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Abstract—We present an analysis of key wrapping APIs with
generic policies. We prove that certain minimal conditions on
policies are sufficient for keys to be indistinguishable from
random in any execution of an API.

Our result captures a large class of API policies, including both
the hierarchies on keys that are common in the scientific litera-
ture and the non-linear dependencies on keys used in PKCS#11.
Indeed, we use our result to propose a secure refinement of
PKCS#11, assuming that the attributes of keys are transmitted
as authenticated associated data when wrapping and that there
is an enforced separation between keys used for wrapping and
keys used for other cryptographic purposes.

We use the Computationally Complete Symbolic Attacker
developed by Bana and Comon. This model enables us to obtain
computational guarantees using a simple proof with a high degree
of modularity.

I. INTRODUCTION

A cryptographic API is an interface between a user and
some trusted hardware, such as an HSM or a cryptographic
token. These are deployed in insecure environments where the
user’s machine (or the user herself) may be compromised.
The cryptographic operations are performed inside the trusted
hardware, keeping sensitive data such as secret keys out of
reach of the host machine. One widely-used cryptographic API
is PKCS#11, which is described in a cryptographic standards
document consisting of hundreds of pages [OAS15a].

Many cryptographic APIs, including PKCS#11, allow key
management commands such as key wrapping, the encryption
of one key under another to facilitate secure key transport.
Unfortunately, numerous key recovery attacks on PKCS#11
have been found, many of which exploit key wrapping com-
mands that are explicitly authorised by the policy in the stan-
dard [Clu03], [DKS08], [DKS10]. Indeed, these attacks have
been replicated on real cryptographic tokens that implement
PKCS#11 [BCFS10].

Key management APIs are widely deployed, but the attacks
on PKCS#11 demonstrate the dangers of not rigorously defin-
ing an API and its security properties. This led to the develop-
ment of a number of formal models for key management APIs
that have appeared in the scientific literature. However, these
existing models have a number of important shortcomings that
we describe below.

One weakness of the existing work is that proofs of API
security typically depend on a particular choice of API security

policy. A key management API policy specifies how keys can
be used. For example, the policy should determine which keys
may be used to wrap a particular key. Many of the attacks on
PKCS#11 exploit weaknesses in the policy. For example, the
PKCS#11 policy allows keys to be used for both wrapping
other keys and decrypting data. Therefore, an adversary can
request the decryption of a wrap and receive a sensitive key
in the clear. Nevertheless, there has so far been no generic
analysis of key management policies themselves, where one
gives conditions on the policy, rather than describing it in
full, and proves that these conditions are sufficient to prevent
attacks. Instead, previous security proofs for API designs
have specified a particular policy for their particular design
and proved some security property of the API with this
policy [CC09], [CS09], [KSW11]. There have been type-based
analyses of APIs that allow for more general statements, but
these works only prove security against key recovery (not that
keys are indistinguishable from random) and do not consider
the effect of key corruption [CFL13], [AFL13].

Not analysing generic policies is a serious shortcoming of
existing work: poor policy design results in devastating attacks
that are easy to implement, but there are no general results on
what constitutes a valid policy. Proprietary APIs are likely to
implement their own policies, not the particular ones that have
been used in API designs in the academic literature. Providing
a generic framework for evaluating policies gives the ability
to analyse both the API designs already in use and any future
designs that might appear.

A different kind of policy, not considered at all in pre-
vious analyses of key management APIs, is a high-level
key management policy, independent of the choice of key
management API, that must be enforced by any API. For
example, consider the use of cryptographic tokens in a large
enterprise, where employees have a position in a hierarchy.
Suppose the enterprise sees employees near the bottom of
the hierarchy as more likely to be compromised than those
higher up, so the high-level key management policy on keys
is simply that the compromise of keys for employees lower
down the hierarchy should not compromise keys higher up.
To enforce this, the API policy would need to prevent keys of
lower-ranked employees being used to wrap keys of higher-
ranked employees. We call the high-level key management
policy the enterprise security policy to reflect this example,



but in general an enterprise policy could be a complicated,
non-linear relationship between different components of the
organisation1. Since previous analyses in the literature make
no link between API policies and enterprise policies, it is
unclear how a security property proved for a key management
API is sufficient for the security needs of the users of the API.

