
Multi-Input Inner-Product Functional Encryption from Pairings

Michel Abdalla1,?, Romain Gay1, Mariana Raykova2,??, and Hoeteck Wee1,? ? ?

1 ENS and PSL Research University, Paris
{michel.abdalla,romain.gay,hoeteck.wee}@ens.fr

2 Yale University, New Haven
mariana.raykova@yale.edu

Abstract. We present a multi-input functional encryption scheme (MIFE) for the inner product func-
tionality based on the k-Lin assumption in prime-order bilinear groups. Our construction works for any
polynomial number of encryption slots and achieves adaptive security against unbounded collusion,
while relying on standard polynomial hardness assumptions. Prior to this work, we did not even have
a candidate for 3-slot MIFE for inner products in the generic bilinear group model. Our work is also
the first MIFE scheme for a non-trivial functionality based on standard cryptographic assumptions, as
well as the first to achieve polynomial security loss for a super-constant number of slots under falsifi-
able assumptions. Prior works required stronger non-standard assumptions such as indistinguishability
obfuscation or multi-linear maps.

1 Introduction . 1

1.1 Our Contributions . 1

1.2 Discussion . 5

2 Preliminaries . 7

3 Definitions for Multi-Input Functional Encryption . 8

3.1 Security notions . 9

3.2 Inner product functionality . 11

4 Selectively-Secure, Private-Key MIFE for Inner Product . 12

4.1 Selectively-secure, multi-input scheme from single-input scheme 12

4.2 Putting everything together . 24

5 Achieving Adaptive Security . 24

A One-SEL-SIM, Many-AD-IND Secure Scheme for Single-Input Inner Products 39

B Motivating applications . 44

C Additional Definitions . 44

D Extensions . 46

D.1 Public-Key MIFE for Inner Product . 46

D.2 Impossibility for many-SEL-SIM. 46

? CNRS. Supported in part by SAFEcrypto (H2020 ICT-644729).
?? Supported by NSF grants CNS-1633282, 1562888, 1565208, and DARPA SafeWare W911NF-15-C-0236,W911NF-

16-1-0389.
? ? ? CNRS and Columbia University. Supported in part by the ERC Project aSCEND (H2020 639554) and NSF Award

CNS-1445424.

mailto:michel.abdalla@ens.fr,romain.gay@ens.fr,hoeteck.wee@ens.fr
mailto:mariana.raykova@yale.edu

1 Introduction

In a functional encryption (FE) scheme [25, 11], an authority can generate restricted decryption
keys that allow users to learn specific functions of the encrypted messages and nothing else. That is,
each FE decryption key skf is associated with a function f and decrypting a ciphertext Enc(x) with
skf results in f(x). Multi-input functional encryption (MIFE) introduced by Goldwasser et al. [19]
is a generalization of functional encryption to the setting of multi-input functions. A MIFE scheme
has several encryption slots and each decryption key skf for a multi-input function f decrypts jointly
ciphertexts Enc(x1), . . ., Enc(xn) for all slots to obtain f(x1, . . . , xn) without revealing anything
more about the encrypted messages. The MIFE functionality provides the capability to encrypt
independently messages for different slots. This facilitates scenarios where information, which will
be processed jointly during decryption, becomes available at different points of time or is provided
by different parties. MIFE has many applications related to computation and data-mining over
encrypted data coming from multiple sources, which include examples such as executing search
queries over encrypted data, processing encrypted streaming data, non-interactive differentially
private data releases, multi-client delegation of computation, order-revealing encryption [19, 10] (see
Appendix B for applications). The security requirement for FE and MIFE is that the decryption
keys are resilient to collusion attacks, namely any group of users holding different decryption keys
learns nothing about the underlying messages beyond what each of them could individually learn.

We now have several constructions of MIFE schemes, which can be broadly classified as follows: (i)
feasibility results for general circuits [19, 6, 5, 12], and (ii) constructions for specific functionalities,
notably comparison, which corresponds to order-revealing encryption [10]. Unfortunately, all of
these constructions rely on indistinguishability obfuscation, single-input FE for circuits, or multi-
linear maps [16, 15], which we do not know how to instantiate under standard and well-understood
cryptographic assumptions.3

1.1 Our Contributions

In this work, we present a multi-input functional encryption scheme (MIFE) for the inner product
functionality based on the k-Lin assumption in prime-order bilinear groups. This is the first MIFE
scheme for a non-trivial functionality based on standard cryptographic assumptions with polynomial
security loss, and for any polynomial number of slots and secure against unbounded collusions.

Concretely, the functionality we consider is that of “bounded-norm” multi-input inner product:
each function is specified by a collection of n vectors y1, . . . ,yn, takes as input n vectors x1, . . . ,xn,
and outputs

fy1,...,yn(x1, . . . ,xn) =

n∑
i=1

〈xi,yi〉.

We require that the x1, . . . ,xn,y1, . . . ,yn have bounded norm, and inner product is computed over
the integers. The functionality is a natural generalization of single-input inner product function-
ality introduced by Abdalla et. al [1], and studied in [1, 7, 13, 4, 2], and captures several useful
computations arising in the context of data-mining. A summary of our results and prior works on
single-input inner product is shown in Fig. 1.

3 In this paper, we refer only to unbounded collusions (i.e. the adversary can request for any number of secret keys).
See [24, 21, 20, 12] for results on bounded collusions.

1

Prior approaches. Prior constructions of MIFE schemes in [10] require (at least) nm-linear maps
for n slots with m-bit inputs as they encode each input bit for each slot into a fresh level of a
multi-linear map. In addition, there is typically a security loss that is exponential in n due to the
combinatorial explosion arising from combining different ciphertexts across the slots. In the case
of inner product, one can hope to reduce the multi-linearity to n by exploiting linearity as in the
single-input FE; indeed, this was achieved in two independent works [23, 22]4 showing how to realize
a two-slot MIFE for inner product over bilinear groups. We stress that our result is substantially
stronger: we show how to realize n-slot MIFE for inner product for any polynomial n over bilinear
groups under standard assumptions, while in addition avoiding the exponential security loss. In
particular, we deviate from the prior approaches of encoding each slot into a fresh level of a multi-
linear map. We stress that prior to this work, we do not even have a candidate for 3-slot MIFE for
inner product in the generic bilinear group model.

A public-key scheme. Our first observation is that we can build a public-key MIFE for inner
product by running n independent copies of a single-input FE for inner product. Combined with
existing instantiations of the latter in [1], this immediately yields a public-key MIFE for inner
product under the standard DDH in cyclic groups.

In a bit more detail, we recall the DDH-based public-key single-input FE scheme from [1]:5

mpk := [w], ctx = ([s], [x + ws]), sky := 〈w,y〉.

Decryption computes [〈x,y〉] = [x + ws]>y · [s]−〈w,y〉 and then recovers 〈x,y〉 by computing the
discrete log.

Our public-key MIFE scheme is as follows:

mpk := ([w1], . . . , [wn]),

ctxi := ([si], [xi + wisi]),

sky1,...,yn := (〈w1,y1〉, . . . , 〈wn,yn〉).

We note that the encryption of xi uses fresh randomness si; to decrypt, we need to know each
〈wi,yi〉, and not just 〈w1,y1〉+ · · ·+ 〈wn,yn〉. In particular, an adversary can easily recover each
[〈xi,yi〉], whereas the ideal functionality should only leak the sum

∑n
i=1〈xi,yi〉. In the public-

key setting, it is easy to see that 〈xi,yi〉 is in fact inherent leakage from the ideal functionality.
Concretely, an adversary can always pad an encryption of xi in the i’th slot with encryptions of
0’s in the remaining n− 1 slots and then decrypt.

Our main scheme. The bulk of this work lies in constructing a multi-input FE for inner product
in the private-key setting, where we can no longer afford to leak 〈xi,yi〉. We modify the previous
scheme by introducing additional rerandomization into each slot with the use of bilinear groups as
follows:

msk := ([w1]1, [v1]1, [z1]1, . . . , [wn]1, [vn]1, [zn]1),

ctxi := ([si]1, [xi + wisi]1, [zi + visi]1),

sky1,...,yn := ([〈w1,y1〉+ v1r]2, . . . , [〈wn,yn〉+ vnr]2, [r]2, [(z1 + · · ·+ zn)r]T).

4 This work is independent of both works.
5 Here, we use the implicit representation notation for group elements, using [s] to denote gs and [w] to denote gw,

etc.

2

The ciphertext ctxi can be viewed as encrypting xi‖zi using the single-input FE, where z1, . . . , zn
are part of msk. In addition, we provide a single-input FE key for yi‖r in the secret key, where a
fresh r is sampled for each key. Decryption proceeds as follows: first compute

[〈xi,yi〉+ zir]T = e([xi + wisi]
>
1, [yi]2) · e([zi + visi]

>
1, [r]2) · e([si], [〈wi,yi〉+ vir]2)

−1

and then

[
n∑
i=1

〈xi,yi〉]T = [(z1 + · · ·+ zn)r]−1T ·
n∏
i=1

[〈xi,yi〉+ zir]T .

The intuition underlying security is that by the DDH assumption [zir]T is pseudorandom and helps
mask the leakage about 〈xi,yi〉 in [〈xi,yi〉+ zir]T ; in particular,

[〈x1,y1〉+ z1r]T , . . . , [〈xn,yn〉+ znr]T , [(z1 + · · ·+ zn)r]T

constitutes a computational secret-sharing of [〈x1,y1〉+· · ·+〈xn,yn〉]T , even upon reusing z1, . . . , zn
as long as we pick a fresh r. In addition, sharing the same exponent r across n elements in the
secret key helps prevent mix-and-match attacks across secret keys.

Our main technical result is that a variant of the private-key MIFE scheme we just described
satisfies adaptive indistinguishability-based security under the k-Lin assumption in bilinear groups;
a straight-forward extension of an impossibility result in [11, 3] rules out simulation-based security.
Our final scheme, described in Fig. 10, remains quite simple and achieves good concrete efficiency.
We focus on selective security in this overview, and explain at the end the additional ideas needed
to achieve adaptive security.

Overview of security proof. There are two main challenges in the security proof: (i) avoiding
leakage beyond the ideal functionality, (ii) avoiding super-polynomial hardness assumptions. Our
proof proceeds in two steps: first, we establish security with a single challenge ciphertext per slot,
and from which we bootstrap to achieve security with multiple challenge ciphertexts per slot. We
will address the first challenge in the first step and the second challenge in the second. For notation
simplicity, we focus on the setting with n = 2 slots and a single key query y1‖y2.

Step 1. To prove indistinguishability-based security, we want to switch encryptions x0
1,x

0
2 to en-

cryptions of x1
1,x

1
2. Here, the leakage from the ideal functionality imposes the restriction that

〈x0
1,y1〉+ 〈x0

2,y2〉 = 〈x1
1,y1〉+ 〈x1

2,y2〉

and this is the only restriction we can work with. The natural proof strategy is to introduce
an intermediate hybrid that generates encryptions of x1

1,x
0
2. However, to move from encryptions

x0
1,x

0
2 to this hybrid, we would require that 〈x0

1‖x0
2,y1‖y2〉 = 〈x1

1‖x0
2,y1‖y2〉, which implies the

extraneous restriction 〈x0
1,y1〉 = 〈x1

1,y1〉. (Indeed, the single-input inner product scheme in [7]
imposes extraneous restrictions to overcome similar difficulties in the function-hiding setting.)

To overcome this challenge, we rely on a single-input FE that achieves simulation-based security,
which allows us to avoid the intermediate hybrid. See Theorem 1 and Remark 4 for further details.

Step 2. Next, we consider the more general setting with Q1 challenge ciphertexts in the first slot
and Q2 in the second, but still a single key query. We achieve security loss O(Q1+Q2) for two slots,
and more generally, O(Q1 + · · · + Qn) —as opposed to Q1Q2 · · ·Qn corresponding to all possible
combinations of the challenge ciphertexts— for n slots.

3

Reference # inputs setting security assumption pairing

ABDP15 [1] 1 public-key many-SEL-IND DDH no

ALS15 [4], ABDP16 [2] 1 public-key many-AD-IND DDH, k-Lin no

BSW11 [11] 1 any many-SEL-SIM impossible

[28] 1 public-key one-SEL-SIM k-Lin no

LL16 [23] 2 private-key many-SEL-IND SXDH + T3DH yes

KLMMRW16 [22] 2 private-key
single-key

many-AD-IND6
function-private FE yes

easy multi public-key many-AD-IND k-Lin no

this work multi private-key many-AD-IND k-Lin yes

Fig. 1: Summary of constructions from cyclic or bilinear groups. We have 8 security notions xx-yy-
zzz where xx ∈ {one, many} refers to the number of challenge ciphertexts; yy ∈ {SEL, AD} refers
to the fact that encryption queries are selectively or adaptively chosen; zzz ∈ {IND, SIM} refers to
indistinguishability vs simulation-based security.

Our first observation is that we can bound the leakage from the ideal functionality by O(Q1 +Q2)
relations (the trivial bound being Q1 · Q2). Denote the j’th ciphertext query in the i’th slot by

xj,bi , where b is the challenge bit. By decrypting the encryptions of x2,b
1 ,x1,b

2 and x1,b
1 ,x1,b

2 and

substracting the two, the adversary learns 〈x2,b
1 − x1,b

1 ,y1〉 and more generally, 〈xj,bi − x1,b
i ,yi〉.

Indeed, these are essentially the only constraints we need to work with, namely:

〈x1,0
1 ,y1〉+ 〈x1,0

2 ,y2〉 = 〈x1,1
1 ,y1〉+ 〈x1,1

2 ,y2〉,
〈xj,0i − x1,0

i ,yi〉 = 〈xj,1i − x1,1
i ,yi〉, j = 2, . . . , Qi, i = 1, 2.

Next, we need to translate the bound on the constraints to a O(Q1 + Q2) bound on the security
loss in the security reduction. We will switch from encryptions of xj,0i to those of xj,1i as follows: we
write

xj,0i = x1,0
i + (xj,0i − x1,0

i).

We can switch the first terms in the sums from x1,0
i to x1,1

i using security for a single challenge

ciphertext, and then switch xj,0i −x1,0
i to xj,1i −x1,1

i by relying on security of the underlying single-

input FE and the fact that 〈xj,0i −x1,0
i ,yi〉 = 〈xj,1i −x1,1

i ,yi〉. Here, we will require that the underlying
single-input FE satisfies a malleability property, namely given ∆, we can maul an encryption of
x into that of x + ∆. Note that this does not violate security because given 〈x,y〉,y, ∆, we can
efficiently compute 〈x +∆,y〉. See Theorem 2 for further details.

Extension to adaptive security. The previous argument for selective security requires to embed
the challenge into the setup parameters. To circumvent this issue, we use a two-step strategy for the
adaptive security proof of MIFE. The first step uses an adaptive argument (this is essentially the

6 The security notion achieved in [22] is actually a weaker variant of many-AD-IND in which the adversary is only
allowed to perform a single key query at the beginning of the security game.

4

argument used for the selective case, but applied to parameters that are picked at setup time), while
the second step uses a selective argument, with perfect security. Thus, we can afford using complexity
leveraging, which incurs an exponential security loss, since the exponential term is multiplied by
a zero term. The idea of using complexity leveraging to deduce adaptive security from selective
security when the security is perfect, already appears in [27, Remark 1]. See Remark 5 for further
details.

Theoretical perspective. The focus of this work is on obtaining constructions for a specific class
of functions with good concrete efficiency. Nonetheless, we believe that our results do shed some
new insights into general feasibility results for MIFE:

– First, our results are indicative of further qualitative differences between MIFE in the public-
key and the private-key settings. Indeed, we already know that the security guarantees are
quite different due to additional inherent leakages in the public-key setting. In the case of
order-revealing encryption [10], the differences are sufficient to enable positive results in the
private-key setting, while completely ruling out any construction in the public-key setting. Our
results hint at a different distinction, where the private-key setting seems to require qualitative
stronger assumptions than in the public-key setting, namely the use of pairings.

– Next, our results provide the first evidence supporting the intuition that MIFE requires qual-
itatively stronger assumptions than FE, but not too much stronger. Concretely, for the inner
product FE, we have existing positive results under the DDH assumption in pairing-free groups.
Prior to this work, it was not clear if we could extend the positive results to MIFE for n-ary
inner product under the same assumptions, or if n-ary inner product would already require the
same complex assumptions as MIFE for circuits. Our results suggest a rather different picture,
namely that going from single-input to multi-input should require no more than an extra level
of multi-linearity, even for restricted functionalities. The situation is somewhat different for
general circuits, where we now know that going from single-input to multi-input incurs no more
than a quantitative loss in the underlying assumptions [5, 12].

– Finally, we presented the first MIFE for a non-trivial functionality that polynomial security loss
for a super-constant number of slots under falsifiable assumptions. Recall that indistinguisha-
bility obfuscation and generic multi-linear maps are not falsifiable, whereas the constructions
based on single-input FE in [5, 8, 12] incur a security loss which is exponential in the num-
ber of slots. Indeed, there is a reason why prior works relied on non-falsifiable assumptions or
super-polynomial security loss. Suppose an adversary makes Q0 key queries, and Q1, . . . , Qn
ciphertext queries for the n slots. By combining the ciphertexts and keys in different ways, the
adversary can learn Q0Q1 · · ·Qn different decryptions. When n is super-constant, the winning
condition in the security game may not be efficiently checkable in polynomial-time, hence the
need for either a non-falsifiable assumption or a super-polynomial security loss. To overcome
this difficulty, we show that for inner product, we can exploit linearity to succinctly characterize
the Q0Q1 · · ·Qn constraints by roughly Q0 · (Q1 + · · ·Qn) constraints.

