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Abstract. In this work we extend the electronic voting scheme introduced by R. Cramer, R.

Gennaro and B. Schoenmakers in [CGS97]. In the original paper the privacy of votes is

based on the decisional Di�e-Hellman or respectively the higher residuosity assumption.

Since both problems can be solved e�ciently in the event of quantum computers, a desir-

able goal is to implement the voting scheme with privacy based on di�erent assumptions.

We present the framework and a concrete instantiation for an e�cient solution with

privacy based on learning with errors over rings. Additionally we show how to achieve

privacy assuming hardness of worst-case lattice problems, which are well analyzed and

conjectured to be secure against quantum computers.
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Introduction

By the results of P. Shor problems like decisional Di�e-Hellman or the higher residu-

osity problem are solvable in polynomial time on quantum computers [Sho97]. Even

though quantum computers are yet far from being practical, it is important to develop

cryptographic constructions based on alternative assumptions. This is particularly true

for constructions like electronic voting schemes, as it is desirable to preserve the privacy

of votes into the future.

One promising approach for post-quantum security is lattice-based cryptography. For

n ∈ N a lattice is a discrete additive subgroup of the vector space Rn. An example for

a basic lattice-problem is the so-called shortest vector problem SVP, which is �nding the

shortest nonzero vector in a given lattice. It is conjectured to be hard to approximate SVP

within polynomial factors even with a quantum-computer [MR08].

Another problem is given natural numbers n,q ∈ N and an error distribution χ to

determine the secret vector s ∈ Znq given tuples of the form (a, 〈a, s〉 + e ) ∈ Znq × Zq for

a ← Znq uniformly random and e ← χ on Zq . This so-called learning with errors (LWE)

problem seems to be completely unrelated on a �rst glance. In 2009 though O. Regev gave

in [Reg09] a quantum reduction from worst-case lattice problems to the learning with

errors problem, later the year a classical reduction was provided by C. Peikert in [Pei09].

Since then a lot of cryptographic constructions have been built on top.

A variant of LWE is the so-called learning with errors over rings (RLWE). The ring

considered for this problem is of the form Zq[X ]/f for a polynomial f ∈ Zq[X ] instead

of merely Zq . The additional algebraic structure allows for more e�cient constructions.

As shown by V. Lyubashevsky, C. Peikert and O. Regev in [LPR13] learning with errors

over rings is provably as secure as worst-case problems on a special group of lattices, the

so-called ideal lattices.

The electronic voting scheme proposed in [CGS97] is very e�cient in terms of time and

communication complexity on the side of both the voters and the tallying authorities. It

provides security properties as privacy, robustness and universal veri�ability.

The idea for casting votes is to let each voter publishes an encryption of his vote

supplemented by a proof that the ciphertext indeed is the encryption of a valid vote

without leaking knowledge about the vote itself. The invalid votes are discarded and the

remaining ciphertexts added up. Finally the sum of the ciphertexts is commonly decrypted

by the tallying authorities to obtain the result of the election.

We will present di�erent instantiations of the underlying cryptosystem. The obtained

electronic voting schemes will provide eligibility, privacy, robustness, copy protection and

partial universal veri�ability.

For this purpose the cryptosystem has to comply with several properties. First it has to

support a proof of partial knowledge or OR-proof as broached by R. Cramer, I. Damgård

and B. Schoenmakers in [CDS94]. We generalize the results of this paper and show how
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to obtain OR-proofs for the class of semi-homomorphic encryption schemes as introduced

by R. Bendlin et al. in [BDOZ11].

The second major requirement on the underlying public key encryption system is that

a sum of ciphertexts decrypts to the sum of the corresponding plaintexts. A cryptosystem

complying with this requirement is called additive homomorphic. We relax this notion and

only require the system to be roughly additive homomorphic. This means we require the

cryptosystem to be additive homomorphic only in case the number of the added ciphertexts

does not exceed a certain bound.

To enable mutual decryption the encryption scheme must support distributed decryption,

where the secret key is shared among several authorities. To obtain privacy even in the

event of corrupted authorities, we require the scheme to be threshold semantic secure.

This roughly means that a ciphertext does not leak any information about the encrypted

plaintext to any coalition of corrupted authorities of size less than a certain threshold.

We employ and extend the methods presented by R. Bendlin and I. Damgård in [BD10]

to obtain protocols for threshold decryption for the presented cryptosystems. Furthermore

we use and adapt the protocols for secure multi-party computation presented in [BDOZ11]

and by I. Damgård et al. in [DPSZ12] for achieving active security during decryption.

Throughout this work we require the modulus q to be super-polynomial in the security

parameter. This enables statistically hiding error terms and thereby preventing leakage of

information, for instance about the secret key during decryption.

For LWE there exist security reductions from the search version to the decision version

for certain superpolynomial moduli ([Pei09], [ACPS09], [MM11]). Unfortunately such a

reduction proof does not yet exist for learning with errors over rings with super-polynomial

modulus. Thus only for cryptosystems based on the former the security can be directly

based on the hardness of worst-case lattice problems.

We start this work by introducing basic terms and concepts in Chapter 1. We give

an overview of the electronic voting scheme of [CGS97] as framework and state the

requirements on the underlying public key encryption scheme in Chapter 2. In Chapter

3 we consider instantiating the election scheme with cryptosystems based on learning

with errors over rings and give an overview of the NTRU encryption scheme introduced

in [HPS98] as concrete instantiation. We show how to achieve security against active

adversaries during decryption in this setting with the protocols for multi-party computation

presented in [BDOZ11] and [DPSZ12] in Chapter 4. In Chapter 5 we give an overview of

the cryptosystems presented by Applebaum et al. in [ACPS09] and by O. Regev in [Reg05]

respectively. We show that they provide an electronic voting scheme with privacy based

on worst-case lattice problems. Finally we give an overview of the e�ciencies of the

di�erent instantiations compared to the original scheme in Chapter 6.
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1 Notation and Preliminaries

Throughout this work we will consider two security parameters, one computational

security parameter κ ∈ N and one statistical parameter u ∈ N. In practice the latter

can be chosen much smaller than κ, as it does not depend on the computational power

of the adversary. Since we consider security in the asymptotic sense we will view all

parameters ρ used throughout the work as functions ρ : N→ Sρ for some set Sρ . We write

ρ B ρ (κ) ∈ Sρ to de�ne a function ρ : N→ Sρ and furthermore to imply that by ρ in the

following we also denote the element ρ (κ) ∈ Sρ for �xed κ. For ρ1 B ρ1(κ) ∈ Sρ1 and

ρ2 B ρ2(κ) ∈ Sρ2 we write ρ1 < ρ2 to require ρ1(k ) < ρ2(k ) for all k ∈ N and accordingly

for other relational operators.

Let f ∈ Z[X ] be a polynomial and letn ∈ N and f1, . . . , fn ∈ Z such that f =
∑n

i=1 fiX
i−1

.

Then we let f additionally denote the function f : Z→ Z, z 7→
∑n

i=1 fiz
i−1

determined by

the polynomial f .

Further by requiring ρ to be polynomially bounded, we demand the existence of a

polynomial f ∈ Z[X ] and a natural number k0 ∈ N such that for all k ∈ N with k > k0 we

have ρ (k ) ≤ f (k ).
For each n ∈ N we denote by [n] the set {1, . . . ,n} of the �rst n natural numbers and

by Zn B Z/nZ the congruence classes of integers modulo n. For n a prime power we

denote by Fn the �nite �eld with n elements, which is unique upto isomorphism. Note

that Fn = Zn if and only if n is prime.

To refer to publications this work is based on we use two di�erent notations. For results

taken verbatim or with unmodi�ed content we give the citation in brackets or optionally

with the keyword “see”. If we use underlying ideas but translate them to a di�erent context,

we refer to the original work with the keyword “compare”.

1.1 Norm and Distribution

In this section we introduce terms and notations used throughout the work, based on

Section 4 of [Lyu12] and the preliminaries of [ACPS09] and [BD10]. We start by de�ning

the standard Euclidean and in�nity norm.

De�nition 1.1 (Absolute Value and Norm). Let q ∈ N be an natural number. For any

element z ∈ Zq we denote with |z | the absolute value of the representative of z in the

interval

[
−
q−1
2
,
q−1
2

]
.

Let Z ∈ {Z,Zq}. By ‖ · ‖ : Zn → R≥0, (xi )i∈[n] 7→
√∑n

i=1 |xi |
2

we denote the Euclidean
norm on Zn

and by ‖ · ‖∞ : Z
n → N, (xi )i∈[n] 7→ max( |x1 |, . . . , |xn |) the in�nity norm on

Zn
.

1



1 Notation and Preliminaries

We will work with the Gaussian distribution or normal distribution as error distribution

of the learning with errors problem. For a distribution λ with density function D by z ← λ
or z ← D we denote drawing an element according to distribution λ.

De�nition 1.2 (Gaussian distribution). For r ∈ R>0 by ψr we denote the continuous
Gaussian distribution on R with density function Dr : R → R, x 7→ 1/r · exp(−π (x/r )2).
The distributionψr has expected value µ = 0 and standard deviation σ = r/

√
2π .

Let q ∈ N. Then the discrete Gaussian distribution ψq,r on Zq is obtained by drawing

y ← Dr ′ and returning bq ·ye mod q. Withψ
k

q,r we denote the distribution on Zkq obtained

by drawing each component of the vector according toψ r . We sometimes simply writeψ r ,

when the modulus q is clear without ambiguity.

De�nition 1.3 (Discrete Gaussian distribution on Zn). Let σ ∈ R, v ∈ Zn and let further

ρnv,σ : R
n → R : x 7→ 1/

√
2π · exp(−‖x − v‖2/(2σ 2)) be the density function corresponding

to the continuous Gaussian distribution on Rn. We de�ne the discrete Gaussian distribution
over the integer lattice Zn with center v and standard deviation σ by its density function

Dn
v,σ : Z

n → R, x 7→ ρnv,σ (x)/ρσ (Zn ), where ρσ (Z
n ) B

∑
z∈Zn ρ

n
0,σ (z). For the distribution

centered at 0 ∈ Zn we de�ne Dn
σ B Dn

0,σ .

The following two lemmas will be of importance for bounding the error terms in

ciphertexts and enable us to prove correctness of the respective encryption schemes. We

refer to [Lyu12] for the proof.

Lemma 1.4 ([Lyu12] Lemma 4.3). For any n ∈ N, v ∈ Zn and σ , t ∈ R>0 we have

Pr

[
|〈z, v〉| > t | z← Dn

σ

]
≤ 2e

− t2

2‖v‖2σ 2 .

Lemma 1.5 ([Lyu12] Lemma 4.4). Let n ∈ N and σ , t ∈ R>0. Then

Pr

[
‖z‖∞ > tσ | z← Dn

σ

]
≤ 2e−

t2
2

and for t > 1 we have

Pr

[
‖z‖ > tσ

√
n | z← Dn

σ

]
≤ tn · 2e

n (1−t2 )
2 .

The following de�nitions on distribution ensembles are based on Section 4.1 [CDN01].

Let D be an arbitrary domain, e.g. the domain of bit strings of arbitrary length. For each

k ∈ N and x ∈ D we denote with X (k,x ) a random variable. We then call the in�nite

family X B {X (k,x )}k∈N,x∈D a probability distribution ensemble indexed by D.

De�nition 1.6 (Statistical Indistinguishability). LetX andY be two distribution ensembles

indexed withD. We sayX andY are statistically indistinguishable if there exists a negligible

function negl : N→ [0, 1] and a k0 ∈ N such that for all k > k0 and all x ∈ D it holds

1

2

∑
y∈R

��Pr[X (k,x ) = y] − Pr[Y (k,x ) = y]�� < negl(k ).

In this case we write X ≈s Y .
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1.1 Norm and Distribution

De�nition 1.7 (Computational Indistinguishability). Let X and Y be two distribution

ensembles indexed by D. We say X and Y are computationally indistinguishable if there

exists a negligible function negl : N→ [0, 1] such that for every PPT TM A there exists a

k0 ∈ N such that for all k > k0 and all x ∈ D and w ∈ R we have

���Pr[D (1k ,x ,w,X (k,a)) = 1] − Pr[D (1k ,x ,w,Y (k,a)) = 1]
��� < negl(k ).

In this case we write X ≈c Y .

An important idea is to hide error terms by adding a value randomly drawn from a

interval super-polynomial larger than the interval the error terms are from. This technique

is called “smudging”.

Lemma 1.8 ([AJL+12] Lemma 1, Smudging). Let κ be the security parameter and let
negl : N → R>0 be a negligible function. Let b1 B b1(κ),b2 B b2(κ) ∈ N be bounds
with b1(κ)/b2(κ) ≤ negl(κ). Let e B e (κ) ∈ [−b1,b1] be an arbitrary integer andψ B ψ (κ)
be the uniform distribution on [−b2,b2]∩Z. Then the distribution e+ψ , obtained by drawing
an ẽ ∈ ψ and returning e + ẽ , is statistically indistinguishable to the distributionψ .

Proof. Without loss of generality let e ≥ 0 and

∆(y) B | Pr [e + ẽ = y | ẽ ← ψ ] − Pr [ẽ = y | ẽ ← ψ ] |.

We have

1

2

∑
y∈Z

∆(y) =
1

2

*.
,

∑
y∈[−b2,−b2+e )

∆(y) +
∑

y∈[−b2+e,b2]

∆(y) +
∑

y∈(b2,b2+e]

∆(y)+/
-

=
1

2

*.
,

∑
y∈[−b2,−b2+e )

1

2b2 + 1
+ 0 +

∑
y∈(b2,b2+e]

1

2b2 + 1
+/
-

=
1

2

(
2

e

2b2 + 1

)
≤

b1
2b2 + 1

≤ negl(κ),

which shows that the two distributions are statistically indistinguishable.

Alternatively the translation of a Gaussian distribution can be hidden by discarding the

output with a certain probability - this technique is called “rejection sampling”. We cite

the following theorem without proof from [Lyu12].

Theorem 1.9 ([Lyu12] Theorem 4.9, Rejection Sampling). Let n,T ∈ N be natural numbers
andU ⊆ Zn a subspace of Zn, such that all elements inU have norm less thanT . Let further
D : U → R be a probability distribution and σ ∈ ω

(
T
√
logn

)
. Then there exists a constant

M ∈ O (1) such that the output distributions of the algorithm
A1 : draw v ← D, z ← Dn

v,σ and output (z,v ) with probability Dn
σ (z)/(MDn

v,σ )
and
A2 : draw v ← D, z ← Dn

σ and output (z,v ) with probability 1/M
have at most statistical distance 2−ω (logn)/M . In particular A1 outputs something with prob-
ability at least 1 − 2−ω (logn)/M .

For a concrete instantiation σ = αT for α ∈ R>0 we haveM = e12/α+1/(2α
2) and the outputs

of A1 and A2 are within statistical distance 2−100/M .
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1 Notation and Preliminaries

1.2 Learning with Errors

As brought up in the introduction the learning with errors problem will be of special

importance for this work. After introducing the search and the decision variant (compare

[ACPS09], [AJL+12] and [BD10]) we cite three lemmas. The �rst two give us the search

to decision reduction for certain possibly super-polynomial moduli. The third allows us

to transform the problem to the so-called “Hermite normal form”. Finally we present the

main theorem of [Pei09] covering the reduction from the lattice problem GapSVP to the

search version of the learning with errors problem.

The search version of the learning with errors problem is to recover a secret vector

given polynomially many noisy random inner products.

De�nition 1.10 (Learning with Errors (Search Problem)). Let n B n(κ) ∈ N and q B
q(κ) ∈ N with q ≥ 2 and λ B λ(κ) an error distribution over Zq . For s ∈ Znq by As,λ we

denote the distribution on Znq×Zq which is obtained by drawing a vector a← Znq uniformly

random and an error term e according to λ and then outputting (a, 〈a, s〉 + e ) ∈ Znq × Zq .

The learning with errors search problem LWEq,λ in n dimensions is to solve for s ∈ Znq with

noticeable probability given independent samples from As,λ.

LWEq,λ is said to be hard, if there is no probabilistic algorithm running in polynomial

time solving the problem for in�nitely many n.

The goal of the decision version is to distinguish between the distribution of noisy

random inner products and uniform distribution.

De�nition 1.11 (Learning with Errors (Decision Problem)). Let all parameters be de�ned

as in the previous de�nition. LetO be an oracle that either draws a vector s← Znq uniformly

random and produces samples according to As,λ or produces samples according to uniform

distribution on Znq ×Zq . The learning with errors decision problem DLWEq,λ is given access

to O to distinguish between the two distributions with non-negligible advantage.

The search and decision variants are equivalent for certain choices of parameters,

as shown by the following lemmas. For the proofs we refert to [ACPS09] and [Pei09]

respectively.

Lemma 1.12 (Search-to-Decision-Reduction ([ACPS09], Lemma 1)). Let n B n(κ) ∈ N,
p B p (κ) ∈ P and δ B δ (κ) ∈ N all be polynomially bounded and q B q(κ) B pδ ∈ N
a prime power. Let λ B λ(κ) be an error distribution over Zq that produces elements with
absolute norms bounded by p−1

2
with overwhelming probability. Then there is a reduction in

probabilistic polynomial time from LWEq,λ to DLWEq,λ.

Lemma 1.13 ([Pei09], Lemma 3.6). Let n B n(κ) ∈ N and δ B δ (κ) ∈ N polynomially
bounded. Let α B α (κ) ∈ (0, 1). For each i ∈ [δ] let pi B pi (κ) ∈ N polynomially
bounded, distinct and such that there exists a T ∈ ω

(√
logn

)
with qi ≥ T /α . Let q B

q(κ) B
∏δ (κ)

i=1 qi (κ). Then there is a probabilistic polynomial time reduction from LWEq,ψ α
to DLWEq,ψ α

.

4



1.2 Learning with Errors

The following lemma proven in [ACPS09] allows us to transform the DLWEq,λ problem

to Hermite normal form, where the secret vector itself is chosen according to the error

distribution λ.

Lemma 1.14 ([ACPS09], Lemma 2). Let n B n(κ) ∈ N, p B p (κ) ∈ P and δ B δ (κ) ∈ N
all be polynomially bounded and q B pδ ∈ N a prime power. Let λ be an error distribution
over Zq , s ∈ Zq arbitrary and x← λ. Then there exists a deterministic transformationT that
maps As,λ to Ax,λ and the uniform distribution on Zn

q × Zq to itself in polynomial time.

As mentioned earlier we claimed that the hardness of LWE can be reduced to the

hardness of worst-case lattice problems. In the following we �rst give a short introduction

to lattices based on [Pei09] and [Reg09] and then state the main theorem of the former.

Let n ∈ N. An lattice is an additive discrete subgroup of Rn, in other words a set Λ ⊆ Rn

is called a lattice, if there exists a set {b1, . . . , bn} ⊆ Rn of n linearly independent vectors

such that

Λ B {
n∑
i=1

zi · bi | ∀i ∈ [n] : zi ∈ Z}.

The set B B {b1, . . . , bn} is called a basis of Λ.

The minimum distance λ1(Λ) of the lattice Λ is de�ned as the length of the shortest

non-zero vector in Λ, that is

λ1(Λ) B min

0,v∈Λ
‖v ‖.

The following problem is the decision variant of approximating the shortest vector in a

given lattice.

De�nition 1.15 (GapSVP). Let γ B γ (κ) ∈ R be a function with 1 ≤ γ . Let Λ be a

κ-dimensional lattice and d ∈ R>0 a positive real number. Then the shortest vector problem
GapSVPγ is to decide whether (Λ,d ) is a YES instance, that is λ1(Λ) ≤ d , or a NO instance,

that is λ1(Λ) > γ · d .

An alleviated version of GapSVP was introduced in [Pei09].

De�nition 1.16 (ζ -to-γ -GapSVP). Let ζ B ζ (κ),γ B γ (κ) ∈ R be such that 1 ≤ λ ≤ γ .

Let Λ be a κ-dimensional lattice with 1 ≤ λ1(Λ) ≤ ζ and d ∈ R be a real number with

1 ≤ d ≤ ζ /γ . Then the ζ -to-γ shortest vector problem GapSVPζ ,γ is to decide whether the

input pair (Λ,d ) is a YES instance, that is λ1(Λ) ≤ d , or a NO instance, that is λ1(Λ) > γ ·d .

In case ζ (k ) ≥ 2
k/2

for all k ∈ N the shortest vector problem GapSVPγ and the ζ -to-γ
shortest vector problem GapSVPζ ,γ are equivalent. The former is conjectured to be hard

even in the event of quantum-computers [MR08].

Furthermore GapSVPζ ,γ is conjectured to be hard in the worst case when ζ > 2γ , or

in other words when q is chosen such that there exists an r B r (κ) ∈ ω
(√

n(κ)
)

with

q > 2 · r/α [Pei09].

The following theorem of [Pei09] provides the �rst classical reduction from a worst-case

lattice problem to the search version of the learning with errors problem.

