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Abstract. We present a multi-input functional encryption scheme (MIFE) for the inner product func-
tionality based on the k-Linear assumption in prime-order bilinear groups. Our construction works for
any polynomial number of encryption slots and achieves security against unbounded collusion, while
relying on standard polynomial hardness assumptions. This is the first MIFE scheme for a non-trivial
functionality based on standard cryptographic assumptions, as well as the first to achieve polynomial
security loss for a super-constant number of slots under falsifiable assumptions. Prior works required
stronger non-standard assumptions such as indistinguishability obfuscation or multi-linear maps.

1 Introduction

In a functional encryption (FE) scheme [22, 11], an authority can generate restricted decryption
keys that allow users to learn specific functions of the encrypted messages and nothing else. That is,
each FE decryption key skf is associated with a function f and decrypting a ciphertext Enc(x) with
skf results in f(x). Multi-input functional encryption (MIFE) introduced by Goldwasser et al. [18]
is a generalization of functional encryption to the setting of multi-input functions. A MIFE scheme
has several encryption slots and each decryption key skf for a multi-input function f decrypts jointly
ciphertexts Enc(x1), . . ., Enc(xn) for all slots to obtain f(x1, . . . , xn) without revealing anything
more about the encrypted messages. The MIFE functionality provides the capability to encrypt
independently messages for different slots. This facilitates scenarios where information, which will
be processed jointly during decryption, becomes available at different points of time or is provided
by different parties. MIFE has many applications related to computation and data-mining over
encrypted data coming from multiple sources, which include examples such as executing search
queries over encrypted data, processing encrypted streaming data, non-interactive differentially
private data releases, multi-client delegation of computation, order-revealing encryption [18, 10].
The security requirement for FE and MIFE is that the decryption keys are resilient to collusion
attacks, namely any group of users holding different decryption keys learns nothing about the
underlying messages beyond what each of them could individually learn.

We now have several constructions of MIFE schemes, which can be broadly classified as follows: (i)
feasibility results for general circuits [18, 6, 5, 12], and (ii) constructions for specific functionalities,
notably comparison, which corresponds to order-revealing encryption [10]. Unfortunately, all of
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these constructions rely on indistinguishability obfuscation, single-input FE for circuits, or multi-
linear maps [16, 15], which we do not know how to instantiate under standard and well-understood
cryptographic assumptions.3

1.1 Our Contributions

In this work, we present the first MIFE scheme for a non-trivial functionality based on standard
cryptographic assumptions with polynomial security loss, and for any polynomial number of slots
and secure against unbounded collusions. The functionality we consider is that of “bounded-norm”
multi-input inner product: each function is specified by a collection of n vectors y1, . . . ,yn, takes
as input n vectors x1, . . . ,xn, and outputs

fy1,...,yn(x1, . . . ,xn) =
n∑
i=1

〈xi,yi〉

We require that the x1, . . . ,xn,y1, . . . ,yn have bounded norm, and inner product is computed over
the integers. The functionality is a natural generalization of single-input inner product function-
ality introduced by Abdalla et. al [1], and studied in [1, 7, 13, 4, 2], and captures several useful
computations arising in the context of data-mining. A summary of our results and prior works on
single-input inner product is shown in Fig. 1.

Our results. We consider MIFE for the inner product in both the public-key and the private-key
setting. Recall that for standard public-key encryption and single-input FE, a public-key scheme is
itself also a private-key scheme. However, this is not the case for MIFE because the ideal function-
ality in the public-key setting inherently leaks more information to the adversary; in particular,
given an encryption of an unknown x1 and a secret key for f for a public-key scheme, the adversary
immediately obtains an oracle for f(x1, ·, . . .).

Going back to inner product, our first observation is that in the public-key setting, we have a
general construction of a MIFE scheme from a single-input FE scheme: run n independent copies
of the single-input scheme; use the i’th copy to encrypt xi in the i’th slot; and the new secret
key is the collection of the n secret keys corresponding to each of y1, . . . ,yn. Decryption recovers
〈x1,y1〉, . . . 〈xn,yn〉 and returns the sum of these values. This means that the adversary also learns
each of 〈xi,yi〉 but that is inherent leakage from the ideal functionality. Concretely, an adversary
can always pad an encryption of xi in the i’th slot with encryptions of 0’s in the remaining n− 1
slots and then decrypt with a key for y1, . . . ,yn to learn 〈xi,yi〉. Security is immediate since the
underlying FE guarantees that there is no leakage beyond 〈xi,yi〉. Combined with prior works, we
immediately obtain a MIFE for inner product in the public-key setting under the k-LIN assumption
in cyclic groups.

The technical bulk of this work lies in constructing a MIFE scheme for inner product in the private-
key setting under the standard k-LIN assumption in bilinear groups, which is quite different from
the public-key scheme which can be instantiated in pairing-free groups. Here, it is easy to see

3 In this paper, we refer only to unbounded collusions (i.e. the adversary can request for any number of secret keys).
See [21, 20, 19, 12] for results on bounded collusions.
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# inputs setting security assumption

ABDP15 [1] 1 public-key many-SEL-IND DDH
ALS15 [4], ABDP16 [2] 1 public-key many-AD-IND DDH, k-LIN
[25] 1 public-key one-SEL-SIM k-LIN
BSW11 [11] 1 any many-SEL-SIM impossible

easy multi public-key many-AD-IND k-LIN
this work multi private-key many-SEL-IND k-LIN + pairings

Fig. 1: Summary of constructions from cyclic or bilinear groups. We have 8 security notions xx-
yy-zzz where xx ∈ {one, many} refers to the number of challenge ciphertexts; yy ∈ {SEL, AD}
refers to encryption queries are selectively or adaptively chosen; zzz ∈ {IND, SIM} refers to indis-
tinguishability vs simulation-based security.

that running n independent copies of a single-input scheme as before is insecure, precisely because
it leaks 〈xi,yi〉. To solve this problem, we simply augment the basic n-copy scheme with some
randomization terms to mask the intermediate computations 〈xi,yi〉 and to “glue” the n keys to
prevent mix-and-match attacks. Our final scheme as described in Fig. 10 is extremely simple and
achieves good concrete efficiency. On the other hand, the analysis is quite involved. At a high level,
the challenges are two-fold: achieving security without any leakage beyond the ideal functionality,
and without exponential hardness assumptions. We defer a technical overview to Section 1.2 and
proceed instead to describe some potential motivating applications for this work and to position
the theoretical contributions of this work in the broader context of MIFE.

Motivating applications. Suppose we have a company which keeps profiles of its employees
including the grades for their skills that they received in their last evaluation. This information is
considered private and the only person who has access to such information about the employees is
their direct manager. When a new project is started at the company, a lead manager is assigned
to the project and she has to form a new team. In order to evaluate a possible team configuration,
she needs to evaluate the skills of the team as a whole. This can be achieved by obtaining a score
for the team that is the weighted sum of the skills of people serving in different positions in the
team. The specific weights assigned to various skills are determined by the needs of the particular
project.

A MIFE scheme can provide a solution for the above scenario as follows. The grades for the skills
of each employee can be represented as an integer vector, which will be encrypted under a MIFE
scheme that uses its encryption slots to represent different team positions. When a new project is
established, the lead manager is granted a decryption key that assigns weights to each of the skills
of different team members. She can use this key to evaluate various combinations of people for the
team while learning nothing more about everyone’s profile than the total team score.

A similar example is the construction of a complex machine that requires parts from different
manufacturers. Each part is rated based on different quality characteristics and price, which are all
manufacturer’s proprietary information until a contract has been signed. The ultimate goal is to
assemble a construction of parts that achieve a reasonable trade-off between quality and price. In
order to evaluate different construction configurations, the company wants to compute cumulative
score for each configuration that is a weighted sum over the quality rates and price of each of the
parts.
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Theoretical perspective. The focus of this work is on obtaining constructions for a specific class
of functions with good concrete efficiency. Nonetheless, we believe that our results do shed some
new insights into general feasibility results for MIFE:

– First, our results are indicative of further qualitative differences between MIFE in the public-
key and the private-key settings. Indeed, we already know that the security guarantees are
quite different due to additional inherent leakages in the public-key setting. In the case of
order-revealing encryption [10], the differences are sufficient to enable positive results in the
private-key setting, while completely ruling out any construction in the public-key setting. Our
results hint at a different distinction, where the private-key setting seems to require qualitative
stronger assumptions than in the public-key setting, namely the use of pairings.