1.2 Discussion

Beyond inner product? Our constructions and techniques may seem a-priori largely tailored to
the inner product functionality and properties of bilinear groups. We clarify here that our high-level
approach (which builds upon [27, 9]) may be applicable beyond inner product, namely:

5

i. start with a multi-input FE that is only secure for a single ciphertext per slot and one secret
key, building upon a single-input FE whose security is simulation-based for a single ciphertext
(in our case, this corresponds to introducing the additional z1, . . . , zn to hide the intermediate
computation 〈xi,yi〉);

ii. achieve security for a single ciphertext per slot and multiple secret keys, by injecting additional
randomness to the secret keys to prevent mix-and-match attacks (for this, we replaced z1, . . . , zn
with z1r, . . . , znr, r in the exponent);

iii. “bootstrap” to multiple ciphertexts per slot, where we also showed how to avoid incurring an
exponential security loss.

In particular, using simulation-based security for i. helped us avoid additional leakage beyond what
is allowed by the ideal functionality.

Additional related work. Goldwasser et al. [19] showed that both two-input public-key MIFE
as well as n-input private-key MIFE for circuits already implies indistinguishability obfuscation for
circuits.

There have also been several works that proposed constructions for private-key multi-input func-
tional encryption. The work of Boneh et al. [10] constructs a single-key MIFE in the private key
setting, which is based on multilinear maps and is proven secure in the idealized generic multilin-
ear map model. Two other papers explore the question how to construct multi-input functional
encryption starting from the single input variant. In their work [5] Ananth and Jain demonstrate
how to obtain selectively secure MIFE in the private key setting starting from any general-purpose
public key functional encryption. In an independent work, Brakerski et al. [12] reduce the construc-
tion of private key MIFE to general-purpose private key (single input) functional encryption. The
resulting scheme achieves selective security when the starting private key FE is selectively secure.
Additionally in the case when the MIFE takes any constant number of inputs, adaptive security
for the private key FE suffices to obtain adaptive security for the MIFE construction as well. The
constructions in that work provide also function hiding properties for the MIFE encryption scheme.

While this line of work reduces MIFE to single-input FE for general-purpose constructions, the
only known instantiations of construction for public and private key functional encryption with
unbounded number of keys require either indistinguishability obfuscation [16] or multilinear maps
with non-standard assumptions [17]. We stress that the transformations from single-input to MIFE
in [5, 12] are not applicable in the case of inner product since these transformations require that
the single-input FE for complex functionalities related to computing a PRF, which is not captured
by the simple inner functionality.

Open problems. One natural open problem is to eliminate the use of pairings in MIFE for
inner product; we think such a result would be quite surprising though. Another open problem is
to achieve function privacy, as considered in the setting of single-input inner product functional
encryption in [7, 13]. Note that these latter results require pairings. Our first guess is that it
would be possible to achieve private-key, function-hiding MIFE for inner product under the k-Lin
assumption in bilinear groups.

6

2 Preliminaries

Notation. We denote by s ←R S the fact that s is picked uniformly at random from a finite set
S. By PPT, we denote a probabilistic polynomial-time algorithm. Throughout, we use 1λ as the
security parameter. We use lower case boldface to denote (column) vectors and upper case boldface
to denote matrices.

Cryptographic assumptions We follow the notation and algebraic framework for Diffie-Hellman-
like assumptions in [14]. We fix a pairing group PG := (G1,G2,GT) with e : G1 × G2 → GT of
prime order q, where q is a prime of Θ(λ) bits. We use the implicit representation notation for
group elements: for fixed generators g1 and g2 of G1 and G2, respectively, and for a matrix M over
Zq, we define [M]1 := gM1 and [M]2 := gM2 , where exponentiation is carried out component-wise.

We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH) Assumption [14].

Definition 1 (Matrix Distribution). Let k, ` ∈ N, with ` > k. We call D`,k a matrix distribution
if it outputs matrices in Z`×kq of full rank k in polynomial time. We write Dk := Dk+1,k.

Without loss of generality, we assume the first k rows of A←R D`,k form an invertible matrix. The
D`,k-Matrix Diffie-Hellman problem is to distinguish the two distributions ([A], [Aw]) and ([A], [u])
where A←R D`,k, w←R Zkq and u←R Z`q.

Definition 2 (Dk-Matrix Diffie-Hellman Assumption Dk-MDDH). Let Dk be a matrix dis-
tribution. We say that the Dk-Matrix Diffie-Hellman (Dk-MDDH) Assumption holds relative to PG
in Gs for s ∈ {1, 2}, if for all PPT adversaries A, there exists a negligible function Adv such that:

AdvDk-mddhGs,A (λ) := |Pr[A(PG, [A]s, [Aw]s) = 1]− Pr[A(PG, [A]s, [u]s) = 1]| = negl(λ),

where the probability is taken over A←R Dk,w←R Zkq ,u←R Zk+1
q .

For each k ≥ 1, [14] specifies distributions Lk, SCk, Ck (and others) over Z(k+1)×k
q such that the

corresponding Dk-MDDH assumptions are generically secure in bilinear groups and form a hierarchy
of increasingly weaker assumptions. Lk-MDDH is the well known k-Linear Assumption k-Lin with
1-Lin = DDH. In this work we are mostly interested in the uniform matrix distribution U`,k.

Definition 3 (Uniform distribution). Let `, k ∈ N, with ` > k. We denote by U`,k the uniform
distribution over all full-rank `× k matrices over Zq. Let Uk := Uk+1,k.

Let Q ≥ 1. For W ←R Zk×Qq ,U ←R Z(k+1)×Q
q , we consider the Q-fold U`,k-MDDH Assumption

which consists in distinguishing the distributions ([A], [AW]) from ([A], [U]). That is, a challenge
for the Q-fold U`,k-MDDH Assumption consists of Q independent challenges of the U`,k-MDDH
Assumption (with the same A but different randomness w). We recall in Lemma 1 the random self
reducibility of the Q-fold U`,k-MDDH assumption, namely, the fact that it reduces to the 1-fold Uk
assumption.

7

Lemma 1 (Uk-MDDH ⇒ Q-fold U`,k-MDDH [14, 18]). Let `, k ∈ N∗, with ` > k, and s ∈
{1, 2}. For any PPT adversary A, there exists a PPT adversary B such that

Adv
Q-U`,k-mddh
Gs,A (λ) ≤ AdvUk-mddhGs,B (λ) +

1

q − 1
,

where Adv
Q-U`,k-mddh
Gs,A (λ) := |Pr[A(PG, [A]s, [AW]s) = 1]−Pr[A(PG, [A], [U]) = 1]| and the proba-

bility is taken over A←R U`,k,W←R Zk×Qq ,U←R Z(k+1)×Q
q .

Among all possible matrix distributions Dk, the uniform matrix distribution Uk is the hardest
possible instance, so in particular k-Lin ⇒ Uk-MDDH, as stated in Lemma 2.

Lemma 2 (Dk-MDDH ⇒ Uk-MDDH, [14]). Let Dk be a matrix distribution. For any PPT
adversary A, there exists a PPT adversary B such that AdvUk-mddhGs,B (λ) ≤ AdvDk-mddhGs,A (λ).

3 Definitions for Multi-Input Functional Encryption

We recall the definitions for multi-input functional encryption from [19]. We focus here on the
private-key setting, which allows us to simplify the definitions.

Definition 4 (Multi-input Function Encryption). Let F = {Fn}n∈N be an ensemble where
each Fn is a family of n-ary functions. A function f ∈ Fn is defined as follows f : X1×. . .×Xn → Y.
A multi-input functional encryption scheme MIFE for F consists of the following algorithms:

– Setup(1λ,Fn): on input the security parameter λ and a description of Fn ∈ F , outputs a master
public key mpk7 and a master secret key msk. All of the remaining algorithms get mpk as part
of its input.

– Enc(msk, i, xi): on input the master secret key msk, i ∈ [n], and a message xi ∈ Xi, outputs a
ciphertext ct. We assume that each ciphertext has an associated index i, which denotes what
slot this ciphertext can be used for. If n = 1, we omit the input i.

– KeyGen(msk, f): on input the master secret key msk and a function f ∈ Fn, outputs a decryption
key skf .

– Dec(skf , f, ct1, . . . , ctn): on input a decryption key skf for function f and n ciphertexts, outputs
a string y ∈ Y.

The scheme MIFE is correct if for all f ∈ F and all xi ∈ Xi for 1 ≤ i ≤ n, we have

Pr

 (mpk,msk)← Setup(1λ, n);

skf ← KeyGen(msk, f);

Dec(skf , f,Enc(msk, 1, x1), . . . ,Enc(msk, n, xn)) = f(x1, . . . , xn)

 = 1,

where the probability is taken over the coins of Setup, KeyGen and Enc.
7 We note that in the private key setting of MIFE, we can make mpk part of msk, but we allow for a separate master

public key for better clarity in our proofs. In constructions where we do not need mpk we omit it.

8

3.1 Security notions

Following [3], we may consider 8 security notions xx-yy-zzz where xx ∈ {one, many} refers to the
number of challenge ciphertexts; yy ∈ {SEL, AD} refers to the fact that encryption queries are
selectively or adaptively chosen; zzz ∈ {IND, SIM} refers to indistinguishability vs simulation-
based security. We have the following trivial relations: many ⇒ one, AD ⇒ SEL, and the following
standard relations: SIM ⇒ IND, and one-yy-IND ⇒ many-yy-IND, the latter in the public-key
setting. Here, we focus on {one,many}-SEL-IND and one-SEL-SIM. We recall the definitions for
adaptive security in Section 5.

Definition 5 (xx-SEL-IND-secure MIFE). For every multi-input functional encryption
MIFE := (Setup,Enc,KeyGen,Dec) for F , every security parameter λ, every stateful adversary
A, and every xx ∈ {one,many}, the advantage of A is defined as

AdvMIFE,xx-SEL-IND(λ,A)

=
∣∣∣Pr
[
xx-SEL-INDMIFE0 (1λ,A) = 1

]
− Pr

[
xx-SEL-INDMIFE1 (1λ,A) = 1

]∣∣∣
=
∣∣∣1− 2 · Pr

[
xx-SEL-INDMIFE(1λ,A) = 1

]∣∣∣
where the experiments are defined as follows:

Experiment xx-SEL-INDMIFEβ (1λ,A): Experiment xx-SEL-INDMIFE(1λ,A):

β ←R {0, 1}
{xj,bi }i∈[n],j∈[Qi],b∈{0,1} ← A(1λ,Fn) {xj,bi }i∈[n],j∈[Qi],b∈{0,1} ← A(1λ,Fn)

(mpk,msk)← Setup(1λ,Fn) (mpk,msk)← Setup(1λ,Fn)

ctji ← Enc(msk, i, xj,βi) ∀i ∈ [n], j ∈ [Qi] ctji ← Enc(msk, i, xj,βi) ∀i ∈ [n], j ∈ [Qi]

β′ ← AKeyGen(msk,·)
(
mpk, (ctji)i∈[n],j∈[Qi]

)
β′ ← AKeyGen(msk,·)

(
mpk, (ctji)i∈[n],j∈[Qi]

)
Output: β′ Output: 1 if β′ = β, 0 otherwise.

where A only makes queries f to KeyGen(msk, ·) satisfying

f(xj1,01 , . . . , xj1,0n) = f(xj1,11 , . . . , xj1,1n)

for all j1, . . . , jn ∈ [Q1] × · · · × [Qn]. For xx = one, we require additionally that the adversary A
only sends one challenge per slot, i.e. for all i ∈ [n], Qi = 1.

The private key multi-input functional encryption MIFE is xx-SEL-IND-secure if for ev-
ery PPT adversary A, there exists a negligible function negl such that for all λ ∈ N:
AdvMIFE,xx-SEL-IND

A (λ) = negl(λ).

Remark 1 (winning condition). Note that the winning condition is in general not efficiently check-
able because of the combinatorial explosion in the restriction on the queries.

Next, we present the simulation-based security definition for MIFE, in the setting with a single
challenge ciphertext per slot.

9

Definition 6 (one-SEL-SIM-secure FE). A single-input functional encryption FE for function

F is one-SEL-SIM-secure if there exists a PPT simulator8 (S̃etup, Ẽncrypt, K̃eyGen) such that for
every PPT adversary A and every λ ∈ N, the following two distributions are computationally
indistinguishable:

Experiment REALFE(1λ,A): Experiment IDEALFE(1λ,A):

x← A(1λ,F) x← A(1λ,F)

(mpk,msk)← Setup(1λ,F) (m̃pk, m̃sk)← S̃etup(1λ,F)

ct← Enc(msk, x) ct← Ẽncrypt(m̃sk)

α← AKeyGen(msk,·)(mpk, ct) α← AO(·)(m̃pk, ct)
Output: α Output: α

The oracle O(·) in the above ideal experiment has access to an oracle that provides the value 〈x,y〉,
for each y ∈ Zmp queried to O(·). Then, O(·) returns K̃eyGen(m̃sk,y, 〈x,y〉).

Namely, for every stateful adversary A,we define

AdvFE,one-SEL-SIM (λ,A) =

∣∣∣∣Pr
[
REALFE(1λ,A) = 1

]
− Pr

[
˜IDEAL

FE
(1λ,A) = 1

]∣∣∣∣ ,
and we require that for every PPT A, there exists a negligible function negl such that for all λ ∈ N,
AdvFE,one-SEL-SIM (λ,A) = negl(λ).

Zero vs multiple queries in private-key setting. It is convenient in our proof of security to
assume that Q1, . . . , Qn ≥ 1, that is, there is at least one ciphertext for each encryption slot, which
is where the technical bulk of the work lies as we would need to reason about leakage from the ideal
functionality. In the setting where some Qi = 0, the ideal functionality leaks nothing, and here,
we can easily achieve semantic security for all of the messages being encrypted in the private key
MIFE setting, via the following simple generic transformation.

Lemma 3. Let (Setup,Enc,KeyGen,Dec) be a private key MIFE construction for n-input func-
tions in the class Fn, which satisfies any xx-yy-zzz MIFE security definition when the adversary
receives at least one ciphertext for each encryption slot. Let (GenSE,EncSE,DecSE) be symmetric key
encryption. The private key MIFE scheme (Setup′,Enc′,KeyGen′,Dec′) described in Fig. 2 satisfies
xx-yy-zzz security without any restrictions on the ciphertext challenge sets.

Proof (sketch). We consider two cases:

– Case 1: there exists some i ∈ [n] for which Qi = 0. Here, ki and thus K is perfectly hidden from
the adversary. Then, security follows readily from semantic security of (GenSE,EncSE,DecSE).

– Case 2: for all i,Qi ≥ 1. Here, security follows immediately from that of (Setup,Enc,KeyGen,Dec).

ut
8 That is, S̃etup, Ẽncrypt, K̃eyGen correspond respectively to the simulated Setup,Enc,KeyGen.

10

Setup′(1λ,Fn):

msk← Setup(1λ,Fn)
K← Gen(1λ)

k1, . . . , kn−1 ←R {0, 1}λ, kn =
(⊕

i∈[n−1] ki

)
⊕ K

return msk′ ←
(
msk,K, {ki}i∈[n]

)
Enc′(msk, i,xi):

parse msk′ =
(
msk,K, {ki}i∈[n]

)
ct← Enc(msk, i,xi)
ct′ ← EncSE(K, ct)
return (ki, ct

′)

KeyGen′(msk, f):

return KeyGen(msk, f)

Dec′(skf , f, ct
′
1, . . . , ct

′
n):

parse
{
ct′i = (ki, cti)

}
i∈[n]

K←
⊕

i∈[n] ki{
cti ← DecSE(K, ct′i)

}
i∈[n]

return Dec(skf , f, ct1, . . . , ctn).

Fig. 2: Compiler from private-key MIFE with xx-yy-zzz security when |Qi| > 0 for all i to private-
key MIFE with xx-yy-zzz security

3.2 Inner product functionality

Multi-input Inner product. We construct a multi-input functional encryption that supports the
class of multi-input bounded-norm inner product functions, which is defined as Fm,Bn = {fy1,...,yn :
(Zm)n → Z} where

fy1,...,yn(x1, . . . ,xn) =

n∑
i=1

〈xi,yi〉.

We require that the norm of the inner product of any two vector components from function and
input 〈x,y〉 is bounded by B. This bound will determine the parameters of the bilinear map groups
that we will be using in our constructions; in particular, we will choose a target group that has
order q � n ·B. To simplify naming conventions, we will omit “bounded-norm” for the rest of the
paper, but we will always refer to a multi-input inner-product functionality with this property.

Remark on leakage. Let (xj,0i ,xj,1i)i∈[n],j∈[Qi] be the ciphertext queries, and y1‖ · · · ‖yn be a secret
key query. For all slots i ∈ [n], all j ∈ [Qi], and all bits b ∈ {0, 1}, the adversary can learn

〈xj,bi − x1,b
i ,yi〉

via the ideal functionality. In the IND security game, this means the adversary is restricted to
queries satisfying

〈xj,0i − x1,0
i ,yi〉 = 〈xj,1i − x1,1

i ,yi〉.

11

In the hybrid, we want to avoid additional constraints such as

〈xj,0i − x1,0
i ,yi〉 = 〈xj,0i − x1,1

i ,yi〉 = 〈xj,1i − x1,0
i ,yi〉 = 〈xj,1i − x1,1

i ,yi〉.