5



1 Notation and Preliminaries

Theorem 1.17 ([Pei09], Theorem 3.1). Let n B n(κ) ∈ N polynomially bounded by κ,
λ B λ(κ) ∈ R such that λ ≥ n/(α

√
logn). Let further ζ B ζ (κ) ∈ R be such that ζ ≥ λ

and q B q(κ) ∈ N such that there exists t B t (κ) ∈ ω (
√
logn/n) such that q ≥ ζ · t .

Then there exists a probabilistic polynomial time reduction from solving the shortest vector
problem GapSVPζ ,γ with overwhelming probability in the worst case to solving LWEq,ψ α
using polynomially many samples.

Altogether this will later allow us to base the security of the presented cryptosystems

on the hardness of worst-case lattice problems.

1.3 Learning with Errors over Rings

The learning with errors over rings problem (RLWE) is an algebraic variant of the opLWE
problem introduced in the previous section which allows for more e�cient applications.

Before giving the de�nition we provide some algebraic basics.

Remark 1.18 (Cyclotomic Polynomial). Let N ∈ N and n B φ (N ), where

φ : N→ N, n 7→ |Z×n |

denotes Euler’s phi function. A number ζ ∈ C is called a primitive N -th root of unity if

ζ N = 1 and for all k ∈ N with k < N it holds ζ k , 1. Note that for all j ∈ [n] the value

ζ jN B exp(2π ji/N ) ∈ C is a primitive N -th root of unity.

The N -th cyclotomic polynomial ΦN ∈ Z[X ] is the unique irreducible polynomial of

degree n which factors to

ΦN =
∏
j∈Z×N

(X − ζ jN )

over C.

Note that in case N is a power of 2 the N -th cyclotomic polynomial is of the form

ϕN = Xn + 1 for n = N /2.

Let N , P ∈ N, n B φ (n), ϕN the N -th cyclotomic polynomial and R B FP [X ]/ϕN . Then

for each f ∈ R there exist unique f1, . . . fn ∈ FP such that f =
∑n

l=1 flX
l−1

. We consider

the induced surjective coe�cient embedding

ι : R → FnP ,
n∑
l=1

flX
l−1 7→ ( fl )l∈[n].

Using this bijection we can straightforward transfer norm and Gaussian distribution

introduced in the �rst section to R. For f ∈ R we de�ne ‖ f ‖∞ B ‖ι ( f )‖∞ and ‖ f ‖ B
‖ι ( f )‖.

Further for α ∈ R>0 andд ∈ R byDn
д,α or simplyDд,α we denote the distribution obtained

by drawing a vector z according to the discrete Gaussian distribution over the integer

lattice Zn with center ι (д) and returning ι−1(zmod P ). We de�ne Dα B D0,α .

The following lemma from [BCK+14] guarantees that in case N is a power of 2 certain

polynomials in Z[X ]/ϕN have inverses with small coe�cients. This property is necessary
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1.3 Learning with Errors over Rings

for the e�cient proof of knowledge established in [BCK+14] and adapted in Section 3.2.1

for proving validity of votes encrypted with the so-called NTRU cryptosystem.

Lemma 1.19 ([BCK+14], Lemma 3.1). Let n ∈ N be a power of 2. Then for all i, j ∈
{0, . . . , 2n − 1} the element 2(X i −X j )−1 ∈ Z[X ]/(Xn + 1) has only coe�cients in {−1, 0, 1}.

For proving correctness of the NTRU cryptosystem we will need the estimates estab-

lished in the coming lemma.

Lemma 1.20. Let n ∈ N be a natural number, P ∈ P be a prime and f ,д ∈ FP [X ]/(Xn + 1)
be polynomials. Then it holds

‖ f ‖∞ ≤ ‖ f ‖ ≤
√
n‖ f ‖∞ and ‖ f · д‖∞ ≤ n · ‖ f ‖∞ · ‖д‖∞.

Proof. Let RP B FP [X ]/(Xn+1). Let fi ,дi for i ∈ [n] the coe�cients of f andд respectively,

that is such that f =
∑n

i=1 fiX
i−1 ∈ RP and д =

∑n
i=1 дiX

i−1 ∈ RP . Let fmax ∈ FP be the

coe�cient of f with maximal absolute value and дmax ∈ FP respectively. Then we have

the following series of inequalities proving the �rst part

‖ f ‖∞ = | fmax | ≤

√√
n∑
i=1

| fi |2 = ‖ f ‖ ≤

√√
n∑
i=1

| fmax |
2 =
√
n · ‖ f ‖∞.

Further it holds

f · д =
n∑
i=1

*.
,

i∑
j=1

fjдi−j+1X
i−1 −

n∑
j=i+1

fjдn+i−j+1X
i−1+/

-

and thus

‖ f · д‖∞ ≤
n∑
j=1

| fmax | · |дmax | = n · ‖ f ‖∞ · ‖д‖∞.

Similar to LWE for speci�c sets of parameters there exist reductions from RLWE to

worst-case problems on ideal lattices (compare [LPR13]). Unfortunately for the choice of

the modulus q super-polynomial in the security parameter, a reduction from the search

problem to the decision variant of RLWE is not yet known, thus for our application we

have to directly assume the hardness of the RLWE decision problem.

De�nition 1.21 (Learning with Errors Over Rings (decisional)). Let q ∈ N, α ∈ R>0 and

ϕ ∈ Z[X ] with degree n ∈ N. Let Rq B Zq[X ]/ϕ and e ← Rq drawn uniformly random.

Let Ae,α be the distribution on Rq × Rq obtained by drawing a ← Rq and e ← Dα and

returning (a,ae + f ). Then the decisional variant of the learning with errors over rings
problem RLWE

ϕ
q,α is to distinguish between Ae,α and uniform distribution on Rq × Rq .

7



1 Notation and Preliminaries

As described in [SS11] instead of working with the ring-learning with errors problem

directly we will consider a variant RLWE
×
HNF

(ϕ,q,α ). There we replaceAe,α byA×e,α , where

a is drawn from R×q instead of Rq , and thus instead of uniform distribution on Rq × Rq we

take uniform distribution R×q × Rq . Furthermore instead of choosing e uniformly random

we choose it according to the Gaussian distribution Dα , thus putting the distribution into

Hermite normal form. The RLWE problem stays hard under the �rst change if a uniformly

drawn element is invertible with more than negligible probability, which will be the case

in our setting. The reduction of the latter works by a transformation of samples as it was

the case for learning with errors, for more details consult [LPR13].

1.4 Secret Sharing

We �rst give a general overview about secret sharing schemes, explain additive sharing

shortly and �nally present Shamir sharing as it was introduced in [Sha79]. The section is

based on [Sha79], [CDS94] and [CDI05].

Sharing the secret key between the tallying authorities will prevent groups not exceeding

a certain size from gaining knowledge of single votes, while at the same time enabling the

authorities to jointly recover the �nal result of the election.

Letm B m(κ) ∈ N and S B {Sk }k∈N a family of sets. Then a secret sharing scheme on

S is a method to share a secret s ∈ S between m players, such that some subsets of players

can reconstruct the value s with the help of their respective shares. In the following we call

those subsets quali�ed sets. A secret sharing scheme is called perfect, if any non quali�ed

subset of players cannot gain any information about s . The collection of all quali�ed sets is

called access structure. The access structure of a perfect secret sharing scheme is monotone,
that is if A ⊆ [m] is quali�ed, then any set B ⊆ [m] such that A ⊆ B is quali�ed as well.

A set of shares is called consistent with s , if all quali�ed subsets can reconstruct the

shared value to the same value s ∈ S .

A secret sharing scheme is called ideal, if the shares are of the same length as the secret.

Let D (s ) denote the joint probability distribution of the shares held by each of the m
players. For any set A ⊆ [m] of participants we let DA(s ) denote the restriction of D (s ) to

A, that is the probability distribution of the shares held by each player in A. If the secret

sharing scheme is perfect, then for any non-quali�ed set A ⊆ [m] the distribution DA(s ) is

independent of s and we write DA B DA(s ).
An important property of secret sharing schemes is the so-called smoothness. The

following de�nition is taken from [CDS94].

De�nition 1.22 ([CDS94], Smoothness). Let {Sk }k∈N be a family of sets and for each k ∈ N
let S (k ) be a perfect sharing scheme on Sk withm(k ) participants, where m B m(κ) ∈ N
is polynomially bounded. Then the family of secret sharing schemes is called smooth, if it

satis�es the following requirements:

1. All shares generated in S (κ) are of length polynomial in κ.

2. Generation of shares and reconstruction of a secret can be done in time polynomial

in κ.
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1.4 Secret Sharing

3. Consistency of the set of all m shares with a secret s ∈ Sκ can be tested in time

polynomial in κ.

4. Given any non-quali�ed subset A ⊆ [m(κ)] and any secret s ∈ Sκ , the set of shares

can be completed to a full set of shares consistent with s and distributed according

to D (s ). Furthermore this can be done e�ciently, that is in time polynomial in κ.

5. Given any non-quali�ed subset A ⊆ [m(κ)] the probability distribution DA is such

that shares for players in A are independent and chosen uniformly random.

Let p B p (κ) ∈ N,m B m(κ) ∈ N. In the following we consider sharing schemes on Zp .

For each j ∈ [m] we let Pj denote the j-th player.

A very simple sharing scheme is the so-called additive sharing, where for each i ∈ [m]

the party Pi holds a value zi ∈ Zp and the shared value z is recovered as z =
∑m

i=1 zi . The

only quali�ed set is [m] and if the shares of all but one players are chosen uniformly

random the scheme is smooth.

For t B t (κ) ∈ N with t ≤ n we consider the so-called (t ,m)-Shamir sharing, where the

quali�ed sets are all subsets I ⊆ [m] of size at least t . From now on we assume p is prime

with p ≥ m. Note that it would su�ce to require that the smallest prime divisor of p is

greater thanm, as this guarantees that nonzero elements with absolute value at mostm
are invertible in Zp .

First we need to consider Lagrange interpolation, which is a method for recovering a

polynomial given tuples of points of the corresponding function. Let I ⊆ [m] of size t and

for all j ∈ I be given values yj ∈ Zp . Then there exists a unique polynomial ρ ∈ Zp[X ] of

degree at most t − 1 such that for all j ∈ I it holds ρ (j ) = yj [Fuh12]. It is de�ned by

ρ B
∑
i∈I

yi
∏
j∈I ,j,i

(X − j ) (i − j )−1.

Now we describe the generation and reconstruction of a Shamir shared value with the

help of a trusted party F for distributing the shares.

Generation of a Shamir sharing: Let z ∈ Zp the value to be shared.

1. The trusted party F chooses uniformly random a polynom ρ ← Zp[X ] of

degree at most t − 1 such that ρ (0) = s .

2. For each j ∈ [m] the party F sends the value sj B ρ (j ) to the player Pj .

Reconstruction of a Shamir shared value: Let I ⊆ [m] be an index set of size at least

t and i ∈ I the index of the player who wants to recover the shared value with help

of the other players in I .

1. For each j ∈ I\{i} the player Pj sends sj to Pi .

2. Pi uses Lagrange interpolation to calculate a polynomial ρ′ ∈ Zp[X ] of degree

t − 1 such that for all j ∈ I it holds ρ′(j ) = sj .

3. Pi can recover the Shamir shared value by calculating ρ′(0).

9



1 Notation and Preliminaries

Let s ∈ Zp and ρ ∈ Zp[X ] a polynomial of degree at most t − 1 such that ρ (0) = s . Then

for every subset I ⊆ [m] of size at least t we say (ρ (i ))i∈I is a (t ,m)-Shamir sharing of s .
Let further I ⊆ [m] and values si ∈ Zp for all i ∈ I given and ρ ∈ Zp[X ] a polynomial

such that for all i ∈ I it holds ρ (i ) = si . Then we say ρ is consistent with (i, si )i∈I .
The correctness of Shamir sharing follows directly from the properties of Lagrange

Interpolation.

The perfectness can be seen by the following. Let I ⊆ [m] be of size t − 1. Given a set of

values (i,yi )i∈I by the properties of Lagrange interpolation for each choice s ∈ Zp[X ] there

is exactly one polynomial ρ ∈ Zp[X ] such that ρ (i ) = yi for all i ∈ I and ρ (0) = s . Thus

given only the shares of t − 1 players no information can be derived about the Shamir

shared value.

Another nice property of Shamir sharing is its linearity. Let ρ, ρ′ ∈ Zp[X ] be polynomials

of degree at most t − 1 with ρ (0) = s and ρ′(0) = s′ and c ∈ Zp an arbitrary constant.

Then ρ + ρ′ corresponds to an (t ,m)-Shamir sharing of s + s′ and c · ρ to an (t ,m)-Shamir

sharing of c · s .
In the following remark we give an idea on how to see the smoothness of a family of

Shamir’s secret sharing schemes.

Remark 1.23 (Smoothness). Let S B {S (κ)}κ∈N be a family of Shamir’s secret sharing

schemes and all other variables de�ned as before. Then S is smooth. In the following we

give a short overview of the proof outline. The perfectness was shown before and with

the previous notes it is straightforward to show that the scheme also complies with the

�rst three requirements. Given a non-quali�ed subset A ⊆ [m] of size at most t − 1 with

corresponding set of shares {si }i∈A and any secret s ∈ S, the set of shares can be completed

to a full set of with s consistent shares and proper distribution by choosing a polynomial

ρ uniformly random from the set

{
f ∈ Zp[X ] | f has degree at most t − 1, f (0) = s, ∀i ∈ A : f (i ) = si

}
.

For the last claim let s ∈ S be the secret to be shared and

ρ ←
{
f ∈ Zp[X ] | f has degree at most t − 1, f (0) = s

}

drawn uniformly random. To prove the claim we need to show that the values { f (i )}i∈A
are distributed independent and uniform. Let for i ∈ [t] the values fi ∈ A be such that

f =
∑f

i=1 fiX
i−1

. We have f1 = s and fi distributed uniformly random for all i ∈ [t]\{1}.
As the values { f (i )}i∈A are linearly independent linear combinations of the { fi }i∈[t]\{1} and

A is of size at most t − 1, the shares held by players in A are distributed as required.

We will need the following remark for enabling the tallying authorities during decryption

to jointly add a smudging term to the �nal result to prevent leaking information about the

secret key.

Remark 1.24 ([CDI05], Sharing of a Sum of Values). Let I ⊆ [m] of size t and let for

each j ∈ I the player Pj holds a value sj ∈ Zp . Then the players can create a (t ,m)-Shamir

sharing of s B
∑

j∈I sj ∈ Zp in the following way:

Let for all j ∈ I the polynomial дj,I ∈ Zp[X ] be the distinct polynomial of degree t − 1
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1.4 Secret Sharing

with дj,I (0) = 1 and дj,I (i ) = 0 for all i ∈ I\{j} and de�ne dj,I B дj,I (j ). Then the

values (dj,I · sj )j∈I form a Shamir sharing of s . To see this, we de�ne the polynomial

ρ B
∑

j∈I дj,I (X ) · sj ∈ Zp[X ]. We have ρ (0) =
∑

j∈I дj,I (0) · sj = s and for all i ∈ I we have

ρ (i ) =
∑

j∈I дj,I (i ) · sj = dj,I · sj as desired and as I is of size t the polynomial ρ of degree at

most t − 1 is uniquely determined.

As a major part of this work is based on learning with errors over rings, we want to

give a generalization of Shamir sharing to certain polynomial rings.

Remark 1.25 (Sharing of Polynomials). LetN ∈ N andϕN theN -th cyclotomic polynomial

of degree n B φ (N ). Let R B Zp[X ]/ϕN .

Let f ∈ R be a polynomial to be shared betweenm ∈ N players. We say ( f (i ) )i∈[m] ∈ R
m

is a (t ,m)-Shamir sharing of f if for all j ∈ [n] the j-th coe�cients of ( f (i ) )i∈[m] form a

(t ,m)-Shamir sharing of the j-th coe�cient of f .

Ifд ∈ R is public polynomial and ( f (i ) )i∈[m] ∈ R
m

is a (t ,m)-Shamir sharing of f , then as a

consequence of the linearity of Shamir sharing the values (д · f (i ) )i∈[m] form a (t ,m)-Shamir

sharing of д · f and (д + f (i ) )i∈[m] form a (t ,m)-Shamir sharing of д + f . Similarly if we

have a (t ,m)-Shamir sharing (д(i ) )i∈[m] ∈ R
m

of д, then (д(i ) + f (i ) )i∈[m] is a (t ,m)-Shamir

sharing of д + f . We do not use the more e�cient so-called packed secret sharing (see

[FY92]) here, as it does not support multiplication.

In the following we prove that indeed (д · f (i ) )i∈[m] forms a Shamir sharing of д · f . For

clarity we will do that for the special case that N is a power of 2 and thus ϕN = Xn + 1.

Let дj , fj , f (i ),j ∈ Fq for j ∈ [n] the coe�cients of д, f and f (i ) respectively, i.e. such that

д =
∑n

j=1 дjX
j−1 ∈ R, f =

∑n
j=1 fjX

j−1 ∈ R and f (i ) =
∑n

j=1 f (i ),jX
j−1 ∈ R for all i ∈ [m] and

further for all j ∈ [n] the values ( f (i ),j )i∈[m] ∈ F
m
q form a Shamir sharing of fj . Then we

have for all i ∈ [m]:

д · f (i ) =
n∑
j=1

*.
,

j∑
k=1

дk f (i ),j−k+1 −
n∑

k=j+1

дk f (i ),n+j−k+1
+/
-
X j−1.

By the linearity of Shamir sharing for each j ∈ [n] the values

*.
,

j∑
k=1

дk f (i ),j−k+1 −
n∑

k=j+1

дk f (i ),n+j−k+1
+/
-i∈[m]

form a (t ,m)-Shamir sharing of

j∑
k=1

дk fj−k+1 −
n∑

k=j+1

дk fn+j−k+1,

which is the j-th coe�cient of д · f and thus proves the claim.

The last property of Shamir sharing we employ is that given enough values a Shamir

shared value can be recovered even if some parties lie about their shares. This will enable

achieving security against active adversaries corrupting a small number of parties without

additional techniques in Section 5.1.2.
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Remark 1.26 (Error Correction). Let (si )i∈[m] ∈ Z
m
p be a (t ,m)-Shamir sharing of a value

s ∈ Zp and let t − 1 < m/3. Let I ⊆ [m] of size at most t − 1 and for each i ∈ I an arbitrary

value s′i ∈ Zp be given, for each i ∈ [m]\I let s′i B si . Then given the values (s′i )i∈[m] the

correct value s can be recovered without knowledge of the set I . This holds as there is

exactly one polynomial f of degree at most t − 1 such that there exists a set S ⊆ [m] of

size at least m − t + 1 such that f (i ) = s′i for all i ∈ S . Such a polynomial exists as at

least m − t + 1 values belong to the original (t ,m)-Shamir sharing. Now assume there is a

second polynomial f ′ of degree at most t − 1 such that there exists a set S′ ⊆ [m] of size at

leastm − t + 1 such that f ′(i ) = s′i for all i ∈ S′. Then the intersection D B S ∩ S′ has size

at leastm − 2(t − 1) =m − 2t + 2 > 3t − 3 − 2t + 2 = t − 1, implying that the polynomial

f − f ′ has at least t zeros. As both polynomials are of degree at most t − 1 this implies

f = f ′.

1.5 Universally Composable Security

The security notion of universally composable security was introduced in [Can01]. Let

m B m(κ) ∈ N and t B t (κ) ∈ N such that t ≤ m. Throughout this work we will

consider the security of m-party protocols, where up to t − 1 players are corrupted by

the adversary. The following is based on the lecture notes on universal composability of

[Can04], the multi-party computation model of Cramer et al. [CDN01] and the appendix

of the SPDZ-protocol [DPSZ12].

Real-Life Model Let Π be anm-party protocol executed by parties P1, . . . Pm, where each

party is an interactive Turing machine. We consider an adversaryA corrupting up to t − 1
parties, which is static and active. The means that the adversary has to decide on the set

of corrupted players in the beginning and is allowed to run arbitrary code on corrupted

players. We will view the adversaryA as part of the environmentZ, which represents all

protocols in the system but Π and is modeled as another interactive Turing machine. The

environment interacts with Π in the following way:

• The environmentZ starts with some external input z ∈ {0, 1}? and prepares inputs

for the players.

• The players execute the protocol Π with the previously prepared inputs for the

honest players and with the adversaryA taking control over the actions of corrupted

parties.

• The �nal results of all honest players are sent toZ.

• Z outputs a bit b ∈ {0, 1}.