– Next, our results provide the first evidence supporting the intuition that MIFE requires qual-
itatively stronger assumptions than FE, but not too much stronger. Concretely, for the inner
product FE, we have existing positive results under the DDH assumption in pairing-free groups.
Prior to this work, it was not clear if we could extend the positive results to MIFE for n-ary
inner product under the same assumptions, or if n-ary inner product would already require the
same complex assumptions as MIFE for circuits. Our results suggest a rather different picture,
namely that going from single-input to multi-input should require no more than an extra level
of multi-linearity, even for restricted functionalities. The situation is somewhat different for
general circuits, where we now know that going from single-input to multi-input incurs no more
than a quantitative loss in the underlying assumptions [5, 12].

– Finally, we presented the first MIFE for a non-trivial functionality that polynomial security loss
for a super-constant number of slots under falsifiable assumptions. Recall that indistinguisha-
bility obfuscation and generic multi-linear maps are not falsifiable, whereas the constructions
based on single-input FE in [5, 8, 12] incur a security loss which is exponential in the num-
ber of slots. Indeed, there is a reason why prior works relied on non-falsifiable assumptions or
super-polynomial security loss. Suppose an adversary makes Q0 key queries, and Q1, . . . , Qn
ciphertext queries for the n slots. By combining the ciphertexts and keys in different ways, the
adversary can learn Q0Q1 · · ·Qn different decryptions. When n is super-constant, the winning
condition in the security game may not be efficiently checkable in polynomial-time, hence the
need for either a non-falsifiable assumption or a super-polynomial security loss. To overcome
this difficulty, we show that for inner product, we can exploit linearity to succinctly characterize
the Q0Q1 · · ·Qn constraints by roughly Q0 · (Q1 + · · ·Qn) constraints.

1.2 Technical Overview

We now present an overview of our private-key MIFE scheme for inner product, which as noted in
the previous section, constitutes the technical bulk of this work.

Our private-key MIFE. We show how to construct such a MIFE scheme starting from a single-
input scheme that satisfies some additional structural properties.

– The first idea is to use n independent copies of the single-input scheme as in the public-key
setting, using the i’th copy to encrypt xi, and the new secret key is the collection of the n
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secret keys corresponding to each of y1, . . . ,yn. Decryption recovers 〈x1,y1〉, . . . 〈xn,yn〉 and
returns the sum of these values. This satisfies correctness, but is clearly insecure as it leaks each
individual 〈xi,yi〉.

– The next idea is to randomize each 〈xi,yi〉, by using the i’th copy of the single-input to encrypt
the “expanded vector” xi‖zi, where z1, . . . , zn are fixed random values that are part of the
private key. The new secret key is the collection of the n secret keys corresponding to each of
y1‖1, . . . ,yn‖1 together with z1 + · · · + zn. Decryption recovers 〈x1,y1〉 + z1, . . . 〈xn,yn〉 + zn
and then substracts z1 + · · ·+ zn from the sum. Observe the collection of n+ 1 values

〈x1,y1〉+ z1, . . . , 〈xn,yn〉+ zn, z1 + · · ·+ zn

reveals exactly 〈x1,y1〉 + · · · + 〈xn,yn〉 and no more, provided the random offsets z1, · · · , zn
are used only once. However, we need to reuse z1, . . . , zn across multiple secret keys in order to
achieve correctness, and this lends the scheme to a mix-and-match attack on the secret keys.
The attack already works for n = 2 and only requires two key queries: the adversary that
obtains secret keys for (y1

1,y
1
2) and (y2

1,y
2
2) can produce a secret key for (y1

1,y
2
2), which leaks

additional information beyond what is allowed by the ideal functionality. Note that this attack
exploits the fact that key generation is deterministic and uses the same z1, . . . , zn across all of
the secret keys.

– To defeat the mix-and-match attack, we modify key generation to be randomized as follows: we
pick a fresh random r, and the new secret key is the collection of the n secret keys corresponding
to each of y1‖r, . . . ,yn‖r together with (z1+· · ·+zn)r, all of which are encoded in the exponent.
Decryption recovers 〈x1,y1〉+z1r, . . . 〈xn,yn〉+znr via a pairing and then substracts (z1+ · · ·+
zn)r from the sum. Intuitively, security follows from the fact that the interaction between the
secret key and the ciphertext generates offsets (z1r, . . . , znr) that are both pseudorandom and
non-malleable via the DDH assumption. In particular, 〈x1,y1〉+ z1r (encoded in the exponent)
computationally hides 〈x1,y1〉. The construction then extends readily to the k-LIN assumption
by replacing each of r, z1, . . . , zn with k-dimensional vectors.

This completes the description of our scheme. Note that our scheme is qualitatively different from
the single-input schemes in [1, 4, 2] which admit deterministic key generation. Also, we require
pairings for decryption since the secret keys now comprise of group elements.

Overview of security proof. As mentioned earlier, we face two challenges in the security proof:
(i) avoiding leakage beyond the ideal functionality, and (ii) avoiding super-polynomial hardness
assumptions.

The first challenge already arises in the case where there is a single challenge ciphertext per en-
cryption slot. In fact, the issue already arises for n = 2 and when the adversary makes a single key
query y1‖y2. Concretely, to prove indistinguishability-based security, we want to switch encryptions
x0
1,x

0
2 to encryptions of x1

1,x
1
2. Here, the leakage from the ideal functionality imposes the restriction

that
〈x0

1,y1〉+ 〈x0
2,y2〉 = 〈x1

1,y1〉+ 〈x1
2,y2〉

and this is the only restriction we can work with. The natural proof strategy is to introduce
an intermediate hybrid that generates encryptions of x1

1,x
0
2. However, to move from encryptions
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x0
1,x

0
2 to this hybrid, we would require that 〈x0

1‖x0
2,y1‖y2〉 = 〈x1

1‖x0
2,y1‖y2〉, which implies the

extraneous restriction 〈x0
1,y1〉 = 〈x1

2,y1〉. (Indeed, the single-input inner product scheme in [7]
imposes extranous restrictions to overcome similar difficulties in the fuction-hiding setting.)

We avoid the above issue by using simulation-based security so that we can work with a “com-
putational” variant of the extraneous restriction. Roughly speaking, instead of requiring that
〈x0

1,y1〉 = 〈x1
2,y1〉, we would only require that

〈x0
1,y1〉+ z1r ≈c 〈x1

2,y1〉+ z1r

where z1, r are random as described in the construction. In particular, if we encode the quantities
in the exponent, then indistinguishability holds under the DDH assumption (or k-Lin if we replace
z1, r by random k-dimensional vectors). See Lemma 1 and Remark 4 for further details.

Next, we address the second challenge of achieving polynomial security loss. Here, we consider an
adversary that makes Q0 key queries, and Q1, . . . , Qn ciphertext queries for the n slots. As described
earlier, we want to describe the leakage from the ideal functionality by roughly Q0 · (Q1 + · · ·+Qn)
instead of Q0Q1 · · ·Qn constraints. For simplicity, we again focus on Q0 = 1. We denote the j’th
ciphertext query in the i’th slot by xj,bi , where b is the challenge bit. By decrypting x2,b

1 ,x1,b
2 , . . . ,x1,b

n

and x1,b
1 ,x1,b

2 , . . . ,x1,b
n and substracting the two, the adversary learns 〈x2,b

1 − x1,b
1 ,y1〉 and more

generally, 〈xj,bi − x1,b
i ,yi〉. Indeed, these are essentially the only constraints we need to work with,

namely: ∑
i

〈x1,0
i ,yi〉 =

∑
i

〈x1,1
i ,yi〉

〈xj,0i − x1,0
i ,yi〉 = 〈xj,1i − x1,1

i ,yi〉, j = 2, . . . , Qi

The security proof then proceed as follows:

– We first switch encryptions of x1,0
1 , . . . ,x1,0

n to those of x1,1
1 , . . . ,x1,1

n in a “single shot”, and for

the remaining ciphertexts, we switch from an encryption of xj,0i = (xj,0i −x1,0
i ) + x1,0

i to that of

(xj,0i −x1,0
i )+x1,1

i . This basically follows from the setting where there is only a single ciphertext
in each slot, for which we can establish simulation-based security.