4 Selectively-Secure, Private-Key MIFE for Inner Product

In this section, we present a private-key MIFE for inner product that achieves many-SEL-IND
security. We use a pairing group (G1,G2,GT) with e : G1 × G2 → GT of prime order q, where q
is a prime of Θ(λ) bits. Our construction relies on the k-Lin Assumption in G1 and in G2 and is
shown in Fig. 10.

We present our construction in two steps:

– first, in Section 4.1, we show how to construct a selectively-secure MIFE scheme starting from
a single-input one-SEL-SIM scheme that satisfies some additional structural properties.

– Then, in Section 4.2, we show how to instantiate the underlying single-input scheme (cf. Fig. 15,
whose one-SEL-SIM security is proven in Appendix A, Theorem 5), and we present a self-
contained description of the scheme in Fig. 10.

We refer the reader to Section 1.1 for an overview of the construction.

4.1 Selectively-secure, multi-input scheme from single-input scheme

Main construction. We build a private key multi-input FE (Setup′,Enc′,KeyGen′,Dec′)
for the class Fm,Bn , starting from a private key one-SEL-SIM secure, single-input FE
(Setup,Enc,KeyGen,Dec) for the class Fm+k,B

1 . We present our construction in Fig. 3.

Correctness. Correctness follows readily from the correctness of the underlying scheme and the
equation:

〈x1‖ · · · ‖xn,y1‖ · · · ‖yn〉 = (

n∑
i=1

〈xi‖zi,yi‖r〉)− 〈z1 + · · ·+ zn, r〉.

Finally, we use the fact that 〈x1‖ · · · ‖xn,y1‖ · · · ‖yn〉 mod q = 〈x1‖ · · · ‖xn,y1‖ · · · ‖yn〉, since for
all slots i ∈ [n], we have 〈xi,yi〉 ≤ B, and q > Bn.

Additional requirements. The construction and the analysis requires that (Setup,Enc,KeyGen,Dec)
satisfies the following structural properties:

– The scheme can be instantiated over G1, where the ciphertext is a vector [c]1 over G1 and the
secret key is a vector di over Zq.

– Enc is linearly homomorphic and public-key. More specifically, we only require that, given
mpk,Enc(msk,x),x′, we can generate a fresh random encryption of x + x′, i.e. Enc(msk,x + x′).
This property is used in the proof of Lemma 8 and Lemma 9.

– For correctness, Dec should be linear in its inputs (d,y) and c, so that Dec([d]2, [y]2, [c]1) =
[Dec(d,y, c)]T ∈ GT can be computed using a pairing.

– For an efficient MIFE decryption, Dec must work without any restriction on the norm of the
output as long as the output is in the exponent.

12

Setup′(1λ,Fm,Bn):

(mpki,mski)← Setup(1λ,Fm+k,B
1), i = 1, . . . , n

zi ←R Zkq , i = 1, . . . , n

(mpk,msk) :=
({

mpki
}
i∈[n],

{
mski, zi

}
i∈[n]

)
return (mpk,msk)

Enc′(msk, i,xi):

return Enc(mski,xi‖zi)

KeyGen′(msk,y1‖ · · · ‖yn):

r←R Zkq
di ← KeyGen(mski,yi‖r), i = 1, . . . , n
z := 〈z1 + · · ·+ zn, r〉
sky1‖···‖yn :=

({
[di]2

}
i∈[n], [r]2, [z]T

)
return sky1‖···‖yn

Dec′((
{

[di]2
}
i∈[n], [r]2, [z]T),y1‖ · · · ‖yn, ct1, . . . , ctn):

[ai]T ← Dec([di]2, [yi‖ri]2, cti), i = 1, . . . , n
return the discrete log of (

∏n
i=1[ai]T) /[z]T

Fig. 3: Multi-input functional encryption scheme (Setup′,Enc′,KeyGen′,Dec′) for the class Fm,Bn .
(Setup,Enc,KeyGen,Dec) refers to the single-input functional encryption scheme for the class

Fm+k,B
1 .

– Let (S̃etup, Ẽnc, K̃eyGen) be the stateful simulator for the one-SEL-SIM security of the single-

input inner-product FE scheme. We require that K̃eyGen(m̃sk, ·, ·) is linear in its inputs (y, a),

so that we can compute K̃eyGen(m̃sk, [y]2, [a]2) = [K̃eyGen(m̃sk,y, a)]2. This property is used in
the proof of Lemma 5.

Remark 2 (notation). We use subscripts and superscripts for indexing over multiple copies, and
never for indexing over positions or exponentiation. Concretely, the j’th ciphertext query in slot i
is xji .

Security. Theorem 1 and Theorem 2 below, together with the fact that one-SEL-SIM security
implies one-SEL-IND security, which itself implies many-SEL-IND security for a public-key FE,
such as (Setup,Enc,KeyGen) used in the construction presented in Fig. 3, implies the many-SEL-
IND security of the MIFE (Setup′,Enc′,KeyGen′).

Theorem 1 (one-SEL-IND security ofMIFE). Suppose the single-input FE (Setup,Enc,KeyGen,Dec)
is one-SEL-SIM secure, and that the Dk-MDDH assumption holds in G2. Then, the multi-input
FE (Setup′,Enc′,KeyGen′,Dec′) is one-SEL-IND-secure.

13

game cti: {di}i∈[n] in sky: z in sky: justification/remark

0 Enc(mski,x
β
i ‖zi) KeyGen(mski,yi‖r) z = 〈z1 + . . . + zn, r〉

one-SEL-IND

security game

1 Ẽnc(m̃ski) K̃eyGen(m̃ski,yi‖r, 〈xβi ‖zi,yi‖r〉) z = 〈z1 + . . . + zn, r〉
one-SEL-SIM

security of FE

2 Ẽnc(m̃ski) K̃eyGen(m̃ski,yi‖r, 〈xβi ,yi〉+ z̃i) z = z̃1 + . . . + z̃n Dk-MDDH

3 Ẽnc(m̃ski) K̃eyGen(m̃ski,yi‖r, z̃i) z = z̃1 + . . . + z̃n −
∑
i〈x

β
i ,yi〉 inf. theoretic

Fig. 4: Sequence of games for the proof of Theorem 1. Here, for any slot i ∈ [n], cti refers to the
challenge ciphertext computed by oracle Enc(i,x0

i ,x
1
i), di and z refers to the vectors computed by

the oracle KeyGen′(msk,y1‖ · · · ‖yn) as part of sky1‖···‖yn , and (S̃etup, Ẽnc, K̃eyGen) is the stateful
simulator for the one-SEL-SIM security of FE .

That is, we show that our multi-input FE is selectively secure when there is only a single challenge
ciphertext.

Proof (of Theorem 1). We proceed via a series of Gamei for i ∈ {0, . . . , 3}, described in Fig. 5.
The transitions are summarized in Fig. 4. Let A be a PPT adversary, and λ ∈ N be the security
parameter.

Game0: is the experiment one-SEL-INDMIFE (see Definition 5).

Game1: we replace (Setup,KeyGen,Enc) by the efficient simulator (S̃etup, K̃eyGen, Ẽnc), using the
one-SEL-SIM security of FE , via a hybrid argument across all slots i ∈ [n] (cf Lemma 4).

Lemma 4 (Game0 to Game1). There exists a PPT adversary B1 such that

Adv0(A)− Adv1(A) ≤ n · AdvFE,one-SEL-SIM (1λ,B1).

Proof. In Game1, we replace (Setup,Enc,KeyGen) by (S̃etup, Ẽnc, K̃eyGen), which is a PPT simulator
whose existence is ensured by the one-SEL-SIM security of (Setup,KeyGen,Enc) (see Definition 6).
A complete description of Games0 and Game1 is given in Fig. 5.

We use a hybrid argument, which involves hybrid Game0.` for ` ∈ {0, . . . , n}, defined in Fig. 6,
and we use Adv0,`(λ,A) to denote Pr[Game0.`(λ,A) = 1], where the probability is taken over the
random coins of A and Game0.`. Notice that Game0 and Game1 are identical to Game0.0 and
Game0.n, respectively. For any ` ∈ [n], we build a PPT adversary B0.` such that

Adv0.`−1(A)− Adv0.`(A) ≤ AdvFE,one-SEL-SIM (1λ,B0.`).

Adversary B0.` is described in Fig. 7.

14

Game0(1
λ,A):

β ←R {0, 1}, zi ←R Zkq
{xbi}i∈[n],b∈{0,1} ← A(1λ,Fn)

(mpki,mski)← Setup(1λ,Fn)

mpk := {mpki}i∈[n], msk := {mski, zi}i∈[n]
cti := Enc(mski,x

β
i ‖zi)

β′ ← AKeyGen′(msk,·) (mpk, (cti)i∈[n]
)

Output: 1 if β′ = β, 0 otherwise.

KeyGen′(msk,y1‖ · · · ‖yn):

r←R Zkq
di ← KeyGen (mski,yi‖r)

z := 〈z1 + · · ·+ zn, r〉
sky1‖···‖yn :=

({
[di]2

}
i∈[n], [r]2, [z]T

)
Return sky1‖···‖yn

Game1(1
λ,A):

β ←R {0, 1}, zi ←R Zkq
{xbi}i∈[n],b∈{0,1} ← A(1λ,Fn)(
m̃pki, m̃ski

)
← S̃etup(1λ,Fm+k,B

1)

mpk := {m̃pki}i∈[n]; msk := {m̃ski, zi}i∈[n]
cti := Ẽnc(m̃ski)

β′ ← AKeyGen′(msk,·) (mpk, (cti)i∈[n]
)

Output: 1 if β′ = β, 0 otherwise.

KeyGen′(msk,y1‖ · · · ‖yn):

r←R Zkq
di ← K̃eyGen

(
m̃ski,yi‖r, 〈xβi ‖zi,yi‖r〉

)
z := 〈z1 + · · ·+ zn, r〉
sky1‖···‖yn :=

({
[di]2

}
i∈[n], [r]2, [z]T

)
Return sky1‖···‖yn

Game2(1
λ,A):

β ←R {0, 1}
{xbi}i∈[n],b∈{0,1} ← A(1λ,Fn)(
m̃pki, m̃ski

)
← S̃etup(1λ,Fm+k,B

1)

mpk := {m̃pki}i∈[n]; msk := {m̃ski}i∈[n]
cti := Ẽnc(m̃ski)

β′ ← AKeyGen′(msk,·) (mpk, (cti)i∈[n]
)

Output: 1 if β′ = β, 0 otherwise.

KeyGen′(msk,y1‖ · · · ‖yn):

r←R Zkq ; z̃1, . . . , z̃n ←R Zq
di ← K̃eyGen

(
m̃ski,yi‖r, 〈xβi ,yi〉+ z̃i

)
z := z̃1 + · · ·+ z̃n

sky1‖···‖yn :=
({

[di]2
}
i∈[n], [r]2, [z]T

)
Return sky1‖···‖yn

Game3(1
λ,A):

β ←R {0, 1}
{xbi}i∈[n],b∈{0,1} ← A(1λ,Fn)(
m̃pki, m̃ski

)
← S̃etup(1λ,Fm+k,B

1)

mpk := {m̃pki}i∈[n]; msk := {m̃ski}i∈[n]
cti := Ẽnc(m̃ski)

β′ ← AKeyGen′(msk,·) (mpk, (cti)i∈[n]
)

Output: 1 if β′ = β, 0 otherwise.

KeyGen′(msk,y1‖ · · · ‖yn):

r←R Zkq ; z̃1, . . . , z̃n ←R Zq
di ← K̃eyGen

(
m̃ski,yi‖r, z̃i

)
z := z̃1 + · · ·+ z̃n −

∑
i〈x

β
i ,yi〉

sky1‖···‖yn :=
({

[di]2
}
i∈[n], [r]2, [z]T

)
Return sky1‖···‖yn

Fig. 5: Gamei for i ∈ {0, . . . , 3} for the proof of Theorem 1.

-Simulation of mpk: First, B0.` receives the challenge {xbi}i∈[n],b∈{0,1} from A. Then, it picks

β ←R {0, 1}, zi ←R Zkq for all i ∈ [n], and sends xβ` ‖z` to the experiment it is interacting with, which

15

Game0.`(1
λ,A):

{xbi}i∈[n],b∈{0,1} ← A(1λ,Fm+k,B
1)

β ←R {0, 1}(
m̃pki, m̃ski

)
← S̃etup(1λ,Fm+k,B

1), i = 1, . . . , `

(mpki,mski)← Setup(1λ,Fm+k,B
1), i = `+ 1, . . . , n

zi ←R Zkq , i = 1, . . . , n

mpk := {m̃pki}i=1,...,` ∪ {mpki}i=`+1,...,n

msk := {m̃ski, zi}i=1,...,` ∪ {mski, zi}i=`+1,...,n

cti := Ẽnc(m̃ski), for all i = 1, . . . , `

cti := Enc(mski,x
β
i ‖zi), for all i = `+ 1, . . . , n

β′ ← AKeyGen′(msk,·)(mpk, {cti}i∈[n]
)

Output :1 if β′ = β, 0 otherwise.

KeyGen′(msk,y1‖ · · · ‖yn):

r←R Zkq
di ← K̃eyGen

(
m̃ski,yi‖r, 〈xβi ‖zi,yi‖r〉

)
, for all i = 1, . . . , `

di ← KeyGen (mski,yi‖r) , for all i = `+ 1, . . . , n
z := 〈z1 + · · ·+ zn, r〉
sky1‖···‖yn :=

({
[di]2

}
i∈[n], [r]2, [z]T

)
return sky1‖···‖yn

Fig. 6: Description of (Setup′,Enc′,KeyGen′) defining game 0.` for the proof of Lemma 4.

is either REALFE or ˜IDEAL
FE

. Then, B0.` receives mpk′`, and a ciphertext ct, which are either of

the form mpk′` := mpk`, where (msk`,mpk`)← Setup(1λ,Fm+k,B
1), and ct := Enc(msk`,x

β
` ‖z`) if B0.`

is interacting with the experiment REALFE ; or of the form mpk′` := m̃pk`, where (m̃sk`, m̃pk`)←
S̃etup(1λ,Fm+k,B

1), ct := Ẽnc(m̃sk`) if B0.` is interacting with the experiment ˜IDEAL
FE

. It samples

(m̃pki, m̃ski) ← S̃etup(1λ,Fm+k,B
1) for i = 1, . . . , ` − 1, (mpki,mski) ← Setup(1λ,Fm+k,B

1) for i =

`+ 1, . . . , n, and returns mpk := (m̃pk1, . . . , m̃pk`−1,mpk′`,mpk`+1, . . . ,mpkn) to A.

-Simulation of cti: B0.` computes cti := Enc(mski,x
β
i ‖zi) for all i < ` (note that B0.` can do so

since it knows mski, xβi , and zi), and computes cti := Ẽnc(m̃ski) for all i > ` (again, B0.` can do so

since it knows m̃ski). Finally, B0.` sets ct` := ct and returns {cti}i∈[n] to A.

-Simulation of KeyGen′(msk, ·): For each query y1‖ . . . ‖yn that A makes to KeyGen′(msk, ·),
B0.` picks r←R Zkq , and computes di ← K̃eyGen(m̃ski,yi‖r, 〈xβi ‖zi,yi‖r〉) for i = 1, . . . , `− 1, di ←
KeyGen(mski,yi‖r) for i = `+1, . . . , n. Then it computes d` by querying the oracle it has access to,
which is KeyGen(msk, ·) in the experiment REALFE , orO(·) in the experiment IDEALFE , on input
y`‖r. Then, it computes z := 〈z1 + · · ·+ zn, r〉 and it returns sky1‖···‖yn :=

(
{[di]2}i∈[n], [r]2, [z]T

)
.

16

B0.`
(
1λ, {xbi}i∈[n],b∈{0,1}

)
:

-Simulation of mpk:
β ←R {0, 1}(
m̃pki, m̃ski

)
← S̃etup(1λ,Fm+k,B

1), for i < `

(mpki,mski)← Setup(1λ,Fm+k,B
1), i > `

zi ←R Zkq for i = 1, . . . , n

sends xβ` ‖z` to Exp, receives mpk′` and ct

mpk := (m̃pk1, . . . , m̃pk`−1,mpk′`,mpk`+1, . . . ,mpkn)
return mpk

-Simulation of cti:
For i < `: cti := Ẽnc(m̃ski)

For i > `: cti := Enc(mski,x
β
i ‖zi)

For i = `: cti := ct

-Simulation of KeyGen′(msk,y1‖ · · · ‖yn):
r←R Zkq
For i < `: di ← K̃eyGen

(
m̃ski,yi‖r, 〈xβi ‖zi,yi‖r〉

)
For i > `: di ← KeyGen (mski,yi‖r)
For i = `: di ← KeyGenO(yi‖r)
z := 〈z1 + · · ·+ zn, r〉
return

({
[di]2

}
i∈[n], r, [z]T

)
Fig. 7: Description of B0.`, adversary which distinguishes between case 1: Exp = REALFE ,
KeyGenO(·) = KeyGen(msk, ·), mpk′` := mpk`, where (msk`,mpk`) ← Setup(1λ,Fm+k,B

1), and

ct := Enc(msk`,x
β
` ‖z`); and case 2: Exp = ˜IDEAL

FE
, KeyGenO(·) = O(·), mpk′` := m̃pk`, where

(m̃sk`, m̃pk`)← S̃etup(1λ,Fm+k,B
1), ct := Ẽnc(m̃sk`).