Another weakness of existing work is that security proofs
are not modular. Analyses of key management APIs typically
make specific assumptions about the cryptographic mecha-
nisms used by the API, and the security proofs only hold
under these assumptions. For example, while Kremer, Steel
and Warinschi give an API design with strong computational
security guarantees, their proof relies on the assumption that
key wrapping is deterministic and that wraps are unforgeable
and indistinguishable from random strings [KSW11]. It is
not clear how making different assumptions on the wrapping
mechanism would affect the proof. The same can be said
for the API design by Cachin and Chandran, whose security
definition, and hence the proof of security, is very closely
tied to the design of the API and the specific cryptographic
security notions assumed for the primitives used by the API
[CC09]. Kremer, Künnemann and Steel also make restrictive
assumptions about the wrapping primitive used by their key
management functionality, namely that it is deterministic and
has Key-Dependent Message (KDM) security [KKS13]. All of
these results only verify the security of a particular key wrap-
ping API with a particular policy and a particular wrapping
mechanism. Additionally, the proof in the paper by Kremer,
Künnemann and Steel is in the GNUC framework. This means
that the security notion used for key management should
compose naturally with the security of other functionalities
offered by a cryptographic API, but this composability comes
at the cost of having a complex model and a proof that is hard
to verify.

The Cortier-Steel and Cortier-Steel-Wiedling APIs allow
arbitrary terms to be processed by the API and only have
one type of encryption for, in particular, both keys and data
[CS09], [CSW12]. As input, their APIs can take a term
representing the encryption of a key, together with some data
encrypted under another key. This is intended for running
complex cryptographic protocols without ever having to give
the value of keys to an untrusted machine. This is a desirable
design for cryptographic APIs, however it is far from what is
implemented in practice (in particular, what is implemented in
PKCS#11). Our approach is closer to what is implemented in
practice, where terms are typically either the wrapping of one
key or the encryption of some data.

The Cortier-Steel API uses a very rich policy that describes
relationships between agents, but this policy is expressible us-
ing our simple definition of policy. The Cortier-Steel-Wiedling

1 As another example, suppose an organisation has a CEO (A), a CFO
(B), an HR Manager (C) and a Product Designer (D). D is lower-ranked
than B and C, who are equally-ranked and lower-ranked than A. If C’s
machine is compromised, and hence C’s secret keys are compromised, then
one might expect the company’s employee data to be compromised, but not the
company’s financial data. Both (respectively, neither) sets of data are expected
to be compromised if A (resp., D) is compromised.

API additionally attaches timestamps to keys so that their
validity can change over time. This allows for an API that
recovers after corruption. We do not consider the issue of time
here, and leave such an extension as future work. Finally, both
these works perform their proofs in the Dolev-Yao model. In
this respect the computational guarantees we give in this paper
are strictly stronger.

We improve on existing work in a number of ways: we
avoid specifying a particular API policy; we use an approach
that is modular with respect to cryptographic assumptions; we
prove strong, computational security guarantees with a proof
that is easy to verify and we parameterise our definition of
API security by the security needs of the users of the API.
Ultimately, our result is significantly more general, and our
proof is significantly more modular, than in previous analyses
of key management APIs. We can verify the security, with
respect to different enterprise security policies, of a wide
variety of key wrapping APIs with different policies and
different wrapping mechanisms.

In the next subsection we outline our results.

A. Our Contribution

We view a cryptographic API as the composition of a key
wrapping API that carries out key wrapping, and an external
API that carries out other cryptographic operations. All keys
stored by the API are called using a public handle, and each
handle has an associated attribute that is either internal or
external, referring to the intended use of the key pointed to
by the handle. The key wrapping API will reject calls to wrap
under keys with external attributes, and the external API will
reject calls to carry out the other cryptographic operations
using keys with internal attributes.

Our security goal for a key wrapping API is that external
keys are indistinguishable from freshly generated keys, even
after being wrapped and unwrapped using internal keys. As
we exemplify in Section VII, this notion of security for key
wrapping APIs is sufficient to preserve the security of the other
cryptographic operations carried out by the external API.