– Then, we apply a hybrid argument across the slots to switch from encryptions of

(x2,0
i − x1,0

i ) + x1,1
i , . . . , (xQ2,0

i − x1,0
i ) + x1,1

i

to those of
(x2,1
i − x1,1

i ) + x1,1
i , . . . , (xQ2,1

i − x1,1
i ) + x1,1

i .

As described earlier, to carry out the latter hybrid argument, the queries must satisfy the constraint

〈(xj,0i − x1,0
i ) + x1,1

i ,yi〉 = 〈(xj,1i − x1,1
i ) + x1,1

i ,yi〉 ⇐⇒ 〈xj,0i − x1,0
i ,yi〉 = 〈xj,1i − x1,1

i ,yi〉

where the latter is already imposed by the ideal functionality.

To carry out the security reduction, we will require that the underlying single-input FE satisfies a
malleability property, namely given ∆, we can maul an encryption of x into that of x + ∆. Note
that this does not violate security because given 〈x,y〉,y, ∆, we can efficiently compute 〈x +∆,y〉.
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1.3 Discussion

Beyond inner product? Our constructions and techniques may seem a-priori largely tailored to
the inner product functionality and properties of bilinear groups. We clarify here that our high-level
approach (which builds upon [24, 9, 25]) may be applicable beyond inner product, namely:

i. start with simulation-based security for a single ciphertext per slot and a single secret key
(in our case, this corresponds to introducing the additional z1, . . . , zn to hide the intermediate
computation 〈xi,yi〉);

ii. achieve simulation-based security for a single ciphertext per slot and multiple secret keys, by
injecting additional randomness to the secret keys to prevent mix-and-match attacks (for this,
we replaced z1, . . . , zn with z1r, . . . , znr, r in the exponent);

iii. “bootstrap” to multiple ciphertexts per slot, where we also showed how to avoid incurring an
exponential security loss.

In particular, using simulation-based security for i. and ii. helped us avoid additional leakage beyond
what is allowed by the ideal functionality.

Additional related work. Goldwasser et al. [18] showed that both two-input public-key MIFE
as well as n-input private-key MIFE for circuits already implies indistinguishability obfuscation for
circuits.

There have also been several works that proposed constructions for private-key multi-input func-
tional encryption. The work of Boneh et al. [10] constructs a single-key MIFE in the private key
setting, which is based on multilinear maps and is proven secure in the idealized generic multilin-
ear map model. Two other papers explore the question how to construct multi-input functional
encryption starting from the single input variant. In their work [5] Ananth and Jain demonstrate
how to obtain selectively secure MIFE in the private key setting starting from any general-purpose
public key functional encryption. In an independent work, Brakerski et al. [12] reduce the construc-
tion of private key MIFE to general-purpose private key (single input) functional encryption. The
resulting scheme achieves selective security when the starting private key FE is selectively secure.
Additionally in the case when the MIFE takes any constant number of inputs, adaptive security
for the private key FE suffices to obtain adaptive security for the MIFE construction as well. The
constructions in that work provide also function hiding properties for the MIFE encryption scheme.

While this line of work reduces MIFE to single-input FE for general-purpose constructions, the
only known instantiations of construction for public and private key functional encryption with
unbounded number of keys require either indistinguishability obfuscation [16] or multilinear maps
with non-standard assumptions [17]. We stress that the transformations from single-input to MIFE
in [5, 12] are not applicable in the case of inner product since these transformations require that
the single-input FE for complex functionalities related to computing a PRF, which is not captured
by the simple inner functionality.

Open problems. One natural open problem is to eliminate the use of pairings in MIFE for inner
product; we think such a result would be quite surprising though. We outline two additional open
problems:
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– The first is to achieve function privacy, as considered in the setting of single-input inner product
functional encryption in [7, 13]. Note that these latter results require pairings. Our first guess is
that it would be possible to achieve private-key, function-hiding MIFE for inner product under
the k-Linear assumption in bilinear groups.

– The other is to achieve adaptive security. Here, our proof strategy breaks down as the simulator
would need to simulate a ciphertext in G1 given the output of the computation in G2, which
appears to be problematic. This is not an issue in the selective setting, since the simulator could
first “obliviously” simulate the ciphertext and then “program” the output of the computation
into the secret key. The goal is to achieve adaptive security while still relying only on the k-
Linear assumption in bilinear groups and without introducing additional restrictions on the
adversary’s queries.

2 Preliminaries

Notation. We denote by s ←R S the fact that s is picked uniformly at random from a finite set
S. By PPT, we denote a probabilistic polynomial-time algorithm. Throughout, we use 1λ as the
security parameter. We use lower case boldface to denote (column) vectors and upper case boldcase
to denote matrices.

Cryptographic assumptions We follow the notation and algebraic framework for Diffie-Hellman-
like assumptions in [14]. We fix a pairing group (G1,G2,GT ) with e : G1×G2 → GT of prime order
q, where q is a prime of Θ(λ) bits. We use the implicit representation notation for group elements:
for fixed generators g1 and g2 of G1 and G2, respectively, and for a matrix M over Zq, we define
[M]1 := gM1 and [M]2 := gM2 , where exponentiation is carried out component-wise.

The k-Linear Assumption in G1 (more generally, the Matrix DDH Assumption) specifies an effi-

ciently samplable distribution Dk over full-rank matrices in Z(k+1)×k
q , and asserts that

([A]1, [As]1) ≈c ([A]1, [u]1)

where A ← Dk, s ←R Zkq ,u ←R Zk+1
q . We use AdvmddhG1,A (λ) to denote the distinguishing advantage

of an adversary A for the above distributions, and we define AdvmddhG2,A (λ) analogously for G2.

3 Definitions for Multi-Input Functional Encryption

We recall the definitions for multi-input functional encryption from [18]. We focus here on the
private-key setting, which allows us to simplify the definitions.

Definition 1 (Multi-input Function Encryption). Let {Fn}n∈N be an ensemble where each
Fn is a family of n-ary functions. A function f ∈ Fn is defined as follows f : X1 × . . .× Xn → Y.
A multi-input functional encryption scheme MIFE for F consists of the following algorithms:
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– Setup(1λ,Fn): on input the security parameter λ and a description of Fn ∈ F , outputs a master
public key mpk4 and a master secret key msk. All of the remaining algorithms get mpk as part
of its input.

– Encrypt(msk, i, xi): on input the master secret key msk, i ∈ [n], and a message xi ∈ Xi, outputs
a ciphertext ct. We assume that each ciphertext has an associated index i, which denotes what
slot this ciphertext can be used for. If n = 1, we omit the input i.

– KeyGen(msk, f): on input the master secret key msk and a function f ∈ Fn, outputs a decryption
key skf .

– Decrypt(skf , f, ct1, . . . , ctn): on input a decryption key skf for function f and n ciphertexts,
outputs a string y ∈ Y.

The scheme MIFE is correct if for all f ∈ F and all xi ∈ Xi for 1 ≤ i ≤ n, we have

Pr

 (mpk,msk)← Setup(1λ, n);

skf ← KeyGen(msk, f);

Decrypt(skf ,Encrypt(msk, 1, x1), . . . ,Encrypt(msk, n, xn)) = f(x1, . . . , xn)

 = 1,

where the probability is taken over the coins of Setup, KeyGen and Encrypt.