Finally, B0.` outputs 1 if A outputs 1, 0 otherwise. It is clear that when B0.` interacts with the
experiment REALFE , it simulates the Game 0, whereas it simulates the Game 1 when it interacts
with IDEALFE . Therefore,

AdvFE,one-SEL-SIM (λ, 1λ,B0.`)

=
∣∣∣Pr
[
REALFE(1λ,B0.`) = 1

]
− Pr

[
IDEALFE(1λ,B0.`) = 1

]∣∣∣
= |Adv0.`−1(A)− Adv0.`(A)|

Summing up for all ` ∈ [n], we obtain the lemma. ut

Game2: we replace the values 〈zi, r〉 used by KeyGen′(msk, ·) to z̃i ←R Zq, for all slots i ∈ [n],
using the Dk-MDDH assumption in G2 (cf Lemma 5).

17

Lemma 5 (Game1 to Game2). There exists a PPT adversary B2 such that:

Adv1(A)− Adv2(A) ≤ AdvUk-mddhG2,B2 (λ) +
1

q − 1
.

Proof. Here, we switch {[r]2, [〈zi, r〉]2}i∈[n] used by KeyGen(msk, ·) to {[r]2, [z̃i]2}i∈[n], where

for all i ∈ [n], zi ←R Zkq , z̃1, . . . , z̃n ←R Zp and r ←R Zkq . This is justified by the fact that

[r>‖〈z1, r〉‖ · · · ‖〈zn, r〉]2 ∈ G1×(k+n)
2 is identically distributed to [r>U>]2 where U ←R Uk+n,k

(wlog. we assume that the upper k rows of U are full rank), which is indistinguishable from a

uniformly random vector over G1×(k+n)
2 , that is, of the form: [r‖z̃1‖ · · · ‖z̃n]2, according to the

Uk+n,k-MDDH assumption. To do the switch simultaneously for all calls to KeyGen, that is, to

switch {[rj]2, [〈zi, rj〉]2}i∈[n],j∈[Q0] to {[rj]2, [z̃ji]2}i∈[n],j∈[Q0], where Q0 denotes the number of calls

to KeyGen(msk, ·), and for all i ∈ [n], zi ←R Zkq , z̃
j
1, . . . , z̃

j
n ←R Zp and for all j ∈ [Q0], rj ←R Zkq ,

we use the Q0-fold Uk+n,k-MDDH assumption. Namely, we build a PPT adversary B′2 such that

Adv1(A)−Adv2(A) ≤ Adv
n-fold UQ0,k

-mddh
G2,B′2

(λ). This, together with Lemma 1 (Uk-MDDH ⇒ n-fold

UQ0,k-MDDH), implies the lemma.

-Simulation of mpk: Upon receiving an Q0-fold Uk+n,k-MDDH challenge(
PG, [U]2 ∈ G(k+n)×k

2 ,
[
h1‖ · · · ‖hQ0

]
2
∈ G(k+n)×Q0

2

)
,

and the challenge {xbi}i∈[n],b∈{0,1} from A, B′1 picks β ←R {0, 1}, samples (m̃pki, m̃ski) ←
S̃etup(1λ,Fm+k,B

1) for i ∈ [n], and returns mpk := (m̃pk1, . . . , m̃pkn) to A.

-Simulation of cti: B′2 computes cti := Ẽnc(m̃ski) for all i ∈ [n], which it can do since it knows

m̃ski, and returns {cti}i∈[n] to A.

-Simulation of KeyGen′(msk, ·): On the j’th query y1‖ · · · ‖yn of A to KeyGen′, B′2 sets [rj]2 :=
[hj]2, where hj ∈ Zkq denotes the k-upper components of hj ∈ Zk+nq , and for each i ∈ [n], computes

[di]2 := [K̃eyGen(m̃ski,yi‖rj , 〈xβi ,yi〉 + hjk+i)]2, where hjk+i denotes the k + i’th coordinate of the

vector hj ∈ Zk+np . Here we rely on the fact that K̃eyGen(m̃sk, ·, ·) is linear in its inputs (y, a), so that

we can compute K̃eyGen(m̃sk, [y]2, [a]2) = [K̃eyGen(m̃sk,y, a)]2. Note that when
[
h1‖ · · · ‖hQ0

]
2

is

a real MDDH challenge, B′2 simulate Game1, whereas it simulates Game2 when
[
h1‖ · · · ‖hQ0

]
2

is

uniformly random over G(k+n)×Q0

1 . ut

Game3: here the values di for i ∈ [n], and z, computed by KeyGen′(msk, ·), are of the form:

di ← K̃eyGen
(
m̃ski,yi‖r, z̃i

)
, and z := z̃1 + · · · + z̃n −

∑
i〈x

β
i ,yi〉 . In Lemma 6, we prove that

Game3 and Game2 are perfectly indistinguishable, using a statistical argument that crucially relies
on the fact that Game3 and Game2 are selective. In Lemma 7, we prove that no adversary can win
Game3, using the restriction on the queries to KeyGen′(msk, ·) and the challenge {xbi}i∈[n] imposed
by the ideal functionality.

18

Lemma 6 (Game2 to Game3). Adv2(A) = Adv3(A).

Proof. Here, we use the fact that for all y1‖ · · · ‖yn ∈ (Zmq)n, for all {xbi ∈ Zmq }i∈[n],b∈{0,1}, all β ∈

{0, 1}, the following are identically distributed: {z̃i}i∈[n] and {z̃i − 〈xβi ,yi〉 }i∈[n], where z̃i ←R Zq
for all i ∈ [n].

For each query y1‖ · · · ‖yn, KeyGen′(msk,y1‖ · · · ‖yn) picks values z̃i ←R Zq for i ∈ [n] that are
independent of y1‖ · · · ‖yn and the challenge {xbi ∈ Zmq }i∈[n],b∈{0,1} (note that here we crucially rely
on the fact the Game2 and Game3 are selective), therefore, using the previous fact, we can switch z̃i

to z̃i− 〈xβi ,yi〉 without changing the distribution of the game. This way, KeyGen′(msk,y1‖ · · · ‖yn)

computes di ← K̃eyGen(m̃ski,yi‖r, z̃i) for all i ∈ [n], and z := z̃1 + . . . + z̃n −
∑n

i=1〈x
β
i ,yi〉, as in

Game3.

ut

Lemma 7 (Game3). Adv3(A) = 0.

Proof. We use the fact that for all i ∈ [n], the query (i,x0
i ,x

1
i) to Enc′ (recall that there can be

at most one query per slot i ∈ [n]), and for all queries y1‖ · · · ‖yn to KeyGen′, by definition of the
security game, we have:

n∑
i=1

〈x0
i ,yi〉 =

n∑
i=1

〈x1
i ,yi〉.

Therefore, for each call to KeyGen(msk, ·), the value z, which is of the form z :=
∑

i z̃i−
∑

i〈x
β
i ,yi〉,

is independent of β. Since the challenge ciphertext and the public key are also independent of β,
we have Adv3(A) = 0. ut

Summing up, we proved that for all security parameter λ ∈ N and all PPT adversaries A, the
following holds.

– In Lemma 4, we show that there exists a PPT adversary B1 such that Adv0(A) − Adv1(A) ≤
n · AdvFE,one-SEL-SIM (1λ,B1).

– In Lemma 5, we show that there exists a PPT adversary B2 such that Adv1(A) − Adv2(A) ≤
AdvUk-mddhG2,B2 (λ) + 1

q−1 .

– In Lemma 6, we show that Adv2(A) = Adv3(A).

– In Lemma 7, we show that Adv3(A) = 0.

Putting everything together, we obtain:

Adv0(A) ≤ n · AdvFE,one-SEL-SIM (1λ,B0) + AdvUk-mddhG2,B2 (λ) +
1

q − 1
.

By Definition 6, Adv0(A) = AdvMIFE,one-SEL-IND(1λ,A). Therefore, by the one-SEL-SIM security
of (Setup,Enc,KeyGen) and the Dk-MDDH assumption in G2, AdvMIFE,one-SEL-IND(1λ,A) is a
negligible function of λ. ut

19

Remark 3 (decryption capabilities). As a sanity check, we note that the simulated secret keys will
correctly decrypt a simulated ciphertext. However, unlike schemes proven secure via the standard
dual system encryption methodology [26], a simulated secret key will incorrectly decrypt a normal
ciphertext. This is not a problem because we are in the private-key setting, so a distinguisher will
not be able to generate normal ciphertexts by itself.

Remark 4 (why a naive argument is inadequate). We cannot afford to do a naive hybrid argument
across the n slots for the challenge ciphertext as it would introduce extraneous restrictions on
the adversary’s queries. Concretely, suppose we want to use a hybrid argument to switch from
encryptions of x0

1,x
0
2 in game 0 to those of x1

1,x
1
2 in game 2 with an intermediate hybrid that uses

encryptions of x1
1,x

0
2 in Game1. To move from game 0 to game 1, the adversary’s query y1‖y2

must satisfy 〈x0
1‖x0

2,y1‖y2〉 = 〈x1
1‖x0

2,y1‖y2〉, which implies the extraneous restriction 〈x0
1,y1〉 =

〈x1
2,y1〉.

As described in the proof above, we overcome the limitation by using simulation-based security.
Note that what essentially happens in the first slot in our proof is as follows (for k = 1, that is,
DDH): we switch from Enc(msk1,x

0
1‖z1) to Enc(msk1,x

1
1‖z1) while giving out a secret key which

contains KeyGen(msk1,y1‖r1), [r1]2. Observe that

〈x0
1‖z1,y1‖r1〉 = 〈x0

1,y1〉+ z1r
1, 〈x1

1‖z1,y1‖r1〉 = 〈x1
1,y1〉+ z1r

1

may not be equal, since we want to avoid the extraneous restriction 〈x0
1,y1〉 = 〈x1

2,y1〉. This means
that one-SEL-IND security does not provide any guarantee that the ciphertexts are indistinguish-
able. However, one-SEL-SIM security does provide such a guarantee, because

([〈x0
1,y1〉+ z1r

1]2, [r
1]2) ≈c ([〈x1

1,y1〉+ z1r
1]2, [r

1]2)

via the DDH assumption in G2. Since the outcomes of the decryption are computationally indistin-
guishable, the output of the simulated ciphertext would also be computationally indistinguishable.

Theorem 2 (many-SEL-IND security ofMIFE). Suppose the single-input FE (Setup,Enc,KeyGen,Dec)
is many-SEL-IND-secure and the multi-input FE (Setup′,Enc′,KeyGen′,Dec′) is one-SEL-IND-
secure. Then, the multi-input FE (Setup′,Enc′,KeyGen′,Dec′) is many-SEL-IND-secure.

That is, we show that our multi-input FE is selectively secure in the setting with multiple challenge
ciphertexts (and since our multi-input FE is a private key scheme, one-SEL-IND security does not
immediately imply many-SEL-IND security).

Proof overview.

– We first switch encryptions of x1,0
1 , . . . ,x1,0

n to those of x1,1
1 , . . . ,x1,1

n in a “single shot”, and for

the remaining ciphertexts, we switch from an encryption of xj,0i = (xj,0i −x1,0
i) + x1,0

i to that of

(xj,0i −x1,0
i)+x1,1

i . This basically follows from the setting where there is only a single ciphertext
in each slot.

– Then, we apply a hybrid argument across the slots to switch from encryptions of

(x2,0
i − x1,0

i) + x1,1
i , . . . , (xQi,0i − x1,0

i) + x1,1
i

to those of
(x2,1
i − x1,1

i) + x1,1
i , . . . , (xQi,1i − x1,1

i) + x1,1
i .

20

game ctji : justification/remark

0 Enc′(msk, i,xj,0i − x1,0
i + x1,0

i)
many-SEL-IND

security game

1 Enc′(msk, i,xj,0i − x1,0
i + x1,1

i) one-SEL-IND security of MIFE

1.`
Enc′(msk, i, xj,1i − x1,1

i + x1,1
i) for i ≤ `

Enc′(msk, i, xj,0i − x1,0
i + x1,1

i) for i > `
many-SEL-IND security of FE

2 Enc′(msk, i, xj,1i) information theoretic

Fig. 8: Sequence of games for the proof of Theorem 2. Here, for any slot i ∈ [n], and j ∈ [Qi], ct
j
i

refers to the challenge ciphertext computed at the oracle call: Enc′(i,xj,0i ,xj,1i).

As described earlier, to carry out the latter hybrid argument, the queries must satisfy the constraint

〈(xj,0i − x1,0
i) + x1,1

i ,yi〉 = 〈(xj,1i − x1,1
i) + x1,1

i ,yi〉 ⇐⇒ 〈xj,0i − x1,0
i ,yi〉 = 〈xj,1i − x1,1

i ,yi〉

where the latter is already imposed by the ideal functionality.

Proof (of Theorem 2). We proceed via a series of Gamei, for i ∈ {0, 1, 2}, and Game1.` for ` ∈
{0, . . . , n}, described in Fig. 9. The transitions are summarized in Fig. 8. Let A be a PPT adversary,
and λ ∈ N be the security parameter. For all i ∈ {0, 1, 2, 1.0, . . . , 1.n}, we define Advi(A) :=
Pr[Gamei(1

λ,A) = 1], where the probability is taken over the random coins of A and Gamei.

Game0: is the experiment many-SEL-INDMIFE0 (see Definition 5).

Game1: we change the challenge ciphertexts to Enc′(msk, i,xj,0i −x1,0
i + x1,1

i), for all slots i ∈ [n],

and all j ∈ [Qi], using the one-SEL-IND security of MIFFE (cf Lemma 8).

Lemma 8 (Game0 to Game1). There exists a PPT adversary B1 such that

|Adv0(A)− Adv1(A)| ≤ AdvMIFE,one-SEL-IND(1λ,B1).

Proof. In Game 1, which is described in Fig. 9, we replace Enc′(msk, i,xj,0i) = Enc′(msk, i, x1,0
i +

(xj,0i − x1,0
i)) with Enc′(msk, i, x1,1

i + (xj,0i − x1,0
i)) for all i ∈ [n], j ∈ [Qi]. This is justified using

the following properties:

– one-SEL-IND security of (Setup′,Enc′,KeyGen′,Dec′);

– given xj,0i − x1,0
i , we can maul an encryption of x1,β

i under Enc′ (corresponding to challenge

ciphertext in slot i in the one-SEL-IND security game) into that of x1,β
i + (xj,0i − x1,0

i) (corre-
sponding to challenge ciphertexts in slots i in Gameβ).

We build B1, a PPT adversary such that for all β ∈ {0, 1}, when B1 interacts with the experiment
one-SEL-INDMIFEβ (see Definition 5), it simulates the Gameβ to A.

21

Game0(1
λ,A):

{xj,bi }i∈[n],j∈[Qi],b∈{0,1} ← A(1λ,Fm,Bn)

(msk,mpk)← Setup′(1λ,Fm,Bn)

ctji := Enc′(msk, i,xj,0i − x1,0
i + x1,0

i)

β′ ← A
(
mpk, {ctji}i∈[n],j∈[Qi]

)
Return β′.

KeyGen′(msk,y1‖ · · · ‖yn):

return sky1‖···‖yn

Game1(1
λ,A):

{xj,bi }i∈[n],j∈[Qi],b∈{0,1} ← A(1λ,Fm,Bn)

(msk,mpk)← Setup′(1λ,Fm,Bn)

ctji := Enc′(msk, i,xj,0i − x1,0
i + x1,1

i)

β′ ← A
(
mpk, {ctji}i∈[n],j∈[Qi]

)
Return β′.

KeyGen′(msk,y1‖ · · · ‖yn):

return sky1‖···‖yn

Game1.`(1
λ,A):

{xj,bi }i∈[n],j∈[Qi],b∈{0,1} ← A(1λ,Fm,Bn)

(msk,mpk)← Setup′(1λ,Fm,Bn)

ctji := Enc′(msk, i, xj,1i − x1,1
i + x1,1

i) for i ≤ `

ctji := Enc′(msk, i, xj,0i − x1,0
i + x1,1

i) for i > `

β′ ← A
(
mpk, {ctji}i∈[n],j∈[Qi]

)
Return β′.

KeyGen′(msk,y1‖ · · · ‖yn):

return sky1‖···‖yn

Game2(1
λ,A):

{xj,bi }i∈[n],j∈[Qi],b∈{0,1} ← A(1λ,Fm,Bn)

(msk,mpk)← Setup′(1λ,Fm,Bn)

ctji := Enc′(msk, i, xj,1i − x1,1
i + x1,1

i)

β′ ← A
(
mpk, {ctji}i∈[n],j∈[Qi]

)
Return β′.

KeyGen′(msk,y1‖ · · · ‖yn):

return sky1‖···‖yn

Fig. 9: Gamei for i ∈ {0, 1, 2}, and Game1.` where ` ∈ {0, . . . , n} for the proof of Theorem 2. The
description of KeyGen′ is omitted since its simulation does not change throughout the proof.

-Simulation of mpk: B1 gets the challenge {xj,bi }i∈[n],j∈[Qi],b∈{0,1} from A. It sends the pair of vec-

tors (x1,0
1 ‖ · · · ‖x

1,0
n ,x1,1

1 ‖ · · · ‖x
1,1
n) as its selective challenge to the experiment one-SEL-INDMIFEβ ,

to get back mpk, which it sends to A, and the challenge ciphertext C1‖ · · · ‖Cn corresponding to

Enc′(msk, 1,x1,β
1)‖ · · · ‖Enc′(msk, n,x1,β

n).

-Simulation of ctji : For each slot i ∈ [n], B1 sets ct1i := Ci. Then, B1 uses the fact that the single-
input inner-product scheme is public-key and linearly homomorphic to generate all the remaining
ciphertexts ctji for i ∈ [n], j ∈ {2, . . . , Qi} by combining Ci = Enc′(msk, i,x1,β

i) = Enc(mski,x
1,β
i ‖zi)

with Enc(mski,x
j,0
i −x1,0

i ‖0) (which can be done using mpki). In particular, each ctji will correspond

to Enc′(msk, i,x1,β
i + xj,0i − x1,0

i), which matches the challenge ciphertexts in Gameβ.