We de�ne the binary random variable ViewΠ (κ,Z (z)) as the output ofZ on internal input

z ∈ {0, 1}? and security parameter κ ∈ N after interacting with Π, where the used random-

ness is chosen uniformly random. We de�ne the view of the environmentZ interacting

with Π as the ensemble of distributions ViewΠ (Z) B {ViewΠ (κ,Z (z))}κ∈N,z∈{0,1}? .
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Figure 1.1: Real and Ideal Process (see [Dam15], Part 1, 40:40)

Ideal Model Security is de�ned by specifying the desired behavior of Π in an ideal func-

tionality or trusted party F computing a function f and then proving that the environment

cannot learn more from interacting with Π than it learns interacting with the ideal func-

tionality. Therefore we have to show the existence of a simulator S that simulates the

behavior of the corrupted parties towards the functionality and the view of the protocol Π
towards the environmentZ. Here the parties P1, . . . Pm are viewed as “dummy" parties.

To be more preciseZ, F and S are interacting with each other in the following way:

• The environmentZ starts with some external input z ∈ {0, 1}? and prepares inputs

for the honest and corrupt players.

• Z gives the initial input of the corrupted players to the simulator S and the input

for the honest players to the respective “dummy” players.

• Next the simulator S sends its input to the ideal functionality F and decides about

the input the corrupted parties send to F . The honest parties forward their input to

the functionality F .

• The ideal functionality evaluates the function f and sends output to the respective

players and the simulator.
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1 Notation and Preliminaries

• Honest parties output the received value, while the output of corrupted players is

decided by the simulator. The simulator and the players sent their outputs to the

environmentZ.

• Z outputs a bit b ∈ {0, 1}.

Now the random variable ViewF ,S (κ,Z (z))} is de�ned as the output ofZ on internal

input z ∈ {0, 1}? and security parameter κ ∈ N after interacting with the simulator S on

top of the ideal functionality F , where again the used randomness is chosen uniformly

random. We de�ne the view of the environment Z interacting with S and F as the

ensemble of distributions ViewF ,S (Z) B {ViewF ,S (κ,Z (z))}κ∈N,z∈{0,1}? .

Now we can de�ne the notion of universally composable security.

De�nition 1.27 (UC-Security (computational)). The protocol Π UC-emulates (or imple-
ments) the ideal functionality F , if there exists a PPT simulator S, such that for all

environmentsZ it holds

{ViewΠ (Z)} ≈c {ViewF ,S (Z)}.

This means that the environment can not distinguish whether it is interacting with the

real protocol Π or with the simulator S on top of the ideal functionality F (see Figure 1.1

for an intuition).

Hybrid Model Let k ∈ N and let f1, . . . , fk be m-party functions computable in proba-

bilistic polynomial time and let F1, . . . ,Fk be ideal functionalities for evaluating f1, . . . , fk
respectively. Then the execution of a protocol Π in the (F1, . . . ,Fk )-hybrid model starts

as in the real-life model, except that at prede�ned rounds the parties have access to the

ideal functionalities F1, . . . ,Fk to evaluate f1, . . . , fk as in the ideal model.

Finally we cite the central theorem of universally composable security, which allows to

compose protocols while preserving security in the universal composable security model.

For a proof we refer to [Can01].

Theorem 1.28 (Composition Theorem). Let ρ be a protocol that UC-emulates an ideal
functionality F and further ΠF an F -hybrid protocol. Then the composed protocol ΠF→ρ

UC-emulates ΠF , where ΠF→ρ is the protocol obtained by replacing the calls to the ideal
functionality F by executions of the protocol ρ.
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2 Electronic Voting

As brought up in the introduction this work is based on the election scheme introduced in

[CGS97] by R. Cramer, R. Gennaro and B. Schoenmakers. In this chapter we will describe

the approach of [CGS97] as framework to be instantiated with a suitable encryption

scheme.

Let M,m, t ∈ N. We will consider an (M,m, t )-electronic voting scheme, where M is the

number of voters,m the number of authorities in charge of the tally and t such that we

allow at most t − 1 of the authorities to be compromised. For the scheme to make sense

we have the restriction t ≤ m and in typical applications we have m � M . A desirable

goal is to minimize the work on the voters side, in particular voters should not be required

to interact all with one another.

In the following we give an idea of the voting scheme presented in [CGS97], list desirable

security properties, give an introduction to the underlying building blocks and �nally

present the framework for the secure electronic voting scheme of [CGS97] to be instantiated

in Chapter 3 and 5.

For the sake of convenience we restrict to the case where a voter can vote yes or no by

handing in either 1 or 0 as vote. Note that all building blocks can be extended to serve for

an election with more than two options.

The voting scheme basically consists of two phases. We assume the existence of a public

key encryption scheme with properties yet to be established. In the �rst phase each voter

publish a ciphertext plus a proof that the ciphertext indeed is the encryption of a valid vote

without leaking knowledge about the vote itself. For the release of the vote we assume the

existence of a bulletin board.

Bulletin Board: A bulletin board is a public channel with memory for broadcasting

messages. A section is assigned to each participant, where he can publish his

messages. To prevent other participants from posting messages in this section

publicly veri�able digital signatures are used. All messages are public and accessible

to any party.

After the deadline of the election, each proof is checked by the authorities and the

corresponding vote accepted or discarded respectively. The valid ciphertexts are added up

and the tallying authorities jointly decrypt the sum of ciphertexts to obtain the �nal result.

In Figure 2.1 we give an overview of the complete election procedure, where byV1, . . . ,VM
we denote the voters and by A1, . . . ,Am the tallying authorities. Further for each i ∈ [M]

by ci we denote the ciphertext and by Πi the proof of validity provided by the voter Vi .
We consider the following aspects of security in this work. Note that eligibility directly

follows from the properties of the bulletin board, where digital signatures prevent partic-

ipants from posting messages to sections assigned to other participants. We will prove
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Phase I: Casting Votes

Phase II: Tallying

V1 · · ·

· · ·

· · ·

· · ·

c1 Π1

accept?

V2

c2 Π2

accept?

cM ΠM

accept?

VM

∑
Πi valid

ci

A1 A2 Am

�nal tally

Figure 2.1: Overview of the Election Procedure

which properties of the underlying building blocks are necessary and su�cient to achieve

the remaining security properties.

Privacy: An (M,m, t )-election scheme is called private, if an arbitrary set of at most

t − 1 collaborating parties including tallying authorities can not gain any infor-

mation about the value of an individual vote during or after the election process.

We will consider computational privacy, that is privacy respective an underlying

cryptographic assumption on the contrary to information theoretic privacy.

Eligibility: An electronic voting scheme is called eligible, if only eligible voters can

contribute votes and furthermore each voter can cast at most a single vote.

Partial Universal Veri�ability: We call an (M,m, t )-electronic voting scheme partial
universal veri�able if every active or passive observer of the election is able to verify

that only invalid votes are discarded.
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2.1 Proofs of Knowledge and Partial Knowledge

Universal Veri�ability: We call an (M,m, t )-electronic voting scheme universal veri�-
able if it is partial universal veri�able and furthermore each passive observer can

check that the �nal result is consistent with the valid votes.

Robustness: We call an (M,m, t )-electronic voting scheme robust if every voter trying to

cheat by handing in an invalid vote can be detected and discarded and any coalition

of at most t − 1 tallying authorities cannot in�uence the result of the election.

Copy Protection: A voting scheme is copy protected if a voter cannot copy the vote of

another voter.

Remark 2.1. In this work we do not consider receipt-freeness or non-coercibility, which

was introduced in [BT94] and discussed in [CGS97].

2.1 Proofs of Knowledge and Partial Knowledge

In this section we generalize the notion of a Σ-protocol and customize the results of [CDS94]

to obtain a protocol for a so-called OR-proof. The following de�nition is similar to the one

given in [BCK+14], to the notion of a gap Σ-protocol in [AJL+12] and also captures the

notions of protocols for the proof of knowledge and proof of correct multiplication given

in [BDOZ11], even though it is not made explicit there. The main di�erence to a Σ-protocol

is that we allow a soundness gap, that is a gap between the relation the prover has to know

the witness for and the relation of which a veri�er will be convinced after an accepting

conversation. This necessity comes from the structure of the proofs of knowledge for

cryptosystems based on learning with errors we use. Amortized there are better solutions

which get along without a gap of this kind (see [DL12]), but in our setting each voter has

to provide merely a single proof of validity and thus we can not make use of amortization

techniques.

De�nition 2.2 (Σ′-protocol). Let Sx , Sw , Sa, Sc be arbitrary sets, R,R′ ⊆ Sx × Sw be binary

relations such that R ⊆ R′ and Π be a 3-move protocol for R between a prover P and a

veri�er V of the following form:

(x ,w ) ∈ R

Prover P Veri�er V

x ∈ Sx

draw/calculate a ∈ Sa a

draw challenge c ← Sc

calculate e ∈ Se

c

accept or reject

e

Then Π is called a Σ′-protocol for R ⊆ R′ with completeness error ε if the following hold:
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2 Electronic Voting

Completeness: If the prover P receives a tuple (x ,w ) ∈ R as input, then the prover does

abort with probability at most ε . The veri�er accepts with overwhelming probability

in case the prover does not abort.

Special Honest Veri�er Computational Zero-Knowledge: For every c ∈ Sc there

exist values a ∈ Sa and e ∈ Se , such that the distribution of the conversation (a, c, e )
is computationally indistinguishable to the conversation between an honest prover

P and a veri�erV drawing c as challenge. Furthermore these values can be generated

e�ciently.

Special Soundness: Let (a, c, e ), (a, c′, e′) ∈ Sa × Sc × Se be any pair of conversations

accepted by V with c , c′. Given those it is possible to e�ciently extract a witness

w for the public input x such that (x ,w ) ∈ R′.

Our goal is to transform an arbitrary Σ′-protocol into a Σ′-protocol, where the prover

only proves partial knowledge. We will later us the special case of so called OR-proofs,

where the prover proves knowledge of a witness for either a value v1 or a value v2. This

enables a voter to prove that the ciphertext he provided either contains a 1 or a 0 and thus

a valid yes- or no-vote.

First we need to introduce some notation. Let R ⊆ Sx × Sw be a binary relation and

k ∈ N. Then we de�ne

Rk B {((x1, . . . ,xk ), (w1, . . . ,wk )) ∈ S
k
x × S

k
w | ∃i ∈ [k] : (xi ,wi ) ∈ R}.

The following theorem is a translation of the main result of [CDS94] to our setting.

Theorem 2.3. Let Π be a Σ′-protocol for binary relations R ⊆ R′ ⊆ Sx × Sw with complete-
ness error ε and k ∈ N. Furthermore let S be a smooth secret sharing scheme on Sc for k
participants, such that the only quali�ed set is [k] (compare Section 1.4). Then there exists a
Σ′-protocol Πk for the relations Rk ⊆ R′

k
with completeness error 1 − (1 − ε )k .

Proof. Figure 2.2 describes the new protocol Πk , where i denotes the index of the input of

P such that (xi ,wi ) ∈ R. It is left to show that Πk is indeed a Σ′-protocol.

Completeness can be seen straightforward. As the secret sharing scheme is assumed to

be smooth, the challenge ci is distributed uniformly random if the challenge c chosen by

the veri�er is distributed uniformly random. Therefore for index i an honest prover aborts

with probability at most ε and for j , i the simulator produces an aborting conversation

with probability at most ε by the special honest veri�er computational zero-knowledge

property of Π. Therefore the prover aborts in total with probability at most 1 − (1 − ε )k

and otherwise produces accepting triples (aj , cj , ej )j .
To see special honest veri�er computational zero-knowledge assume be given a value

c ∈ Sc . Then the simulator proceeds as follows. For j ∈ [k − 1] he draws cj ← Sc and

calculates ck ∈ Sc such that the values (cj )j form a sharing of c . Using the special honest

veri�er computation zero-knowledge property of Π he then calculates for all j ∈ [k] the

values aj , ej such that (aj , cj , ej ) is computationally indistinguishable to a conversation

between an honest prover and the veri�er executing Π. If one of the conversations

simulates an abort, the simulator returns

(
(aj )j , c,⊥

)
and otherwise

(
(aj )j , c, ((cj )j , (ej )j )

)
.
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2.2 Underlying Public Key Cryptosystem

Protocol Πk

((x1, . . . ,xk ), (w1, . . . ,wk )) ∈ Rk

Prover P Veri�er V

(x1, . . . ,xk ) ∈ S
k
x

for index i:
behave according to Π

for all j ∈ [k]\{i}:
draw cj ← Sc ,
compute aj , ej s.t.

(aj , cj , ej ) accepted in Π (a
1, . . . ,ak )

draw c ← Sc

calculate ci ∈ Sc s.t.

(cj )j form sharing of c ,

calculate ei as in Π

if all ej ,⊥:

else abort

c

(cj )j sharing of c?

(aj , cj , ej )j acc. in Π?

(c
1, . . . , ck ), (e

1, . . . , ek )

Figure 2.2: Protocol for Proving Partial Knowledge (compare [CDS94], Theorem 8)

For j , k the triples are exactly those produced during a real execution of Πk , where

the prover has knowledge of index wk such that (xk ,wk ) ∈ R and for the index k the

computational indistinguishability follows from the computational indistinguishability of

(ak , ck , ek ) to a triple generated during a real execution of Π.

For special soundness let

(
(aj )j , c, ((cj )j , (ej )j )

)
and

(
(aj )j , c

′, ((c′j )j , (e
′
j )j )

)
be two pairs of

accepted conversations with c , c′. Since [k] is a quali�ed set of the secret sharing scheme

S , the values (cj )j determine the value c ∈ Sc . Thus there must be an index i ∈ [k] such that

ci , c′i . Now we can use the special soundness property of Π and given the conversations

(ai , ci , ei ) and (ai , c
′
i , e
′
i ) calculate a witness wi such that (xi ,wi ) ∈ R′. Thus choosing

arbitrary values wj ∈ Sw for all j ∈ [k]\{i} we have ((xj )j , (wj )j ) ∈ R
′
k

by de�nition of R′
k
.

2.2 Underlying Public Key Cryptosystem

As mentioned earlier the underlying public key cryptosystem has to comply with certain

properties. For each k ∈ N let Br (k ),B
′
r (k ),B (k ) ∈ N be natural numbers such that Br (k ) ≤
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2 Electronic Voting

B′r (k ). The following de�nition is inspired by the notion of a threshold homomorphic

encryption scheme introduced in [CDN01].

De�nition 2.4. We call PKE B (Gen,Enc,Dec) a t-threshold B-additive homomorphic
encryption scheme with (Br ,B

′
r )-pre-proof of validity, if the following holds.

Key Generation: Let K B {K
pk
k
× Ksk1

k
× · · · × Kskm

k
}k∈N be a family of direct products

of �nite sets. Gen is a randomized algorithm, which takes 1
κ

as input and returns

a public key pk ∈ K
pk
κ and a vector of secret key shares (sk1, · · · , skm ) ∈ Ksk B

Ksk1
κ ×· · ·×K

skm
κ . Further there exists anm-party protocol ΠKeyGen securely evaluating

the key generator Gen assuming a static active adversary corrupting up to t − 1

parties.

Encryption: Let U B {Uk }k∈N be the space of randomness for encrypting and for each

k ∈ N let Nk : Uk → R a norm on Uk and Dk a distribution on Uk , such that for

r ← Dk it holds Nk (r ) ≤ Br (k ) with overwhelming probability. LetM B {Mk }k∈N

the message space. The algorithm Enc takes as implicit input 1
κ

a public keypk ∈ K
pk
k

and a messagem ∈ Mκ as input and returns a ciphertext in Cκ , where C B {Ck }k∈N
is the space of ciphertexts.

Decryption: On implicit input 1
κ

and explicit input sk ∈ Ksk1
κ × · · · × K

skm
κ andm ∈ Cκ

the algorithm Dec returns a messagem ∈ Mκ or ⊥. Further there exits anm-party

protocol ΠDec securely evaluating the decryption algorithm Dec assuming a static

active adversary corrupting up to t − 1 parties.

Pre-Proof of Validity: For any k ∈ N there exists a constant ε ∈ [0, 1/2) and a Σ′-
Protocol ΠPPoV(k ) for the relations

RPPoV(k ) B {(x ,w ) |x = (pk,m, c ) ∈ K
pk
k
×Mk × Ck ∧w = r ∈ Uk

∧ Nk (r ) ≤ Br (k ) ∧ c = Encpk (v ; r )}

and

R′
PPoV

(k ) B {(x ,w ) |x = (pk,v, c ) ∈ K
pk
k
×Mk × Ck ∧w = r ∈ Uk

∧ Nk (r ) ≤ B′r (k ) ∧ c = Encpk (v ; r )}

with knowledge error ε .

Additive Homomorphic Properties: For any k ∈ N given B (k ) ciphertexts ci B
Encpk (vi ; ri ) for messages vi ∈ Mk and randomness ri with Nk (ri ) ≤ B′r (k ) it holds

Decsk
*
,

B∑
i=1

ci+
-
=

B∑
i=1

vi .

We will sometimes refer to his property by saying a public key encryption scheme

is roughly additive homomorphic.
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2.3 Multi-Authority Election Scheme

Threshold Semantic Security For each k ∈ N, I ⊆ [m] we de�ne the following experi-

ment.

Experiment Expt−IND-CPA
PKE,A,I :

(pk, sk1, · · · , skm ) ← Gen(1k )

(m0,m1, state) ← A (1k ,pk, I , (ski )i∈I )

b ← {0, 1}

c B Encpk (mb )

b′ ← A (1k ,pk, I , (ski )i∈I , c )

if b = b′ return 1

else return 0

We require that for any probabilistic polynomial time adversaryA returning always

messages of the same size |m0 | = |m1 | and for any set I ⊆ [m] of size at most t − 1
there exists a negligible function negl : N 7→ R and a natural number k0 ∈ N such

that for any k ≥ k0 it holds

Pr

[
Expt−IND-CPA

PKE,A,I = 1

]
≤

1

2

+ negl(k ).

To obtain a universal veri�able electronic voting scheme the multi-party computation

protocol ΠDec for joint decryption additionally has to comply with the following property.

De�nition 2.5 (Auditable Correctness, [BDO14], De�nition 1). A multi-party computation

protocol for evaluating a circuit C with k ∈ N inputs x1, . . . ,xk and possible output y
satis�es auditable correctness if there exists an auditor Taudit which on input τ ,C , x1, . . . ,xk
andy outputs accepty with overwhelming probability if τ is the transcript of an evaluation

of C and furthermore C (x1, . . . ,xk ) = y, and reject otherwise.

Unfortunately the protocols we employ for decryption do not satisfy this property, thus

in the following we will consider partial universal veri�ability instead.

2.3 Multi-Authority Election Scheme

Let all used parameters be de�ned as in the previous sections. We can now describe

the (M,m, t )-multi-authority election scheme following the approach of [CGS97] as a

framework to be instantiated with a suitable cryptosystem. Let PKE B (Gen,Enc,Dec)
be a t-threshold, B-additive homomorphic encryption scheme with (Br ,B

′
r )-pre-proof of

validity ΠPPoV with negligible soundness error. Let ΠPoV be the Σ′-protocol obtained by

applying Theorem 2.3 to ΠPPoV with 2 participants. To make the casting of votes non-

interactive we assume the existence of a trusted beacon, that posts random bits over time

and take the challenge from those bits. The beacon can be implemented by a hash function

which takes a voter-speci�c input comprising the �rst message of the three-move proof; in

this case security in the random oracle model is retained. For the second phase we assume
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2 Electronic Voting

M < B. If this is not the case the votes are split up in groups of each B votes and the tallying

authorities will �rst compute intermediary results, which are then added up to the �nal

outcome. An (M,m, t )-electronic voting scheme is obtained by the following procedure,

where vi ∈ {0, 1} denotes the vote of voter Vi for each i ∈ [M]. Before the election the

m tallying authorities jointly execute the protocol ΠKeyGen, save their respective private

share of the secret key and broadcast the public key.

Phase I: Casting Votes

1. For each i ∈ [M] voter Vi encrypts his vote vi ∈ {0, 1} by encrypting it to

ci B Encpk (vi ) and executes ΠPoV(pk,vi , ci ) with randomness provided by the

beacon.

2. Each voter posts his vote ci accompanied by the proof of validity on his respec-

tive section of the bulletin board.

Phase II: Tallying

1. After the deadline all proofs of validity are checked and non-valid votes are

discarded. The valid votes are summed up to c B
∑

i∈I ci , where I ⊆ [M]

denotes the set of indices corresponding to valid votes.

2. Them tallying authorities jointly execute ΠDec with input c and their respective

key shares to obtain �nal result.

Theorem 2.6 (Compare [CGS97], Theorem 1). If the underlying cryptosystem PKE is a
t-threshold, B-additive homomorphic encryption scheme with (Br ,B

′
r )-pre-proof of validity

with negligible soundness error, then the described (M,m, t )-electronic voting scheme pro-
vides privacy, partial universal veri�ability, robustness and copy protection.

Proof. To prove privacy of the voting scheme we �rst consider the published ciphertext

and then the accompanied proof of validity.

Let B a coalition of at most t − 1 collaborating parties such that the probability

Pr[B (1k ,pk, c ) = v | c = Encpk (v ) ∧ v ∈ {0, 1}] is noticeable better than guessing.