3.1 Security notions

Following [3], we may consider 8 security notions xx-yy-zzz where xx ∈ {one, many} refers to the
number of challenge ciphertexts; yy ∈ {SEL, AD} refers to encryption queries are selectively or
adaptively chosen; zzz ∈ {IND, SIM} refers to indistinguishability vs simulation-based security. We
have the following trivial relations: many⇒ one, AD⇒ SEL, and the following standard relations:
SIM ⇒ IND, and one-yy-IND ⇒ many-yy-IND, the latter in the public-key setting. Here, we focus
on {one,many}-SEL-IND and one-SEL-SIM, which are the notions most relevant to our positive
results.

Definition 2 (many-SEL-IND-secure MIFE). For every stateful adversary A, the advantage
of A defined as

AdvMIFE,INDA,β (λ) = |Pr[INDMIFEA,1 (1λ) = 1]− Pr[INDMIFEA,0 (1λ) = 1]|

where the experiment INDMIFEA (1λ) is defined as follows:

Experiment many-SEL-INDMIFEA,β (1λ):

(xj,bi )i∈[n],j∈[Qi],b∈{0,1} ← A(1λ,Fn)

(mpk,msk)← Setup(1λ,Fn)

ctji ← Encrypt(msk, i, xj,βi ) ∀i ∈ [n], j ∈ [Qi]

β′ ← AKeyGen(msk,·)
(

(ctji )i∈[n],j∈[Qi]

)
Output: β′

4 We note that in the private key setting of MIFE, we can make mpk part of msk, but we allow for a separate master
public key for better clarity in our proofs. In constructions where we do not need mpk we omit it.
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A private key multi-input functional encryptionMIFE for F is many-SEL-IND-secure if for every
stateful PPT adversary A, which submits admissible challenge ciphertext and decryption key queries
that satisfy the following relation:

f(xj1,01 , . . . , xjn,0n ) = f(xj1,11 , . . . , xjn,1n ) ∀i ∈ [n], ji ∈ [Qi],

∀f queries to KeyGen(msk, ·),

there exists a negligible function ε(λ) such that AdvMIFE,INDA (λ) < ε(λ).

Remark 1 (winning condition). Note that the winning condition is in general not efficiently check-
able because of the combinatorial explosion in the restriction on the queries.

Next we present the simulation security definition for MIFE in the setting with a single challenge
ciphertext per slot.

Definition 3 (one-SEL-SIM-secure MIFE). A multi-input functional encryption MIFE for

n-ary functions F is SIM secure if there exists a PPT simulator5 (S̃etup, Ẽncrypt, K̃eyGen) such that
for every PPT adversary A, the following two distributions are computationally indistinguishable:

Experiment REALMIFEA (1λ): Experiment IDEALMIFEA (1λ):

(xi)i∈[n] ← A(1λ,Fn) (xi)i∈[n] ← A(1λ,Fn)

(mpk,msk)← Setup(1λ,Fn) (m̃pk, m̃sk)← S̃etup(1λ,Fn)

cti ← Encrypt(msk, i, xi) ∀i ∈ [n] cti ← Ẽncrypt(m̃sk, i) ∀i ∈ [n]

α← AKeyGen(msk,·)(mpk, ct) α← AK̃eyGen(m̃sk,·,·)(m̃pk, ct)
Output: α Output: α

The K̃eyGen functionality in the above ideal experiment has access to an oracle that provides the

value f(x1, . . . , xn) for each query f submitted to K̃eyGen.

Zero vs multiple queries in private-key setting. It is convenient in our proof of security to
assume that Q1, . . . , Qn ≥ 1, that is, there is at least one ciphertext for each encryption slot, which
is where the technical bulk of the work lies as we would need to reason about leakage from the ideal
functionality. In the setting where some Qi = 0, the ideal functionality leaks nothing, and here,
we can easily achieve semantic security for all of the messages being encrypted in the private key
MIFE setting, via the following simple generic transformation.

Construction 1 Let (Setup,Enc,KeyGen,Dec) be a private key MIFE construction for n-input
functions in the class Fn, which satisfies any xx-yy-zzz MIFE security definition when the adversary
receives at least one ciphertext for each encryption slot. Let (GenSE,EncSE,DecSE) be symmetric key
encryption. The private key MIFE scheme (Setup′,Enc′,KeyGen′,Dec′) described in Fig. 2 satisfies
xx-yy-zzz security without any restrictions on the ciphertext challenge sets:

10



Setup′(1λ,Fn):

msk← Setup(1λ,Fn)
K← Gen(1λ)

k1, . . . , kn−1 ←R {0, 1}λ, kn =
(⊕

i∈[n−1] ki

)
⊕ K

return msk′ ←
(
msk,K, {ki}i∈[n]

)
Enc′(msk, i,xi):

parse msk′ =
(
msk,K, {ki}i∈[n]

)
ct← Encrypt(msk, i,xi)
ct′ ← EncSE(K, ct)
return (ki, ct

′)

KeyGen′(msk, f):

return KeyGen(msk, f)

Decrypt′(skf , ct
′
1, . . . , ct

′
n):

parse
{
ct′i = (ki, cti)

}
i∈[n]

K←
⊕

i∈[n] ki{
cti ← DecSE(K, ct′i)

}
i∈[n]

return Decrypt(skf , ct1, . . . , ctn).

Fig. 2: Compiler from private-key MIFE with xx-yy-zzz security when |Qi| > 0 for all i to private-
key MIFE with xx-yy-zzz security

Proof (sketch). We consider two cases:

– Case 1: there exists some i ∈ [n] for which Qi = 0. Here, ki and thus K is perfectly hidden from
the adversary. Then, security follows readily from semantic security of (GenSE,EncSE,DecSE).

– Case 2: for all i,Qi ≥ 1. Here, security follows immediately from that of (Setup,Enc,KeyGen,Dec).

ut

3.2 Inner product functionality

Multi-input Inner product. We construct a multi-input functional encryption that supports the
class of multi-input bounded-norm inner product functions, which is defined as Fm,Bn = {fy1,...,yn :
(Zm)n → Z} where

fy1,...,yn(x1, . . . ,xn) =

n∑
i=1

〈xi,yi〉.

We require that the norm of the inner product of any two vector components from function and
input 〈x,y〉 is bounded by B. This bound will determine the parameters of the bilinear map groups

5 That is, S̃etup, Ẽncrypt, K̃eyGen correspond respectively to the simulated Setup,Encrypt,KeyGen.
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that we will be using in our constructions; in particular, we will choose a target group that has
order q � n ·B. To simplify naming conventions, we will omit “bounded-norm” for the rest of the
paper, but we will always refer to a multi-input inner-product functionality with this property.

Remark on leakage. For all i, j, k, the adversary can learn

〈xik − x1
k,y

j
k〉

via the ideal functionality. In the IND security game, this means the adversary is restricted to
queries satisfying

〈xi,0k − x1,0
k ,yjk〉 = 〈xi,1k − x1,1

k ,yjk〉 ⇐⇒ 〈xi,0k − x1,1
k ,yjk〉 = 〈xi,0k − x1,1

k ,yjk〉

In the hybrid, we want to avoid additional constraints such as

〈xi,0k − x1,0
k ,yjk〉 = 〈xi,0k − x1,1

k ,yjk〉 = 〈xi,1k − x1,0
k ,yjk〉 = 〈xi,1k − x1,1

k ,yjk〉

4 Private-Key MIFE for Inner Product

In this section, we present our main result, namely a private-key MIFE for inner product that
achieves many-SEL-IND security. We use a pairing group (G1,G2,GT ) with e : G1 × G2 → GT of
prime order q, where q is a prime of Θ(λ) bits. Our construction relies on the k-Linear Assumption
in G1 and in G2 and is shown in Fig. 10.

We present our construction in two steps:

– First, we show how to construct such a MIFE scheme starting from a single-input one-SEL-SIM
scheme that satisfies some additional structural properties.

– Next, we show how to instantiate the underlying single-input scheme (cf. Fig. 11) and we present
a self-contained description of the scheme in Fig. 10.

We refer the reader to Section 1.1 for an overview of the construction.