-Simulation of KeyGen′(msk, ·): B1 uses its KeyGen′ oracle to simulate the corresponding queries
by A.

22

Finally, B1 outputs 1 if A outputs 1, 0 otherwise. It is clear that for all β ∈ {0, 1}, when B1 interacts
with one-SEL-INDMIFEβ , it simulates Game β to A. Therefore,

AdvMIFE,one-SEL-IND(λ,B1)

=
∣∣∣Pr
[
one-SEL-INDMIFE0 (1λ,B1) = 1

]
− Pr

[
one-SEL-INDMIFE1 (1λ,B1) = 1

]∣∣∣
= |Adv0(A)− Adv1(A)|

ut

Game2: we change the challenge ciphertexts to Enc′(msk, i, xj,1i − x1,1
i +x1,1

i), for all slots i ∈ [n],

and all j ∈ [Qi], using the many-SEL-IND security of FE , via a hybrid argument across all slots
i ∈ [n] (cf Lemma 9).

Lemma 9 (Game1 to Game2). There exists a PPT adversary B2 such that |Adv1(A) −
Adv2(A)| ≤ n · AdvFE,many-SEL-IND(λ,B2).

Proof. In Game2, which is described in Fig. 9, we replace Enc(mski,x
1,1
i + (xj,0i − x1,0

i) ‖zi) with

Enc(mski,x
1,1
i + (xj,1i − x1,1

i) ‖zi) = Enc(mski,x
j,1
i ‖zi), for all i ∈ [n], j ∈ [Qi]. This is justified

using the following properties:

– many-SEL-IND security of (Setup,Enc,KeyGen,Dec);

– given x1,1
i and zi, we can maul an encryption of (xj,βi − x1,β

i)‖0 under Enc (corresponding to

challenge ciphertexts in the many-SEL-IND security game) into that of x1,1
i + (xj,βi − x1,β

i) ‖zi
(corresponding to challenge ciphertexts in Gameβ+1);

– the fact that for each key query y1‖ . . . ‖yn and all r, z, we have

〈x1,1
i + xj,0i − x1,0

i ‖z,yi‖r〉 = 〈x1,1
i + xj,1i − x1,1

i ‖z,yi‖r〉.

The latter is equivalent to 〈xj,0i − x1,0
i ,yi〉 = 〈xj,1i − x1,1

i ,yi〉, which follows from the restriction
in Section 3.2.

In more details, we use a hybrid argument, which involves hybrid Games1.` for ` ∈ {0, . . . , n},
defined in Fig. 9. Notice that Game1 and Game2 are identically distributed than Game1.0 and
Game1.n, respectively. For all ` ∈ [n], we build a PPT adversary B1.` such that for all β ∈ {0, 1},
when B1.` interacts with the experiment many-SEL-INDFEβ (see Definition 5), it simulates the
Game1.`−1+β to A.

-Simulation of mpk: First, B1.` receives the challenge {xj,bi }i∈[n],j∈[Qi],b∈{0,1} from A. It picks

zi ←R Zkq for all i ∈ [n], and sends the vectors {xj,0` ‖z`,x
j,1
` ‖z`}j∈[Q`] as its selective challenge to the

experiment many-SEL-INDFEβ , to get back mpk`, and the ciphertexts Cj := Enc(msk`,x
j,β
` ‖z`),

for all j ∈ [Q`]. Then, it samples (mski,mpki) ← Setup(1λ,Fm+k,B
1) for i ∈ [n], i 6= `, and it sends

mpk := (mpk1, . . . ,mpkn) to A.

23

-Simulation of ctji : B1.` computes ctji := Enc(mski,x
j,1
i ‖zi) for all i < `, and ctji := Enc(mski,x

j,0
i −

x1,0
i + x1,1

i ‖zi) for all i > ` (note that B1.` can do so since it knows mski and zi for all i 6= `). Then,

for all j ∈ [Q`], B1.` uses Cj := Enc(msk`,x
j,β
` ‖z`) together with mpk` and (−x1,0

` + x1,1
`)‖0 to

generate ctj` := Enc(msk`,x
j,β
` −x1,0

` +x1,1
` ‖zi). This is possible since the single-input inner-product

scheme is public-key and linearly homomorphic. It returns {ctji}i∈[n],j∈[Qi] to A.

-Simulation of KeyGen′(msk, ·): For each query y1‖ . . . ‖yn that A makes to KeyGen′(msk, ·),
B1.` picks r ←R Zkq , and it computes di ← KeyGen(mski,yi‖r) for i ∈ [n], i 6= `. To compute
d`, it queries the oracle KeyGen(msk, ·) on input y`‖r. It computes z = 〈z1‖ . . . ‖zn, r〉 and sends
sky1‖···‖yn :=

(
{[di]2}i∈[n], [r]2, [z]T

)
to A.

Finally, B1.` outputs 1 if A outputs 1, 0 otherwise. It is clear that for all β ∈ {0, 1}, when B1.`
interacts with many-SEL-INDMIFEβ , it simulates Game1.`−1+β to A. Therefore,

AdvMIFE,many-SEL-IND(λ,B1.`)

=
∣∣∣Pr
[
many-SEL-INDFE0 (1λ,B1.`) = 1

]
− Pr

[
many-SEL-INDFE1 (1λ,B1.`) = 1

]∣∣∣
= |Adv1.`−1(A)− Adv1.`(A)|

Summing up for all ` ∈ [n], we obtain the lemma. ut

Summing up, we proved that for all PPT adversaries A and all λ ∈ N, the following holds.

– In Lemma 8, we build a PPT adversary B1 such that |Adv0(A)−Adv1(A)| ≤ AdvMIFE,one-SEL-IND(1λ,B1).
– In Lemma 9, we build a PPT adversary B2 such that |Adv1(A) − Adv2(A)| ≤ n ·

AdvFE,many-SEL-IND(1λ,B2), using a hybrid argument across all slots i ∈ [n].

Putting everything together, we obtain:

|Adv0(A)− Adv2(A)| ≤ AdvMIFE,one-SEL-IND(1λ,B1) + n · AdvFE,many-SEL-IND(1λ,B2).

By Definition 5, we have AdvMIFE,many-SEL-IND(λ,A) = |Adv0(A) − Adv2(A)|. Therefore,
by the one-SEL-IND security of (Setup′,KeyGen′,Enc′) and the many-SEL-IND security of
(Setup,KeyGen,Enc), AdvMIFE,many-SEL-IND(λ,A) is a negligible function of λ. ut

4.2 Putting everything together

In Fig. 10 we spell out the details of the scheme in the previous section with a concrete instan-
tiation of the underlying single-input inner-product scheme, which is provided for completeness in
Fig. 15, and whose one-SEL-SIM security is proven in Appendix A, Theorem 5.

5 Achieving Adaptive Security

In this section, we prove that the generic construction of MIFE in Fig. 3 instantiated with the
single-input FE in Fig. 15 is many-AD-IND secure. A self-contained description is given in Fig. 10.

24

Setup(G,Fm,Bn):

A1, . . . ,An ←R Dk
W1, . . . ,Wn ←R Zm×(k+1)

q

V1, . . . ,Vn ←R Zk×(k+1)
q

z1, . . . , zn ←R Zkq
mpk :=

{
[Ai]1, [WiAi]1

}
i∈[n]

msk :=
{

Wi,Vi, zi
}
i∈[n]

return (mpk,msk)

Enc(msk, i,xi ∈ Zmq):

pick si ←R Zkq ;
([ci]1, [c

′
i]1, [c

′′
i]1) := ([Aisi]1, [xi + WiAisi]1, [zi + ViAisi]1)

return ([ci]1, [c
′
i]1, [c

′′
i]1)

KeyGen(msk,y1‖ · · · ‖yn ∈ (Zmq)n):

pick r←R Zkq
di := W>

i yi + V>i r
z := 〈z1 + · · ·+ zn, r〉
return

({
[di]2

}
i∈[n], [r]2, [z]T

)
Dec

(({
[di]2

}
i∈[n], [r]2, [z]T

)
,y1‖ · · · ‖yn,

{
[ci]1, [c

′
i]1, [c

′′
i]1
}
i∈[n]

)
:

out←
(∑

i e([c
′
i]1, [yi]2) · e([c′′i]1, [r]2)/e([ci]1, [di]2)

)
/[z]T

return discrete log of out

Fig. 10: Our private-key MIFE scheme for the class Fm,Bn (self-contained description). The scheme
is many-AD-IND-secure under the Dk-MDDH assumption in G1 and G2. We use e([X]1, [Y]2) to
denote [X>Y]T .

Security definitions. Here we recall the adaptive security notions.

Definition 7 (xx-AD-IND-secure MIFE). For every multi-input functional encryptionMIFE
for F , every stateful adversary A, every security parameter λ ∈ N, and every xx ∈ {one,many},
the advantage of A defined as

AdvMIFE,xx-AD-IND(λ,A)

=
∣∣∣Pr
[
xx-AD-INDMIFE0 (1λ,A) = 1

]
− Pr

[
xx-AD-INDMIFE1 (1λ,A) = 1

]∣∣∣
=
∣∣∣1− 2 · Pr

[
xx-AD-INDMIFE(1λ,A) = 1

]∣∣∣
where the experiments are defined as follows:

25

Experiment xx-AD-INDMIFEβ (1λ,A): Experiment xx-AD-INDMIFE(1λ,A):

β ←R {0, 1}
(mpk,msk)← Setup(1λ,Fn) (mpk,msk)← Setup(1λ,Fn)

β′ ← AKeyGen(msk,·),Enc(·,·,·) (mpk) β′ ← AKeyGen(msk,·),Enc(·,·,·) (mpk)
Output: β′ Output: 1 if β′ = β, 0 otherwise.

where Enc is an oracle that on input (i, x0i , x
1
i) outputs Enc(msk, i, xβi), and where A only makes

queries f to KeyGen(msk, ·) satisfying

f(xj1,01 , . . . , xjn,0n) = f(xj1,11 , . . . , xjn,1n)

for all j1, . . . , jn ∈ [Q1]×· · ·× [Qn]. For xx = one, we require additionally that A queries Enc(i, ·, ·)
at most one per slot i ∈ [n], that is, Qi = 1.

A private key multi-input functional encryption MIFE for F is xx-AD-IND-secure if for
every PPT adversary A, there exists a negligible function negl such that for every λ ∈ N:
AdvMIFE,xx-AD-IND(λ,A) = negl(λ).

Security. The security proof proceeds in three steps: first (Theorem 3), we show that the MIFE in
Fig. 10 is one-AD-IND secure, that is, it is adaptively secure when there is only a single challenge
ciphertext. Then (Theorem 4), we show that the generic construction of MIFE in Fig. 3 is many-
AD-IND secure, if the underlying single-input FE is many-AD-IND secure, and the MIFE is one-
AD-IND secure. Finally (Appendix A), we give the proof that the single-input FE in Fig. 15 is
many-AD-IND secure. Putting everything together, we obtain many-AD-IND security of the MIFE
in Fig. 10.

Theorem 3 (one-AD-IND security of MIFE). Suppose the Dk-MDDH assumption holds in
G1 and G2. Then, the multi-input FE in Fig. 10 is one-AD-IND-secure.

That is, we show that our multi-input FE is adaptively secure when there is only a single challenge
ciphertext.

26

Game ci c′i c′′i {di}i∈[n]: z: justification/remark reference

0 Asi Wici + xβi Vici + zi W>
i yi + Vir 〈z1 + . . . + zn, r〉

one-AD-IND

security game
Definition 7

1 Asi + u Wici + xβi Vici + zi W>
i yi + Vir 〈z1 + . . . + zn, r〉 Dk-MDDH in G1 Lemma 10

2 Asi + u Wici + xβi Vici W>
i yi + Vir− a⊥〈zi, r〉 〈z1 + . . . + zn, r〉 inf. theoretic Lemma 11

3 Asi + u Wici + xβi Vici W>
i yi + Vir− a⊥z̃i

∑
i z̃i Dk-MDDH in G2 Lemma 12

3? Asi + u Wici + xβi Vici W>
i yi + Vir− a⊥z̃i

∑
i z̃i selective variant Lemma 13

4? Asi + u Wici Vici W>
i yi + Vir− a⊥z̃i

∑
i z̃i −

∑
i〈x

β ,yi〉 inf. theoretic Lemma 14, Lemma 15

Fig. 11: Sequence of games for the proof of Theorem 3. Here, for any slot i ∈ [n], ([ci]1, [c
′
i]1, [c

′′
i]1) is the challenge ciphertext

computed by Enc(i,x0
i ,x

1
i); [di]2 and [z]T are part of the sky1,‖···‖yn computed by KeyGen(msk,y1‖ · · · ‖yn). We use u ←R Zk+1

q \
Span(A) and a⊥ ←R Zk+1

q such that A>a⊥ = 0 and 〈u,a⊥〉 = 1. In the last column, ad. (resp. sel.) refers to the fact that
the game is adaptive (resp. selective). To analyze Game3, we consider the selective variant of the game: Game3? , prove using
an information-theoretic argument (via Game4?) that the advantage is 0, and deduce that the advantage in Game3 is also 0 via
complexity leveraging. Note that both Game3? and Game4? are selective.27

Gamei, for i ∈
{

0 , 1, 2, 3 , 3?, 4?
}

:

{xbi}i∈[n] ← A(1λ,F)

A←R Z(k+1)×k
q , u←R Zk+1

p \ Span(A),a⊥ ←R Zk+1
p s.t. A>a⊥ = 0 and u>a⊥ = 1

For all i ∈ [n]: Wi ←R Zm×(k+1)
q , Vi ←R Zk×(k+1)

q , zi ←R Zkq , β ←R {0, 1},
cti := Enc(i,x0

i ,x
1
i)

msk :=
{

Wi,Vi, zi
}
i∈[n], mpk :=

(
[A]1, {[A>Wi]1, [A

>Vi]1}i∈[n]
)

β′ ← AKeyGen(msk,·), Enc(·, ·, ·) (
mpk, {cti}i∈[n]

)
Output: 1 if β′ = β, 0 otherwise.

Enc(i,x0
i ,x

1
i): 0, 1, 2,3,3?, 4?

si ←R Zkq ;[ci]1 := [Asi]1 + [u]1

[c′i]1 := Wi[ci]1 + [xβi]1; Wi[ci]1

[c′′i]1 := Vi[ci]1 + [zi]1; [c′′i]1 := Vi[ci]1

Return cti := ([ci]1, [c
′
i]1, [c

′′
i]1)

KeyGen(msk,y1‖ · · · ‖yn ∈ (Zmq)n): 0,1, 2 , 3,3?, 4?

r←R Zkp; z̃1, . . . , z̃n ←R Zp

di := W>
i yi + V>i r− a⊥〈zi, r〉 − a⊥z̃i

z := 〈z1 + . . .+ zn, r〉; z :=
∑

i z̃i −
∑

i〈x
β
i ,yi〉

Return
(
{[di]2, }i∈[n], [r]2, [z]T

)
Fig. 12: Gamesi, for i ∈ {0, . . . , 3, 3?, 4?} for the proof of Theorem 3. In each procedure, the compo-
nents inside a solid (dotted, gray) frame are only present in the games marked by a solid (dotted,
gray) frame.

Proof (of Theorem 3). We proceed via a series of Gamei for i ∈ {0, . . . , 3, 3?, 4?} described in Fig. 12.
Let A be a PPT adversary, and λ ∈ N be the security parameter. For all i ∈ {0, . . . , 3, 3?, 4?}, we
define Advi(A) := Pr[Gamei(1

λ,A) = 1], where the probability is taken over the random coins of
A and Gamei. The transitions are summarized in Fig. 11.

Game0: is the experiment one-AD-INDMIFE(1λ,A) (see Definition 7). In particular, Adv0(A) =
AdvMIFE,one−AD−IND(λ,A).

28

Game1: we change the distribution of the vectors [ci]1 computed by Enc(i, ·, ·), for all slots i ∈ [n],
using the Dk-MDDH assumption (cf Lemma 10).

Lemma 10 (Game0 to Game1). There exists a PPT adversary B1 such that:

Adv0(A)− Adv1(A) ≤ AdvDk-mddhG1,B1 (λ) +
1

q
.

Proof (of Lemma 10). Here, we switch {[A]1, [Asi]1}i∈[n] computed by Enc(i, ·, ·) to {[A]1, [Asi +

u]1}i∈[n], where A←R Z(k+1)×k
q , u←R Zk+1

q \Span(A), and for all i ∈ [n], si ←R Zkq . This change
is justified by the facts that:

1. The distributions: {si}i∈[n] and {si + s}i∈[n], where s ←R Zkq and for all i ∈ [n], si ←R Zkq , are
identically distributed.

2. By the Dk-MDDH assumption, we can switch ([A]1, [As]1) to ([A]1, [u]1), where A ←R Dk,
s←R Zkq , and u←R Zk+1

q .

3. The uniform distribution over Zk+1
q and Zk+1

q \ Span(A) are 1
q -close, for all A of rank k.

Combining these three facts, we obtain a PPT adversary B′0 such that

Adv0(A)− Adv1(A) ≤ AdvDk-mddhG1,B′0
(λ) +

1

q
.