We remark that indistinguishability from random is impos-
sible to achieve for any key that can be used for wrapping 2

so the key wrapping API will need to enforce the separation
between internal and external keys. While we assume the API
does not explicitly allow attributes to be changed from external
to internal, it is possible that an adversary could implicitly
change the attribute of a key by wrapping and unwrapping
it, giving it a new handle and possibly a new attribute. It will
therefore be necessary to use a secure AE-AD scheme to wrap
keys, so that the wrapping mechanism binds the attributes of
the wrapped key to the ciphertext.

From now on, unless stated otherwise, we will use the
term API to refer to the key wrapping API inside a larger
cryptographic API, since this is the main focus of our analysis.

2There is a trivial distinguishing attack in this case: the distinguisher creates
a wrap under the true key, then attempts to decrypt this wrap using its
challenge key.



An API has a security policy, or simply policy, that de-
termines whether one key can be used to wrap another. This
policy is not simply how the API ought to behave, but rather
the actual rules for wrapping implemented in the code of the
API.

We analyse a generic key wrapping API in which the
security policy is not fixed. That is, rather than choosing a
particular policy as is done elsewhere in the literature, we leave
it underspecified and find conditions on the policy that are
sufficient for secure key management. While previous works
conflate two roles of policies - defining the actual internal
behaviour of the API and defining what properties are expected
from the API - we clearly separate these roles into the API
security policy and the enterprise policy, respectively, and
determine when the former is sufficient to satisfy the latter.

Furthermore, our API design does not insist on a particular
wrapping mechanism. Unlike other API designs, the wrapping
mechanism can be implemented in a variety of ways without
affecting our security theorem or its proof - in particular,
both deterministic and randomised wrapping mechanisms are
supported. As with the policy, we specify conditions on
the security of the mechanism, capturing confidentiality and
integrity, that are sufficient for the security of the API.

Our approach gives strong, computational guarantees but
with a simple proof in the symbolic model that holds under a
number of different computational assumptions.

Now we detail some of the key technical aspects of our
result.

STRONG SECURITY GUARANTEES. We prove that certain
minimal conditions on the policy and the wrapping mechanism
are sufficient to guarantee the secrecy of external keys. We
prove security in a strong, cryptographic sense, namely that
external keys are indistinguishable from random keys, even in
the presence of powerful Probabilistic Polynomial-time Turing
machine (PPT) adversaries. We additionally prove that com-
posing a secure key wrapping API with a secure encryption
scheme results in a secure cryptographic API where users are
able to wrap keys and encrypt data. As an application, we
propose a secure refinement of PKCS#11, forbidding certain
attribute combinations and forcing the wrap mechanism to be
a secure AE-AD scheme that correctly transmits the attributes
of wrapped keys.3

GENERIC POLICIES. We assume the existence of an enter-
prise security policy and an API security policy but do not fix
either one. The enterprise policy is specified as relationships
between the attributes of keys. Intuitively, these relationships
determine how the compromise of keys will propagate. Then
we give conditions that say whether or not the security policy
of an API is valid with respect to the enterprise security policy;
simply separating internal and external keys is not enough for
security. For example, suppose the enterprise security policy
says that the key k1 is of a higher security level than k2. Then
a valid API security policy will not allow k1 to be wrapped

3We are aware that this is likely to be far from what is currently
implemented on real-world cryptographic tokens running PKCS#11-compliant
APIs. Our result should be viewed simply as guidance for future token designs.

under k2 since, if k2 is compromised, a wrap of k1 under k2

is insecure, leading to the trivial compromise of k1.
MODULAR PROOF. We use the Computationally-Complete

Symbolic Attacker for equivalence properties (CCSA), de-
veloped by Bana and Comon in 2014 [BC14]. This model
uses symbolic formalism to prove meaningful, computational
security statements. Proofs in this model are easy to verify, es-
pecially compared to the cryptographic proofs like those found
in [CC09], [KSW11] and [KKS13]. In CCSA one expresses
assumptions (on the policy and the wrapping mechanism) as
axioms in first-order logic and deduces the security property
from these axioms. This means that the theorem holds under
any computational assumptions such that the axioms hold,
giving a high degree of modularity.