4.1 Multi-Input scheme from single-input scheme

Main construction. We build a private key multi-input FE (Setup′,Enc′,KeyGen′,Dec′) for the
class Fm,Bn , starting from a private key single-input FE (Setup,Enc,KeyGen,Dec) for the class

Fm+k,B
1 . We present our construction in Fig. 3

Correctness. Correctness follows readily from the correctness of the underlying scheme and the
equation:

〈x1‖ · · · ‖xn,y1‖ · · · ‖yn〉 = (

n∑
i=1

〈xi‖zi,yi‖r〉)− 〈z1 + · · ·+ zn, r〉

12



Setup′(1λ,Fm,Bn ):

(mpki,mski)← Setup(1λ,Fm+k,B
1 ), i = 1, . . . , n

zi ←R Zkq , i = 1, . . . , n

(mpk,msk) :=
({

mpki
}
i∈[n],

{
mski, zi

}
i∈[n]

)
return (mpk,msk)

Enc′(msk, i,xi):

return Enc(mski,xi‖zi)

KeyGen′(msk,y1‖ · · · ‖yn):

r←R Zkq
di ← KeyGen(mski,yi‖r), i = 1, . . . , n
z := 〈z1 + · · ·+ zn, r〉
sky1‖···‖yn

:=
({

[di]2
}
i∈[n], [r]2, [z]T

)
return sky1‖···‖yn

Dec′((
{

[di]2
}
i∈[n], [r]2, [z]T ),y1‖ · · · ‖yn, ct1, . . . , ctn):

[ai]T ← Dec([di]2, [yi‖ri]2, cti), i = 1, . . . , n
return the discrete log of (

∏n
i=1[ai]T ) /[z]T

Fig. 3: Multi-input functional encryption scheme (Setup′,Enc′,KeyGen′,Dec′) for the class Fm,Bn .
(Setup,Enc,KeyGen,Dec) refers to the single-input functional encryption scheme for the class

Fm+k,B
1 .

Additional requirements. The construction and the analysis requires that (Setup,Enc,KeyGen,Dec)
satisfy the following structural properties:

– The scheme can be instantiated over G1, where the ciphertext is a vector [c]1 over G1 and the
secret key is a vector di over Zq.

– Enc is linearly homomorphic and public-key; More specifically, we only require that, given
mpk,Enc(msk,x),x′, we can generate a fresh random encryption of x + x′, i.e. Enc(msk,x + x′).
This property is used in the proof of Lemma 2.

– For correctness, Dec should be linear in both of its inputs, so that Dec([d]2, [y]2, [c]1) =
[Dec(d,y, [c]1)]T ∈ GT can be computed using a pairing;

– For an efficient MIFE decryption, Dec must work without any restriction on the norm of the
output as long as the output is in the exponent;

– Let (Ẽnc, K̃eyGen) be the stateful simulator for the one-SEL-SIM single-input inner-product

FE scheme. We require that K̃eyGen takes input (y, a) and is linear in both of its inputs, so

that we can compute K̃eyGen([y]2, [a]2) = [K̃eyGen(y, a)]2. This property is used in the proof of
Lemma 1.

13



In addition, we require that (Setup,Enc,KeyGen,Dec) satisfies both one-SEL-SIM and many-SEL-
IND security. In the instantiation in Section 4.2, we rely on a public-key scheme that satisfies
one-SEL-SIM security, which implies one-SEL-IND and thus many-SEL-IND security.

Remark 2 (notation). We use subscripts and superscripts for indexing over multiple copies, and
never for indexing over positions or exponentiation. Concretely, the j’th ciphertext query in slot i
is xji and the j’th key query is yj1‖ · · · ‖y

j
n.

Lemma 1. Suppose (Setup,Enc,KeyGen,Dec) is one-SEL-SIM-secure and that k-LIN holds in G2.
Then, (Setup′,Enc′,KeyGen′,Dec′) is one-SEL-SIM-secure.

S̃etup
′
(1λ,Fm,Bn ):(

m̃pki, m̃ski
)
← S̃etup(1λ,Fm+k,B

1 ), i = 1, . . . , n

(m̃pk, m̃sk) :=
({

m̃pki
}
i∈[n],

{
m̃ski

}
i∈[n]

)
return (m̃pk, m̃sk)

Ẽnc
′
(m̃sk, i):

return Ẽnc(m̃ski)

K̃eyGen
′
(msk,y1‖ · · · ‖yn, a):

r←R Zkq
z̃1, . . . , z̃n ←R Zq
[di]2 ← K̃eyGen

(
m̃ski, [yi‖r]2, [z̃i]2

)
, i = 1, . . . , n

sky1‖···‖yn
:=
({

[di]2
}
i∈[n], [r]2, [z̃1 + · · ·+ z̃n − a]T

)
return sky1‖···‖yn

Fig. 4: Simulator for one-SEL-SIM scheme for the multi-input inner product Fm,Bn .

Proof. We consider the following sequence of games, starting with the real experiment, and ending
with the simulator, which is described in Fig. 4.

Game 0. Real.

Game 1. For each slot i ∈ [n], compute the master and public keys (mpki,mski) and the challenge

ciphertext cti using S̃etup and Ẽnc, respectively. Moreover, compute the key for (y1‖ · · · ‖yn) by

running [di]2 ← K̃eyGen([yi‖r]2, [〈xi,yi〉+ 〈zi, r〉]2) for a fresh r and outputting{
[di]2

}
i∈[n], [r]2, [〈r, z1 + · · ·+ zn〉]T

We have Game 0 ≈c Game 1 due to the one-SEL-SIM security of (Setup,Enc,KeyGen,Dec).
This follows from the description of Game0,` in Fig. 5, by noticing that Game 0 ≡ Game0,0,
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Setup′(1λ,Fm,Bn ):

(mpki,mski)← S̃etup
(

1λ,Fm+k,B
1

)
, i = 1, . . . , `

(mpki,mski)← Setup
(

1λ,Fm+k,B
1

)
, i = `+ 1, . . . , n

zi ←R Zkq , i = 1, . . . , n

(mpk,msk) :=
({

mpki
}
i∈[n],

{
mski, zi

}
i∈[n]

)
return (mpk,msk)

Enc′(msk, i,xi):

if i ≤ `, then return Ẽnc(mski)
if i > ` then return Enc (mski,xi‖zi)

KeyGen′(msk,y1‖ · · · ‖yn):

r←R Zkq
[di]2 ← K̃eyGen (mski, [yi‖r]2, [〈xi,yi〉+ 〈zi, r〉]2) , i = 1, . . . , `
di ← KeyGen (mski,yi‖r) , i = `+ 1, . . . , n
z := 〈z1 + · · ·+ zn, r〉
sky1‖···‖yn

:=
({

[di]2
}
i∈[n], [r]2, [z]T

)
return sky1‖···‖yn

Fig. 5: Description of (Setup′,Enc′,KeyGen′) defining Game0,` in Lemma 1 proof.

Game 1 ≡ Game0,n, and Game0,`−1 ≈c Game0,` due to the one-SEL-SIM security of
(Setup,Enc,KeyGen,Dec).

For the latter part to work, we require K̃eyGen to be linear in both of its inputs (y, a), so that

we can compute [K̃eyGen(y, a)]2 via K̃eyGen([y]2, [a]2).