Now we describe the adversary B1. Upon receiving an MDDH challenge (PG, [A]1, [h]1), B1 picks

W1, . . . ,Wn ←R Zm×(k+1)
q , V1, . . . ,Vn ←R Zk×(k+1)

q , z1, . . . , zn ←R Zkq , thanks to which it can
compute mpk and simulate the oracle KeyGen(msk, ·), as described in Fig. 12. To simulate Enc(i, ·, ·),
B1 picks si ←R Zkp, sets [ci]1 := [A]1si+[h]1, and computes the rest of the challenge ciphertext from
[ci]1. Note that when [h]1 is a real MDDH challenge, this simulates Game0, whereas it simulates
Game1 when [h]1 is uniformly random over Gk+1

1 (within 1
q statistical distance). ut

Game2: here, for all slots i ∈ [n], we change the way the vectors [c′′i]1 and [di]2 are computed,
respectively, by Enc(i, ·, ·) and KeyGen(msk, ·), using an information theoretic argument. The point
is to make it possible to simulate Game2 only knowing [zi]2 (and not [zi]1), which will be useful
later, to use the MDDH assumption on [zi]2, in G2.

Lemma 11 (Game 1 to 2). Adv1(A) = Adv2(A).

Proof. We argue that Game 1 and 2 are the same, using the fact that for all A ∈ Z(k+1)×k
q ,

u ∈ Zk+1
q \ Span(A), and all a⊥ ∈ Zk+1

q such that A>a⊥ = 0 and (a⊥)>u = 1, the following
distributions are identical:

{Vi, zi}i∈[n] and {Vi − zi(a
⊥)> , zi}i∈[n],

29

where for all i ∈ [n], Vi ←R Zk×(k+1)
q , and zi ←R Zkq . This is the case because the matrices Vi are

picked uniformly, independently of the vectors zi. This way, we obtain

di := W>
i yi +

(
V>i − a⊥z>i

)
r = V>i r− a⊥z>i r

and

[c′′i]1 :=
[(

Vi − zi(a
⊥)>

)(
Asi + u

)]
1

+ [zi]1

=
[
Vi

(
Asi + u

)]
1
−
[
zi(a

⊥)>u
]
1

+ [zi]1

=
[
Vi

(
Asi + u

)]
1

where we use the fact that (a⊥)>u = 1 is the last equality. This corresponds to Game2. ut

Game3: we use the Dk-MDDH assumption to switch simultaneously for all i ∈ [n] the values
[〈zi, r〉]2 computed by KeyGen(msk, ·), to uniformly random values over G2. This relies on the fact
that it is not necessary to know [zi]1 to simulate Game2 or Game3.

Lemma 12 (Game 2 to 3). There exists a PPT adversary B3 such that:

Adv2(A)− Adv3(A) ≤ AdvUk-mddhG2,B3 (λ) +
1

q − 1
.

Proof. Here, we switch {[r]2, [〈zi, r〉]2}i∈[n] used by KeyGen(msk, ·) to {[r]2, [z̃i]2}i∈[n], where

for all i ∈ [n], zi ←R Zkq , z̃1, . . . , z̃n ←R Zp and r ←R Zkq . This is justified by the fact that

[r>‖〈z1, r〉‖ · · · ‖〈zn, r〉]2 ∈ G1×(k+n)
2 is identically distributed to [r>U>]2 where U ←R Uk+n,k

(wlog. we assume that the upper k rows of U are full rank), which is indistinguishable from a

uniformly random vector over G1×(k+n)
2 , that is, of the form: [r‖z̃1‖ · · · ‖z̃n]2, according to the

Uk+n,k-MDDH assumption. To do the switch simultaneously for all calls to KeyGen, that is, to

switch {[rj]2, [〈zi, rj〉]2}i∈[n],j∈[Q0] to {[rj]2, [z̃ji]2}i∈[n],j∈[Q0], where Q0 denotes the number of calls

to KeyGen(msk, ·), and for all i ∈ [n], zi ←R Zkq , z̃
j
1, . . . , z̃

j
n ←R Zp and for all j ∈ [Q0], rj ←R Zkq ,

we use the Q0-fold Uk+n,k-MDDH assumption. Namely, we build a PPT adversary B′3 such that

Adv2(A)−Adv3(A) ≤ Adv
n-fold UQ0,k

-mddh
G2,B′3

(λ). This, together with Lemma 1 (Uk-MDDH ⇒ n-fold

UQ0,k-MDDH), implies the lemma.

-Simulation of mpk: Upon receiving an n-fold UQ0,k-MDDH challenge(
PG, [U]2 ∈ G(k+n)×k

2 ,
[
h1‖ · · · ‖hQ0

]
2
∈ G(k+n)×Q0

2

)
,

B′3 picks β ←R {0, 1}, samples A←R Z(k+1)×k
q , u←R Zk+1

p \ Span(A),a⊥ ←R Zk+1
p s.t. A>a⊥ = 0

and u>a⊥ = 1, W1, . . . ,Wn ←R Zm×(k+1)
q , V1, . . . ,Vn ←R Zk×(k+1)

q , z1, . . . , zn ←R Zkq , and
returns mpk :=

(
[A]1, {[A>Wi]1, [A

>Vi]1}i∈[n]
)

to A.

30

-Simulation of Enc(i, x0
i , x

1
i): B′3 picks si ←R Zkq , computes [ci]1 := [Asi]1+[u]1, [c′i] := Wi[ci]1+

[xβi]1, [c′′i]1 := Vi[ci]1, and returns ([ci]1, [c
′
i]1, [c

′′
i]1) to A.

-Simulation of KeyGen′(msk, ·): On the j’th query y1‖ · · · ‖yn of A to KeyGen′, B′3 sets [r]2 :=
[hj]2, where hj ∈ Zkq denotes the k-upper components of hj ∈ Zk+nq , and for each i ∈ [n], computes

[di]2 := [W>
i yi]2 + V>i [h

j]2 − a⊥[hjk+i]2, where hjk+i denotes the k + i’th coordinate of the vector

hj ∈ Zk+np .

Note that when
[
h1‖ · · · ‖hQ0

]
2

is a real MDDH challenge, B′3 simulate Game2, whereas it simulates

Game3 when
[
h1‖ · · · ‖hQ0

]
2

is uniformly random over G(k+n)×Q0

1 . ut

Next, we prove that Adv3(A) = 0. To do so, we first consider the selective variant of Game3, which
we call Game3? (it is defined in Fig. 12, and the one-SEL-IND security is defined in Definition 5).
We prove that for all adversaries B, Adv3?(B) = 0, using a hybrid Game4? . That is, we prove
that Game3? and Game4? are perfectly indistinguishable in Lemma 14, and we prove that for all
adversaries B, Adv4?(B) = 0, in Lemma 15. Finally, we use complexity leveraging to obtain perfect
security of the adaptive Game3, in Lemma 13.

Game3?: is the selective variant of Game3, that is, any adversary playing this game has to commit
to its challenge queries {x0

i ,x
1
i }i∈[n] beforehand. In the following lemma, we build an adversary B3?

against Game3? , such that Adv3(A) ≤ q2nm · Adv3?(B3?). Note that this exponential security loss
will not affect the advantage of A, since we will prove that Adv3?(B3?) = 0.

Lemma 13 (Game3 to Game3?). We build a PPT adversary B3? such that Adv3(A) ≤ q2nm ·
Adv3?(B3?).

Proof. Game3? is exactly the same than Game3 except that the former is selective: any adversary
playing Game3? has to commits to its challenge {xbi}i∈[n],b∈{0,1} beforehand. We use complexity
leveraging to build an adversary in the selective Game3? from the adversary A in the adaptive
Game3 (these game are described in Fig. 12).

The adversary B3? against Game3? first guesses the future queries {xbi}i∈[n],b∈{0,1} of A, aborts (and
loses the game) if the guess is unsuccessful; otherwise, it behaves exactly as A (it does the same
queries to KeyGen(msk, ·)). It is clear that the advantage of B3? in Game3? is at least q−2mn·Adv3(A).

ut

Game4?: is like Game3? , except that for all slots i ∈ [n], Enc(i,x0
i ,x

0
i) computes [c′i]1 := Wi[ci]1,

and KeyGen(msk,y1‖ · · · ‖yn) computes z :=
∑

i z̃i −
∑

i〈x
β
i ,yi〉. Note We show in Lemma 14 that

Game3? and Game4? are perfectly indistinguishable, using an information theoretic argument that
crucially relies on the fact that Game3? and Game4? are selective. Then, in Lemma 15, we show
that Game4? is independent of β, that is, for all adversaries B, Adv4?(B) = 0. This relies on the

fact that in Game4? , β only shows up in the sum
∑

i〈x
β
i ,yi〉, and the restrictions imposed by the

ideal functionality.

31

Lemma 14 (Game3? to Game4?). For all adversaries B, Adv3?(B) = Adv4?(B).

Proof. This transition is similar to the transition between Game2 and Game3 in the one-SEL-IND
security proof of MIFE (Lemma 6).

Namely, we use the fact that for all y1‖ · · · ‖yn ∈ (Zmq)n, for all {xbi ∈ Zmq }i∈[n],b∈{0,1}, all β ∈ {0, 1},

the following are identically distributed: {z̃i}i∈[n] and {z̃i − 〈xβi ,yi〉 }i∈[n], where z̃i ←R Zq for all

i ∈ [n].

For each query y1‖ · · · ‖yn, KeyGen′(msk,y1‖ · · · ‖yn) picks values z̃i ←R Zq for i ∈ [n] that are
independent of y1‖ · · · ‖yn and the challenge {xbi ∈ Zmq }i∈[n],b∈{0,1} (note that here we crucially
rely on the fact the Game3? and Game4? are selective), therefore, using the previous fact, we can

switch z̃i to z̃i − 〈xβi ,yi〉 without changing the distribution of the game. This way, KeyGen′(msk,

y1‖ · · · ‖yn) computes z :=
∑

i z̃i −
∑

i 〈x
β
i ,yi〉 , exactly as in Game4? .

Similarly, using the fact that for all xβi ∈ Zmq , and a⊥ ∈ Zk+1
q : Wi, and Wi − xβi (a⊥)> are

identically distributed, where Wi ←R Zm×(k+1)
q ; and the fact that in both Game3? and Game4? ,

the challenge {xbi}i∈[n],b∈{0,1} is independent of Wi (again, this is the case because both games are
selective), we can switch, for all i ∈ [n], the vector c′i, computed by Enc(i,x0

i ,x
1
i) to: c′i := Wi[ci],

as in Game4? . ut

Lemma 15 (Game4?). For all adversaries B, Adv4?(B) = 0.

Proof. We use the fact that for all i ∈ [n], the query (i,x0
i ,x

1
i) to Enc′ (recall that there can be at

most one query per slot i ∈ [n]), and for all queries y1‖ · · · ‖yn to KeyGen′, we have:

n∑
i=1

〈x0
i ,yi〉 =

n∑
i=1

〈x1
i ,yi〉.

Therefore, for each call to KeyGen(msk, ·), the value z, which is of the form z :=
∑

i z̃i−
∑

i〈x
β
i ,yi〉,

is independent of β. Since the challenge ciphertext and the public key are also independent of β,
we have Adv4?(B) = 0. ut

Summing up, we have shown in the previous lemmas that for all PPT adversaries A and λ ∈ N we
have the following.

– In Lemma 10, we build a PPT adversary B1 such that Adv0(A)−Adv1(A) ≤ AdvDk-mddhG1,B1 (λ)+ 1
q .

– In Lemma 11, we show Adv1(A) = Adv2(A).
– In Lemma 12, there exists a PPT adversary B3 such that the Adv2(A) − Adv3(A) ≤

AdvUk-mddhG2,B3 (λ) + 1
q−1 .

– In Lemma 13, we build a PPT adversary B3? such that Adv3(A) ≤ q2nm · Adv3?(B3?), using
complexity leveraging.

– In Lemma 14, we show that for all adversaries B, Adv3?(B) = Adv4?(B).
– In Lemma 15, we show that for all adversaries B, Adv4?(B) = 0, using the restrictions on the

queries to oracles Enc(·, ·, ·) and KeyGen(msk, ·) imposed by the definition of the security game.

32

game Enc′(i,xj,0i ,xj,1i): justification/remark

0 Enc′(msk, i,xj,0i − x1,0
i + x1,0

i)
many-AD-IND

security game

1 Enc′(msk, i,xj,0i − x1,0
i + x1,1

i) one-AD-IND security of MIFE

1.`
Enc′(msk, i, xj,1i − x1,1

i + x1,1
i) for i ≤ `

Enc′(msk, i, xj,0i − x1,0
i + x1,1

i) for i > `
many-AD-IND security of FE

2 Enc′(msk, i, xj,1i) game 2 is game 1.n

Fig. 13: Sequence of games for the proof of Theorem 4.

Combining everything together, we obtain:

Adv0(A) ≤ AdvUk-mddhG1,B1 (λ) + AdvUk-mddhG2,B3 (λ) +
2

q − 1
.

Using the Uk-MDDH assumption in G1 and G2 (which is implied by k-Lin, see Lemma 2), this
means Adv0(A) is negligible in λ. ut

Remark 5 (On adaptive security). To achieve adaptive security, we split the selective, computational
argument used for the proof of Theorem 1, in two steps: first, we use an adaptive, computational
argument, that does not involve the challenges {xbi}i∈[n],b{0,1} (this corresponds to the transition
from Game0 to Game3). Then, we prove security of Game3, using a selective argument, which
involves the challenges {xbi}i∈[n],b{0,1}, but relies on perfect indistinguishability. That is, we prove
that Game3 is perfectly secure, by first proving the perfect security of its selective variant, Game3?

(this involves an extra hybrid game Game4?), and finally using complexity leveraging to obtain
security of the adaptive Game3. The proof of Theorem 1 essentially does the two step at once,
which prevents using complexity leveraging.

Theorem 4 (many-AD-IND security ofMIFE). Suppose the single-input FE (Setup,Enc,KeyGen,Dec)
is many-AD-IND-secure and the multi-input FE (Setup′,Enc′,KeyGen′,Dec′) is one-AD-IND-secure.
Then, the multi-input FE (Setup′,Enc′,KeyGen′,Dec′) is many-AD-IND-secure.

That is, we show that our multi-input FE is adaptively secure in the setting with multiple challenge
ciphertexts (and since our multi-input FE is a private key scheme, one-AD-IND security does not
immediately imply many-AD-IND security).

The proof of this theorem is essentially the same of that of Theorem 2. Indeed, we follow the same
proof strategy (see the proof overview of Theorem 2): first switch the first challenge ciphertexts ct1i
for all slots i ∈ [n] simultaneously, using the one-AD-IND security the multi-input FE; then, using
a hybrid argument across slots i ∈ [n], switch all the remaining ciphertexts ctji for j ∈ [Qi], using
the many-AD-IND of the single-input FE. These arguments scale well to the adaptive setting: since
we start out with adaptive security, we naturally obtain a many-AD-IND secure MIFE. We give a
high-level illustration of the transitions for the proof of this theorem in Fig. 13.

33

Game0(1
λ,A):

(mpk,msk)← Setup′(1λ,Fm,Bn)

β′ ← AKeyGen′(msk,·),Enc′(·,·,·)(mpk)
return β′

Enc′(i,xj,0i ,xj,1i):

return Enc′(msk, i,xj,0i − x1,0
i + x1,0

i)
KeyGen′(msk,y1‖ · · · ‖yn):

return sky1‖···‖yn

Game1(1
λ,A):

(mpk,msk)← Setup′(1λ,Fm,Bn)

β′ ← AKeyGen′(msk,·),Enc′(·,·,·)(mpk)
return β′

Enc′(msk, i,xj,0i ,xj,1i):

return Enc′(msk, i,xj,0i − x1,0
i + x1,1

i)

KeyGen′(msk,y1‖ · · · ‖yn):

return sky1‖···‖yn

Game1.`(1
λ,A):

(mpk,msk)← Setup′(1λ,Fm,Bn)

β′ ← AKeyGen′(msk,·),Enc′(·,·,·)(mpk)
return β′

Enc′(i,xj,0i ,xj,1i):

If i ≤ `:
return Enc′(msk, i, xj,1i − x1,1

i + x1,1
i)

If i > `:

return Enc′(msk, i, xj,0i − x1,0
i + x1,1

i)

KeyGen′(msk,y1‖ · · · ‖yn):

return sky1‖···‖yn

Game2(1
λ,A):

(mpk,msk)← Setup′(1λ,Fm,Bn)

β′ ← AKeyGen′(msk,·),Enc′(·,·,·)(mpk)
return β′

Enc′(i,xj,0i ,xj,1i):

return Enc′(msk, i, xj,1i − x1,1
i + x1,1

i)

KeyGen′(msk,y1‖ · · · ‖yn):

return sky1‖···‖yn

Fig. 14: Game0,1,2, and Game1.` where ` ∈ {0, . . . , n} for the proof of Theorem 4. The description
of Setup′ and KeyGen′ are omitted since their simulations do not change throughout the proof.

Proof (of Theorem 4).

We proceed via a series of Gamei for i ∈ {0, 1, 2}, and Game1.` for ` ∈ {0, . . . , n}, described in
Fig. 14. The transitions are summarized in Fig. 13. Let A be a PPT adversary and λ ∈ N be the se-
curity parameter. For any adversary A and any security parameter , For all i ∈ {0, 1, 2, 1.0, . . . , 1.n},
we define Advi(A) := Pr[Gamei(1

λ,A) = 1], where the probability is taken over the random coins
of A and Gamei.

Game0: is the experiment many-AD-INDMIFE0 (1λ,A) (see Definition 7).

