23 -round TWINE-80 and 25 -round TWINE-128 using the partial compression technique.

However, using our automatic search tool, we find that the key-bridges they used in the attack on 23 -round TWINE-80 do not exist. In their paper, they say that $R K_{3}^{5} \Rightarrow R K_{0}^{3}, R K_{2}^{6} \Rightarrow R K_{0}^{1}$ and $R K_{20}^{1} \Rightarrow R K_{22}^{6}$. By the key schedule of TWINE-80,

$$
\begin{aligned}
& R K_{0}^{3} \Rightarrow W K_{0}^{6} \Rightarrow W K_{1}^{2} \Rightarrow W K_{2}^{17} \Rightarrow W K_{3}^{13} \Rightarrow R K_{3}^{4} \\
& R K_{0}^{1} \Rightarrow W K_{0}^{3} \Rightarrow W K_{1}^{18} \Rightarrow W K_{2}^{14} \Rightarrow R K_{2}^{5} \\
& R K_{20}^{1} \Rightarrow W K_{20}^{3} \Rightarrow W K_{21}^{18} \Rightarrow W K_{22}^{14} \Rightarrow R K_{22}^{5} .
\end{aligned}
$$

So the key-bridges they used are not true.
Since $R K_{3}^{4}$ and $R K_{2}^{5}$ do not exist in the set of related round keys, this will make the time complexity of Step 4.1 in their paper greater than exhaustive search. So their attack on 23-round TWINE-80 is not available.

According to their paper, if the input mask a of the first round locates at the even nibble and the output mask b of the last round locates in the odd nibble for 14 -round TWINE, then the correlation of the linear approximation is zero, where $a, b \in F_{2}^{4}, a \neq 0, b \neq 0$. Among these distinguishers, we find 4 of them with
the minimal number of guessed-keys (with some key-bridges) by our automatic search tool. We use $((6,9) 4,14,5)$ to get multidimensional zero-correlation linear attack on 23 -round TWINE-80.

Three key-bridges we found are $R K_{22}^{5} \Rightarrow R K_{20}^{1}, R K_{21}^{0} \Rightarrow R K_{18}^{4}$ and $R K_{22}^{6} \oplus$ $S\left(R K_{22}^{2}\right) \oplus S\left(R K_{22}^{5}\right) \Rightarrow R K_{2}^{6}$.

Since the major complexity of this attack comes from Step 4.1 and 4.2 , we explain the key-bridges of these 2 steps. Assuming N known plaintexts are used.

Step 4.1 The distinguisher input nibble X_{4}^{6} is affected by 32 bits of plaintext X_{0} and 28 bits of round keys, and the distinguisher output nibble X_{18}^{9} is affected by 48 bits of ciphertext X_{23} and 48 bits of round keys. Since $X_{22}^{11}=X_{23}^{2} \oplus$ $S\left(X_{23}^{9} \oplus R K_{22}^{5}\right), X_{23}^{9}$ and X_{23}^{2} can be compressed to X_{22}^{11} by guessing $R K_{22}^{5}$. Since $X_{22}^{13}=X_{23}^{10} \oplus S\left(X_{23}^{15} \oplus R K_{22}^{6}\right), X_{23}^{15}$ and X_{23}^{10} can be compressed to X_{22}^{13} by guessing $R K_{22}^{6}$. Since $R K_{22}^{5} \Rightarrow R K_{20}^{1}$, let $A=X_{23}^{8} \oplus S\left(X_{23}^{5} \oplus S\left(X_{23}^{12} \oplus S\left(X_{23}^{7} \oplus\right.\right.\right.$ $\left.\left.\left.R K_{22}^{2}\right) \oplus R K_{21}^{0}\right) \oplus R K_{20}^{1}\right), X_{23}^{8}, X_{23}^{5}, X_{23}^{12}$ and X_{23}^{7} can be compressed to A by guessing $R K_{22}^{2}$ and $R K_{21}^{0}$. The time complexity of this step is $N \cdot 2^{16} \cdot 5 \mathrm{~S}$-box accesses.