Informally, our cryptographic axioms say that genuine
wraps of keys are indistinguishable from wraps of fresh,
random keys and that wraps are unforgeable. We prove that
our axioms are sound if the wrapping scheme is built on
an Authenticated Encryption with Associated Data (AE-AD)
encryption scheme; this is a standard requirement in modern,
symmetric cryptography. However, we also prove that the
axioms are sound when wrapping satisfies a deterministic
variant of this notion (i.e. not using random nonces). Since our
proof depends only on the axioms, not on the computational
assumptions, we can obtain results about APIs that use com-
pletely different wrapping mechanisms without any changes
to the proof. One of our conditions for an API policy to be
valid is that it forbids the creation of key cycles. However,
if we assume KDM security for the wrapping scheme as
in [KKS13], then we can relax this condition on the policy
(see Remark 5). This is in contrast to existing works, where
relaxing the assumption on key cycles or the assumption that
encryption is randomised would require substantial changes to
the security proof.

AUGMENTING THE CCSA FRAMEWORK. In previous
works, CCSA has only been applied to cryptographic proto-
cols. Ours is the first use of CCSA to analyse a system that is
outside the scope of the original paper on CCSA. To prove our
substantial result, we required novel, computationally-sound
axioms. One such new axiom captures how a proof can be split
into disjoint cases. Our new axioms can be used in security
proofs outside the key management setting without needing
to reprove their computational soundness. In this respect we
have augmented the CCSA model.

Another recent work has developed CCSA axioms for var-
ious cryptographic primitives in order to tackle a larger class
of cryptographic protocols [BC16]. Their work independently
developed axioms for manipulating branching and ‘if’ state-
ments in the CCSA model; most of the core axioms related to
these constructions are similar in our work and in theirs. The
main difference between our core axioms and those developed
in [BC16] is that our case disjunction axiom is strictly stronger
than theirs, at the cost of a more involved soundness proof.
Our stronger case disjunction axiom is required to deal with
the very rich branching that arises in the context of key-
management.



CAVEATS. We prove security when the number of API
queries made by the adversary is arbitrary but, because of
our reliance on CCSA, this number must be independent of
the security parameter used by the underlying cryptographic
primitives. Nevertheless, all of the attacks found on real APIs
either use a fixed number of queries, as captured by our model,
or are attacks on weak cryptographic primitives (such as in
[BFK+12]) for which our axioms would not be sound.

We accept that our separation of external and internal keys
is difficult to enforce in practice; in particular, the attributes
of keys must be securely bound to the keys when wrapping
(such as with AE-AD) so that external and internal keys
can never be confused. However, this separation enforces a
standard industry practice, as recommended by NIST: “a single
key should be used for only one purpose (e.g., encryption,
authentication, key wrapping, random number generation, or
digital signatures)” [NIS12]. Indeed, most of the API designs
in the literature enforce this separation [CC09], [KSW11],
[CS09], [CSW12].

We remark that our composition theorem in Section VII
only applies to cryptographic APIs with wrap, unwrap, en-
crypt, decrypt and corrupt actions, rather than arbitrary cryp-
tographic primitives. However, the proof is largely independent
of the specific cryptographic game for encryption and would
therefore be easy to adapt to other primitives.

II. KEY WRAPPING APIS

In this Section we define the execution model for a key
wrapping API and the security one should expect of such an
API.

A. Execution Model

We assume the existence of the sets K of keys, H of handles
and D of attributes (data). The set D has a particular subset
E of external attributes. A wrapping mechanism wm consists
of the triple (keygen,wrap,unwrap) of algorithms. The
algorithm keygen takes a security parameter η (in unary)
as input and returns an element of K. We assume that
keygen (1η) always returns a key of length keylen (1η).
The algorithm wrap takes as input a key k ∈ K, an attribute
a ∈ D and a second key k′ ∈ K, and returns wrap (k, a, k′),
the wrap packet of the key k with attribute a under the
key k′. We do not specify how the wrap packet depends
on the attribute of the wrapped key, nor how it uses any
randomness. The algorithm unwrap takes a wrap packet
and a key as input and returns a key and an attribute. Both
wrap and unwrap can have access to the security parameter,
if necessary. We assume that all wrapping mechanisms are
correct, that is, for all keys k, k′ ∈ K and all attributes a ∈ D,
unwrap (wrap (k, a, k′) , k′) = (k, a).

A security policy P is an algorithm that takes two attributes
as input and returns a bit. We make this choice since a policy
ought not to depend on the values of the keys themselves
(otherwise it could leak unintended information about the keys
and would have to be evaluated by the secure hardware, not the
API). We remark that a more general wrapping policy could

use the value of a global clock as an additional argument (to
handle key lifecycles and key revocation, etc.), but we leave
this for future work.