Game1: we change the challenge ciphertexts to Enc′(msk, i,xj,0i −x1,0
i + x1,1

i), for all slots i ∈ [n],

and all j ∈ [Qi], using the one-AD-IND security of MIFE (cf Lemma 16).

Lemma 16 (Game0 to Game1). There exists a PPT adversary B1 such that

|Adv0(A)− Adv1(A)| ≤ AdvMIFE,one-AD-IND(λ,B1).

34

Proof. In Game1, which is described in Fig. 14, we replace Enc′(msk, i,xj,0i) = Enc′(msk, i, x1,0
i +

(xj,0i −x1,0
i)) with Enc(msk, i, x1,1

i + (xj,0i −x1,0
i)) for all i ∈ [n], j ∈ [Qi]. This is justified using the

following properties:

– one-AD-IND security of (Setup′,Enc′,KeyGen′,Dec′);

– given xj,0i − x1,0
i , we can maul an encryption of x1,β

i under Enc′ (corresponding to challenge

ciphertext in slot i in one-AD-INDMIFEβ) into that of x1,β
i + (xj,0i − x1,0

i) (corresponding to
challenge ciphertexts in slots i in Gameβ).

We build B1, a PPT adversary such that for all β ∈ {0, 1}, when B1 interacts with the experiment
one-AD-INDMIFEβ (see Definition 7), it simulates the Gameβ to A.

-Simulation of mpk: B1 first gets mpk, that it sends to A.

-Simulation of Enc′(·, ·, ·): Then, given A’s first query (i,x1,0
i ,x1,1

i) for slot i ∈ [n] to Enc′(·, ·, ·),
B1 computes the first challenge ciphertext ct1i as Enc′(msk, i,x1,β

i), where the oracle Enc′(·, ·, ·) of
the experiment one-AD-INDMIFEβ .

Next, B1 uses the fact that the single-input inner-product scheme is public-key and linearly ho-
momorphic to generate all the remaining ciphertexts ctji for i ∈ [n], j ∈ {2, . . . , Qi} by combining

ct1i = Enc′(msk, i,x1,β
i) = Enc(mski,x

1,β
i ‖zi) with Enc(mski,x

j,0
i −x1,0

i ‖0) (which can be done using

mpki). In particular, each ctji will correspond to Enc′(msk, i,x1,β
i + xj,0i − x1,0

i), which matches the
challenge ciphertexts in Gameβ.

-Simulation of KeyGen′(msk, ·): B1 uses its KeyGen′(msk, ·) oracle to simulate the corresponding
queries by A.

Finally, B1 outputs 1 if A outputs 1, 0 otherwise. It is clear that for all β ∈ {0, 1}, when B1 interacts
with one-AD-INDMIFEβ (1λ,B1), it simulates game β to A. Therefore,

AdvMIFE,one-AD-IND(λ,B1)

=
∣∣∣Pr
[
one-AD-INDMIFE0 (1λ,B1) = 1

]
− Pr

[
one-AD-INDMIFE1 (1λ,B1) = 1

]∣∣∣
= |Adv0(A)− Adv1(A)|

ut

Game2: we change the challenge ciphertexts to Enc′(msk, i, xj,1i − x1,1
i +x1,1

i), for all slots i ∈ [n],

and all j ∈ [Qi], using the many-AD-IND security of FE , via a hybrid argument across all slots
i ∈ [n] (cf Lemma 17).

Lemma 17 (Game1 to Game2). There exists a PPT adversary B2 such that |Adv1(A) −
Adv2(A)| ≤ n · AdvFE,many-AD-IND(λ,B2).

35

Proof. In Game2, which is described in Fig. 14, we replace Enc(mski,x
1,1
i + (xj,0i − x1,0

i) ‖zi) with

Enc(mski,x
1,1
i + (xj,1i − x1,1

i) ‖zi) = Enc(mski,x
j,1
i ‖zi), for all i ∈ [n], j ∈ [Qi]. This is justified

using the following properties:

– many-AD-IND security of (Setup,Enc,KeyGen,Dec);

– given x1,1
i and zi, we can maul an encryption of (xj,βi − x1,β

i)‖0 under Enc (corresponding to

challenge ciphertexts in the many-AD-IND security game) into that of x1,1
i + (xj,βi − x1,β

i) ‖zi
(corresponding to challenge ciphertexts in Gameβ+1);

– the fact that for each key query y1‖ . . . ‖yn and all r, z, we have

〈x1,1
i + xj,0i − x1,0

i ‖z,yi‖r〉 = 〈x1,1
i + xj,1i − x1,1

i ‖z,yi‖r〉.

The latter is equivalent to 〈xj,0i − x1,0
i ,yi〉 = 〈xj,1i − x1,1

i ,yi〉, which follows from the restriction
in Section 3.2.

In more details, we use a hybrid argument, which involves hybrid Game1.` for ` ∈ {0, . . . , n}, defined
in Fig. 14.

Notice that Game1 and Game2 are identically distributed than Game1.0 and Game1.n, respectively.
For all ` ∈ [n], we builds a PPT adversary B1.` such that for all β ∈ {0, 1}, when B1.` interacts with
the experiment many-AD-INDFEβ (see Definition 7), it simulates Game1.`−1+β to A.

-Simulation of mpk: First, B1.` receives mpk`, picks zi ←R Zkq for all i ∈ [n], samples

(mpki,mski)←R Setup(1λ,Fm+k,B
1) for i ∈ [n], i 6= ` and returns mpk := (mpk1, . . . ,mpkn) to A.

-Simulation of Enc′(·, ·, ·): B1.` answers each query (i,xj,0i ,xj,1i) to Enc′ with i < ` by

Enc(mski,x
j,1
i ‖zi) , and each query with i > ` by Enc(mski,x

j,0
i − x1,0

i + x1,1
i ‖zi) (note that B1.`

can do so since it knows mski and zi for all i 6= `). For all queries of the form (`,xj,0` ,xj,1`) to Enc′,

B1.` queries its oracle Encβ(·, ·, ·) (from experiment many-AD-INDFEβ) on input (xj,0` ‖zi,x
j,1
` ‖zi),

to obtain Enc(msk`,x
j,β
` ‖z`). B1.` uses the latter together with mpk` and (−x1,0

` + x1,1
`)‖0 to

generate Enc(msk`,x
j,β
` − x1,0

` + x1,1
` ‖z`), which it sends to A. This corresponds to ciphertexts

in Game1.`−1+β. This is possible since the single-input inner-product scheme is public-key and
linearly homomorphic.

-Simulation of KeyGen′(msk, ·): For each query y1‖ . . . ‖yn that A makes to KeyGen′(msk, ·),
B1.` picks r ←R Zkq , and it computes di ← KeyGen(mski,yi‖r) for i ∈ [n], i 6= `. To compute
d`, it queries the oracle KeyGen(msk, ·) on input y`‖r. It computes z = 〈z1‖ . . . ‖zn, r〉 and sends
sky1‖···‖yn :=

(
{[di]2}i∈[n], [r]2, [z]T

)
to A.

36

Finally, B1.` outputs 1 if A outputs 1, 0 otherwise. It is clear that for all β ∈ {0, 1}, when B1.`
interacts with many-AD-INDMIFEβ , it simulates Game1.`−1+β to A. Therefore,

AdvMIFE,many-AD-IND(λ,B1.`)

=
∣∣∣Pr
[
many-AD-INDFE0 (1λ,B1.`) = 1

]
− Pr

[
many-AD-INDFE1 (1λB1.`) = 1

]∣∣∣
= |Adv1.`−1(A)− Adv1.`(A)|

Summing up for all ` ∈ [n], we obtain the lemma. ut

Summing up, we prove that for all PPT adversaries A, and all security parameter λ ∈ N, the
following is true.

– In Lemma 16, we show that there exists a PPT adversary B1 such that |Adv0(A)−Adv1(A)| ≤
AdvMIFE,one-AD-IND(λ,B1).

– In Lemma 17, we show that there exists a PPT adversary B2 such that |Adv1(A)−Adv2(A)| ≤
n · AdvFE,many-AD-IND(λ,B2).

Putting everything together, we obtain:

|Adv0(A)− Adv2(A)| ≤ AdvMIFE,one-AD-IND(λ,B1) + n · AdvFE,many-AD-IND(λ,B2).

By Definition 7, |Adv0(A) − Adv2(A)| = AdvMIFE,many-AD-IND(λ,A). Therefore, by the one-AD-
IND security of (Setup′,KeyGen′,Enc′) and the many-AD-IND security of (Setup,KeyGen,Enc),
AdvMIFE,many-AD-IND(λ,A) is negligible in λ. ut

References

[1] M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional encryption schemes for inner products.
In J. Katz, editor, PKC 2015, volume 9020 of LNCS, pages 733–751. Springer, Heidelberg, Mar. / Apr. 2015.
(Pages 1, 2, and 4.)

[2] M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Better security for functional encryption for inner
product evaluations. Cryptology ePrint Archive, Report 2016/011, 2016. http://eprint.iacr.org/2016/011.
(Pages 1, 4, and 39.)

[3] S. Agrawal, S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption: New perspectives and lower
bounds. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 500–518.
Springer, Heidelberg, Aug. 2013. (Pages 3, 9, and 46.)

[4] S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for inner products, from standard
assumptions. In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages
333–362. Springer, Heidelberg, Aug. 2016. (Pages 1, 4, and 39.)

[5] P. Ananth and A. Jain. Indistinguishability obfuscation from compact functional encryption. In R. Gennaro and
M. J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 308–326. Springer, Heidelberg,
Aug. 2015. (Pages 1, 5, and 6.)

[6] S. Badrinarayanan, D. Gupta, A. Jain, and A. Sahai. Multi-input functional encryption for unbounded arity
functions. In T. Iwata and J. H. Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 27–51.
Springer, Heidelberg, Nov. / Dec. 2015. (Page 1.)

[7] A. Bishop, A. Jain, and L. Kowalczyk. Function-hiding inner product encryption. In T. Iwata and J. H. Cheon,
editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 470–491. Springer, Heidelberg, Nov. / Dec.
2015. (Pages 1, 3, and 6.)

37

http://eprint.iacr.org/2016/011

[8] N. Bitansky and V. Vaikuntanathan. Indistinguishability obfuscation from functional encryption. In V. Gu-
ruswami, editor, 56th FOCS, pages 171–190. IEEE Computer Society Press, Oct. 2015. (Page 5.)

[9] O. Blazy, E. Kiltz, and J. Pan. (Hierarchical) identity-based encryption from affine message authentication. In
J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 408–425. Springer,
Heidelberg, Aug. 2014. (Page 5.)

[10] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and J. Zimmerman. Semantically secure order-revealing
encryption: Multi-input functional encryption without obfuscation. In E. Oswald and M. Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 563–594. Springer, Heidelberg, Apr. 2015. (Pages 1,
2, 5, and 6.)

[11] D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In Y. Ishai, editor,
TCC 2011, volume 6597 of LNCS, pages 253–273. Springer, Heidelberg, Mar. 2011. (Pages 1, 3, 4, and 46.)

[12] Z. Brakerski, I. Komargodski, and G. Segev. Multi-input functional encryption in the private-key setting:
Stronger security from weaker assumptions. In M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 852–880. Springer, Heidelberg, May 2016. (Pages 1, 5, and 6.)

[13] P. Datta, R. Dutta, and S. Mukhopadhyay. Functional encryption for inner product with full function privacy.
In C.-M. Cheng, K.-M. Chung, G. Persiano, and B.-Y. Yang, editors, PKC 2016, Part I, volume 9614 of LNCS,
pages 164–195. Springer, Heidelberg, Mar. 2016. (Pages 1 and 6.)

[14] A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. Villar. An algebraic framework for Diffie-Hellman assumptions.
In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147. Springer,
Heidelberg, Aug. 2013. (Pages 7 and 8.)

[15] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices. In T. Johansson and
P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 1–17. Springer, Heidelberg, May 2013.
(Page 1.)

[16] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability obfuscation
and functional encryption for all circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, Oct. 2013.
(Pages 1 and 6.)

[17] S. Garg, C. Gentry, S. Halevi, and M. Zhandry. Functional encryption without obfuscation. In E. Kushilevitz
and T. Malkin, editors, TCC 2016-A, Part II, volume 9563 of LNCS, pages 480–511. Springer, Heidelberg, Jan.
2016. (Page 6.)

[18] R. Gay, D. Hofheinz, E. Kiltz, and H. Wee. Tightly CCA-secure encryption without pairings. In M. Fischlin
and J.-S. Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 1–27. Springer, Heidelberg,
May 2016. (Page 8.)

[19] S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai, E. Shi, and H.-S. Zhou. Multi-input
functional encryption. In P. Q. Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS,
pages 578–602. Springer, Heidelberg, May 2014. (Pages 1, 6, and 8.)

[20] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. Reusable garbled circuits and
succinct functional encryption. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, 45th ACM STOC,
pages 555–564. ACM Press, June 2013. (Page 1.)

[21] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption with bounded collusions via multi-party
computation. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 162–179.
Springer, Heidelberg, Aug. 2012. (Page 1.)

[22] S. Kim, K. Lewi, A. Mandal, H. Montgomery, A. Roy, and D. J. Wu. Function-hiding inner product encryption
is practical. Cryptology ePrint Archive, Report 2016/440, 2016. http://eprint.iacr.org/2016/440. (Pages 2
and 4.)

[23] K. Lee and D. H. Lee. Two-input functional encryption for inner products from bilinear maps. Cryptology
ePrint Archive, Report 2016/432, 2016. http://eprint.iacr.org/2016/432. (Pages 2 and 4.)

[24] A. Sahai and H. Seyalioglu. Worry-free encryption: functional encryption with public keys. In E. Al-Shaer, A. D.
Keromytis, and V. Shmatikov, editors, ACM CCS 10, pages 463–472. ACM Press, Oct. 2010. (Page 1.)

[25] A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In R. Cramer, editor, EUROCRYPT 2005, volume
3494 of LNCS, pages 457–473. Springer, Heidelberg, May 2005. (Page 1.)

[26] B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In S. Halevi,
editor, CRYPTO 2009, volume 5677 of LNCS, pages 619–636. Springer, Heidelberg, Aug. 2009. (Page 20.)

[27] H. Wee. Dual system encryption via predicate encodings. In Y. Lindell, editor, TCC 2014, volume 8349 of
LNCS, pages 616–637. Springer, Heidelberg, Feb. 2014. (Page 5.)

[28] H. Wee. New techniques for attribute-hiding in prime-order bilinear groups. In preparation, 2016. (Pages 4
and 39.)

38

http://eprint.iacr.org/2016/440
http://eprint.iacr.org/2016/432

A One-SEL-SIM, Many-AD-IND Secure Scheme for Single-Input Inner
Products

In Fig. 15, we describe the scheme for Single-Input Inner Products from [28], which is essentially
the same as those in [4, 2], extended explicitly to the Dk-MDDH assumption. For completeness, we
recall the proof of one-SEL-SIM-security from [28] in Theorem 5, as we will rely on some of the proof
techniques later. We also prove that the scheme is many-AD-IND secure in Theorem 6. Moreover,
note that the scheme is public key, linearly homomorphic, and satisfies additional requirements for
the construction in Fig. 3.

Setup(G,Fm,B1):

A←R Dk, W←R Zm×(k+1)
q

mpk := ([A], [WA]),msk := (W,A);
return (mpk,msk)

KeyGen(msk,y ∈ Zmq):

return sky := W>y ∈ Zk+1
q

Enc(msk,x ∈ Zmq):

r←R Zkp;
return ([c], [c′]) := ([Ar], [x + WAr])

Dec(sky,y, ([c], [c′])):

return discrete log of [c′>y − c>sky]

Fig. 15: A one-SEL-SIM scheme for single-input inner product Fm,B1 [28].

Theorem 5 (one-SEL-SIM security of FE). [28] If the Dk-MDDH assumption holds in G,
then the single-input FE in Fig. 15 is one-SEL-SIM secure (see Definition 6).

S̃etup(G):

A←R Z(k+1)×k
q ,W̃←R Zm×(k+1)

q , c←R Zk+1
q \ Span(A);

compute a⊥ ∈ Zk+1
q \ {0} s.t. A>a⊥ = 0

m̃pk := ([A], [W̃A]), m̃sk := (a⊥,W̃, c);

return (m̃pk, m̃sk)

K̃eyGen(m̃sk,y ∈ Zmq , a ∈ Zq):

return sky := W̃>y − a
〈c,a⊥〉a

⊥ ∈ Zk+1
q

Ẽnc(m̃sk):

return ([c], [W̃c])

Fig. 16: Simulator (S̃etup, K̃eyGen, Ẽnc) from [28] for the one-SEL-SIM security of the single-input
scheme for inner product Fm,B1 in Fig. 15.

39

Proof (of Theorem 5). The simulator (S̃etup, K̃eyGen, Ẽnc) are described in 16. Let A be a PPT
adversary, and λ ∈ N be the security parameter. For all i ∈ {0, . . . , 2}, we define Advi(A) :=
Pr[Gamei(1

λ,A) = 1], where the probability is taken over the random coins of A and Gamei.

Game0: is the experiment REALFE(1λ,A).

Game1: is as Game0, except we replace [Ar] in the challenge ciphertext with [c] ←R Gk+1 \
Span(A), using the Dk-MDDH assumption (cf Lemma 18).

Lemma 18. There exists a PPT adversary B1 such that

|Adv0(A)− Adv1(A)| ≤ AdvDk-mddhG,B1 (λ) +
1

q
.