Let IC ⊆ [m] be the set of indices of the tallying authorities within the collaborating parties.

Then from B we can construct an adversary A winning Expt−IND-CPA
PKE,A,IC

(De�nition 2.4)

with noticeable probability better than guessing as follows. The adversary A returns the

messages v0 = 0 and v1 = 1. FinallyA starts B with the challenge ciphertext as input and

returns the output of B. As B has access to at most t − 1 secret key shares, this contradicts

the t-threshold semantic security of the underlying cryptosystem.

It is left to consider the proof of validity ΠPoV obtained from ΠPPoV as explained in the

introduction of this section. Since the protocol ΠPoV is honest veri�er zero-knowledge,

it is also witness indistinguishable. This follows from the fact that the distribution of

a conversation using an arbitrary witness is indistinguishable to the distribution of a

conversation produced by a simulator without knowledge of any witness. Thus the proof

of validity does not leak information about the encrypted vote either and altogether the

voting scheme provides privacy.

Partial universal veri�ability is achieved as the non-interactive proofs posted by each

voter can be checked by any observer of the election.
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2.3 Multi-Authority Election Scheme

It remains to prove robustness. Each invalid vote can be detected and discarded with

overwhelming probability, because the soundness-error of the proof accompanying each

vote is negligible. As further by assumption the protocols ΠKeyGen and ΠDec are secure

against an active adversary corrupting up to t−1 parties, a coalition of parties not exceeding

this size cannot in�uence the result of the election.
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3 Public Key Encryption Based on RLWE

In this chapter we give an overview on how to implement the electronic voting scheme

with cryptosystems based on RLWE. The crucial point is to achieve active security during

distributed decryption. Our approach is to start with a decryption protocol which complies

with a certain structure and is secure against passive adversaries. We show how to achieve

security against active adversaries by employing the protocols for secure multi-party

computation presented in [BDOZ11] and [DPSZ12] in Chapter 4. We �rst give a general

framework for cryptosystems based on RLWE and then present NTRU as the instantiation

of our choice. The obtained electronic voting scheme is e�cient, eligible, robust, partial

universal veri�able and further provides copy protection and privacy based on learning

with errors over rings.

3.1 Abstract Description of the Cryptosystem

In this section we give the framework for an abstract encryption scheme complying with a

weakened version of the requirements stated in De�nition 2.4. It is �tted to be instantiated

with a cryptosystem based on learning with errors over rings. Together with the results of

Chapter 4 we will thereby obtain a cryptosystem for instantiating the electronic voting

scheme presented in Section 2.3.

Let m B m(κ) ∈ N be the number of authorities and let t B t (κ) ∈ N such that at

most t − 1 authorities are under control of a static adversary. Note that depending on the

multi-party computation of chapter 4 to be used t − 1 < m/2 may be required.

Let B (κ),Br (κ),B
′
r (κ) ∈ N such that Br ≤ B′r . Let PKE be a t-threshold, B-additive

homomorphic encryption scheme with (Br ,B
′
r )-pre-proof of validity with the weakening

that ΠDec is merely required to implement the functionality FPDec (Figure 3.2) in the

FKeyGen-hybrid model (Figure 3.1) against a static active adversary corrupting up to t − 1
parties.

The functionality FPDec allows the adversary to freely choose the result of the decryption,

intuitively this corresponds to only requiring security against passive adversaries. A passive
adversary obtains all messages and internal data of corrupted parties, but apart from that

corrupted parties behave according to the protocol. In other words ΠDec is only required

to be secure against the leakage of information but not giving any guarantees on the

correctness of decryption.

The functionality FKeyGen captures that we consider threshold cryptosystems where

the key is either Shamir shared or additively shared between the authorities. In the latter

case the secret keys has to be shared using polynomials of di�erent degrees. This will be

crucial to prevent the leakage of information about the secret key by adding smudging

values (see Theorem 3.6). Note that if an public key encryption scheme is IND-CPA secure
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3 Public Key Encryption Based on RLWE

Functionality FKeyGen

• Upon receiving “start” from all honest players, run the algorithm for key gener-

ation (pk, sk ) ← Gen(1κ ) and send pk to the adversary.

• Additive Sharing: Receive a share ski ∈ Ssk for each i ∈ IC , that is for each corrupt

player Pj . Choose for each honest player Pi a share ski ∈ K
ski
κ such that (ski )i∈[m]

forms an additive sharing of the secret key sk , that is sk =
∑m

i=1 ski . Send the

public key pk to each player and additionally to each honest player Pi the share

ski .

• Shamir Sharing: For each j ∈ {t , . . . ,m} receive a share sk ji ∈ K
ski
κ for each i ∈ IC

from the adversary. Calculate for each honest player Pi shares sk ji ∈ K
ski
κ as in

Remark 1.25 such that

(
sk ji

)
i∈[m]

forms a (j,m)-Shamir sharing of the secret key.

Send the public key pk to each player and additionally to each honest player Pi
the set of shares

(
sk ji

)
j∈{t ,...,m}

.

Figure 3.1: Ideal Functionality for Distributed Key Generation (compare [DPSZ12], Figure

2 and [BD10], Section 4.1)

the threshold semantic security follows directly from the security of the secret sharing

scheme.

If the cryptosystem PKE now additionally complies with the properties stated in the

following, the correctness of decryption can be ensured with the protocols established in

Chapter 4.

Let p B p (κ) ∈ P be a prime, N B N (κ) ∈ N a natural number andM ⊆ Fp[X ]/ϕN
the message space, where ϕN is the N -th cyclotomic polynomial. Let P B P (κ) ∈ N
be a prime power, s1 B s1(κ) ∈ N a natural number and the ciphertext space of the

form C B (FP [X ]/ϕN )
s1

. The requirement on P to be a prime power is necessary, as the

protocols presented in [BDOZ11] and [DPSZ12] only support computation of arithmetic

circuits over �nite �elds. Note that we require P to be super-polynomial, as we need

to statistically hide error terms to not leak information about the respective secret key

shares during decryption. As explained in the introduction this is the main reason why

we cannot directly base the security of the election scheme in this setting on worst-case

lattice problems. For the multi-party setting letm B m(κ) ∈ N be the number of parties

and t B t (κ) ∈ N such that at most t − 1 players are corrupted by the static adversary. We

will denote the index set of honest players by IH ⊆ [m] and the index set of corrupted

players by IC ⊆ [m].

We require that ΠDec is of the following form. First each player Pi locally computes a

publicly known arithmetic circuit C with output in FP/[X ]ϕN , where the input consists of

the shares of the secret key sk owned by Pi and the publicly known ciphertext c . Then
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Functionality FPDec

• Upon receiving “start” from all honest players, run the algorithm for key gener-

ation (pk, sk ) ← Gen(1κ ), send pk to the adversary and store sk .

• Upon receiving “decrypt c” from all honest players (or in the Shamir setting

“decrypt c , I” from a set I ⊆ [m] of at least t players), send c and v B Decsk (c ) ∈
M ∪ {⊥} to the adversary.

• On receiving v′ ∈ M ∪ {⊥} from the adversary, send “result v′” to all players.

Figure 3.2: Ideal Functionality for Distributed Decryption (see [DPSZ12], Figure 3)

each player adds a bounded value to his share and sends the result to the other players,

which allows the players to jointly recover the plaintext encrypted in c .

For the use of the threshold variant of the protocol of Bendlin et al. (Section 4.1) there

are additional requirements on ΠDec. Let I be the set of indexes of players taking part in

the decryption process, for each i ∈ I let di B di,I be de�ned as in Remark 1.24 and further

let B ∈ N be a natural number and

IB B {ρ ∈ FP [X ]/ϕN | ‖ρ‖ ≤ B}

the set of all polynomials with norm bounded by B. Then ΠDec has to comply with the

following form.

• For each i ∈ I the player Pi calculates ri B C (sk |I |i , c ) ∈ FP [X ]/ϕN . The operations

of the circuit C are restricted to additions of shares and additions and multiplication

of publicly known constants to shares.

• For every i ∈ I player Pi �nally chooses a value ai ∈ IB uniformly random, calculates

r ′i B ri + di · ai ∈ FP [X ]/ϕN and broadcasts it. The plaintext can then be publicly

recovered from the broadcasted values.

3.2 NTRU Encryption Scheme

In this section we present the so-called NTRU, which was originally introduced in [HPS98].

It was modi�ed in [SS11] to achieve security under the assumed hardness of standard

lattice-based problems. In our setting this security reduction is not directly applicable, as

it requires the modulus to be polynomially bounded. Instead we use those results to base

the security and correctness of NTRU on the learning with errors over rings assumption.

We begin by presenting the de�nition of NTRU based on [SS11] and [BCK+14] and

proceed giving the intuition for security and additive homomorphic properties from [SS11].
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3 Public Key Encryption Based on RLWE

Finally we provide a protocol for passive secure decryption of the required form based

on [BD10] and [DPSZ12] and establish the pre-proof of validity with the methods of

[BCK+14].

Let N B N (κ) ∈ N be of the same order of magnitude as κ. The ring we will be working

with is of the form Z[X ]/ϕN , where ϕN ∈ Z[X ] is the N -th cyclotomic polynomial. For our

purposes we demand that N is a power of two. Recall that in this case we have ϕN = Xn+1

for n = N /2. Let P B P (κ) ∈ P super-polynomial and de�ne R B Z[X ]/(Xn + 1) and

RP B ZP [X ]/(Xn + 1).

De�nition 3.1 (NTRU Scheme). Let p B p (κ) ∈ P be a prime such that p < P and

M B {v ∈ R | ‖v ‖∞ < p}. Let further σ B σ (κ),α B α (zκ) ∈ R.

The public key encryption scheme NTRU consists of three polynomial time algorithms

Gen, Enc and Dec complying with the following.

Key Generation: The algorithm Gen draws elements s′ and д according to the discrete

Gaussian distribution Dσ on RP and sets s B p · s′ + 1. It checks whether s and д are

invertible in RP and repeats if not. When eventually s,д ∈ R×P the algorithm outputs

the secret key

s ∈ R×P

and the public key

p · д · s−1 ∈ RP .

In the following we will work with the ideal functionality FKeyGen (Figure 3.1) for

distributed key generation. An implementation can be obtained using generic

techniques of multi-party computation.

Encryption: The algorithm Enc takes a public key h ∈ Rp and a message r ∈ M as input,

draws e and f according to Dα and returns the ciphertext

h · e + p · f +v ∈ RP .

Decryption: Given a secret key s ∈ Rp and a ciphertext y ∈ RP as input the decryption

algorithm Dec returns

s · ymodp.

3.2.1 Security and Proof of Validity

The goal of this section is to outline the results of [SS11] on how to choose the parameters

of NTRU such that the security can be reduced to the learning with errors over rings

assumption. Further we use the results of [BCK+14] to establish a pre-proof of validity

which can be turned into a proof of validity as explained in Section 2.3. The correctness of

the NTRU encryption scheme will follow from the additive homomorphic properties we

prove in Lemma 3.5.

Let in the following all parameters not explicitly mentioned be de�ned as in the introduc-

tion of section 3.2 and De�nition 3.1. The �rst lemma outlines under which circumstances

the distribution of the public key is statististical indistinguishable from uniformly random

distribution. For the proof we refer to [SS11].
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3.2 NTRU Encryption Scheme

Lemma 3.2 (Public Key Uniformity ([SS11], Theorem 3)). Let ε ∈ R>0 and σ ∈ R such that
σ ≥ 2n

√
ln(8nP ) · P1/2+2ε . Then the public key generated according to the key generation

algorithm of the version of NTRU presented in 3.1 is distributed within statistical distance of
2
3nP−bϵnc to uniformly random.

The following lemma of [SS11] gives a reduction from the RLWE decision problem to

the security of the NTRU encryption scheme.

Lemma 3.3 (IND-CPA security (compare [SS11], Lemma 13)). Let ε ∈ R>0 and σ ∈ R such
that σ ≥ 2n

√
ln(8nP ) · P1/2+2ε . If there exists a δ ∈ R>0 and an IND-CPA attack against

the NTRU version presented in 3.1 that runs in time T and has success probability 1/2 + δ ,
then there exists an algorithm deciding RLWE×

HNF
(ϕ,α , P ) in time T ′ ∈ O (T + n) and with

success probability statistically close to δ .

Proof. Assume AIND-CPA is an IND-CPA attack algorithm running in time T with success

probability 1/2+δ . Then we construct an algorithmARLWE that decides RLWE
×
HNF

(ϕ,α , P )
as follows. Let (a,x ) ∈ R×P × RP be a sample given to ARLWE. Now ARLWE starts AIND-CPA

with public keyh B p ·a ∈ RP as input. Letv0,v1 ∈ M be the challenge messages outputted

by AIND-CPA. Then ARLWE draws a random bit b ← {0, 1} and returns y B p · x + vb
to AIND-CPA. Finally ARLWE outputs 1 if the algorithm AIND-CPA guesses the correct bit,

implying the sample was chosen according to Ae,α . Otherwise ARLWE outputs 0, implying

the sample was chosen uniformly random.

As p is invertible in RP and a chosen uniformly random from R×P , by Lemma 3.2 the

public key given as input to AIND-CPA is statistically indistinguishable from an honestly

generated key. If the sample was chosen according to Ae,α the second value x is of the

form x = ae + f for values e , f chosen according to the distribution Dα and thus y has the

same distribution as an honestly generated encryption of vb , thus AIND-CPA succeeds and

ARLWE returns 1 with probability statistically close to 1/2 + δ .

In case the sample was chosen uniformly random, the value y is uniformly random and

independent of b and thus in this caseARLWE returns 1 with probability 1/2. Together this

proves the claim.

Now we present a Σ′-protocol for the pre-proof of validity as required. We will therefore

customize the proof of knowledge given in [BCK+14]. The proof is more e�cient compared

to the pre-proof of validity for cryptosystems based on learning with errors we present in

Chapter 5 as the challenge space is larger. Furthermore the proof is based on rejection

sampling instead of smudging, thereby avoiding a soundness gap of super-polynomial

size. Let τ = τ (n) ∈ ω (logn) and λ = λ(n) ∈ ω (τα
√
log(n)). Formally we will present a

Σ′-protocol for the relations

RNTRU-PPoV B {(x ,w ) |x = (h,p,y,v ) ∈ RP × P × RP ×M ∧w = (e, f ) ∈ RP × RP∧

y = he + p f +v ∧ ‖e ‖∞, ‖ f ‖∞ ≤ τα }

and

R′
NTRU-PPoV

B {(x ,w ) |x = (h,p,y,v ) ∈ RP × P × RP ×M ∧w = (e, f ) ∈ RP × RP∧

2y = he + p f + 2v ∧ ‖e‖∞, ‖ f ‖∞ ≤ 2τλn}.
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3 Public Key Encryption Based on RLWE

Protocol ΠNTRU-PPoV

x = (h,p,y,v ), w = (e, f )

Prover P Veri�er V

x = (h,p,y,v )

re , r f ← Dλ

a B hre + pr f
(γ ,δ ) B Com(a) γ

c ← {0, . . . , 2n − 1}c
ε B re + eX

c ∈ RP

ζ B r f + f X c ∈ RP

with probability ρ:

else abort

(a,δ , ε, ζ )
open(Com(a,γ ,δ ))

?

= 1

a + yX c ?

= hε + pζ +vX c

‖ε ‖∞, ‖ζ ‖∞
?

≤ τλ

with ρ B
Dλ (ε )·Dλ (ζ )

M2·DeXc ,λ (ε )·Df Xc ,λ (ζ )

Figure 3.3: Pre-Protocol for Proving Validity of a Vote (compare [BCK+14], Protocol 3.2)

Note that the relations deviate from the requirements on the abstract cryptosystem estab-

lished in Section 2.2. This issue can be solved by using twice the ciphertexts and dividing

the �nal result after decryption by two.

Lemma 3.4. Let M ∈ O (1) be as in Theorem 1.9 with T = τα , σ = λ ∈ ω (T
√
log(n)) and

the discrete Gaussian distribution D = Dα on RP . Let Com be a commitment scheme, which
is perfectly binding and computationally hiding. Then under the respective assumption the
protocol ΠPPoV given in Figure 3.3 is a Σ′-protocol for the relations RPPoV ⊆ R′

PPoV
with

completeness error 1 − 1/M2.

Proof. Let all parameters be de�ned as in Figure 3.3. We show some of the required

equalities and inequalities only for the parameters e, ε and re , because the proofs for f , ζ
and r f work completely analogous.

Completeness: By our choice of parameters and Theorem 1.9 every honest prover re-

sponds to the veri�er with probability statistically close to 1 − 1/M2
. Furthermore in this

case the equations to be checked by the veri�er hold. Let P be an honest prover having

knowledge of randomness e, f for the message v . Then we have

a + yX c = hre + pr f + heX
c + p f X c +vX c = hε + pζ +vX c
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3.2 NTRU Encryption Scheme

and the inequalities hold since

‖ε ‖∞ ≤ ‖re ‖∞ + ‖e ‖∞ ≤
1

2

τλ +
1

2

τα

and

‖ε ‖∞ ≤ τλ

with overwhelming probability by Lemma 1.5.

Special honest-veri�er computational zero-knowledge: Let c ∈ {0, . . . , 2n − 1} be a chal-

lenge given to the simulator. The simulator �rst draws ε, ζ ← Dλ, calculates a B
hε + pζ − yX c +vX c

and sets (γ ,δ ) B Com(a). Then he returns

(γ , c, (a,δ , ε, ζ ))

with probability 1/M2
. By Theorem 1.9 outputting the obtained values ε, ζ with probability

1/M2
is statistically indistinguishable from outputting the honestly generated values with

probability ρ. Note that the quadratic factor comes from applying rejection sampling twice.

As the value a of an accepting conversation can be derived deterministically from those

values it is indistinguishable to the value generated during a real execution. Thus the

distribution of the transcript is indistinguishable to a real protocol transcript where no

abort occurs. With probability 1 − 1/M2
the simulator outputs

(γ , c,⊥)

simulating an abort. As we assume Com to be computationally hiding, the distribution of

this protocol is computationally indistinguishable to a real protocol transcript where an

abort occurs. We have DeX c ,λ (re + eX
e ) = Dλ (re ) and furthermore for re ← Dλ we have

Dλ (re + eX
e ) = Dλ (re + e ) as the components of re are distributed identically. Thus the

probability that during an honest execution an abort occurs is independent of c . Since

furthermore the probability that during an honest execution an abort occurs is statistically

close to 1 − 1/M2
the output of the simulator is statistically indistinguishable to the

conversation between an honest prover and a veri�er.

Special soundness: Let (γ , c, (a,δ , ε, ζ )) and (γ , c′, (a′,δ ′, ε′, ζ ′)) be two accepting conver-

sations with c , c′. By the binding property of the commitment scheme we have a = a′.
Further the second veri�cation equation yields

(y −v ) (X c − X c ′ ) = h(ε − ε′) + p (ζ − ζ ′)

and thus with ẽ B 2(X c − X c ′ )−1(ε − ε′) and
˜f B 2(X c − X c ′ )−1(ζ − ζ ′) we have

2y = hẽ + p ˜f + 2v .

Finally by Lemma 1.19 and 1.20 we �nd

‖ẽ ‖∞ = ‖2(X
c − X c ′ )−1(ε − ε′)‖∞ ≤ n‖ε − ε′‖∞ ≤ n2τλ.
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3 Public Key Encryption Based on RLWE

3.2.2 Distributed Decryption

We start this section by showing that NTRU is roughly additive homomorphic for a suitable

choice of parameters. That followed we provide a protocol for distributed decryption

complying with the properties established in Section 3.1. Our approach is based on the

protocols for distributed decryption presented in [BD10] and [DPSZ12].

Let τ ∈ ω (logn) arbitrary and B′σ B τσ . Then for a honestly generated public key

h = p ·д ·s−1 ∈ RP we have ‖д‖∞ ≤ B′σ and ‖s ‖∞ ≤ p ·B′σ +1 with overwhelming probability

by Lemma 1.5. Let further B′r B 2τ 2.5αn be the bound of randomness an honest prover can

convince the veri�er of with the proof of knowledge established in previous section. Let

L′ B p · n ·
(
B′σ · B

′
α (p + 1) + p · B

′
σ + B

′
α + 1

)
. Then we can prove the following Lemma.

Lemma 3.5 (Additive Homomorphic Properties). Let B′σ ∈ N, B′r ∈ N and L′ ∈ N as
above. Let B ∈ N, L B B · L′ and for i ∈ [B] let yi B Ench (vi ; ei , fi ) be ciphertexts with
‖ei ‖, ‖ fi ‖ < B′r , ‖vi ‖∞ ≤ p for all i ∈ [B]. In case

L + 2u · L < P/2

for any x ∈ Rp with ‖x ‖∞ ≤ 2
u · L/p we �nd

Decs
*
,

B∑
i=1

yi+
-
=

B∑
i=1

vi

even if p · x is added before calculating modulo p. Note that the additional value x will
correspond to the smudging error added during distributed decryption for preventing leakage
of information about the secret key.