Definition 1. A key wrapping API API is a program param-
eterised by the tuple (K,D, E ,H,wm,P). The API maintains,
in its state st, a map st.val : H → (K ∪ {�}) × (D ∪ {�})
that records the association between handles, which are public
names, and pairs consisting of a key and its attribute. In what
follows, we specify how an adversary interacts with an API.

An adversary, interacting with the API, can request wraps
and unwraps via the handles of keys. If st.val (h) = (�, �)
then we say h is unused in state st. There is also a function
freshhdl that takes a state st as input and returns a handle
freshhdl (st) that is unused in st.

Let st0 be an initial state of the API. Then the initial
configuration of the API is the map val encoded by st0.
An initial configuration is called honest if, for all handles h,
st0.val (h) is either not initialised or initialised with an output
of keygen(1η). Intuitively, this corresponds to a device
with honestly generated keys already present. From now on,
all key wrapping APIs are assumed to have honest initial
configurations. This assumption is reflected in the generation
of the initial state of APIs in the experiment used to define
security.

Note that we assume that each key has a single attribute.
We will also assume the API does not explicitly allow the
user to change the attribute of a key. These assumptions are
without loss of generality, since any attributes that can be
easily changed by the adversary cannot be used to preserve
meaningful security and so are omitted from this discussion.
Note that any “attributes” irrelevant to security can be encoded
in the state and we simply do not allow the policy to depend
on these. Furthermore, if a key could be generated without an
attribute, then the attribute would need to be fixed before the
key could be used and so we merely assume for convenience
that this decision takes place before the key is generated.

Intuitively, if a key’s attribute belongs to E then that key
is intended to protect data, as opposed to other keys. Our
security goal will be that external keys (keys with attributes in
E) remain indistinguishable from random after being managed
by the API and therefore are ideal for cryptographic use. Note
that this goal is impossible to achieve for any keys used for
key wrapping, since an adversary can distinguish the real key
from a random key by attempting to unwrap with its test key.

Even though separating external and wrapping keys might
seem restrictive, as soon as a wrapping key can also be used
for decryption, keys can be recovered by the adversary (as
demonstrated in [BCFS10]). Therefore such a separation must
be enforced by any secure policy. While we only consider here
the wrapping module used by cryptographic APIs, in Section
VII we give a formal argument that a secure key wrapping
API can be composed with an encryption scheme without
undermining the security of the encryption scheme, assuming
this separation of key roles.



There are three actions that a user can perform in its inter-
action with a key wrapping API: wrapping, unwrapping and
corruption. Obviously, the corruption action is not intended
to be implemented on real APIs, but is used here to reason
about the security of APIs in the presence of an adversary who
can obtain the values of particular keys, for example through
side-channel attacks.

When a key is corrupted, we add its attribute to a list
of corrupted attributes. We settle for recording corrupted
attributes rather than corrupted keys as, by construction, every
key with the same attribute has the same capabilities. In
other words, if one corrupts a key with attribute a, every
key that can be wrapped by a key with attribute a will be
compromised, irrespective of exactly which key was corrupted.
It is therefore enough to log that some key with attribute a has
been corrupted. As a consequence, if one wants to distinguish
the corruption of two keys, these keys should be given different
attributes.

A fully-specified action is an action (wrap, unwrap or
corrupt), together with the handles of the keys relevant to the
action. Fully-specified actions define the execution of the API.
Formally, if A is a fully-specified action of the API, then A
is an element of one of the sets {W (h1, h2) | h1, h2 ∈ H},
{U(h) | h ∈ H} or {C(h) | h ∈ H}. Obviously the unwrap
action will require an additional argument corresponding to
the ciphertext to be unwrapped, but the value of this argument
does not determine the overall structure of the API execution
(as it could depend on some random coins) and so it is not
considered part of the fully-specified action U(h).
• If A = W (h1, h2), then the API computes (k1, a1) ←

st.val (h1) and (k2, a2)← st.val (h2). If k1, k2 6= � and
P (a1, a2) = 1, then the API returns wrap (k1, a1, k2).
Otherwise, the API returns �.