Proof. In Game1, we replace the vector [Ar] in the challenge ciphertext with [c] ←R Gk+1 \
Span([A]). This replacement is justified by the facts that:

1. By the Dk-MDDH assumption, we can switch ([A], [Ar]) to ([A], [u]), where A ←R Dk, r ←R

Zkq , and u←R Zk+1
q .

2. The uniform distribution over Gk+1 and Gk+1 \ Span(A) are 1
q -close, for any A ∈ Z(k+1)×k

q of
rank k.

Combining these three facts, we obtain a PPT adversary B1 such that |Adv1(A) − Adv0(A)| ≤
AdvDk-mddhG,B1 (λ) + 1

q . ut

Game2: is the experiment IDEALFE(1λ,A). In Lemma 19, we show that Game2 and Game1
are perfectly indistinguishable, using a statistical argument, that crucially relies on the fact that
Game1 and Game2 are selective.

Lemma 19. For all adversaries B, Adv1(B) = Adv2(B).

Proof. In Game2, we perform a change of variables Ŵ = W + 1
〈c,a⊥〉x(a⊥)>, where a⊥ ∈ Zk+1

q is a

non-zero vector such that A>a⊥ = 0. This does not change the adversary’s view, because W ←R

Zm×(k+1)
q is picked after the adversary sends its selective challenge x, and therefore, independently

of it. Since c /∈ Span(A), we have 〈c,a⊥〉 6= 0. This way, we have:

WA = ŴA

x + Wc = Ŵc

W>y = Ŵ>y − 〈x,y〉
〈c,a⊥〉

a⊥

which coincides precisely with the output of the simulator. This proves Adv2(B) = Adv1(B). ut

40

Putting everything together, we obtain |Adv0(A)−Adv2(A)| ≤ AdvDk-mddhG,B1 (λ)+ 1
q . By definition, we

have: AdvFE,SEL-SIM
A (λ,A) = |Adv0(A)−Adv2(A)| (see Definition 6). Therefore, by the Dk-MDDH

assumption in G, AdvFE,SEL-SIM
A (λ,A) is negligible in λ. ut

Theorem 6 (many-AD-IND security of FE). If the Dk-MDDH assumption holds in G, then
the single-input FE in Figure 15 is many-AD-IND-secure (see Definition 7).

Gamei for i ∈
{

0, 1 , 1?, 2?
}

:

{xb}b∈{0,1} ← A(1λ,Fm,B1)

β ←R {0, 1}, A←R Z(k+1)×k
q , W←R Zm×(k+1)

q , mpk := ([A], [WA]),msk := (W,A),

ct := Enc(x0,x1)

β′ ← AKeyGen(msk,·), Enc(·, ·)
(mpk, ct)

Return 1 if β′ = β, 0 otherwise.

Enc(x0,x1): 0, 1, 1?, 2?

r←R Zkq , c := Ar, c←R Zk+1
q \ Span(A)

c′ := xβ + Wc, c′ := Wc
return ([c], [c′])

KeyGen(msk,y1‖ · · · ‖yn): 0, 1, 1?, 2?

return sky := W>y − 〈xβ,y〉

Fig. 17: Gamei for i ∈ {0, 1, 2}, for the proof of Theorem 6. In each procedure, the components
inside a solid (dotted) frame are only present in the games marked by a solid (dotted) frame.

Proof (of Theorem 6). Since the FE scheme FE is public-key, it suffices to show one-AD-IND
security. We proceed via a series of Gamei for i ∈ {0, . . . , 3}, described in Fig. 17. Let A be a
PPT adversary, and λ ∈ N be the security parameter. For all i ∈ {0, . . . , 3}, we define Advi(A) :=
Pr[Gamei(1

λ,A) = 1], where the probability is taken over the random coins of A and Gamei.

Game0: is the experiment one-AD-INDFE(1λ,A) (see Definition 7). In particular, Adv0(A) =
AdvMIFE,one-AD-IND(λ,A).

Game1: we change the distribution of the vector [c]1 computed by Enc(x0,x1), using the Dk-
MDDH assumption (cf Lemma 20).

41

Lemma 20 (Game 0 to 1). There exists a PPT adversary B1 such that

Adv0(A)− Adv1(A) ≤ AdvDk-mddhG,B1 (λ) +
1

q
.

Proof. In Game1, we replace the vector [Ar] in the challenge ciphertext with [c]←R Gk+1\Span(A).
This replacement is justified by the facts that:

1. By the Dk-MDDH assumption, we can switch ([A], [Ar]) to ([A], [u]) for A←R Dk, r←R Zkq ,
and u←R Zk+1

q .

2. The uniform distribution over Gk+1 and Gk+1 \ Span(A) are 1
q -close, for A←R Dk of rank k.

Combining these facts, we obtain a PPT adversary B such that Adv0(A) − Adv1(A) ≤
AdvDk-mddhGs,B (λ) + 1

q . ut

Next, we prove that Adv1(A) = 0. To do so, we first consider the selective variant of Game1, which
we call Game1? (it is defined in Fig. 17, and the one-SEL-IND security is defined in Definition 5).
We prove that no adversary can win Game1? , using a hybrid Game2? . That is, we prove that
Game1? and Game2? are perfectly indistinguishable in Lemma 22, and we prove that no adversary
can win Game2? in Lemma 23. Finally, we use complexity leveraging to obtain perfect security of
the adaptive Game1, in Lemma 21.

Game1?: is the selective variant of Game1, that is, any adversary playing this game has to commit
to its challenge queries (x0,x1) beforehand. In the following lemma, we build an adversary B1?
against Game1? , such that Adv1(A) ≤ q2m · Adv1?(B1?). Note that this exponential security loss
does not ruin security, since we will prove that Adv1?(B1?) = 0.

Lemma 21 (Game1 to Game1?). We build a PPT adversary B1? such that Adv1(A) ≤ q2m ·
Adv1?(B1?).

Proof. Game1? is exactly the same than Game1 except that the former is selective: any adversary
playing Game1? has to commits to its challenge (x0,x1) beforehand. We use complexity leveraging
to build an adversary in the selective Game1? from the adversary A in the adaptive Game1 (these
game are described in Fig. 17).

The adversary B1? against Game1? first guesses the future queries (x0,x1) of A, aborts (and loses
the game) if the guess is unsuccessful; otherwise, it behaves exactly as A (it does the same queries
to KeyGen(msk, ·)). It is clear that the advantage of B1? in Game1? is at least q−2m · Adv1(A). ut

Game2?: is like Game1? , except that Enc(x0,x0) computes [c′]1 := W[c]1, and KeyGen(msk,y)
computes sky := W>y − 〈xβ,y〉. We show in Lemma 22 that Game1? and Game2? are perfectly
indistinguishable, using an information theoretic argument that crucially relies on the fact that
Game1? and Game2? are selective. Then, in Lemma 23, we show that Game2? is independent of β,
that is, no adversary can win with non zero advantage in this game. This relies on the fact that
in Game2? , β only shows up in the value 〈xβ,y〉, which is equal 〈x0,y〉, as required by the ideal
functionality.

42

Lemma 22 (Game1? to Game2?). For all adversaries B, Adv1?(B) = Adv2?(B).

Proof. We perform the change of variables W′ := W − 1
〈c,a⊥〉x

β(a⊥)>, where W′ ←R Zm×(k+1)
q ,

c ←R Zk+1
q \ Span(A), and where a⊥ ∈ Zk+1

q is a non-zero vector such that A>a⊥ = 0. Note

that since c /∈ Span(A), we have 〈c,a⊥〉 6= 0. This does not change the adversary’s view, because

W←R Zm×(k+1)
q is picked after the adversary sends its selective challenge (x0,x1), and therefore,

independently of it (note that here we crucially rely on the fact the Game1? and Game2? are
selective).

This way, we have:

W′A = WA

xβ + W′c = Wc

W
′>y = W>y − 〈xβ,y〉 · a⊥

as in Game2? . ut

Lemma 23 (Game2?). For all adversaries B, Adv2?(B) = 0.

Proof. We use the fact that for the query (x0,x1) to Enc, and for all queries y to KeyGen(msk, ·),
we have, by definition of the security game:

〈x0,y〉 = 〈x1,y〉.

Therefore, for each call KeyGen(msk,y), the secret key sky, which is of the form sky := W>y −
〈xβ,y〉, is independent of β. Since the challenge ciphertext and the public key are also independent
of β, we haves Adv2?(B) = 0. ut

Summing up, we have shown in the previous lemmas that for all PPT adversaries A and λ ∈ N we
have the following.

– In Lemma 20, we build a PPT adversary B1 such that Adv0(A)−Adv1(A) ≤ AdvDk-mddhG,B1 (λ)+ 1
q .

– In Lemma 21, we build a PPT adversary B1? such that Adv1(A) ≤ q−2mAdv1?(B1?), using a
complexity leveraging argument.

– In Lemma 22, we show that for all adversaries B, Adv1?(B) = Adv2?(B), using a statistical
argument.

– In Lemma 23, we show that for all adversaries B, Adv2?(B) = 0, using the restriction on queries
to KeyGen and Enc.

Combining everything together, we obtain:

Adv0(A) ≤ AdvDk-mddhG,B1 (λ) +
1

q
.

Using the Dk-MDDH assumption in G, this means Adv0(A) is a negligible function of λ. ut

43

B Motivating applications

Suppose we have a company which keeps profiles of its employees including the grades for their
skills that they received in their last evaluation. This information is considered private and the only
person who has access to such information about the employees is their direct manager. When a
new project is started at the company, a lead manager is assigned to the project and she has to
form a new team. In order to evaluate a possible team configuration, she needs to evaluate the
skills of the team as a whole. This can be achieved by obtaining a score for the team that is the
weighted sum of the skills of people serving in different positions in the team. The specific weights
assigned to various skills are determined by the needs of the particular project.

A MIFE scheme can provide a solution for the above scenario as follows. The grades for the skills
of each employee can be represented as an integer vector, which will be encrypted under a MIFE
scheme that uses its encryption slots to represent different team positions. When a new project is
established, the lead manager is granted a decryption key that assigns weights to each of the skills
of different team members. She can use this key to evaluate various combinations of people for the
team while learning nothing more about everyone’s profile than the total team score.

A similar example is the construction of a complex machine that requires parts from different
manufacturers. Each part is rated based on different quality characteristics and price, which are all
manufacturer’s proprietary information until a contract has been signed. The ultimate goal is to
assemble a construction of parts that achieve a reasonable trade-off between quality and price. In
order to evaluate different construction configurations, the company wants to compute cumulative
score for each configuration that is a weighted sum over the quality rates and price of each of the
parts.

C Additional Definitions

Here we provide many-AD-IND security definition for MIFE in the public key setting where the
adversary holds encryptions keys for a subset of the MIFE encryption slots. We first define the
MIFE functionality that allows public encryption keys for some slots

Definition 8 (Multi-input Function Encryption). Let {Fn}n∈N be an ensemble where each
Fn is a family of n-ary functions. A function f ∈ Fn is defined as follows f : X1 × . . .× Xn → Y.
A multi-input functional encryption scheme MIFE for F consists of the following algorithms:

– Setup(1λ,Fn): on input the security parameter λ and a description of Fn ∈ F outputs n en-
cryption keys ek1, . . . , ekn and a master secret key msk.

– Enc(eki, i,m): on input eki ∈ {ek1, . . . , ekn} and a message m ∈ Xi outputs a ciphertext ct for
the i-th MIFE slot. We assume that each ciphertext has an associated index i, which denotes
what slot this ciphertext can be used for.

– KeyGen(msk, f): on input the master secret key msk and a function f ∈ Fn outputs a decryption
key skf that takes inputs encrypted under ek1, . . . ekn.

– Dec(skf , ct1, . . . , ctn): on input a decryption key for function f and skf ciphertexts outputs a
string y ∈ Y.

44

The scheme MIFE is correct if for all f ∈ F and all xi ∈ Xi for 1 ≤ i ≤ n, we have

Pr

 (ek1, . . . , ekn,msk)← Setup(1λ, n);

skf ← KeyGen(msk, f);

Dec(skf ,Enc(ek1, x1), . . . ,Enc(ekn, xn)) = f(x1, . . . , xn)

 = 1,

where the probability is taken over the coins of Setup, KeyGen and Enc.

For out definition we will use the notion of I-compatibility, which is defined next.

Definition 9 (I-Compatibility). Let Fn = {f} be a family of n-ary functions and let

N = {1, . . . , n}, I ⊂ N . The pairs of input vectors x0 =
(
{xj,01 }

q1
j=1, . . . , {x

j,0
n }qnj=1

)
and

x1 =
(
{xj,11 }

q1
j=1, . . . , {x

j,1
n }qnj=1

)
are I-compatible if they satisfy the following property:

For every f ∈ {f}, every I ′ = {i1, . . . , it} ⊆ I ∪ ∅, every j1 ∈ [q1], . . . , jn−t ∈ [qn], for every
x′i1 ∈ Xi1 , . . . , x

′
it
∈ Xit the following two distributions are indistinguishable:

f
(
π(xj1,0i1

, . . . , x
jn−t,0
in−t

, x′i1 , . . . , x
′
it)
)

= f
(
π(xj1,1i1

, . . . , x
jn−t,1
in−t

, x′i1 , . . . , x
′
it)
)
,

where π(yi1 , . . . , yin) denotes a permutation of the values yi1 , . . . , yin such that the value yij is
mapped to the l’th location of yij is the l’th input (out of n input) to f .

Using the above notions of I-compatibility the indistinguishability security for MIFE is defined as
follows.

Definition 10 (many-AD-IND-secure MIFE). A multi-input functional encryption MIFE
for n-ary functions F is (t, q)-IND secure if for every PPT adversary A = (A1,A2,A3), the ad-
vantage of A defined as

AdvMIFE,INDA = |Pr[INDMIFEA,1 (1λ) = 1]− Pr[INDMIFEA,0 (1λ) = 1]|

is negligible and the experiment INDMIFEA,β (1λ) is defined as follows:

Experiment INDMIFEA,β (1λ):

(I, st0)← A0(1
λ) where |I| = t

({eki}i∈[n],msk)← Setup(1λ)

(X0,X1, st1)← AKeyGen(msk,·)
1 (st0, {eki}i∈I) for

{
Xd = {xj,d1 , . . . , xj,dn }qj=1

}
d=1,2

cti,j ← Enc(eki, x
j,β
i) ∀i ∈ [n], j ∈ [q]

β′ ← AKeyGen(msk,·)
2 (st1, ct)

Output: β′

In the above experiment we require that all queries for {f} for decryption functions made by A1

and A2 must be I-compatible with X0 and X1 according to Definition 9.

We call the MIFE scheme public key many-AD-IND-secure when t = n, i.e., the adversary obtain
the encryption keys for all slots.

45

Since our paper focuses on multi-input functional encryption for inner product functions, we note
that the I-compatibility condition in this setting becomes as follows. Each function fi is defined
by a vector f = (y1‖ · · · ‖yn). Then, if I is the set of the inputs for which the adversary does
not receive encryption keys, we require that for every j1, j

′
1 ∈ [q1], . . . , jn−t, j

′
n−t ∈ [qn] and every

J ⊆ [n] such that I ⊆ J :

∑
i∈J
〈xji,0i ,yi〉 =

∑
i∈J
〈xj

′
i,1
i ,yi〉.

This restriction is due to the fact that the adversary can always encrypt the all 0’s vectors in the
slots for which it holds encryption keys. Thus, if the above equality does not hold, the adversary
will be able to distinguish the challenges trivially.

We note that in the case of public key MIFE, the above restriction amounts to

〈xji,0i ,yi〉 = 〈xj
′
i,1
i ,yi〉 ∀i ∈ [n],

since I = ∅ and the sets J include every singleton set.

D Extensions

D.1 Public-Key MIFE for Inner Product

This is easy, as discussed in the introduction. Run n independent copies of the single-input scheme;
use the i’th copy to encrypt xi in the i’th slot; and the new secret key is the collection of the n secret
keys corresponding to each of y1, . . . ,yn. Decryption recovers 〈x1,y1〉, . . . 〈xn,yn〉 and returns the
sum of these values. This means that the adversary also learns each of 〈xi,yi〉 but that is inherent
leakage from the ideal functionality. Concretely, an adversary can always pad an encryption of xi
in the i’th slot with encryptions of 0’s in the remaining n− 1 slots and then decrypt with a key for
y1, . . . ,yn to learn 〈xi,yi〉. Security is immediate since the underlying FE guarantees that there is
no leakage beyond 〈xi,yi〉.

D.2 Impossibility for many-SEL-SIM.

The impossibility result for simulation-based IBE in [11, 3] applies to this setting, even for private-
key schemes with “selective” security in the single-input setting for one-dimensional inner product
over bits. Suppose the secret key has ` bits. The adversary starts by requesting for `+λ encryptions
of random bits. At this point, the simulator needs to simulate these `+λ ciphertexts without having
learned anything from the ideal functionality. The adversary then requests for a secret key for 1,
and the simulator needs to produce an `-bit secret key that decrypts the simulated ciphertext to an
arbitrary sequence of `+λ bits. This is impossible even for a computationally unbounded adversary.

46

	Introduction
	Our Contributions
	Discussion

	Preliminaries
	Definitions for Multi-Input Functional Encryption
	Security notions
	Inner product functionality

	Selectively-Secure, Private-Key MIFE for Inner Product
	Selectively-secure, multi-input scheme from single-input scheme
	Putting everything together

	Achieving Adaptive Security
	One-SEL-SIM, Many-AD-IND Secure Scheme for Single-Input Inner Products
	Motivating applications
	Additional Definitions
	Extensions
	Public-Key MIFE for Inner Product
	Impossibility for many-SEL-SIM.