Step 4.2 By guessing $R K_{22}^{2}$, one more nibble can be compressed. The time complexity of this step is $2^{64+16} \mathrm{~S}$-box accesses.

Let $N=2^{62.1}$, the time complexity of this attack is $2^{73} 23$-round TWINE80 encryptions, the data complexity is $2^{62.1}$, and the memory complexity is 2^{60} bytes.

For their attack on 25 -round TWINE-128, we find another key-bridge besides their four key-bridges, i.e., $S\left(R K_{21}^{1} \oplus S^{-1}\left(R K_{0}^{3} \oplus R K_{24}^{2}\right)\right) \Rightarrow R K_{24}^{3}$. So after Step 4.3 of their attack, one more key nibble $R K_{0}^{3}$ can be known, and one more state nibble can be compressed in this step. The time complexity of the following steps is much smaller than the above 3 steps, so the time complexity of this attack is $\left(2^{62+60} \cdot 17+2 \cdot 2^{124}\right) /(25 \times 8)+2^{119} \approx 2^{120}$.

Besides, if $((12,3) 5,14,6)$ is used to mount this attack, a better result can be got. Using our tool, four key-bridges can be found, i.e., $R K_{0}^{3} \Rightarrow R K_{3}^{1}$, $R K_{21}^{3} \Rightarrow R K_{24}^{1}, S\left(R K_{24}^{0} \oplus S^{-1}\left(R K_{2}^{5} \oplus R K_{23}^{7} \oplus S\left(R K_{22}^{2}\right)\right)\right) \Rightarrow R K_{22}^{1}, S\left(R K_{22}^{3} \oplus\right.$ $\left.S\left(R K_{19}^{1}\right)\right) \oplus S^{-1}\left(R K_{0}^{7} \oplus R K_{24}^{6} \oplus S\left(R K_{24}^{7}\right)\right) \Rightarrow R K_{22}^{2}$. The overall time complexity is determined by searching the remaining key candidates. So the time complexity becomes 2^{119}.

5.3 Impossible Differential and Meet-in-the-Middle Cryptanalysis on TWINE

At FSE 2015, Biryukov et al. gave impossible differential cryptanalysis and meet-in-the-middle cryptanalysis on 25 -round TWINE-128 [2].

Combining Wu's tool for impossible differential distinguisher and our automatic tool, we find in total 12 attacks with the same time complexity as [2].

Combining Lin's propagate-then-prune tool for meet-in-the-middle distinguisher [21] and our automatic tool, we find some attacks with the same complexity as [2]. One of these attacks is $(6,10) \rightarrow 5$, i.e., the distinguisher starts
with two inactive nibbles at position $(6,10)$ and ends with one nibble at position 5 . This attack is useful when we want to get less false positive.

6 Conclusions

In this paper, we studied the key-bridging technique Dunkelman et al. proposed to deduce some sub-key bits from some other sub-key bits. We presented a versatile and powerful algorithm for searching key-bridging technique on word-oriented and bit-oriented block ciphers. This tool can not only give better attacked-rounds and complexity, but also a better understanding of the design of block ciphers. To demonstrate the usefulness of our approach, we used our tool to the impossible differential and multidimensional zero-correlation linear attacks on 23 -round LBlock, 23-round TWINE-80 and 25-round TWINE-128. To the best of our knowledge, these results are the currently best results on LBlock and TWINE in the single-key setting.

Acknowledgements

We would like to thank the anonymous reviewers for providing valuable comments. The research presented in this paper is supported by the National Basic Research Program of China (No. 2013CB338002) and National Natural Science Foundation of China (No. 61272476, No. 61232009 and No. 61202420).