Game 2. For each slot i ∈ [n], continue to compute the master and public keys (mpki,mski)

and the challenge ciphertext cti using S̃etup and Ẽnc, respectively. However, compute the key

for (y1‖ · · · ‖yn) by running [di]2 ← K̃eyGen([yi‖r]2, [〈xi,yi〉 + z̃i]2) for fresh values of r and
z̃1, . . . , z̃n and outputting {

[di]2
}
i∈[n], [r]2, [z̃1 + · · ·+ z̃n]T

We have Game 1 ≈c Game 2 by assuming that k-LIN holds in G2. This follows from the
description of Game1,` in Fig. 6, by first noticing that Game 1 ≡ Game1,0 and Game 2 ≡
Game1,n, and that Game1,`−1 ≈c Game1,` via k-LIN in G2, which tells us that{

([rj ]2, [〈z`, rj〉]2)
}
j∈[Q0]

≈c
{

([[rj ]2, [z̃
j
` ]2)

}
j∈[Q0]

,

where Q0 is the total number of key queries and rj and z̃ji denote the random values used to
answer the j-th key query.
In a bit more detail, k-LIN in G2 implies that (e.g. [14, Lemma 1])(

[B]2, [Bs]2
)
≈c
(
[B]2, [u]2

)
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Setup′(1λ,Fm,Bn ):

(mpki,mski)← S̃etup
(

1λ,Fm+k,B
1

)
, i = 1, . . . , n

zi ←R Zkq , i = `+ 1, . . . , n
msk :=

{
mski, zi

}
i∈{1,...,`},

{
mski

}
i∈{`+1,...,n}

mpk :=
{
mpki

}
i∈[n]

return (mpk,msk)

Enc′(msk, i,xi):

return Ẽnc(mski)

KeyGen′(msk,y1‖ · · · ‖yn):

r←R Zkq
z̃1, . . . , z̃` ←R Zq
[di]2 ← K̃eyGen([yi‖r]2, [〈xi,yi〉+ z̃i]2), i = 1, . . . , `

[di]2 ← K̃eyGen(mski, [yi‖r]2, [〈xi,yi〉+ 〈zi, r〉]2), i = `+ 1, . . . , n
z := z̃1 + . . .+ z̃` + 〈z`+1 + · · ·+ zn, r〉
sky1‖···‖yn

:=
({

[di]2
}
i∈[n], [r]2, [z]T

)
return sky1‖···‖yn

Fig. 6: Description of (Setup′,Enc′,KeyGen′) defining Game1,` in Lemma 1 proof.

where s ←R Zk,B ←R ZQ0×k
q ,u ←R ZQ0

q . The statement above corresponds to taking s = z`,
rj to be the transponse of the j’th row of B, and z̃j` to be the j’th entry in u.

Game 3. For each slot i ∈ [n], continue to compute the master and public keys (mpki,mski) and

the challenge ciphertext cti using S̃etup and Ẽnc, respectively. However, compute the key for

(y1‖ · · · ‖yn) by running [di]2 ← K̃eyGen(m̃ski, [yi‖r]2, [z̃i]2) for fresh values of r and z̃1, . . . , z̃n
and outputting {

[di]2
}
i∈[n], [r]2, [z̃1 + · · ·+ z̃n −

∑
i

〈xi,yi〉]2

We have Game 2 ≡ Game 3 via the change of variables 〈xi,yji 〉 + z̃ji 7→ z̃ji . Moreover, it is
straightforward to notice that Game 3 ≡ Ideal using the simulator in Fig. 4 since a =

∑
i〈xi,yi〉.

This completes the proof. ut

Remark 3 (decryption capabilities). As a sanity check, we note that the simulated secret key will
correctly decrypt a simulated ciphertext. However, unlike schemes proven secure via the standard
dual system encryption methodology [23], a simulated secret key will incorrectly decrypt a normal
ciphertext. This is not a problem because we are in the private-key setting, so a distinguisher will
not be able to generate normal ciphertexts by itself.

Remark 4 (why a naive argument is inadequate). We cannot afford to do a naive hybrid argument
across the n slots for the challenge ciphertext as it would introduce extraneous restrictions on
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Setup′(1λ,Fm,Bn ):

(mpki,mski)← S̃etup
(

1λ,Fm+k,B
1

)
, i = 1, . . . , n

(mpk,msk) :=
({

mpki
}
i∈[n],

{
mski, zi

}
i∈[n]

)
return (mpk,msk)

Enc′(msk, i,xi):

return Ẽnc(mski)

KeyGen′(msk,y1‖ · · · ‖yn):

r←R Zkq
z̃1, . . . , z̃n ←R Zq
[di]2 ← K̃eyGen([yi‖r]2, [〈xi,yi〉+ z̃i]2), i = 1, . . . , n
z := z̃1 + . . .+ z̃n
sky1‖···‖yn

:=
({

[di]2
}
i∈[n], [r]2, [z]T

)
return sky1‖···‖yn

Fig. 7: Description of (Setup′,Enc′,KeyGen′) defining Game2 in Lemma 1 proof.

the adversary’s queries. Concretely, suppose we want to use a hybrid argument to switch from
encryptions of x0

1,x
0
2 in Game 0 to those of x1

1,x
1
2 in Game 2 with an intermediate hybrid that using

encryptions of x1
1,x

0
2 in Game 1. To move from Game 0 to Game 1, the adversary’s query y1‖y2

must satisfy 〈x0
1‖x0

2,y1‖y2〉 = 〈x1
1‖x0

2,y1‖y2〉, which implies the extraneous restriction 〈x0
1,y1〉 =

〈x1
2,y1〉.

As described in the proof above, we overcome the limitation by using simulation-based security.
Note that what essentially happens in the first slot in our proof is as follows (for k = 1): we switch
from Enc(x0

1‖z1) to Enc(x1
1‖z1) while giving out a secret key which contains [sky1‖r1 ]2, [r

1]2. Observe
that

〈x0
1‖z1,y1‖r1〉 = 〈x0

1,y1〉+ z1r
1, 〈x1

1‖z1,y1‖r1〉 = 〈x1
1,y1〉+ z1r

1

may not be equal, since we want to avoid the extraneous restriction 〈x0
1,y1〉 = 〈x1

2,y1〉. This means
that one-SEL-IND security does not provide any guarantee that the ciphertexts are indistinguish-
able. However, one-SEL-SIM security does provide such a guarantee, because

([〈x0
1,y1〉+ z1r

1]2, [r
1]2) ≈c ([〈x1

1,y1〉+ z1r
1]2, [r

1]2)

via the DDH assumption in G2. Since the outcomes of the decryption are computationally indistin-
guishable, the output of the simulated ciphertext would also be computationally indistinguishable.

Lemma 2. Suppose (Setup,Enc,KeyGen,Dec) is many-SEL-IND-secure and (Setup′,Enc′,KeyGen′,Dec′)
is one-SEL-IND-secure. Then, (Setup′,Enc′,KeyGen′,Dec′) is many-SEL-IND-secure.

Recall that one-SEL-SIM security implies one-SEL-IND security. Note that we do not change the
distribution of the secret keys throughout this proof.
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Setup′(1λ,Fm,Bn ):

(mpki,mski)← S̃etup(1λ,Fm+k,B
1 ), i = 1, . . . , n

(mpk,msk) :=
({

mpki
}
i∈[n],

{
mski, zi

}
i∈[n]

)
return (mpk,msk)

Enc′(msk, i,xi):

return Ẽnc(mski)

KeyGen′(msk,y1‖ · · · ‖yn):

r←R Zkq
z̃1, . . . , z̃n ←R Zq
[di]2 ← K̃eyGen([yi‖r]2, [z̃i]2), i = 1, . . . , n
z := z̃1 + . . .+ z̃n −

∑
i〈xi,yi〉

sky1‖···‖yn
:= (

{
[di]2

}
i∈[n], [r]2, [z]T )

return sky1‖···‖yn

Fig. 8: Description of (Setup′,Enc′,KeyGen′) used to define Game3 in the proof of Lemma 1.

Game 0. This game is described in Fig. 9 and corresponds to the Experiment many-SEL-INDMIFEA,β (1λ)
with β = 0.

Game 1. This game, which is described in Fig. 9, replaces Enc′(msk, i,xj,0i ) = Enc′(msk, i, x1,0
i +

(xj,0i − x1,0
i )) with Enc(msk, i, x1,1

i + (xj,0i − x1,0
i )) for all i ∈ [n], j ∈ [Qi].

We have Game 0 ≈c Game 1 via the following properties:

– one-SEL-IND security of (Setup′,Enc′,KeyGen′,Dec′);

– given xj,0i − x1,0
i , we can maul an encryption of x1,β

i under Enc′ (corresponding to challenge

ciphertext in slot i in the one-SEL-IND security game) into that of x1,β
i + (xj,0i − x1,0

i )
(corresponding to challenge ciphertexts in slots i in Game β).