• If A = U (h1), then the API takes an additional in-
put x from the user, computes (k1, a1) ← st.val (h1)
and (k2, a2) ← unwrap (x, k1). If k2, a2 6= � and
P (a2, a1) = 1, then st.val (freshhdl(st)) ← (k2, a2).
Otherwise, st.val (freshhdl (st))← (�, bad) where bad
is a particular attribute (used to denote handles that are
not fresh, but do not point to a key). In either case,
freshhdl (st) is returned to the user.

• If A = C (h1), then the user is asking to learn the
value of the key pointed to by h1. The API computes
(k1, a1)← st.val (h), does not carry out any checks, and
returns k1. By definition, if h is unused in st then the API
returns �. For our security property, the state maintains
a list of corrupt attributes. Therefore, for this action, the
API updates its state as follows: st.cor← {a1}∪st.cor.

B. Security

We consider three objectives of an adversary in its exe-
cution of a key wrapping API. First, an adversary may try
to learn (part of) the value of an external key, in order to
compromise a cryptographic scheme using this key in the
wider cryptographic API. Second, the adversary may try to
change the attributes of a key (external or otherwise), in order

to circumvent the security policy. Third, the adversary may try
to import its own keys in order to wrap with these keys. The
second and third objectives can be combined: the adversary
succeeds in either objective if there is a handle pointing to a
key, attribute pair that was not pointed to by a handle in the
initial configuration of the API (either because the key is new,
or the attribute of an honestly generated key has changed).

We consider an API to be secure if and only if no adversary
can achieve these objectives with uncompromised handles.
That is, if a handle is uncompromised and it points to an
external key, then that key cannot be distinguished from a
random key; we call this the key secrecy property. Furthermore,
any uncompromised handle must point to a key, attribute pair
from the initial configuration of the API; we call this the
handle consistency property.

What is meant by calling a handle compromised (or uncom-
promised) is that, for example, an organisation might consider
keys assigned to lower-status employees compromised if the
keys of senior management are compromised, but not vice-
versa. This is an example of an enterprise security policy. So,
given the list of attributes of keys lost via the corrupt action,
the enterprise security policy determines which handles are
compromised according to their attributes. We formalise this
below.

In general, we model an enterprise security policy by a
sacrifice function sacr : D → P (D). Intuitively, the set
sacr(a) should be thought of as the set of attributes of keys
compromised as a result of compromising a key with attribute
a. This has nothing to do with the use of the API; it is a pre-
existing relationship between attributes that the API needs to
respect, by not allowing the compromise of keys to propagate
beyond what is specified by the sacrifice function.

We assume without loss of generality that a ∈ sacr(a) for
all a ∈ D and that sacr is transitive in the following sense:
if a ∈ sacr(b) and b ∈ sacr(c) then a ∈ sacr(c).

The sacrifice function is derived from the existing rela-
tionships between users of the API. The example enterprise
security policy given above, where compromise propagates
down the employee hierarchy (but not up), would be cap-
tured by giving an ordering < on attributes and putting
sacr(a) = {a′ ∈ D | a′ ≤ a} for all a ∈ D. A more refined
enterprise security policy would separate the organisation into
departments and say that the compromise of keys must not
propagate across different departments. In this case, one would
partition the set of attributes into classes (Di) and, for each i,
put sacr(a) = {a′ ∈ Di | a′ ≤ a} for all a ∈ Di.

There could be a very conservative enterprise security
policy, where the compromise of a key does not compromise
any other keys. In this case, each key would have a unique
attribute and sacr(a) = {a} for each attribute a. We will see
that the only APIs secure for this sacrifice function are ones
that disable key wrapping altogether.

Now we formalise the notion of compromise, which follows
easily from the sacrifice function and the list of corrupt
attributes.



Definition 2. If a ∈ st.cor then we say a is a corrupt attribute
in state st. If a is corrupt in state st and a′ ∈ sacr(a), then
we say a′ is a compromised attribute in state st.

If st.val(h) = (k, a) and a is a corrupt (respectively,
compromised) attribute in state st, then we say h is a corrupt
handle (respectively, compromised handle) in state st.

We have two security experiments, capturing the secrecy of
uncompromised keys and the consistency of uncompromised
attributes.

Our security experiments take an adversary A, integers
m and n and attributes a1, . . . , an as input. The handles
h1, . . . , hn are initialised with randomly generated keys and
the attributes a1, . . . , an. The integer m is the exact number
of oracle queries that A makes in either experiment.