Proof. In the ring RP we have

s ·
B∑
i=1

yi = s · *
,
h ·

B∑
i=1

ei + p ·
B∑
i=1

fi +
B∑
i=1

vi+
-

= p · *
,
д ·

B∑
i=1

ei + s ·
B∑
i=1

fi + s
′ ·

B∑
i=1

vi+
-
+

B∑
i=1

vi︸                                                     ︷︷                                                     ︸
Cζ

.

By ζ we now consider the term in R without reducing modulo P . Decryption yields the

correct result if it holds ‖ζ ‖∞ < P/2 − 2
uL, as then after reduction modulo p only the

sum of the plaintext messages remains and furthermore adding p · x does not lead to an

over�ow. With Lemma 1.20 we obtain

‖ζ ‖∞ ≤ p · *
,
n · ‖д‖∞ ·

B∑
i=1

‖ei ‖∞ + n · ‖s ‖∞ ·
B∑
i=1

‖ fi ‖∞+
-
+ n · ‖s ‖∞ ·

B∑
i=1

‖vi ‖∞

≤ p · n · B ·
(
B′σ · B

′
r (p + 1) + p · B

′
σ + B

′
r + 1

)
< P/2 − 2u · L.
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3.2 NTRU Encryption Scheme

Protocol ΠNTRU-Dec

Initialization: For each i ∈ I the player Pi calculates

ai B s |I |i · y ∈ RP ,

where s |I |i ∈ RP is the respective share of player Pi of the secret key and for

additive sharing s |I |i B si respectively. Then Pi calculates bi B ai + p · di · ri ,
where each coe�cient of the polynom ri ∈ R is chosen uniformly random from

the discrete interval [−2u · L/( |I | · p), 2u · L/( |I | · p)].

Decryption: For each i ∈ I the player Pi broadcasts bi and every player computes

the encrypted message by recovering the additively or ( |I |,m)-Shamir shared

value b and then calculating bmodp.

Figure 3.4: Protocol for Distributed Decryption of NTRU Ciphertexts (compare [DPSZ12]

(Full Version), Appendix A.6 and [BD10], Section 4.2)

The protocol for distributed decryption is based on the techniques of [BD10] and

[DPSZ12] and can be found in Figure 3.4 with I B [m] and di B 1 for all i ∈ [m] or

alternatively with I ⊆ [m] the set of players wanting to decrypt of size at least t and

di B di,I ∈ ZP as in Remark 1.24 for all i ∈ I .

Theorem 3.6 (Compare [DPSZ12] (Full Version), Appendix A.6 and [BD10], Theorem

3). The protocol ΠNTRU-Dec (Figure 3.4) implements FPDec (Figure 3.2) in the FKeyGen-hybrid
model with statistical security against any static active adversary corrupting up to t − 1

parties if L + 2u · L < P/2 for L as in Lemma 3.5.

Proof. The requirement L + 2u · L < P/2 makes sure that the correct result is returned if

all players behave according to the protocol by Lemma 3.5. The simulator proceeds as

follows.

SimulatorSNTRU-Dec:

Key Generation: When receiving “start” the simulator S forwards the command to the

ideal functionality FPDec and obtains the public key pk .

Additive Sharing: The simulator obtains for each i ∈ IC a share ski ∈ RP , where IC
denotes the set of indices of at most t − 1 players corrupted by the adversary and IH
the set of honest players. After receiving those values the simulator chooses for all

i ∈ IH shares ski ∈ RP such that

∑m
i=1 ski = 0. For uniform notation set skmi B ski

for all i ∈ [m].

Shamir Sharing: The simulator obtains for each i ∈ IC a set of values (sk ji )j∈{t ,...,m}
from the adversary. After receiving those values the simulator chooses for all i ∈ IH
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3 Public Key Encryption Based on RLWE

set of shares (sk ji )j∈{t ,...,m} such that for each j ∈ {t , . . . ,m} the values (sk ji )i∈[m] form

an (j,m)-Shamir sharing of 0 ∈ RP .

Decryption: When receiving “decrypt c” or “decrypt c , I” the simulator S forwards

the command to the functionality FPDec and obtains v = Decsk (c ). Let i? ∈ IH be

the index of an arbitrary honest player in I . Then the simulator computes for all

(corrupted and honest) players Pi with index i ∈ I\{i?} the value ai according to

ΠNTRU-Dec with help of the shares (sk |I |i )i∈I\{i?} of the secret key received or simulated

during key generation. He determines ai? such that the values (ai )i∈I form an

additive respectively ( |I |,m)-Shamir sharing of v . For all i ∈ IH the simulator can

now calculate bi according to the protocol ΠNTRU-Dec and �nally broadcast the values

(bi )i∈IH . He receives (b′i )i∈IC from the adversary, calculates the shared value b′ and

sends m′ B b′ mod p to the functionality FPDec, which in turn sends resultm′ to

all players and the adversary.

By the smoothness of the secret sharing schemes, the shares of the |I | − 1 players with

indices in I\{i?} of 0 ∈ RP are indistinguishable to shares of the secret key and therefore the

values (bi )i∈I\{i?} generated by the simulator according to the protocol with the simulated

shares are indistinguishable to the values calculated during an execution of the protocol.

It remains to show that this also holds for the value bi? . As this values can be derived

deterministically from the other shares together with the value b, it is su�cient to show

that the value b calculated by the simulator is indistinguishable from the value produced

during a real execution of the protocol. This holds as b = v + p ·
∑

i∈I ri is statistically

indistinguishable to s ·y +p ·
∑

i∈I ri by Lemma 1.8, since they only di�er in the noise of the

encryption and each of the ri is chosen uniformly random from an interval exponentially

larger than the noise.

Altogether we showed that NTRU complies with the properties required in De�nition

2.4 except for active security during distributed decryption. With the methods presented in

the following chapter, by Theorem 2.6 we can implement the electronic voting scheme of

[CGS97] with the public key encryption scheme NTRU for a suitable choice of parameters.
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4 From Passive to Active Security

In this chapter we present a variant of the protocol for secure multi-party computation

given by R. Bendlin et al. in [BDOZ11] and provide an overview protocol for secure multi-

party computation given by I. Damgård et al. in [DPSZ12]. Those will serve for achieving

security against active adversaries during distributed decryption for protocols complying

with the properties established in Section 3.1.

Using the customized version of [BDOZ11] we obtain a protocol which is secure against

a static active adversaries corrupting less than half of the players. Further cheating players

can be detected and discarded and afterwards the protocol restarted until only honest

players remain. Additionally we give an overview on how to use the more e�cient protocol

presented in [DPSZ12] to achieve security against an active adversary corrupting all but

one player. The disadvantage of this protocol is that cheating players cannot be detected

and the protocol is not guaranteed to terminate.

Both protocols achieve security against active adversaries by letting parties authenticate

their messages and thereby forcing all players to behave according to the protocol. While

in [BDOZ11] the players authenticate their shares, in the more e�cient approach of

[DPSZ12] the secret value itself is authenticated and the authenticity checked at the end

of the computation.

The protocols consist of a preprocessing phase, where keys and additional information

necessary for message authentication are generated, and an online phase. The preprocess-

ing phase can take place without knowledge of the inputs to the arithmetic circuit. In our

setting this phase can thus be executed before the election begins.

For the preprocessing phases of the protocols a semi-homomorphic respectively a

somewhat homomorphic cryptosystem is required. This is not to be confused with the

cryptosystem used for encrypting the votes. Note that there are cryptosystems which

can serve for both purposes, but in di�erent instantiations. To avoid confusions we will

refer to the underlying cryptosystem with MPKE. Further we precede the corresponding

algorithms and accordingly index the corresponding variables with M.

All variables not de�ned explicitly are assumed to be as in Section 3.1.

4.1 Threshold Version of the BDOZ-Protocol

We will extend the protocol for secure multi-party computation given in [BDOZ11] to

enable secure computation of arithmetic circuits over R B FP [X ]/ϕN instead of merely FP .

Furthermore we will use Shamir sharing instead of additive sharing to enable decryption

after detecting and excluding malicious authorities. Note though that we do not consider

general multi-party computation, but only computing decryption circuits as described in

Section 3.1.
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4 From Passive to Active Security

4.1.1 Representation of Shared Values and Underlying Cryptosystem

We �rst give an overview on how players can authenticate their respective shares. The

generalization of message authentication from FP to R is straightforward by authenticat-

ing each coe�cient of an element in RP separately. Therefore the terms and notations

introduced in the following are very similar to the original version presented in [BDOZ11].

Additionally we describe the structure which the cryptosystem has to comply with in

order to implement the preprocessing phase.

Recall thatm B m(κ) ∈ N is the numbers of authorities in charge of the decryption and

t B t (κ) ∈ N is chosen such that at most t − 1 of the authorities are corrupted by a static

active adversary. To be able to detect cheating authorities we have to assume an honest

majority and therefore require t − 1 < m/2. We will work with componentwise Shamir

sharing of polynomials a ∈ R as explained in Remark 1.25.

For a value a ∈ R each player Pi will hold a share a (i ) ∈ R. Additionally for each

j ∈ [m]\{i} player Pi will hold message authentication keys Ki
a (j )

B (α ij , β
i
a (j )

) ∈ FP × R.

The values α ij ∈ FP are chosen uniformly random for each pair of players Pi and Pj and

fresh βia (j ) ∈ R are chosen uniformly random for each share a (j ) . We de�ne the function

MAC: R × (FP × R) → R, (a, (α , β )) 7→ α · a + b

for message authentication and for each (α , β ) ∈ FP × R we set

MACα ,β : R → R, a 7→ MAC(a, (α , β )).

The idea is to force players to behave according to the protocol by letting them authen-

ticate their shares, when a value shared value is recovered.

To enable a player Pi to prove to another player Pj that he has not changed his share he

gets to hold a message authentication code

mj
a (i ) B MACα ji ,β

j
a(i )

(a (i ) ) ∈ R,

which he sends together with his share to the other players for recovering the shared

value. Altogether we get the following representation of a:

[a] B {a (i ), {(α
i
j , β

i
a (j )

),mj
a (i ) }

m
j=1}

m
i=1.

In the following for a ∈ R we denote by [a] a representation of a with variables de�ned as

in the equation above such that (a (i ) )i∈[m] indeed forms a (t ,m)-Shamir sharing of a.

A representation [a] is called consistent, if for all i , j ∈ [m] it holds

mi
a (j )
= MAC(α ij ,β

i
a(j )

) (a (j ) ).

Remark 4.1 (Unforgeability of MACs). Let [a] B {a (i ), {(α
i
j , β

i
a (j )

),mj
a (i ) }

m
j=1}

m
i=1 be a con-

sistent representation of a value a ∈ R. Let Pj be a player wanting to authenticate a

value a′
(j )
∈ R di�erent of a (j ) to Pi holding the message authentication codemi

a (j )
for the

latter, and possibly l ∈ N additional values a1
(j )
, . . . ,al

(j )
∈ R with corresponding MACs
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4.1 Threshold Version of the BDOZ-Protocol

mi
a1
(j )
, . . . ,mi

al
(j )

. This provides Pj with n · (l + 1) linear equations for n · (l + 1) + 1 un-

knowns, thus the probability of guessing MACα ij ,β
i
a(j )

(a′
(j )
) correctly is 1/|FP | = 1/P , which

is negligible as P is super-polynomial in our setting.

In the following we describe the basic operations for jointly computing an arithmetic

circuit performing mostly local operations. We omit multiplication of two private val-

ues, which is not necessary in our setting. As all proofs work similarly we will only

prove that the multiplication of a constant to a shared value yields the desired consistent

representation.

Opening: If I ⊆ [m] is a set of at least size t , then the authorities with indices in I
can jointly open a consistent representation [a] as follows: For each i ∈ I the

player Pi sends ai andmj
ai (ai ) to each other player in I , who then checks ifmj

ai (ai )
authenticates ai . If this is the case for all obtained values a player broadcasts “okay”

and together with his value he can establish a by using Lagrange interpolation.

Otherwise he broadcasts “fail”.

Addition: Two consistent representations [a] and [ã] of a, ã ∈ R can be added performing

only local operations:

[a] + [ã] B {a (i ) + ã (i ), {(α
i
j , β

i
a (j )
+ ˜βia (j ) ),m

j
a (i ) +m

j
ã (i )
}mj=1}

m
i=1.

By the properties of Shamir sharing the obtained tuple is a consistent representation

of a + ã.

Multiplication by scalars: If [a] is a consistent representation of a ∈ R and δ ∈ FP a

public scalar, then

δ [a] B {δa (i ), {(α
i
j ,δβ

i
a (j )

),δmj
a (i ) }

m
i=1}

m
j=1.

is a consistent representation of δa.

Additions of constants: If [a] is a consistent representation of a ∈ R and b ∈ R a public

constant, then

b + [a] B {b + a (i ), {(α
i
j , β

i
a (j )
− α ij · b),m

j
a (i ) }

m
j=1}

m
i=1

is a consistent representation of b + a.

Multiplication of constants: If [a] is a consistent representation of a ∈ R and b ∈ R a

public constant to be multiplied to [a], then

b · [a] B {b · a (i ), {(α
i
j ,b · β

i
a (j )

),b ·mj
a (i ) }

m
j=1}

m
i=1

is a consistent representation of b · a. This holds as by Remark 1.25 the values

{b · a (i ) } + i ∈ [m] actually form an (t ,m)-Shamir sharing of b · a.
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It is left to show that the message authentication codes for honest players are correct.

By assumption the representation is consistent and thus for all i, j ∈ [m] we have

mj
a (i ) = α

j
i · a (i ) + β

j
a (i ) .

Multiplication by b on both sides yields

b ·mj
a (i ) = α

j
i · b · a (i ) + b · β

j
a (i )

and proves the claim.

In the following we will consider the message authentication keys to be elements in

F1+nP instead of FP × R. We can use the surjective coe�cient embedding ι of Section 1.3 to

jump between the two rings.

Before proceeding to generating the smudging values and establishing the protocol

for distributed decryption we give an overview of the framework for semi-homomorphic

encryption necessary for the preprocessing phase (see [BDOZ11], Section 2). The term

semi-homomorphic corresponds to the requirement of satisfying a roughly additive homo-

morphic property as described in De�nition 2.4.

De�nition 4.2 ([BDOZ11] Section 2, Semi-homomorphic Encryption). We call a tuple

of algorithms MPKE B (MGen,MEnc,MDec) a semi-homomorphic encryption scheme if

it complies with the following properties.

Key Generation: The algorithm MGen is randomized and takes the security parameter

κ and a modulus p ∈ N as input. MGen returns a secret key skM and a public key

pkM and furthermore a set of parameters. More precise Gen returns natural numbers

M,R ∈ N and for d,σ ∈ N with σ < R the description Dd
σ of a randomized algorithm

returning vectors in Zd with in�nity norm bounded by σ . Furthermore MGen returns

an abelian group (G,+). From now we will assume that every algorithm implicitly

takes p,M,R,Dd
σ and G as input.

Encryption: The deterministic algorithm MEnc takes the public key pkM, an integer

x ∈ Z and a vector r ∈ Zd as input and returns a ciphertext c ∈ G. Furthermore

for each x1,x2 ∈ Z and r1, r2 ∈ Zd we require MEncpkM (x1, r1) +MEncpk (x2, r2) =
MEncpkM (x1 + x2, r1 + r2). For τ , ρ ∈ N a ciphertext c ∈ G is called (τ , ρ)-ciphertext
if there exists an x ∈ Z and an r ∈ Zd such that c = MEncpkM (x , r).

Decryption: The algorithmMDec is deterministic, takes a secret key skM and a ciphertext

c ∈ G as input and returns an element x ∈ Zp ∪ {⊥}.

A semi-homomorphic encryption scheme MPKE with parameters as in De�nition 4.2 is

correct if there exists a negligible function negl : N→ R such that for all p ∈ N it holds

Pr[MDecskM (MEncpkM (x , r)) , x modp

| (pkM, skM,M,R,D
d
σ ,G ) ← MGen(1κ ,p),x ∈ Z, |x | ≤ M, r ∈ Zd , ‖r‖∞ ≤ R] ≤ negl(κ).
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4.1 Threshold Version of the BDOZ-Protocol

For any probabilistic polynomial time adversary A and p ∈ N we de�ne the following

experiment.

Experiment ExpIND-CPA
MPKE,A :

(pkM, skM,M,R,D
d
σ ,G ) ← MGen(1k ,p)

(m0,m1, state) ← A (1k ,pkM) withm0,m1 ∈ Zp

b ← {0, 1}

c B Encpk (mb )

b′ ← A (1k , state, c )
if b = b′ return 1

else return 0

A semi-homomorphic encryption scheme MPKE is called IND-CPA secure if for any proba-

bilistic polynomial time adversary A there exists a negligible function negl : N→ R such

that

Pr

[
ExpIND-CPA

MPKE,A = 1

]
≤

1

2

+ negl(κ).

Later we additionally need the notion of admissibility as de�ned in [BDOZ11], Section

4.1. For τ , ρ ∈ N a semi-homomorphic encryption scheme MPKE is called (τ , ρ)- admissible
if M ≥ 2

5u+2 loguτ 2 and R ≥ 2
4u+loguτ ρ. This will ensure that the ciphertexts produced

with the protocols ΠPoPK and πPoPK given in Figure 1 and Figure 2 in [BDOZ11] for proof

of plaintext knowledge and proof of correct multiplication respectively decrypt to the

correct value.

4.1.2 Generation of Bounded Values and Distributed Decryption

In this section we introduce a representation for the authentication of privately generated

polynomials. We will adapt the protocols of [BDOZ11] and force players to prove that the

polynomials generated have bounded in�nity norm. This is necessary to prevent players

from adding too big smudging errors during distributed decryption and thereby tamper

with the result of the decryption. Finally we present a protocol that can be used together

with the cryptosystem established in Section 3.1 to obtain a protocol for distributed

decryption that is secure against active adversaries corrupting less than half of the players.

For a value a ∈ R generated and held only by player Pj we de�ne the representation

[a]j B {a, {m
i
a}

m
i=1}j ∪ {(α

i , βia )}i∈[m]\{j}

such that for all i ∈ [m]\{j} we have

mi
a = MACα i ,β ia

(a).

In Figure 4.2 we give a protocol to set up bounded values of this form. For the subprotocols

ΠPoPK and Π2−MULT we refer to Figure 1 and Figure 9 of [BDOZ11].
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4 From Passive to Active Security

Functionality FSmudge

Initialization: For all indices of corrupted players i ∈ IC the environment speci�es

α ij ∈ FP for all indices j ∈ IH of honest players, i.e. j ∈ IH . For every honest player

Pi the functionality chooses for each j ∈ [m] the value α ij ∈ FP uniformly random.

These values will build the �rst components of the respective MAC-keys.

Smudging Value: On “smudge, u” from an honest player Pj the functionality for-

wards the command to the other players and proceeds as follows for all k ∈ [u]:

• If the functionality receives “stop” from the environment it sends “fail” to

all players and aborts. Otherwise the functionality chooses for all l ∈ [n]
random values ak,j,l ← [−B′,B′]. For all i ∈ IC the environment speci�es

values βiak, j,l ∈ FP .

• For all i ∈ IH\{j}, l ∈ [n] the value βiak, j,l ← FP is chosen uniformly random

by the functionality.

• For all i ∈ [m]\{j}, l ∈ [n] the functionality sets Ki
ak, j,l

B (α ij , β
i
ak, j,l

) and

computesmi
ak, j,l

(ak,j,l ) = α
i
j · ak,j,l + β

i
ak, j,l

.

• The functionality sends the keys to the respective honest players and the

MACs to Pj .

On “smudge, u” from a player Pj controlled by the adversary the functionality

forwards the command to the other players and proceeds as follows for all

k ∈ [u]:

• If the functionality receives “stop” from the environment it sends “fail” to

all players and aborts. Otherwise the environment speci�es for all l ∈ [n]
values ak,j,l ∈ [−B

′,B′] andmi
ak, j,l
∈ FP for each i ∈ [m].

• For all i ∈ [m]\{j} and l ∈ [n] the functionality computes the values

βiak, j,l B mi
ak, j,l
− α ij · ak,j,l .

• For all i ∈ [m]\{j}, l ∈ [n] the functionality sets Ki
ak, j,l

B (α ij , β
i
ak, j,l

).

• The functionality sends the keys to the respective honest players.