References

1. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and Louis Wingers. The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint Archive, Report 2013/404, 2013. http://eprint.iacr. org/.
2. Alex Biryukov, Patrick Derbez, and Léo Perrin. Differential Analysis and Meet-in-the-Middle Attack against Round-Reduced TWINE. In 22nd International Workshop on Fast Software Encryption, 2015.
3. Alex Biryukov and Dmitry Khovratovich. Related-Key Cryptanalysis of the Full AES-192 and AES-256. In Advances in Cryptology-ASIACRYPT 2009, pages 1-18. Springer, 2009.
4. Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić. Distinguisher and RelatedKey Attack on the Full AES-256. In Advances in Cryptology-CRYPTO 2009, pages 231-249. Springer, 2009.
5. A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher. In Cryptographic Hardware and Embedded Systems - CHES 2007, pages 450-466. Springer, 2007.
6. Andrey Bogdanov and Christian Rechberger. A 3-Subset Meet-in-the-Middle Attack: Cryptanalysis of the Lightweight Block Cipher KTANTAN. In Selected Areas in Cryptography, pages 229-240. Springer, 2011.
7. Christina Boura, Marine Minier, Mara Naya-Plasencia, and Valentin Suder. Improved Impossible Differential Attacks against Round-Reduced LBlock. Cryptology ePrint Archive, Report 2014/279, 2014. http://eprint.iacr.org/.
8. Christina Boura, María Naya-Plasencia, and Valentin Suder. Scrutinizing and Improving Impossible Differential Attacks: Applications to CLEFIA, Camellia, LBlock and Simon. In Advances in Cryptology-ASIACRYPT 2014, pages 179199. Springer, 2014.
9. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES-the Advanced Encryption Standard. Springer, 2002.
10. Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved Key Recovery Attacks on Reduced-Round AES in the Single-Key Setting. In Advances in Cryptology-EUROCRYPT 2013, pages 371-387. Springer, 2013.
11. Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved Single-Key Attacks on 8-Round AES. Cryptology ePrint Archive, Report 2010/322, 2010. http: //eprint.iacr.org/.
12. Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved Single-Key Attacks on 8-Round AES-192 and AES-256. In Advances in Cryptology-ASIACRYPT 2010, pages 158-176. Springer, 2010.
13. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. The LED Block Cipher. In Cryptographic Hardware and Embedded Systems-CHES 2011, pages 326-341. Springer, 2011.
14. Yonglin Hao, Dongxia Bai, and Leibo Li. A Meet-in-the-Middle Attack on RoundReduced mCrypton using the Differential Enumeration Technique. In Network and System Security, pages 166-183. Springer, 2014.
15. Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bon-Seok Koo, Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae Jeong, et al. HIGHT: A New Block Cipher Suitable for Low-Resource Device. In Cryptographic Hardware and Embedded Systems-CHES 2006, pages 46-59. Springer, 2006.
16. Dmitry Khovratovich, Alex Biryukov, and Ivica Nikolic. Speeding Up Collision Search for Byte-Oriented Hash Functions. In Topics in Cryptology-CT-RSA 2009, pages 164-181. Springer, 2009.
17. Lars Knudsen, Gregor Leander, Axel Poschmann, and Matthew JB Robshaw. PRINTcipher: a Block Cipher for IC-Printing. In Cryptographic Hardware and Embedded Systems, CHES 2010, pages 16-32. Springer, 2010.
18. Youngdai Ko, Seokhie Hong, Wonil Lee, Sangjin Lee, and Ju-Sung Kang. Related Key Differential Attacks on 27 Rounds of XTEA and Full-Round GOST. In Fast Software Encryption, pages 299-316. Springer, 2004.
19. Leibo Li, Keting Jia, and Xiaoyun Wang. Improved Single-Key Attacks on 9-Round AES-192/256. In Fast Software Encryption, pages 127-146. Springer, 2014.
20. Rongjia Li and Chenhui Jin. Meet-in-the-Middle Attacks on 10-Round AES-256. Designs, Codes and Cryptography, pages 1-13, 2015.
21. Li Lin, Wenling Wu, Yanfeng Wang, and Lei Zhang. General Model of the SingleKey Meet-in-the-Middle Distinguisher on the Word-oriented Block Cipher. In Information Security and Cryptology-ICISC 2013, pages 203-223. Springer, 2014.
22. Bing Sun, Zhiqiang Liu, Vincent Rijmen, Ruilin Li, Lei Cheng, Qingju Wang, Hoda Alkhzaimi, and Chao Li. Links Among Impossible Differential, Integral and Zero Correlation Linear Cryptanalysis. In Advances in Cryptology-CRYPTO 2015, page 95. Springer, 2015.
23. Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi. TWINE: A Lightweight Block Cipher for Multiple Platforms. In Selected Areas in Cryptography, pages 339-354. Springer, 2013.
24. Yanfeng Wang and Wenling Wu. Improved Multidimensional Zero-Correlation Linear Cryptanalysis and Applications to LBlock and Twine. In Information Security and Privacy, pages 1-16. Springer, 2014.
25. Wikipedia. Invariant Subspace -Wikipedia, The Free Encyclopedia. https:// en.wikipedia.org/wiki/Invariant_subspace, 2015.
26. Shengbao Wu and Mingsheng Wang. Automatic Search of Truncated Impossible Differentials for Word-Oriented Block Ciphers. In Progress in CryptologyINDOCRYPT 2012, pages 283-302. Springer, 2012.
27. Wenling Wu and Lei Zhang. Lblock: A Lightweight Block Cipher. In Applied Cryptography and Network Security, pages 327-344. Springer, 2011.
28. Xuexin Zheng and Keting Jia. Impossible Differential Attack on Reduced-Round TWINE. In Information Security and Cryptology-ICISC 2013, pages 123-143. Springer, 2014.
29. Chen Zhijie. Higher Algebra and Analytic Geometry(In Chinese). Springer, 2001.