More precisely, we can build an adversary D against the one-SEL-IND security of
(Setup′,Enc′,KeyGen′,Dec′) such that |Pr[Game0(A) = 1] − Pr[Game1(A) = 1]| ≤
AdvMIFE,one−SEL−INDA (λ).

Adversary D works as follows. Let (xj,bi )i∈[n],j∈[Qi],b∈{0,1} be the challenge vector that A
outputs. D first outputs the pair of vectors x1,0

1 ‖ . . . ‖x
1,0
n and x1,1

1 ‖ . . . ‖x
1,1
n as its selec-

tive challenge to get back mpk and the challenge ciphertexts ct01‖ . . . ‖ct0n corresponding to

Enc′(msk, 1,x1,β
1 ), . . . ,Enc′(msk, n,x1,β

n ).
Next, D uses the fact that the single-input inner-product scheme is public-key and linearly
homomorphic to generate all the remaining ciphertexts ctji for i ∈ [n], j ∈ {2, . . . , Qi} by

combining ct0i = Enc′(msk, i,x1,β
i ) = Enc(mski,x

1,β
i ‖zi) with Enc(mski,x

j,0
i −x1,0

i ‖0) (which can

be done using mpki). In particular, each ctji will correspond to the Enc′(msk, i,x1,β
i +xj,0i −x1,0

i ),
which matches the challenge ciphertexts in Game β. D then provides these values to A and uses
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Experiment Game 0:

(xj,bi )i∈[n],j∈[Qi],b∈{0,1} ← A(1λ,Fn)

(mpk,msk)← Setup′
(

1λ,Fm,Bn

)
∀i ∈ [n], j ∈ [Qi]

ctji ← Enc′
(
msk, i,xj,0i − x1,0

i + x1,0
i

)
β′ ← AKeyGen′(msk,·)

(
mpk, (ctji )i∈[n],j∈[Qi]

)
return β′

Experiment Game 1:

(xj,bi )i∈[n],j∈[Qi],b∈{0,1} ← A(1λ,Fn)

(mpk,msk)← Setup′
(

1λ,Fm,Bn

)
∀i ∈ [n], j ∈ [Qi]

ctji ← Enc′
(
msk, i,xj,0i − x1,0

i + x1,1
i

)
β′ ← AKeyGen′(msk,·)

(
mpk, (ctji )i∈[n],j∈[Qi]

)
return β′

Experiment Game 2:

(xj,bi )i∈[n],j∈[Qi],b∈{0,1} ← A(1λ,Fn)

(mpk,msk)← Setup′
(

1λ,Fm,Bn

)
∀i ∈ [n], j ∈ [Qi]

ctji ← Enc′
(
msk, i, xj,1i − x1,1

i + x1,1
i

)
β′ ← AKeyGen′(msk,·)

(
mpk, (ctji )i∈[n],j∈[Qi]

)
return β′

Experiment Game1,`:

(xj,bi )i∈[n],j∈[Qi],b∈{0,1} ← A
(
1λ,Fn

)
(mpk,msk)← Setup′

(
1λ,Fm,Bn

)
∀i ∈ {1, . . . , `}, j ∈ [Qi]

ctji ← Enc′
(
msk, i, xj,0i − x1,0

i + x1,1
i

)
∀i ∈ {`+ 1, . . . , n}, j ∈ [Qi]

ctji ← Enc′
(
msk, i, xj,1i − x1,1

i + x1,1
i

)
β′ ← AKeyGen′(msk,·)

(
mpk, (ctji )i∈[n],j∈[Qi]

)
return β′

Fig. 9: Game 0, Game 1, Game 2, and Game1,` for the proof of Lemma 2. The description of Setup′, Enc′, and
KeyGen′ are omitted since their simulations do not change throughout the proof.

its KeyGen oracle to simulate the corresponding queries by A. Finally, when A outputs β′, D
returns the same bit as its guess.

From the description above, it follows that

|Pr[Game0(A) = 1]− Pr[Game1(A) = 1]| ≤ AdvMIFE,one−SEL−INDA (λ)

and that the restrictions on the key queries are similar to those imposed by the one-SEL-IND
security game, namely that

∑n
i=1〈x

0,0
i ,yji 〉) =

∑n
i=1〈x

0,1
i ,yji 〉) for every key query yj1‖ . . . ‖y

j
n,

which follows from the restriction in Section 3.2.

Game 2. This game, which is described in Fig. 9, replaces Enc(x1,1
i + (xj,0i − x1,0

i ) ‖zi) with

Enc(x1,1
i + (xj,1i − x1,1

i ) ‖zi) = Enc(xj,1i ‖zi), for all i ∈ [n], j ∈ [Qi]. We have Game 1 ≈c
Game 2 via the following properties:
– many-SEL-IND security of (Setup,Enc,KeyGen,Dec);

– the fact that for each key query y1‖ . . . ‖yn and all r, z, we have

〈x1,1
i + xj,0i − x1,0

i ‖z,yi‖r〉 = 〈x1,1
i + xj,1i − x1,1

i ‖z,yi‖r〉.

The latter is equivalent to 〈xj,0i −x1,0
i ,yi〉 = 〈xj,1i −x1,1

i ,yi〉, which follows from the restriction
in Section 3.2.
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To be more precise, consider the hybrid game Game1,` in Fig. 9. From its description,
it is clear that Game 1 ≡ Game1,0 and Game 2 ≡ Game1,n. Moreover, we can build
an adversary D against the many-SEL-IND security of the single-input inner-product FE
scheme (Setup,Enc,KeyGen,Dec) such that |Pr[Game1,`−1(A) = 1] − Pr[Game1,`(A) = 1]| ≤
AdvFE,many−SEL−INDA (λ).

Adversary D works as follows. Let (xj,bi )i∈[n],j∈[Qi],b∈{0,1} be the challenge vector that A outputs.
D first generates the public and secret keys (mski,mpki) for i ∈ [n], i 6= `, as well as the values

zi for i ∈ [n]. Then, it computes the values x̄j,b = x1,1
` +xj,b` −x1,b

` ‖z` for j ∈ [Q`], b ∈ {0, 1} and

outputs them as its selective challenge to get back mpki and ct1`‖ . . . ‖ct
Q`
` , where ctj` corresponds

to Enc(msk`,x
1,1
` + xj,β` − x1,β

` ‖z`). The remaining ciphertexts ctji are generated honestly. For

i < `, j ∈ {1, . . . , Qi}, ctji = Enc(mski,x
j,0
i −x1,0

i + x1,1
i ‖zi) = Enc′(msk, i,xj,0i −x1,0

i + x1,1
i ). For

i > `, j ∈ {1, . . . , Qi}, ctji = Enc(mski,x
j,1
i − x1,1

i + x1,1
i ‖zi) = Enc′(msk, i,xj,1i − x1,1

i + x1,1
i ) =

Enc′(msk, i,xj,1i ).
Next, D provides these values to A and answers key queries by A using its KeyGen oracle to
compute the terms associated with slot `. Finally, when A outputs β′, D returns the same bit
as its guess.

From the description above, it follows that |Pr[Game1,`−1(A) = 1] − Pr[Game1,`(A) = 1]| ≤
AdvFE,many−SEL−INDA (λ) since D simulates Game1,`−1(A) when β = 0 and Game1,`(A) when
β = 1. Moreover, the restrictions on the key queries imposed by the many-SEL-IND security of
the underlying single-input scheme implies that, for every key query y1‖ . . . ‖yn,

〈x1,1
` + xj,0` − x1,0

` ‖z`,y`‖r〉 = 〈x1,1
` + xj,1` − x1,1

` ‖z`,y`‖r〉.

This is in turn equivalent to 〈xj,0` −x1,0
` ,y`〉 = 〈xj,1` −x1,1

` ,y`〉, which follows from the restriction
in Section 3.2.