Figure 4.1: Ideal Functionality for the Generation of Smudging Values (compare [BDOZ11],

Figure 5)

Theorem 4.3 (Compare [BDOZ10], Theorem 2). The protocol ΠSmudge (Figure 4.2) imple-
ments the ideal functionality FSmudge (Figure 4.1) in the (FKeyReg)-hybrid model ([BDOZ10],
Figure 9) securely against any static active adversary corrupting up to t − 1 authorities if
the cryptosystem MPKE = (MGen,MEnc,MDec) is semi-homomorphic modulo P , (B′, ρ)-
admissible and IND-CPA secure.
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4.1 Threshold Version of the BDOZ-Protocol

Proofsketch. In the following we present a simulator SSmudge and show that an arbitrary

environmentZ cannot decide whether it is interacting with the real protocol ΠSmudge or

the simulator SSmudge on top of the ideal functionality FSmudge.

We can assume without loss of generality that the scheme MPKE has additionally to the

key generation algorithm MGen a randomized algorithm MGen
?

which outputs a mean-

ingless public key pk?
M

computationally indistinguishable from a public key generated

by MGen and such that the encryption of any message under pk?
M

is statistically indistin-

guishable from an encryption of 0. For the proof we refer to Section 4.3 of [BDOZ10].

The underlying idea of the simulator SSmudge is to simulate calls to the ideal function-

alities FKeyReg and run a copy of the protocol ΠSmudge internally. The simulator thereby

learns the shares and values of authorities corrupted by the adversary - as he knows the

secret keys - and can give them as input to the functionality FSmudge. In the following we

give a precise De�nition (compare [BDOZ10], Figure 16).

Initialization: For each i ∈ [m] the player Pi chooses values α i
1
, . . . ,α im ← FP uniformly

random, publishes encryptions of those values under his respective public key and uses

the protocol ΠPoPK ([BDOZ11], Figure 1) to convince player Pj that Encpki
M

(α ij ) is a valid

encryption of a message in FP (each player Pi holds a secret key ski
M

and publishes the

according public key pki
M

).

SimulatorSSmudge:

Initialization: The simulator invokes MGen(1κ ) several times to generate key pairs

(ski
M
,pki

M
) for each i ∈ [m] and sends all public keys and for each i ∈ IC the

corresponding shares of the secret key ski
M

to the respective party corrupted by the

adversary. Then the simulator proceeds with the initialization step of the protocol

ΠSmudge, where it plays the role of the honest players. If the protocol ΠPoPK fails

for a pair of players including an honest player, the simulator aborts. For every

pair of a corrupt player Pi and an honest player Pj the simulator can recover α ij by

decrypting the obtained encryption, as it has knowledge of all secret keys. Finally

the simulator can forward the obtained values as input of the initialization step to

the ideal functionality FSmudge.

Smudging Value: The simulator executes the smudging function of ΠSmudge playing the

role of the honest players. If the subprotocols ΠPoPK or ΠPoCM fail at any step during

execution for a pair of players including an honest player, the simulator sends “stop”

to the functionality and aborts. We will take a look at two scenarios separately.

First we assume that the player Pj invoking the protocol is honest. In this case the

simulator proceeds as follows for each k ∈ [u]:

• The simulator executes the function for generating a smudging value of the

protocol ΠSmudge playing the role of Pj and the other honest players.

• The value βiak, j,l for each corrupt player Pi and each l ∈ [n] can be calculated

by the simulator, as he has knowledge of α ij because of the initialization step

and gets knowledge of the corresponding MAC value during the last step of a

successful execution of ΠSmudge.
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4 From Passive to Active Security

Protocol ΠSmudge

Smudging Value(j,u):

• Player Pj chooses for all k ∈ [u], l ∈ [n] a value ak,j,l ← [−B′,B′] and

sends {Enc′pk j
M

(ak,j,l )}k∈[u],l∈[n] using randomness bounded by ρ to the other

players.

• Player Pj runs with every other player Pi the Σ′-protocol ΠPoPK(u,B
′, ρ)

with the ciphertexts created during the �rst step as input to prove that the

messages are bounded by 2
2u+loguB′ and the used randomness by 2

2u+loguρ.

• For every i ∈ [m]\{j} player Pi and Pj invoke Π2−MULT(u,B
′, ρ) ([BDOZ11],

Figure 9) with input {MEncpki
M

(α ij )}k∈[u],l∈[n] and {MEncpk j
M

(ak,j,l )}k∈[u],l∈[n].

Let {zk,i,l }k∈[u],l∈[n] denote the output of Pi and {zk,j,l }k∈[u],l∈[n] the output

of Pj . The result is for each k ∈ [u] a representation

[ak,j]j B {ak,j , {zk,i }
m
i=1}j ∪ {(α

i
j ,−zk,j ))}i∈[m]\{j},

where ak,j B
∑n

l=1 ak,j,lX
l−1 ∈ R and zk,ι B (zk,ι,l )l∈[n] ∈ F

n
P for ι ∈ {i, j}.

Figure 4.2: Protocol for Constructing Veri�able Bounded Polynomials (compare [BDOZ11],

Figure 12)

In case the player Pj is controlled by the adversary the simulator proceeds as follows

for each k ∈ [u]:

• The simulator executes the function for generating a smudging value of the

protocol ΠSmudge playing the role of the honest players. He decrypts all the mes-

sages send by Pj during the �rst step, thereby obtaining the values (ak,j,l )l∈[n].

• For each honest player Pi he obtains for all k ∈ {t , . . . ,m}, l ∈ [n] the keys

Ki
ak, j,l

during the third step and can thus calculate the corresponding MAC

values.

In both cases �nally the simulator calls the function for generating a smudging value

on the ideal functionality with the inputs and shares of the corrupted parties acquired

previously. The idea now is to show security by a reduction argument, namely by showing

that a distinguisher between the real and simulated view can be used to distinguish between

a real public key generated by MGen and a meaningless public key generated by MGen
?

,

and thus proving that the two views are computationally indistinguishable, see [BDOZ10],

Section 4.3 for more details.

Now we present the protocol for active secure threshold decryption. The protocol is

obtained by using the protocol ΠPDec and additionally checking the values returned by each
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4.1 Threshold Version of the BDOZ-Protocol

Functionality FKeyGenMAC

• Upon receiving “start” from all honest players, run the algorithm for key gener-

ation (pk, sk ) ← Gen(1κ ) and send pk to the adversary.

• For each i ∈ IC receive for each k ∈ {t , . . . ,m} a share skk
(i )
=

(
skk

(i ),l

)
l∈[s2]

∈

(FP [X ]/ϕN )
s2

and additionally for each l ∈ [s2] and j ∈ IH values mj
k,i,l
∈ FnP and

Ki
k,j,l

B
(
α ij , β

i
k,j,l

)
∈ FP × F

n
P from the adversary.

• Calculate for each honest player Pj for each k ∈ {t , . . . ,m} shares skk
(j )
∈ Ssk

as in Remark 1.25 such that

(
skk

(j )

)
j∈[m]

∈ (FP [X ]/ϕN )
s2

forms a (k,m)-Shamir

sharing of the secret key. For each i ∈ IC , l ∈ [s2] the simulator further calculates

mi
skk

(j ),l
B α ij · sk

k
(j ),l
+ βi

k,j,l
. For each pair of honest player Pj and dishonest player

Pi the simulator chooses α j
i ← FP uniformly random and sets β j

skk
(i ),l

B α j
i ·sk

k
(i ),l
−

mj
k,i,l

. For each pair of honest players Pi , Pj the key

(
α j
i , β

j

skk
(i ),l

)
← FP × F

n
P is

chosen uniformly random and the MAC value calculated.

• Send the public key pk to each player and additionally to each honest player Pi
the set of shares

(
skk

(i )

)
k∈{t ,...,m}

and the respective keys and MACs.

Figure 4.3: Ideal Functionality for Key Generation with Authentication Codes

player with the help of message authentication codes. In this way players not following

the protocol can be detected and excluded. As described in Section 3.1 each authority Pi is

assumed to hold a set of secret keys (skk
(i )
)k∈{t ,...,m} after key distribution, where skk

(i )
∈ Rs2

for each k ∈ {t , . . . ,m}. Let C be the decryption circuit with input skk
(i )
∈ Rs2 and c ∈ C

and output in R as speci�ed in Section 3.1.

The protocol for obtaining the �nal results will consist of several rounds, where after

each round cheating players are excluded. It terminates as soon as every player behaves

according to the protocol, that is after at most t − 1 < m/2 rounds. Let I ⊆ [m] be the

index set of players participating at each round and k ∈ N be the round number. In the

�rst round we have I = [m] and k = 1.

Theorem 4.4. The protocol ΠADec (Figure 4.5) implements the ideal functionality FADec
(Figure 4.4) in the (FSmudge,FKeyGenMAC)-hybrid model (Figure 4.1, 4.3) with statistical se-
curity against any active static adversary corrupting up to t − 1 parties, assuming that
the underlying protocol ΠPDec implements the ideal functionality FPDec (Figure 3.2) in the
FKeyGen-hybridmodel (Figure 3.1) with statistical security against any active static adversary
corrupting up to t − 1 parties.
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4 From Passive to Active Security

Functionality FADec

• Upon receiving “start” from all honest players, run the algorithm for key gener-

ation (pk, sk ) ← Gen(1κ ), send pk to the adversary and store sk .

• Upon receiving “decrypt c” from all honest players or in the Shamir setting

“decrypt c , I” from a set I ⊆ [m] of at least t players respectively, send c and

v B Decsk (c ) to all players with index in [m] or in I respectively and the

adversary.

Figure 4.4: Ideal Functionality for Distributed Decryption (compare [BD10], Section 4.3)

Proofsketch. (Compare [BDOZ10], Theorem 1) We need to give a simulator SADec and

show that any environment polynomially bounded environmentZ cannot decide whether

it is interacting with the real protocol ΠADec with access to the functionalities FKeyGen

and FSmudge or the simulator SADec on top of the functionality FADec. By our assumption

there exists a simulator SPDec, such that any environmentZ cannot decide whether it is

interacting with ΠPDec or with SPDec on top of the ideal functionality FPDec. The simulator

SADec then will proceed as follows:

SimulatorSADec:

Key Generation: When receiving “start” the simulator SADec forwards the command to

the ideal functionality FKeyGenMAC and obtains the public key pk from the function-

ality. Furthermore for each i ∈ IC the simulator receives for each k ∈ {t , . . . ,m} a

share skk
(i )
= (skk

(i ),l
)l∈[s2] ∈ (FP [X ]/ϕN )

s2
and additionally for each l ∈ [s2] and j ∈ IH

values mj
k,i,l
∈ FnP and Ki

k,j,l
∈ F1+nP . The simulator stores the latter and proceeds like

the simulator SPDec with the shares of the secret key.

Initialization: The simulator internally runs a copy of FSmudge and creates the desired

number of smudging values. He reads and stores all data of the parties corrupted by

the adversary.

Decryption:

• For the players corrupted by the adversary the simulator SADec received the

shares and the message authentication codes during the key generation and

can therefore for all i ∈ IC simulate the calculation of ri and the corresponding

message authentication codes.

• For each i ∈ IC the simulator SADec calculates r ′
(i )

. For each j ∈ IH the value r ′
(j )

is calculated by the simulator SPDec. In both cases the corresponding message

authentication codes can be calculated with the information received and stored

during the initialization step.
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4.2 SPDZ-Protocol

Protocol ΠADec

Initialization: The authorities invoke FSmudge(i,u) for each i ∈ [m] once (or in case

u < t then dt/ue times) to obtain representations of smudging values (ak,i )k∈[t].

Decrypt(c, I ,k ):

• For each i ∈ I the player Pi calculates r (i ) B C (sk |I |
(i )
, c ) ∈ FP [X ]/ϕN and all

players update the keys and message authentication codes accordingly.

• For every i ∈ I we set di B di,I as de�ned in Remark 1.24 and player Pi
calculates r ′

(i )
B r (i ) + di · ak,i ∈ FP [X ]/ϕN and for all j ∈ I\{i} the new

key βi
r ′
(j )
B βir (j ) + dj · β

i
ak, j
∈ FnP and the new message authentication code

mj
r ′
(i )
B mj

r (i ) + dj ·m
j
ak,i ∈ F

n
P .

• Now the players invoke Opening(I ) for opening the value r ′. If all players

succeed the obtained value is the result plus the smudging value

∑
i∈I ak,i .

Otherwise the players continue with the next step.

• Let I ′ be the set of indices of all players for which the MAC-check suc-

ceeded at leastm − t times. Let k′ B k + 1. Then the players of I ′ invoke

Decrypt(c, I′, k′).

Figure 4.5: Protocol for Actively Secure Threshold Decryption

• During the opening step the simulator has to check the received message

authentication codes for messages honest players received from corrupted

players and simulate the messages and MACs sent by honest players. This can

be done with the information gathered in previous steps.

The simulator aborts in case the simulated protocol fails during the execution because

of a wrong message authentication code. If the protocol execution is successful the

computation is correct with overwhelming probability, because the success probability of

a player to forging a value for a given message authentication code is at most 1/u. Since

the MAC checks of honest players only possibly fail for corrupted players, the MAC check

of each honest player succeeds at leastm − t times, ensuring that honest players are not

excluded from the protocol.

4.2 SPDZ-Protocol

In this section we give a short overview of the so called SPDZ-protocol for secure multi-

party computation presented in [DPSZ12]. Using this protocol for distributed decryption

we obtain active security against up to m − 1 malicious authorities. The other major

advantage of this approach over the one presented in the previous section is the boost
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4 From Passive to Active Security

in e�ciency: Previously for every pair of players and each share a separate key was

necessary for message authentication. In the new approach the secret values themselves

are authenticated with one global key instead. A disadvantage is that there is no guarantee

that the protocol terminates and malicious players cannot be identi�ed.

In contrast to Section 4.1 we will use the notion of [DPSZ12] directly, that means we

will work with a protocol for secure multi-party computation over FP and not FP [X ]/ϕN .

This approach does not yield any restrictions, as all necessary calculations over FP [X ]/ϕN
can be performed coe�cientwise.

A crucial point of the SPDZ-protocol is that it uses a single global key, giving an

authority knowledge of this key would allow to forge message authentication codes.

Then again players cannot check the validity of message authentication codes without

having knowledge of the global key. This seeming contradiction is resolved by postponing

checking the authenticity of values to the end and only do partial openings during the

ongoing computation. This may result in wrong intermediary results, but the �nal check

will ensure that cheating is detected. The global key will be shared among the players and

before it is opened at the end, each player has to commit to the results, thereby preventing

corrupted players to exploit knowledge of the global key.

4.2.1 Representation of Shared Values and Underlying Cryptosystem

We now give an overview of the representation of values, of the authentication check

at the end of the computation and requirements on the public key encryption scheme

necessary for preprocessing (see [DPSZ12], Section 2 and 3).

Let a ∈ FP be an arbitrary value and α ∈ FP the global key. Then the representation of a

sharing of a betweenm authorities consists of a public variable δa ∈ FP , for each i ∈ [m] a

value ai privately held by Pi such that a =
∑m

i=1 ai and furthermore a value γa,i ∈ FP such

that

∑m
i=1 γa,i = α (a + δa ). In this case we write

〈a〉 = (δa, (ai )i∈[m], (γa,i )i∈[m]).

Addition of shared values and multiplication of constants can be done locally component-

wise. Let

〈b〉 B (δb , (bi )i∈[m], (γb,i )i∈[m])

be a representation of b ∈ FP and further let e ∈ FP . Then

(δa + δb , (ai + bi )i∈[m], (γa,i + γb,i )i∈[m])

is a representation of a + b and

(eδa, (eai )i∈[m], (eγa,i )i∈[m])

is a representation of ea. Addition of constants can be performed locally with the help of

the public constant, namely

(δa − e, (a
′
i )i∈[m], (γa,i )i∈[m])
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4.2 SPDZ-Protocol

with a′
1
B a1 + e and a′i B ai for i ∈ [m]\{1} is a representation of e + a. For the protocol

for multiplication of shared values we refer to [DPSZ12], Figure 1.

Before proceeding to the preprocessing phase, we give an idea on how the authenticity

of the �nal value is checked. As brought up earlier the checking is postponed until after the

end of the evaluation. During the computation itself all values are only partially opened

and no message authentication codes are checked. For the global key α ∈ FP a di�erent

representation is used, namely

JαK B ((αi )i∈[m], (βi ,γ
i
α ,1, · · ·γ

i
α ,m )i∈[m]),

where all variables are elements in FP and player Pi holds αi , βi ,γ
i
α ,1, · · ·γ

i
α ,m. Further

α =
∑m

i=1 αi and for all j ∈ [m] it holds

∑m
i=1 γ

i
α ,j = αβj . The intuition of the latter equation

is, that the value on the left-hand side is the message authentication code authenticating

the global key α to Pj owning the private key βj .
The output phase now proceeds as follows, where FCom is assumed to be an ideal

functionality for commitments. Assume that the output value y ∈ FP is shared by the

players, but not opened yet. Further let T ∈ N and assume that the values (aj )j∈[T ] with

〈aj〉 = (δj , (aj,i )i∈[m], (γaj ,i )i∈[m] for all i ∈ [T ] were partially opened and not checked during

the protocol execution so far. Let JeK be a random value produced during preprocessing

(see [DPSZ12], Figure 7). Then the parties proceed as follows (see [DPSZ12], Figure 1).

1. The players open the random value JeK and compute a B
∑T

j=1 e
jaj .

2. Each player Pi computes γi B
∑T

j=1 e
jγaj ,i .

3. Each player Pi calls FCom to commit to γi , his share yi of y and the corresponding

message authentication code γy,i .

4. The players open the global key JαK.

5. The ideal functionality FCom opens γi for each i ∈ [m]. Each player checks whether

α
(
a +

∑T
j=1 e

jδj
)
=

∑m
i=1 γi and sends “okay” if the equality holds. If all player send

“okay” the protocol proceeds to the last step. Otherwise the protocol aborts.

6. The ideal functionality FCom opens yi and γy,i for each i ∈ [m]. Now y can be

recovered as

∑m
i=1yi and each player checks whether α (y + δy ) =

∑m
i=1 γy,i . If this

check is successful y is the output. Otherwise the protocol aborts.

The underlying idea of this protocol is that the commitments prevent corrupted players

to exploit knowledge of the global key and change their authentication codes accordingly.

Note that in [DKL+13], Figure 3 an improvement of this protocol is given, where play-

ers do not have to reveal their message authentication keys, thereby allowing to reuse

preprocessed data.

For the preprocessing phase of the protocol for secure multi-party computation in

[DPSZ12] a encryption scheme is needed. We explain the basic properties a cryptosys-

tem MPKE B (MParamGen,MKeyGen,MKeyGen
?,MEnc,MDec) has to comply with for

this purpose (see [DPSZ12], Section 5). Basically a certain number of homomorphic ad-

ditions and one homomorphic multiplication has to be supported. Such an encryption
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4 From Passive to Active Security

scheme is called somewhat homomorphic. We will however not explain all details, for more

information we refer to Section 3 in [DPSZ12].

Message Space: The message space is of the formMM B (FP )
sM

for some sM ∈ N, that

is a direct product of �nite �elds with componentwise addition and multiplication.

Furthermore there exists an injective function

encode : MM ↪→ Z
N

for a suitable natural number N ∈ N and a function

decode : ZN →MM

with the following properties:

1. For all m ∈ MM it holds ‖ encode(m)‖∞ ≤ P/2.

2. For all m ∈ MM it holds decode(encode(m)) = m.

3. For all x ∈ ZN it holds decode(x) = decode(xmod P ).

4. For all m1,m2 ∈ MM it holds decode(encode(m1) + encode(m2)) = m1 + m2

and decode(encode(m1) · encode(m2)) = m1 ·m2, where + is componentwise

addition and · an arbitrary operation on ZN .

Space of Randomness: Let d, ρ ∈ N be natural numbers. The space of randomness is

Zd . By Dd
ρ we denote a randomized algorithm which outputs elements in Zd with

in�nity norm bounded by ρ with overwhelming probability.

Ciphertext Space: The ciphertext space is an abelian group (G,�). Additionally(G,�)
has to support a not necessarily closed multiplicative operation �, which is commu-

tative and furthermore distributive with �.

Parameter Generation: The probabilistic algorithm MParamGen takes 1
κ

and the mes-

sage spaceM as input and returns all parameters introduced above and furthermore

a set C of allowable arithmetic SIMD circuits overM.

Key Generation: The probabilistic algorithm MKeyGen returns a pair of keys, a public

key pkM ∈ SpkM and a secret key skM ∈ SskM .

Encryption: The deterministic algorithm MEncpkM takes an encoded message x ∈ ZN

and a vector of randomness r ∈ Zd and returns a ciphertext c ∈ G. If the randomness

is not speci�ed, it is assumed to be drawn according to the distribution Dd
ρ .

Decryption: The deterministic algorithm MDecskM takes a ciphertext c ∈ G and returns

a message m ∈ M or ⊥.