Appendix A: Key-bridges of Impossible Differential Attack on LBlock

Using our automatic search tool, we find the following relations in the round keys of the attack in Section 4.2:

1. $W K_{22}[29] \Rightarrow W K_{20}[7], W K_{22}[28] \Rightarrow W K_{20}[6], W K_{22}[27] \Rightarrow W K_{20}[5], W K_{22}[26] \Rightarrow W K_{20}[4]$, $W K_{22}[25] \Rightarrow W K_{20}[3], W K_{22}[24] \Rightarrow W K_{20}[2], W K_{22}[23] \Rightarrow W K_{20}[1], W K_{22}[22] \Rightarrow W K_{20}[0]$, $W K_{22}[12] \Rightarrow W K_{19}[19], W K_{22}[11] \Rightarrow W K_{19}[18], W K_{22}[10] \Rightarrow W K_{19}[17], W K_{22}[9] \Rightarrow W K_{19}$ $[16], W K_{21}[31] \Rightarrow W K_{19}[9], W K_{21}[30] \Rightarrow W K_{19}[8], W K_{21}[16] \Rightarrow W K_{18}[23], W K_{21}[15] \Rightarrow$ $W K_{18}[22], W K_{21}[14] \Rightarrow W K_{18}[21], W K_{21}[13] \Rightarrow W K_{18}[20], W K_{0}[26] \Rightarrow W K_{3}[19], W K_{0}[25]$ $\Rightarrow W K_{3}[18], W K_{0}[24] \Rightarrow W K_{3}[17], W K_{0}[23] \Rightarrow W K_{2}[16], W K_{0}[1] \Rightarrow W K_{2}[23], W K_{0}[0] \Rightarrow$ $W K_{2}$ [22],
2. Since $W K_{2}[0], W K_{2}[1], W K_{2}[2], W K_{2}[3], W K_{1}[29], W K_{1}[30]$ and $W K_{1}[31]$ are input/ouput bits of one S-box, we can get 3 key-bridges;
3. $W K_{0}[2] \Rightarrow W K_{10}[32], W K_{0}[1] \Rightarrow W K_{10}[31], W K_{0}[0] \Rightarrow W K_{10}[30], W K_{19}[11] \Rightarrow W K_{11}[3]$, $W K_{19}[10] \Rightarrow W K_{11}[2], W K_{19}[9] \Rightarrow W K_{11}[1], W K_{19}[8] \Rightarrow W K_{11}[0]$. Since $W K_{10}[32], W K_{10}$ [31], $W K_{10}[30], W K_{11}$ [3], $W K_{11}[2], W K_{11}$ [1] and $W K_{11}$ [0] are input/ouput bits of one S-box, we can get 3 key-bridges;
4. $W K_{1}[6] \Rightarrow W K_{11}[36], W K_{1}[5] \Rightarrow W K_{11}[35], W K_{1}[4] \Rightarrow W K_{11}[34], W K_{20}[14] \Rightarrow W K_{12}[6]$, $W K_{20}[13] \Rightarrow W K_{12}[5], W K_{20}[12] \Rightarrow W K_{12}[4]$. Since $W K_{11}[36], W K_{11}[35], W K_{11}[34], W K_{12}$ [6], $W K_{12}$ [5] and $W K_{12}$ [4] are input/output bits of one S-box, we can get 2 key-bridges;
5. Since $W K_{1}[28] \Rightarrow W K_{9}[36], W K_{1}[27] \Rightarrow W K_{9}[35], W K_{1}[26] \Rightarrow W K_{9}[34], W K_{1}[25] \Rightarrow$ $W K_{9}$ [33], and $W K_{9}[36], W K_{9}[35], W K_{9}[34], W K_{9}[33], W K_{10}$ [7] are input/output bits of one S-box, we can get $W K_{10}[7]$. Since $W K_{2}[2] \Rightarrow W K_{12}[32], W K_{2}[1] \Rightarrow W K_{12}[31], W K_{2}[0] \Rightarrow$ $W K_{12}[30], W K_{10}[7] \Rightarrow W K_{12}[29], W K_{21}[11] \Rightarrow W K_{13}[3], W K_{21}[10] \Rightarrow W K_{13}[2], W K_{21}[9] \Rightarrow$ $W K_{13}[1], W K_{21}[8] \Rightarrow W K_{13}[0]$, and $W K_{12}[32], W K_{12}[31], W K_{12}[30], W K_{12}[29] W K_{13}[3]$, $W K_{13}[2], W K_{13}[1], W K_{13}$ [0] are input/output bits of one S-box, we can get 4 key-bridges;