4.2 Putting everything together

In Figure 10 we spell out the details of the scheme in the previous section with a concrete instan-
tiation of the underlying single-input inner-product scheme, which is provided for completeness in
Figure 11.
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A One-SEL-SIM Scheme for Single-Input Inner Product

We include a brief description of the analysis and simulator from [25] since the manuscript is
not publicly available. The scheme is in fact essentially the same as those in [4, 2], extended
explicitly to the k-Lin assumption. The analysis also starts out the same way, by using the k-Lin
assumption to replace [As] in the challenge ciphertext with [c], so that the ciphertext is given by
([x∗ + Wc], [c]), where x∗ denotes the selective challenge. Next, we perform a change of variables

W̃ = W + 1
〈c,a⊥〉x

∗(a⊥)>, so that

WA = W̃A

x∗ + Wc = W̃c

W>y = W̃>y − 〈x
∗,y〉

〈c,a⊥〉
a⊥

which coincides precisely with the output of the simulator.

S̃etup(G):

A←R Z(k+1)×k
q ,W̃←R Zm×(k+1)

q

compute a⊥ ∈ Zk+1
q \ {0} s.t. A>a⊥ = 0

m̃pk := ([A], [W̃A]), m̃sk := (A,W̃);

return (m̃pk, m̃sk)

K̃eyGen(m̃sk,y ∈ Zmq , a ∈ Zq):

return sky := W̃>y − a
〈c,a⊥〉a

⊥ ∈ Zk+1
q

Ẽnc(m̃sk):

pick c←R Zk+1
q ;

return ([W̃c], [c])

Fig. 12: Simulator for one-SEL-SIM scheme for single-input inner product Fm,B1 from [25].

B Additional Definitions

In this section we provide many-AD-IND security definition for MIFE in the public key setting
where the adversary holds encryptions keys for a subset of the MIFE encryption slots. We first
define the MIFE functionality that allows public encryption keys for some slots

Definition 4 (Multi-input Function Encryption). Let {Fn}n∈N be an ensemble where each
Fn is a family of n-ary functions. A function f ∈ Fn is defined as follows f : X1 × . . .× Xn → Y.
A multi-input functional encryption scheme MIFE for F consists of the following algorithms:
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– Setup(1λ,Fn): on input the security parameter λ and a description of Fn ∈ F outputs n en-
cryption keys ek1, . . . , ekn and a master secret key msk.

– Encrypt(eki, i,m): on input eki ∈ {ek1, . . . , ekn} and a message m ∈ Xi outputs a ciphertext ct
for the i-th MIFE slot. We assume that each ciphertext has an associated index i, which denotes
what slot this ciphertext can be used for.

– KeyGen(msk, f): on input the master secret key msk and a function f ∈ Fn outputs a decryption
key skf that takes inputs encrypted under ek1, . . . ekn.

– Decrypt(skf , ct1, . . . , ctn): on input a decryption key for function f and skf ciphertexts outputs
a string y ∈ Y.

The scheme MIFE is correct if for all f ∈ F and all xi ∈ Xi for 1 ≤ i ≤ n, we have

Pr

 (ek1, . . . , ekn,msk)← Setup(1λ, n);

skf ← KeyGen(msk, f);

Decrypt(skf ,Encrypt(ek1, x1), . . . ,Encrypt(ekn, xn)) = f(x1, . . . , xn)

 = 1,

where the probability is taken over the coins of Setup, KeyGen and Encrypt.

For out definition we will use the notion of I-compatibility, which is defined next.

Definition 5 (I-Compatibility). Let Fn = {f} be a family of n-ary functions and let

N = {1, . . . , n}, I ⊂ N . The pairs of input vectors x0 =
(
{xj,01 }

q1
j=1, . . . , {x

j,0
n }qnj=1

)
and

x1 =
(
{xj,11 }

q1
j=1, . . . , {x

j,1
n }qnj=1

)
are I-compatible if they satisfy the following property:

For every f ∈ {f}, every I ′ = {i1, . . . , it} ⊆ I ∪ ∅, every j1 ∈ [q1], . . . , jn−t ∈ [qn], for every
x′i1 ∈ Xi1 , . . . , x

′
it
∈ Xit the following two distributions are indistinguishable:

f
(
π(xj1,0i1

, . . . , x
jn−t,0
in−t

, x′i1 , . . . , x
′
it)
)

= f
(
π(xj1,1i1

, . . . , x
jn−t,1
in−t

, x′i1 , . . . , x
′
it)
)
,

where π(yi1 , . . . , yin) denotes a permutation of the values yi1 , . . . , yin such that the value yij is
mapped to the l’th location of yij is the l’th input (out of n input) to f .

Using the above notions of I-compatibility the indistinguishability security for MIFE is defined as
follows.

Definition 6 (many-AD-IND-secure MIFE). A multi-input functional encryptionMIFE for
n-ary functions F is (t, q)-IND secure if for every PPT adversary A = (A1,A2,A3), the advantage
of A defined as

AdvMIFE,INDA = |Pr[INDMIFEA,1 (1λ) = 1]− Pr[INDMIFEA,0 (1λ) = 1]|

is negligible and the experiment INDMIFEA,β (1λ) is defined as follows:
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Experiment INDMIFEA,β (1λ):

(I, st0)← A0(1
λ) where |I| = t

({eki}i∈[n],msk)← Setup(1λ)

(X0,X1, st1)← AKeyGen(msk,·)
1 (st0, {eki}i∈I) for

{
Xd = {xj,d1 , . . . , xj,dn }qj=1

}
d=1,2

cti,j ← Encrypt(eki, x
j,β
i ) ∀i ∈ [n], j ∈ [q]

β′ ← AKeyGen(msk,·)
2 (st1, ct)

Output: β′

In the above experiment we require that all queries for {f} for decryption functions made by A1

and A2 must be I-compatible with X0 and X1 according to Definition 5.

We call the MIFE scheme public key many-AD-IND-secure when t = n, i.e., the adversary obtain
the encryption keys for all slots.

Since our paper focuses on multi-input functional encryption for inner product functions, we note
that the I-compatibility condition in this setting becomes as follows. Each function fi is defined
by a vector f = (y1‖ · · · ‖yn). Then, if I is the set of the inputs for which the adversary does
not receive encryption keys, we require that for every j1, j

′
1 ∈ [q1], . . . , jn−t, j

′
n−t ∈ [qn] and every

J ⊆ [n] such that I ⊆ J :

∑
i∈J
〈xji,0i ,yi〉 =

∑
i∈J
〈xj

′
i,1
i ,yi〉.

This restriction is due to the fact that the adversary can always encrypt the all 0’s vectors in the
slots for which it holds encryption keys. Thus, if the above equality does not hold, the adversary
will be able to distinguish the challenges trivially.

We note that in the case of public key MIFE, the above restriction amounts to

〈xji,0i ,yi〉 = 〈xj
′
i,1
i ,yi〉 ∀i ∈ [n],

since I = ∅ and the sets J include every singleton set.

C Extensions

C.1 Public-Key MIFE for Inner Product

This is easy, as discussed in the introduction. Run n independent copies of the single-input scheme;
use the i’th copy to encrypt xi in the i’th slot; and the new secret key is the collection of the n secret
keys corresponding to each of y1, . . . ,yn. Decryption recovers 〈x1,y1〉, . . . 〈xn,yn〉 and returns the
sum of these values. This means that the adversary also learns each of 〈xi,yi〉 but that is inherent
leakage from the ideal functionality. Concretely, an adversary can always pad an encryption of xi
in the i’th slot with encryptions of 0’s in the remaining n− 1 slots and then decrypt with a key for
y1, . . . ,yn to learn 〈xi,yi〉. Security is immediate since the underlying FE guarantees that there is
no leakage beyond 〈xi,yi〉.
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C.2 Impossibility for many-SEL-SIM.

The impossibility result for simulation-based IBE in [11, 3] applies to this setting, even for private-
key schemes with “selective” security in the single-input setting for one-dimensional inner product
over bits. Suppose the secret key has ` bits. The adversary starts by requesting for `+λ encryptions
of random bits. At this point, the simulator needs to simulate these `+λ ciphertexts without having
learned anything from the ideal functionality. The adversary then requests for a secret key for 1,
and the simulator needs to produce an `-bit secret key that decrypts the simulated ciphertext to an
arbitrary sequence of `+λ bits. This is impossible even for a computationally unbounded adversary.
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