Correctness: Let Bplain,Brand ∈ N be natural numbers with P/2 ≤ Bplain and ρ ≤ Brand

andC the set of allowed arithmetic SIMD circuits overM. Then we say the cryptosys-

tem is (Bplain,Brand,C )-correct if there exists a negligible function negl : N → R≥0
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4.2 SPDZ-Protocol

such that for each f ∈ C and for each x ∈ ZN , r ∈ Zd with ‖x‖∞ ≤ Bplain,

decode(x) ∈ M and ‖r‖∞ ≤ Brand it holds

Pr

[
MDecskM (

ˆf (MEncpkM (x, r))) , f (decode(x))

| P ← MParamGen(1κ ,M), (pkM, skM) ← MKeyGen()] ≤ negl(κ),

where
ˆf is the function on G induced by f obtained by replacing the operations on

M with the corresponding ones on G and by replacing every constant m ∈ M with

MEncpkM (m, 0).

Admissibility: Let each formula f ∈ C be of the form (x1 + · · · + xm ) · (y1 + · · · +
ym ) + z1 + · · · + zn or consisting of less additions and/or no multiplication. Then the

cryptosystem is called admissible, if there exists a ν ∈ R>0 such that the cryptosystem

is (Bplain,Brand,C )-correct for

Bplain B N · P/2 · u2 · 2(1/2+v )·u and Brand B d · ρ · u2 · 2(1/2+v )·u ,

where u ∈ N is the statistical security parameter.

4.2.2 Generation of Bounded Values

To de�ne the protocol for generating smudging values, we have to provide the authorities

with a protocol for proving that their respective encrypted message is bounded. To be

more precise we will give a Σ′ protocol for the relations

RPoBPK B {(x ,w ) |x = (pk, c) ∈ S′pk × (C′)u with c = (ci )i∈[u]

∧w = (xi , ri )i∈[u] ∈ (M′ ×U ′)u

∧ ∀i ∈ [u] : ci = MEncpk (xi , ri ), decode(xi ) ∈ Fs
′

P

∧ ∀i ∈ [u] : ‖xi ‖∞ ≤ B, ‖ri ‖∞ ≤ ρ}

and

R′PoBPK B {(x ,w ) |x = (pk, c) ∈ S′pk × (C′)u with c = (ci )i∈[u]

∧w = (xi , ri )i∈[u] ∈ (M′ ×U ′)u

∧ ∀i ∈ [u] : ci = MEncpk (xi , ri ), decode(xi ) ∈ Fs
′

P

∧ ∀i ∈ [u] : ‖xi ‖∞ ≤ B′, ‖ri ‖∞ ≤ Brand},

where B ∈ N with B ≤ τ suitable and B′ B N · B · u2 · 2(1/2+ν )u . From now on let

ũ B u2 · 2ν ·u−1. The desired protocol ΠPoBPK can be found in Figure 4.6. It is a variant of

the protocol ΠZKPoPK which can be found in the full version of [DPSZ12], Appendix A.1.

We omit the proof of the following Lemma, as is works analogous to the proof of Theorem

5 given there.

Lemma 4.5. De�ne all parameters as above. The protocol ΠPoBPK (Figure 4.6) is a Σ′-proof
for the relations RPoBPK ⊆ R′

PoBPK
.
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4 From Passive to Active Security

Protocol ΠPoBPK

x = (pk, c), w = (xi , ri )i∈[u]

Prover P Veri�er V

x = (pk, c)

for all i ∈ [V ]:
mi ← (FP )

s ′
such that

‖ encode(mi )‖∞ ≤ B and

ui ← (pZ)N such that

encode(mi ) + ui ∈ (I1)
N

,

yi B encode(vi ) + ui ,
si ← (I2 ∩ Z)

d
a B (MEncpk (yi , si ))i∈[V ]

e← {0, 1}ue
Y B (y1, . . . , yV ) ∈ (ZN )V

X B (x1, . . . , xu ) ∈ (ZN )u

S B (s1, . . . , sV ) ∈ (Zd )V

R B (r1, . . . , ru ) ∈ (Zd )u

Z B Y > +Me · X >
T B S> +Me · R>

for all i ∈ [V ]:
zi B Zi , ti B Ti ,
di B MEncpk (zi , ti ),

decode(zi )
?

∈ (FP )
s ′

d B (d1, . . . ,dV ) ∈ G
V

,

d> ?

= a> � (Me � c>),

Z
?

∈ (I1 ∩ Z)
V×N

,

T
?

∈ (I2 ∩ Z)
V×d

where V B 2 · u − 1 ∈ N is the number of random ciphertexts to be constructed by

the prover, I1 B [−B · N · ũ,B · N · ũ] and I2 B [−ρ · d · ũ, ρ · d · ũ] are intervals,

for an arbitrary matrix M by Mi we denote the i-th row of M and further we let

Me B (me
i,j )i∈[V ],j∈[u] ∈ Z

V×u
be the matrix with entries

me
i,j B

{
ei−j+1, if 1 ≤ i − j + 1 ≤ u
0, otherwise

Figure 4.6: Protocol for Proving Boundedness of an Encrypted Message (compare [DPSZ12]

(Full Version), Appendix A.1)
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4.2 SPDZ-Protocol

Smudging Value: The result of this function is a shared value guaranteed to be

bounded by B′ B N · B · u2 · 2(1/2+ν )u for B ∈ N suitable.

• For each i ∈ [m] player Pi generates ri ∈ FP , such that |ri | ≤ B/m. Let

r B
∑m

i=1 ri ∈ FP .

• For each i ∈ [m] player Pi encrypts the value ri and broadcasts the en-

cryption. That means he sends ci B MEncpk (ri ) to the other players. Let

c B �m
i=1ci .

• For each i ∈ [m] player Pi uses ΠPoBPK to prove that the ciphertext ci he

generated encrypts a plaintext with absolute value bounded by B′/m.

• Players generate 〈r 〉 ← PAngle(r1, . . . , rn, c ) ([DPSZ12], Figure 6).

Figure 4.7: Protocol for Generating Smudging Values (compare [DPSZ12], Figure 7)

Now it is left to complement the protocol presented in [DPSZ12] with a protocol for

generating smudging values. For a more e�cient online-phase these values can be prepared

during preprocessing. Therefore we add a function to generate smudging values to the

protocol ΠPREP ([DPSZ12], Figure 7). Let MPKE be an admissible somewhat homomorphic

encryption scheme with parameters as described in Section 4.2.1. Recall that u ∈ N is the

statistical security parameter. Then the protocol for generating smudging values can be

found in Figure 4.7.

With the additional protocol for generating smudging values the players can jointly

carry out the decryption securely against an active adversary corrupting up tom−1 players.

They proceed by calculating the circuit for distributed decryption componentwise using

the protocol ΠONLINE given in [DPSZ12], Figure 1. During the initializing step additionally

smudging values have to be prepared.

Remark 4.6. In the paper [BDO14] an enhanced version of the SPDZ-protocol is presented

which satis�es auditable correctness with security based on the discrete logarithm problem.

Since the goal of this work is to base security on alternative assumptions, this approach is

not feasible. Similar future results based on a di�erent assumption however could be used

with the presented framework to obtain a universal veri�able electronic voting scheme.
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5 Public Key Encryption Based on LWE

In this chapter we consider instantiating the electronic voting schemes with public key

encryption schemes based on the learning with errors assumption. This allow us to base

the privacy of the voting scheme on worst-case lattice problems.

We will pursue two di�erent approaches. First we will present a threshold version of

the scheme of Applebaum et al. introduced in [ACPS09]. With this approach distributed

decryption is secure against an active adversary corrupting less than a third of the players.

Active security is achieved by the error correcting properties of Shamir sharing, thereby

making preprocessing unnecessary and avoiding the overhead introduced by saving keys

and message authentication codes. On the downside during distributed decryption the

authorities have to calculate a linear combination of

(
m
t−1

)
values, therefore this approach

is only feasible for a small number of authorities.

As an alternative we show how to customize Regev’s scheme and employ the proto-

cols for multi-party computation presented in Chapter 4. The encryption scheme was

introduced by O. Regev in [Reg05], equipped with a protocol for threshold decryption in

[BD10] and presented with a enlarged message space in [BDOZ11].

As many ideas and constructions already came up in other parts of the work we will

just give a very brief overview of the second approach. By Section 2.1 of [BDOZ11] the

extension of Regev’s scheme is a semi-homomorphic encryption scheme. We thus begin

this chapter by showing how to generally obtain a pre-proof of validity for an arbitrary

semi-homomorphic cryptosystem (see De�nition 4.2).

Lemma 5.1. Let PKE = (Gen,Enc,Dec) be a semi-homomorphic cryptosystem. Let p ∈ N
and (pk, sk,M,R,Dd

σ ,G ) ← Gen(1κ ,p) as in De�nition 4.2. Let B B 2
u+1 · σ . Then the

protocol ΠSH-PPoV in Figure 5.1 is a Σ′-protocol for the (Br ,B)-pre-proof of validity.

Proof. First we show completeness. Recall that for semi-homomorphic cryptosystems the

space of randomness is a subspace of Zd . Let ((pk,v, c ), r ) ∈ RPPoV. For an honest prover

‖r ‖∞ ≤ σ holds. As every component of r ′ is chosen from an interval exponentially

larger than σ by Lemma 1.8 we have with overwhelming probability ‖r + r ′‖∞ ≤ 2
u · σ .

Furthermore for b = 0 and thus e = r ′ we get Encpk (0, e ) = Encpk (0, r
′)+0 ·Encpk (v, r ) and

for b = 1 we have Encpk (v, e ) = Encpk (0, r
′) + 1 · Encpk (v, r ) by the additive homomorphic

properties of the cryptosystem.

Now we take a look at the special honest veri�er computational zero-knowledge. Let

b ∈ {0, 1} and x = (pk,v, c ). For b = 0 we can simply choose e ← [−2u · σ , 2u · σ ]d and

set a B Encpk (0, e ). This conversation is distributed identically to the conversation of

an honest prover with the veri�er. For b = 1 we also choose e ← [−2u · σ , 2u · σ ]d and

further a B Encpk (v, e ) − c . By Lemma 1.8 the value e is statistically indistinguishable

to the value e + r for any r with in�nity norm bounded by σ and therefore the value
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5 Public Key Encryption Based on LWE

Protocol ΠSH-PPoV

x = (pk,v, c ), w = r

Prover P Veri�er V

x = (pk,v, c )

r ′ ← [−2u · σ , 2u · σ ]d a B Encpk (0, r ′)

b ← {0, 1}b

e B r ′ + b · r e

‖e ‖∞
?

≤ 2
u · σ

Encpk (b · v, e )
?

= a + b · c

Figure 5.1: Protocol for the Pre-Proof of Validity (compare [BDOZ11], Figure 1)

is statistically indistinguishable to the one generated during an honest execution of the

protocol. The value a is derived deterministically from the given values and e , as the

corresponding equation checked by the veri�er is always satis�ed for an honest prover,

thus a is indistinguishable to the value generated during a real execution as well.

It remains to prove the special soundness. Given two accepting conversations (a, 0, e )
and (a, 1, e′) with r B e′−e it holds ‖r ‖∞ ≤ ‖e

′‖∞+ ‖e ‖∞ ≤ 2 · 2u ·σ . Finally this provides

Encpk (v, r ) = Encpk (v, e
′) − Encpk (0, e ) = (a + c ) − a = c .

5.1 ACPS Encryption Scheme

In this section we present a cryptosystem adapted from [ACPS09] based on the learning

with errors assumption. Recall that in contrast to ring learning with errors a reduction

from the search to the decision variant of the learning with errors problem is known even

for certain exponential moduli (compare Section 1.2). This allows us to base the security

directly on worst-case lattice problems. On the downside the ciphertexts lie in a vector

space over a ring instead of a �eld and therefore the protocols presented in Chapter 4

cannot be used to achieve security against active adversaries during decryption. Instead

we will present a method for threshold decryption adapted from [BD10] which achieves

security against an active adversary corrupting less than a third of the players.

The following De�nition is from [ACPS09] with a slight adaption of the parameters, as

for distributed decryption we require the ciphertext space to be of size super-polynomial.

De�nition 5.2 ([ACPS09]). Let p B p (κ) ∈ P be polynomial bounded such that there

exists a δ B δ (κ) ∈ ω (1) with δ < (p − 1)/(8κ5 logp). Let q B pδ ∈ N be a multiple of p.
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5.1 ACPS Encryption Scheme

The parameter p �xes the message space of our cryptosystem Zp and the parameter q the

domain of the ciphertexts which will be a vector space over Zq .

The choice of q is the �rst change to the original cryptosystem. We need to choose q
super-polynomial to ensure that during threshold decryption no information about the

secret key is leaked. We will work with q ∈ O (2u ). This change enforces to adjust the

dimension n B n(κ) ∈ N of the secret key to equal κ2 (see [Reg09]). The parameter

α B α (κ) ∈ N of the discrete Gaussian distribution λ B ψα used for encryption has to

comply with α ≥ n/q to invoke the worst-case lattice connections (see [Pei09], [Reg09])

and on the other hand to achieve correctness of decryptions it cannot be too large. We

will come back to the upper bound on α later.

The encryption scheme ACPS consists of three polynomial time algorithms Gen, Enc

and Dec complying with the following properties.

Key generation: The algorithm Gen takes κ as input chooses a vector

s← λn

and returns it as the secret key. Let µ be the smallest natural number such that

µ ≥ 2(n + 1) logq. Then further Gen draws a matrix A← Zn×µq uniformly random.

The restriction on µ is needed to obtain pseudorandomness in the �rst component

of the ciphertexts de�ned later. For the second part of the public key Gen chooses a

vector e ∈ Zµq according to the distribution λµ , sets b B A>s + e and outputs

(A, b) ∈ Zn×µq × Z
µ
q

as the public key. Let i ∈ [µ] and let ai denote the i-th column of A and bi the i-th
entry of b. Then (ai ,bi ) is distributed according to As,λ.

Additionally we assume a protocol for generation and distribution of the secret

key implementing the ideal functionality FACPS-KeyGen (Figure 5.2), for instance the

protocol presented in Chapter 6 of [BD10] with adapted parameters can be used

here.

Encryption: Let r , r ′ ∈ R be parameters with r ∈ ω
(√

log µ
)

such that r ≤
√
µ and

r ′ = r ·
√
µ ·

(
α + 1

2q

)
. This choice of parameters will be needed for correctness (see

Lemma 5.3 and Lemma 5.5). The algorithm Enc takes a public key pk = (A, b) and a

message z ∈ Zp as input, draws r← DZµ ,r and e ← ψ r ′ and returns the ciphertext

(Ar, 〈r, b〉 + e + z · pδ−1) ∈ Znq × Zq .

Decryption: On input of the ciphertext c B (u,v ) ∈ Znq × Zq and secret key s ∈ Znq the

algorithm Dec returns the value

z ∈ Zp,

such that z · pδ−1 is closest to v − 〈u, s〉 mod q.
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5 Public Key Encryption Based on LWE

Functionality FACPS-KeyGen

• Upon receiving “start” from all honest players, run the algorithm for key gen-

eration to obtain the secret key s ∈ Znq and the public key (A, b) ∈ Zn×µq × Z
µ
q .

Further for each setT ⊆ [m] of size exactly t−1 choose a keyKT ← Zq uniformly

random.

• For each j ∈ IC receive a share (sj,k )k∈[n] ∈ Z
n
q from the adversary. Calculate for

each honest player Pi shares (si,k )k∈[n] ∈ Z
n
q such that for each k ∈ [n] the values

(si,k )i∈[m] form a (t ,m)-Shamir sharing of the k-th component of the secret key.

Send the public key pk to each player and further send to each player Pi privately

the vector of shares (si,k )k∈[n] and the key KT if and only if i < T .

Figure 5.2: Ideal Functionality for Distributed Key Generation (see [BD10], Section 4.1)

Now we can establish the upper bound on α . For correctness amongst others we need

α ≤
p − 1

4 · q · κ · r ·
√
µ
.

If p is large enough the careful choice of δ ensures that there exist instantiations of

parameters such that additionally n ≤ (p − 1)/(4 · κ · r ·
√
µ ). This ensures that at the same

time the requirement α ≥ n/q can be met.

5.1.1 Security and Proof of Validity

We will begin this section by considering security of the encryption scheme and proceed

to provide the protocol for the pre-proof of validity. All parameters we do not specify

explicitly are assumed to be as in De�nition 5.2.

The following Lemma is taken from [ACPS09]. It shows that the distribution of ci-

phertexts is statistically indistinguishable to the uniform distribution on Znq × Zq if the

DLWEq,ψ β
assumption holds.

Lemma 5.3 ([ACPS09] Lemma 4, Security). Let all parameters be chosen as in De�nition
5.2. Then there exists a real number β ≤

√
2r ′ such that the distribution of encryptions of

0 ∈ Zp is within negligible statistical distance of As,ψ β
, where the probability is taken over

the choice of the public key.

The goal of [ACPS09] was to construct a KDM-secure cryptosystem. We do not need

this property for our purposes, but want to state their main result.

Theorem 5.4 ([ACPS09], Theorem 2, KDM-Security). Let q and λ be de�ned as before.
Assuming LWEq,λ is hard, the described cryptosystem is KDM-secure with respect to the
family F of a�ne functions.
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5.1 ACPS Encryption Scheme

The following Lemma serves two purposes. First it shows that Lemma 1.12 is applicable.

Together with Lemma 5.3 and the explanations provided in Section 1.2 this allows to reduce

the security of ACPS to the worst-case lattice problem GapSVP. Secondly we will use it to

prove additive homomorphic properties of ACPS in the following section.

Lemma 5.5 (Compare [ACPS09], Lemma 6). Let all parameters be chosen as in De�nition
5.2. Then for the noise term ẽ B 〈r, e〉+e in ciphertexts there exists a function negl : N→ R>0
which is negligible and for which we have

Pr

[
|ẽ | >

p − 1

2

]
≤ negl(κ).

Proof. By Lemma 5.3 there exists a β ∈ R with β ≤
√
2r ′ such that ẽ is drawn from a

distribution statistically indistinguishable toψ β . Therefore we have for all κ > 2

β ≤
√
2r ′ ≤

√
2 · r ·

√
µ ·

(
α +

α

2n

)
≤ 2 · r ·

√
µ · α ≤

p − 1

2 · q · κ
,

where the last inequality holds by the upper bound on α established before. By applying

Lemma 1.4 with t = κ we obtain for all κ > κ0

Pr

[
|ẽ | >

p − 1

2

]
≤ Pr


|ẽ | > κ

q · (p − 1)
√
2π · 2 · q · κ


≤ Pr

[
|ẽ | > κ

q · β
√
2π

]
≤ 2e

−κ2
2 ,

which is negligible in in κ.

Next we want to give the protocol for the pre-proof of validity. More precise let

B′r B B′r (κ) ∈ N be such that p/B′r is negligible in κ and such that B′r < 1/2 · pδ−1

for all κ ∈ N. Then we give a Σ′-protocol for the relations

RACPS-PPoV B {(x ,w ) | x = (pk, c, z) ∈ Z
(n×µ )+µ
q × Zn+1q × Zp,w = (r, e ) ∈ Zµq × Zq,

|r|∞ ≤ p, |e| ≤ p and c = Encpk (z; r, e )}

and

R′
ACPS-PPoV

B {(x ,w ) | x = (pk, c, z) ∈ Z
(n×µ )+µ
q × Zn+1q × Zp,w = (r, e ) ∈ Zµq × Zq,

|r|∞ ≤ B′r , |e| ≤ B′r and c = Encpk (z; r, e )}.

Note that if the randomness for generating a ciphertext is drawn honestly we have

|r|∞ ≤ p and |e| ≤ p by Lemma 5.5. From now on we will only allow randomness which

complies with this restriction to be used for encryptions. In case it is not satis�ed, players

are directed to sample fresh randomness. As mentioned this only happens with negligible

probability.

The Σ′-protocol is based on the proof of plaintext knowledge given in [BDOZ11]. Let

I B
[
−B′r ,B

′
r

]
∩ Zq and let further pk be the public key known by both participating

parties. Further addition and multiplication are meant to be componentwise. The protocol

for the pre-proof of validity is given in 5.3. We omit the proof of the following Lemma as

it works analogously to the proof of Lemma 5.1.
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5 Public Key Encryption Based on LWE

Protocol ΠACPS-PPoV

x = (pk, c, z),w = (r, e )

Prover P Veri�er V

x = (pk, c, z)

ea ← I , ra ← I µ a B Encpk (0; ra, ea )
b ← {0, 1}b

ey B be + ea ∈ Zq
ry B br + ra ∈ Z

µ
q y B (ry , ey )

ry
?

∈ I µ , ey
?

∈ I

Encpk (bz; ry, ey )
?

= bc + a

Figure 5.3: Protocol for the Pre-Proof of Validity of ACPS (compare [BDOZ11], Figure 1)

Lemma 5.6. The protocol ΠACPS-PPoV presented in Figure 5.3 is a Σ′-protocol for the relations
RACPS-PPoV ⊆ R′

ACPS-PPoV
.

5.1.2 Distributed Decryption

In this section we �rst consider additive homomorphic properties of ACPS and then give

a protocol for distributed decryption adapted from [BD10].