6. Since $W K_{0}[10] \Rightarrow W K_{2}[32], W K_{0}[9] \Rightarrow W K_{2}[31], W K_{0}[8] \Rightarrow W K_{2}[30], W K_{0}[7] \Rightarrow W K_{2}[29]$, and $W K_{2}[32], W K_{2}[31], W K_{2}[30], W K_{2}[29], W K_{3}[2], W K_{3}[1], W K_{3}$ [0] are input/output bits of one S-box, we can get $W K_{3}[2], W K_{3}[1]$ and $W K_{3}[0] . W K_{0}[6] \Rightarrow W K_{10}[36], W K_{0}[5] \Rightarrow$ $W K_{10}[35], W K_{0}[4] \Rightarrow W K_{10}[34], W K_{0}[3] \Rightarrow W K_{10}[33]$, and $W K_{10}[36], W K_{10}[35], W K_{10}[34]$, $W K_{10}$ [33], $W K_{11}[7]$ are input /output bits of one S-box, we can get $W K_{11}[7]$. Since $W K_{3}[2] \Rightarrow$ $W K_{13}[32], W K_{3}[1] \Rightarrow W K_{13}[31], W K_{3}[0] \Rightarrow W K_{13}[30], W K_{11}[7] \Rightarrow W K_{13}[29], W K_{19}[18] \Rightarrow$ $W K_{14}[3], W K_{19}[17] \Rightarrow W K_{14}[2], W K_{19}[16] \Rightarrow W K_{14}[1], W K_{22}[8] \Rightarrow W K_{14}[0]$, and $W K_{13}[32]$, $W K_{13}$ [31], $W K_{13}[30], W K_{13}$ [29] $W K_{14}$ [3], $W K_{14}$ [2], $W K_{14}$ [1], $W K_{14}$ [0] are input/output bits of one S-box, we can get 4 key-bridges;
7. Since $W K_{0}[14] \Rightarrow W K_{2}[36], W K_{0}[13] \Rightarrow W K_{2}[35], W K_{0}[12] \Rightarrow W K_{2}[34], W K_{0}[11] \Rightarrow$ $W K_{2}[23]$, and $W K_{2}[36], W K_{2}[35], W K_{2}[34], W K_{2}[33], W K_{3}[6], W K_{3}[5], W K_{3}[4]$ are input/output bits of one S-box, we can get $W K_{3}[6], W K_{3}[5]$ and $W K_{3}[4]$. Since $W K_{0}[10] \Rightarrow$ $W K_{2}[32], W K_{0}[9] \Rightarrow W K_{2}[31], W K_{0}[8] \Rightarrow W K_{2}[30], W K_{0}[7] \Rightarrow W K_{2}$ [29], and $W K_{2}[32]$, $W K_{2}$ [31], $W K_{2}$ [30], $W K_{2}$ [29], $W K_{3}$ [3] are input/output bits of one S-box, we can get $W K_{3}$ [3]. Since $W K_{3}[6] \Rightarrow W K_{13}[36], W K_{3}[5] \Rightarrow W K_{13}[35], W K_{3}[4] \Rightarrow W K_{13}[34], W K_{3}[3] \Rightarrow W K_{13}$ [23], $W K_{22}[14] \Rightarrow W K_{14}[6], W K_{22}[13] \Rightarrow W K_{14}[5], W K_{19}[19] \Rightarrow W K_{14}[4]$, and $W K_{13}[36]$, $W K_{13}[35], W K_{13}[34], W K_{13}[33] W K_{14}[6], W K_{14}[5], W K_{14}$ [4] are input/output bits of one S-box, we can get 3 key-bridges;
8. Since $W K_{2}[3] \Rightarrow W K_{12}[33], W K_{18}[21] \Rightarrow W K_{13}[6], W K_{18}[20] \Rightarrow W K_{13}[5], W K_{21}[12] \Rightarrow$ $W K_{13}$ [4], and $W K_{12}[33], W K_{13}[6], W K_{13}[5], W K_{13}[4], W K_{13}[7]$ are input/output bits of one S-box, we can get $W K_{13}[7]$. Since $W K_{21}[18] \Rightarrow W K_{16}\left[3, W K_{21}[17] \Rightarrow W K_{16}[2], W K_{18}[23] \Rightarrow\right.$ $W K_{16}[1], W K_{18}[22] \Rightarrow W K_{16}[0], W K_{13}[7] \Rightarrow W K_{15}[29]$, and $W K_{16}[3], W K_{16}[2], W K_{16}[1]$, $W K_{16}[0]$ and $W K_{15}$ [29] are input/output bits of one S-box, we can get 1 key-bridge.

Besides these 44 key-bridges, we can get 27 other key-bridges.

[^0]: * © IACR 2016. This article is the full version of a paper submitted by the authors to the IACR and to Springer-Verlag in April 2016, to appear in the proceedings of FSE 2016.

[^1]: ${ }^{4}$ A similar idea of this phase was proposed in [16].

[^2]: ${ }^{5} W K_{0}^{0}$ and $W K_{22}^{1}$ are known from Step 4.1.