Lemma 5.7 (Additive Homomorphic Properties). Let all parameters be de�ned as in Def-
inition 5.2. Let B′r B B′r (κ) ∈ N such that p/B′r is negligible and Bϵ B Bϵ (κ) ∈ N.
Let B B B (κ) ∈ N such that B · B′r + Bϵ < 1/2 · pδ−1. Note that later we will need
Bϵ ≥

(
m
t−1

)
· 2u · B · B′r . For each i ∈ [Br ] let a ciphertext ci B Encpk (zi ; ri , ei ) be given

such that the error term ẽi B 〈ri , e〉 + ei is bounded by B′r with overwhelming probability.
Then for all ϵ with |ϵ | ≤ Bϵ we have

Decsk
*
,

Br∑
i=1

ci + (0, ϵ )+
-
=

Br∑
i=1

zi

with overwhelming probability.
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5.1 ACPS Encryption Scheme

Functionality FACPS-Dec

• Upon receiving “start” from all honest players, run the algorithm for key gener-

ation to obtain the secret key s ∈ Znq and the public key (A, b) ∈ Zn×µq ×Z
µ
q , send

pk to the adversary and store s.

• Upon receiving “decrypt c” from at leastm−t +1 players send c andv B Decs(c )
to all players.

Figure 5.4: Ideal Functionality for Distributed Decryption

Proof. We have

Br∑
i=1

ci = *
,

Br∑
i=1

Ari ,
Br∑
i=1

(
〈ri , b〉 + ei + zi · pδ−1

)+
-

= *
,

Br∑
i=1

Ari ,
Br∑
i=1

(〈
ri ,A>s

〉
+ 〈ri , e〉 + ei + zi · pδ−1

)+
-

= *
,
A

Br∑
i=1

ri ,
〈 Br∑
i=1

ri ,A>s
〉
+

Br∑
i=1

ẽi + *
,

Br∑
i=1

zi+
-
· pδ−1+

-
.

By the triangle inequality and the preconditions on the parameters we have

������

Br∑
i=1

ẽi

������
≤ Br · B

′
r <

1

2

· pδ−1 − Bϵ

with overwhelming probability and thus rounding to the closest multiple of pδ−1 during

the last step of decryption yields

∑Br
i=1 zi .

To obtain a protocol for distributed decryption we use the methods presented in [BD10].

Let Br2 B 2
u · B · Br1 and let ϕ : Zq × (Znq × Zq ) → [−Br2,Br2] be a pseudo-random function.

The protocol for distributed decryption can be found in Figure 5.5. The following theorem

describes the security of the protocol for distributed decryption given in Figure 5.5 is

secure against a static active adversary corrupting up to dm/3 − 1e players. The ideal

functionality given in 5.4 captures that the adversary is not allowed to in�uence the result

of the decryption.

Theorem 5.8 (Compare [BD10], Theorem 3). Let m ∈ N be the number of decrypting
authorities and t ∈ N such that t − 1 < m/3. Let B′r B B′r (κ) ∈ N such that the error
term of all ciphertexts to be decrypted is bounded by B′r with overwhelming probability. Let
Br2 B Br2 (κ) ∈ N be such that B′r/Br2 is negligible in κ, for instance Br2 B 2

u · B′r , and
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5 Public Key Encryption Based on LWE

B′r +
(
m
t−1

)
· Br2 < 1/2 · pδ−1 and let further ϕ : Zq × (Znq × Zq ) → [−Br2,Br2] be a pseudo-

random function. Then the protocolΠACPS-Dec (Figure 5.5) implements the ideal functionality
FACPS-Dec (Figure 5.4) in the FACPS-KeyGen-hybrid model (Figure 5.2) with statistical security
against any static active adversary corrupting up to t − 1 parties.

Proof. First we show that the real-world protocol yields the correct plaintext with over-

whelming probability. We claim that the recovered Shamir shared value equals f + x ,

where f B v − 〈u, s〉 and x B
∑

T⊆[m],|T |=t−1 ϕ (KT , c ). Note that the corrupted players

corrupted sending wrong values do not have an impact on the recovered value. This

follows by Remark 1.26 as t − 1 < m/3. In the following we can thus assume the values

sent were correct.

The values ( fj )j∈[m] form a Shamir sharing of f by the linearity of Shamir sharing. Let

д B
∑

T⊆[m],|T |=t−1 ϕ (KT , c ) · дT . For all i ∈ [m] it holds д(i ) = xi as дT (j ) = 0 for all

j ∈ T . As further д has degree at most t − 1, the values (xj )j∈[m] form a Shamir sharing

of д(0) =
∑

T⊆[m],|T |=t−1 ϕ (KT , c ) = x , which proves the �rst claim. Since the image of the

function ϕ is [−Br2,Br2], the absolute value of x is bounded by

(
m
t−1

)
· Br2 . Now by Lemma

5.7 it su�ces to show B′r +
(
m
t−1

)
·Br2 < 1/2 ·pδ−1, which holds by assumption. It remains to

give a simulator SACPS-Dec working on top of the ideal functionality FACPS-Dec simulating

the protocol ΠACPS-Dec.

SimulatorSACPS-Dec:

Key Generation: Upon receiving “start” the simulator forwards the command to the

ideal functionality FACPS-KeyGen and obtains the public key (A, b) ∈ Zn×µq × Z
µ
q . The

simulator sends the public key to all players and further receives for each j ∈ IC a

share (sj,k )k∈[n] from the adversary. Now the simulator calculates for each i ∈ IC
a vector of shares (si,k )k∈[n], such that for each k ∈ [n] the values (sj,k )j∈[m] form

a (t ,m)-Shamir sharing of 0 ∈ Znq . Further for each j ∈ IC he chooses for each set

T ⊂ [m] of size exactly t − 1 a key KT ← Zq uniformly random. For each j ∈ IC such

that j < T he sends KT to player Pj .

Decryption: When receiving “decrypt c” the simulator forwards the command to the

ideal functionality FACPS-KeyGen and obtains z = Decs(c ). For each j ∈ IC the simu-

lator can calculate the value ωj with the information from the �rst step. If further

|IC | < t − 1 the simulator takes a set I ⊆ IH of size t − 1 − |IC | and calculates ωi for

all i ∈ I accordingly. Let

K B {T ⊆ [m] | |T | = t − 1,∃j ∈ IC ∪ I : j < T }

and

U B {T ⊆ [m] | |T | = t − 1,T < K }.

As A ∩ I has size t − 1 and is not in K , the set U is not empty. Now the simulator

draws for each T ∈ U a value yT ← [−Br2,Br2] uniformly random and de�nes

y B
∑

T∈K ϕ (Kt , c )+
∑

T∈U yT . Next he calculates the distinct polynomial f of degree

at most t − 1 such that f (j ) = ωj for all j ∈ IC ∪ I and f (0) = y + z · pδ−1. Finally the

simulator de�nes ωi B f (i ) for all i ∈ [m]\(IC ∪ I ) and sends all the shares to the

adversary.
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5.2 Regev’s Encryption Scheme

Protocol ΠACPS-Dec

Initialization: Let c = (u,v ) ∈ Znq × Zq with u = (ui )
n
i=1 the ciphertext to be

decrypted. For each j ∈ [m] player Pj calculates fj B v −
∑n

i=1ui · si,j . Let for

all T ⊆ [m] the function дT be the unique polynomial of degree t − 1 such that

дT (0) = 1 and дT (j ) = 0 for all j ∈ T . Then each player Pj further calculates

xj B
∑

T⊆[m],|T |=t−1,j<T дT (j ) · ϕ (KT , c ) and sets ωj B fj + xj .

Decryption: For each j ∈ [m] the player Pj broadcasts ωj and each player computes

the encrypted message by recovering the (t ,m)-Shamir shared value possibly

using error correction (compare Remark 1.26). Finally each player can recover

the plaintext by computing z ∈ Zp such that z · pδ−1 is closest to the obtained

value.

Figure 5.5: Protocol for Threshold Decryption (compare [BD10], Section 4.2)

It remains to show that an arbitrary environmentZ cannot decide except with negligible

probability whether it is interacting with the real-world protocol or the simulator on top of

the ideal functionality. The keys for the pseudo-random function are generated identically

and therefore indistinguishable to the ones in real-world protocol. The same holds for the

shares ωj for all j ∈ IC , because they are computed deterministically with the information

received from the adversary and the keys generated during the �rst step. By the security

of Shamir sharing the values ωi for all i ∈ I are indistinguishable to the shares generated

during an execution of the real-world protocol as the total shares of the secret key known

by the adversary and involved in the calculations are t − 1.

Now it su�ces to show that f + x computed according to the real-world protocol is

indistinguishable to z · pδ−1 + y computed by the simulator, as all other shares are then

derived deterministically. First note that x and y are indistinguishable, as the keys KT for

all T ∈ U are not known by the adversary and ϕ is assumed to be pseudo-random. Thus it

remains to show that f + y and z · pδ−1 + y are indistinguishable.

Let ẽ be the noise term of c as de�ned in Lemma 5.5, then we have f +y = ẽ +z ·pδ−1+y.

By assumption ẽ is with overwhelming probability bounded by B′r and further B′r/Br2 is

negligible in κ. Let yr be a component of y drawn uniformly random from [−Br2,Br2], such

a component always exists asU is not empty. Then by Lemma 1.8 the distribution of yr + ẽ
is statistically indistinguishable to the distribution of yr , which proves the claim.

5.2 Regev’s Encryption Scheme

In the previous section we showed how to obtain an electronic voting scheme with hardness

based on the worst-case lattice problem GapSVP. But at the same time we would like to

use the protocols for multi-party computation presented by Bendlin et al. in [BDOZ11].
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5 Public Key Encryption Based on LWE

One way to accomplish this is by choosing a public key encryption scheme with ciphertext

space isomorphic to the direct product of at most polynomially many �nite �elds.

This is the case for the cryptosystem �rst introduced by Regev in [Reg05]. A threshold

version of this cryptosystem with a new choice of parameters was presented in [BD10].

We present an alternative threshold version based on the results of [BDOZ11]. Using their

techniques we obtain a protocol for threshold decryption secure against active adversaries

corrupting less than half the players. Note that the protocol of [DPSZ12] could be used

instead, but as the security of the preprocessing phase of this protocol is based on learning

with errors over rings with exponential moduli, the cryptosystems based on learning with

errors over rings presented in Chapter 3 provide a more e�cient solution.

We �rst give the de�nition of an extended version of Regev’s Scheme (see [Reg05],

[BD10] and [BDOZ11]).

De�nition 5.9 (Regev’s Scheme). Let e B e (κ) ∈ N be polynomially bounded and for

i ∈ [e] let pi B pi (κ) ∈ P be polynomially bounded such that pi > m and for all i, j ∈ [e]
with i , j it holds pi , pj . Let q B q(κ) B

∏e
i=1 pi (κ) ∈ N. Let n B n(κ) B κ ∈ N

and µ B µ (κ) ∈ N such that µ ∈ O (n3). Further let α B
√
2πqβ−1 for a β ∈ (0, 1).

Recall that than ψα is the discrete Gaussian distribution on Zq with standard deviation

qβ . Finally let p B p (κ) ∈ N be polynomially bounded and such that for all k ∈ N it holds

p (k ) < 1/4
√
q(k ).

Regev’s scheme consists of a tuple of polynomial time algorithms Gen, Enc and Dec)
complying with the following properties.

Key generation: The algorithm Gen for key generation draws a vector

s← Znq

as secret key. Then it chooses a matrix A← Zµ×nq uniformly random and a vector

e ∈ Zµq by drawing each component of e according to the distributionψα . It de�nes

b B A>s + e and returns the public key

(A, b) ∈ Zµ×nq × Z
µ
q .

The protocol for distributed key generation can be found in Chapter 6 of [BD10].

Note that for each i ∈ {t , · · ·m} a secret key s(i ) has to be chosen and (i,m)-Shamir

shared between the authorities for employing the protocol presented in Section 4.1.

Encryption: The algorithm Enc takes a message z ∈ Zp and a public key pk = (A, b) as

input, draws r← {−1, 0, 1}µ uniformly random and outputs the ciphertext

(A>r, 〈r, b〉 + e + z · b
q

p
c) ∈ Znq × Zq .

Decryption: On input of a ciphertext c B (u,v ) ∈ Znq × Zq and a secret key s ∈ Znq the

algorithm Dec returns

z ∈ Zp,
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5.2 Regev’s Encryption Scheme

Protocol ΠRegev-Dec

Initialization: Let I ⊆ [m] be the index set of players wanting to decrypt a ciphertext

c = (u,v ) ∈ Znq × Zq with u = (ui )
n
i=1. Let f B v − 〈u, s|I |〉 mod q. For each j ∈ I

the player Pj calculates his share fj = v −
∑n

i=1ui · s
|I |
i,j of f . Then Pj chooses an

integer xj ←
[
−
√
q,
√
q

]
uniformly random and sets σj B fj + dj,I · xj .

Decryption: For each i ∈ I the player Pi broadcasts σj to the other players. Let

x B
∑

j∈I xj . Given the shares of all players every player can recover the ( |I |,m)-
Shamir shared value σ B f + x and obtain the plaintext by calculating z ∈ Zp
such that z · bq/pc is closest to σ .

Figure 5.6: Protocol for Threshold Decryption (compare [BD10], Section 4.2 and [DPSZ12],

Figure 8)

such that z · bq/pc is closest to v − 〈u, s〉 mod q.

In Figure 5.6 we give them-party protocol for secure description, which can be used

together with the multi-party computation protocol of [BDOZ11]. We omit the proof

here, as the simulator is similar to the one given in the proof of Theorem 3.6.

To get security and correctness we cite two theorems. The proofs can be found in

[BD10]. For additive homomorphic properties of the extended version of Regev’s scheme

we refer to [BDOZ11].

Theorem 5.10 ([BD10] Theorem 1 and Lemma 1, Correctness). The algorithm Dec returns
the correct output with overwhelming probability.

Theorem 5.11 ([BD10] Theorem 2, Security). Regev’s scheme is secure assuming GapSVP
is hard in the worst case.

As conclusion of this chapter we give an idea on how reuse the protocols customized in

Chapter 4 to rings which are isomorphic to the direct product of �nite �elds.

The ring of ciphertexts of Regev’s scheme Zq is isomorphic to

∏e
i=1 Zpi by the Chinese

remainder theorem. Let p ∈ P an arbitrary prime. The protocol for obtaining the message

authentication codes and associated keys in the Shamir sharing setting for the �eld Fp can

be found in section 4.1. We set N = 1, as then we have ϕN = X −1 and Fp[X ]/ϕ1 � Fp . The

idea now is to perform the preprocessing for each of the respective �elds Fpi and then use

the isomorphism to obtain the keys and codes for message authentication over Fq . Finally

the arithmetic circuit can be calculated over Fq securely against a static active adversary

corrupting less than half of the players. As in our setting pi is polynomially bounded, for

each component several message authentication codes have to be generated.

63





6 E�iciency

To conclude this work we take a closer look at the e�ciency of the electronic voting

scheme. We provide an overview of the original version compared to the established

instantiations in Table 6.1. Recall that we are working with two security parameters κ and

u, where the latter can be chosen much smaller in practice, as it does not depend on the

computational power of the adversary. We account for a modular multiplication of two

numbers with complexity quadratic in the size of the factors. The �rst row comprises the

e�ciency of the original voting scheme, which can be found in [CGS97].

For the instantiations presented in the scope of this work we start by considering the

work on the voters side. Each voter has to encrypt his vote and publish an encryption

accompanied by a proof of validity, where in all presented instantiations the complexity

of the latter is the complexity for performing an encryption multiplied by the number of

iterations necessary to obtain negligible soundness error.

The most e�cient approach is NTRU, where encrypting is in O ((uκ)2). As the challenge

space of the proof of validity of [BCK+14] is of sizeO (κ), the number of necessary iterations

to obtain soundness error in O (2−u ) is du/ logκe. Altogether this yields a complexity of

O (du/ logκe (uκ)2), which for choice u ≤ 3

√
κ is asymptotically better than the original

version, where encryption requires exponentiation.

For the cryptosystem ACPS by Applebaum et al. the stronger security assumption is

accompanied by a major trade-o� in e�ciency. The reduction to the worst-case lattice

problem GapSVP with super-polynomial modulus enforces the dimension of the secret

key to be quadratic in κ. The encryption is dominated by a matrix-vector-multiplication,

which has complexity O (u2κ4). As furthermore the ciphertext space of the proof of validity

consists of solely two elements, the total work on the voters side is O (u3κ4).
Following the approach of [BD10] the ciphertext space of Regev’s scheme has size

exponential in κ and public key of size O (κ4), resulting in complexity O (κ5) for encrypting

a vote and complexity O (uκ5) for generating the accompanied proof of validity.

We proceed with examining the second phase. First the authorities have to check the

proofs of validity and accept or discard the corresponding votes respectively. Let |CEnc |

be the complexity of the encryption circuit of the respective cryptosystems. Recall that

|CEnc | ∈ O ((uκ)
2) for NTRU, |CEnc | ∈ O (u

2κ4) for ACPS and |CEnc | ∈ O (κ
5) for Regev’s

Scheme. Then in all considered cases checking one vote has complexity in O ( |CEnc |),
resulting in a total complexity O (M |CEnc |) of the validation step.

The last step to consider is joint decryption. For NTRU we �rst consider the passively

secure variant and then compute the overhead introduced by the protocols for achieving

security against active adversaries. The running time of decryption is dominated by a

multiplication and thus of complexity in O ((uκ)2).
Using the multi-party protocol introduced in [BDOZ11] the message authentication

introduces an overhead of O (m2) and a factor t as the protocol has to be repeated t times
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6 E�ciency

Cryptosystem Problem Casting Votes Tallying∗

ElGamal DDH O
(
κ3

)
O

(
Mκ3 +mκ3

)
NTRU (SPDZ) RLWE O

(
du/ logκe (uκ)2

)
O

(
M (uκ)2 +m(uκ)2 +m3uκ

)∗
ACPS GapSVP O

(
u3κ4

)
O

(
Mu2κ4 +

(
m
t−1

)
u
)

Regev (BDOZ) GapSVP O
(
uκ5

)
O

(
Mκ5 +m2tuκ

)∗
Table 6.1: E�ciency measures for an (M,m, t )-electronic voting scheme implemented

with di�erent cryptosystems. In practice u can be chosen such that u � κ.

∗
Tallying is considered without preprocessing for NTRU and Regev’s Scheme.

in the worst-case. The SPDZ-protocol gets along with a single global key instead of a

seperate key for each pair of parties and therefore solely introduces an overhead linear in

the number of authorities. Additionally O (m3) elementary operations over the underlying

ring have to be performed during the input and output phase of the SPDZ-protocol, we

refer to [DPSZ12] for more details. In most applications we have M � m and thus the

dominating part of tallying is the validation of votes.

In both protocols the online phase is proceeded by a preprocessing phase. As this

phase can be executed before the election and depends on the respective underlying

cryptosystem MPKE, we do not list it in the overview provided in Table 6.1. We will come

back to the complexity of the preprocessing phase after discussing the complexity of the

joint decryption of the remaining cryptosystems.

For ACPS decryption is dominated by calculating the respective shares of the smudging

value, which consists of

(
m
t−1

)
summands of bit size in O (u). Recall that we require

t < m/3 + 1 for security against active adversaries, thus this approach is very ine�cient

for a large number of tallying authorities.

The decryption circuit of Regev’s scheme without message authentication is in O (uκ).
As demonstrated previously the introduced overhead is a factor in O (m2t ).

We conclude the examination by considering the preprocessing phase. Let |CMEnc | be

the complexity of the encryption circuit of the underlying cryptosystem MPKE. For NTRU

the cryptostystem MPKE has message space of size exponential in u and the protocol

ΠSmudge for obtaining smudging values is in O (m2tuκ2 |CMEnc |) for [BDOZ11], and in

O (muκ |CMEnc |) for [DPSZ12] respectively.

For Regev’s Scheme the preprocessing necessary for each prime divisor of the modulus

is in O (du/ logκem2tuκ |CMEnc |), where the underlying cryptosystem MPKE has message

space of size polynomial in κ, namely the size of the respective prime divisor.

Altogether we recommend NTRU with the SPDZ-protocol for actively secure decryption

as the most e�cient approach. This provides the additional advantage that the extension

from an election scheme providing two options to an election scheme providing n options

is straightforward, since the message space of NTRU consists of polynomials with n
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coe�cients. A major disadvantage is that the protocol is not guaranteed to terminate and

cheating players cannot be detected.

After an abort or time-out we suggest to proceed depending on the required level of

security. If the application allows to assume an honest majority, the decryption can be

restarted with the protocol of [BDOZ11] for threshold decryption, where cheating players

can be detected and excluded from the protocol. Alternatively the decryption can be

restarted using general zero-knowledge techniques, where authorities have to proof that

they are behaving according to the protocol. Note though that this introduces a major

computational overhead.
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