In both security experiments, the adversary has access to
three oracles capturing the wrap, unwrap and corrupt actions
of the API. There is also a fourth test oracle, which may only
be queried once, whose behaviour depends on a bit b. The
adversary submits a handle and, if b = 0, the oracle returns the
key pointed to by this handle. If b = 1, a new key is randomly
generated and returned to the adversary. When performing this
test query, the API checks that the attribute of the submitted
handle is external and has not been compromised. After the
test query has been made, the API checks that any corrupt
query does not compromise the tested handle.

If the tested handle is compromised at the end of the key
secrecy experiment, or its attribute is not external, then the
output of this experiment is a random bit. Otherwise, the
output of the experiment is the output of the adversary.

In the handle consistency experiment, the output of the
experiment is 1 if, once the adversary has given its output,
the state of the API contains an uncompromised handle that
points to a key, attribute pair not in the initial configuration
of the API. Otherwise, the output of the experiment is 0.

The formal description of the security experiments are given
in Figures 1 and 2.

Oracle Owrap (x1, x2):
st.C ← st.C + 1
If st.C > m Return �
(k, a)← st.val(x1)(
k′, a′

)
← st.val(x2)

If k, k′ 6= � and P
(
a, a′

)
Return wrap

(
k, a, k′

)
Return �

Oracle Ounwrap (x1, x2):
st.C ← st.C + 1
If st.C > m Return �
(k, a)← st.val(x1)(
k′, a′

)
← unwrap(x2, k)

h← freshhdl(st)
st.H ← st.H ∪ {h}
If k′ 6= � and P

(
a′, a

)
st.val(h)←

(
k′, a′

)
Else st.val(h)← (�, bad)
Return h

Oracle Ocorrupt (x1):
st.C ← st.C + 1
If st.C > m Return �
(k, a)← st.val(x1)
If st.T ∈ sacr (a)

st.V ← ⊥
st.cor← {a} ∪ st.cor
Return k

Oracle Otest
b (x1):

If st.C > m or st.T 6= ⊥ Return �
(k, a)← st.val(x1)
k′←$ keygen (1η)
If a /∈ E then st.V ← ⊥
For c ∈ st.cor

If a ∈ sacr (c) then st.V ← ⊥
st.T ← a
If b = 0 Return k
Return k′

Figure 1. Wrap, Unwrap, Corrupt and Test Oracles

Experiment ExpKEYSEC
b (A, a1, . . . , an,m):

st.C ← 0
st.T ← ⊥
st.V ← >
st.cor← []
For 1 ≤ i ≤ n
ki←$ keygen (1η)
st.val (hi)← (ki, ai)

st.H ← {h1, . . . , hn}
Ob ←

(
Owrap,Ounwrap,Ocorrupt,Otest

b

)
b′ ← AOb (1η)
If st.V = > Return b′

b′′←${0, 1}
Return b′′

Experiment ExpHDLCON (A, a1, . . . , an,m):
b← 1
st.C ← 0
st.T ← ⊥
st.V ← >
st.cor← []
st.val0 ← []
For 1 ≤ i ≤ n
ki←$ keygen (1η)
st.val (hi)← (ki, ai)
st.val0 ← st.val0 ∪ {(ki, ai)}

st.H ← {h1, . . . , hn}
Ob ←

(
Owrap,Ounwrap,Ocorrupt,Otest

b

)
x← AOb (1η)
For h ∈ st.H

(k, a)← st.val(h)
If (k, a) 6∈ st.val0

If for all ac ∈ st.cor, a /∈ sacr (ac)
Return 1

Return 0

Figure 2. Key Secrecy Experiment b and Handle Consistency Experiment

Definition 3. Let API = (K,D, E ,H,wm,P). We say the API
is secure if, for all integers m and n, all ~a ∈ Dn and all
polynomial-time adversaries A, the following advantages are
both negligible functions of η:

AdvKEYSEC
APIm (A) := Pb

[
ExpKEYSEC

b (A,~a,m) = b
]
− 1

2

AdvHDLCON
APIm (A) := P

[
ExpHDLCON (A,~a,m) = 1

]
III. STATEMENT OF THE MAIN THEOREM

In this Section we define the class of valid API security
policies, recall the definition of a secure AE-AD scheme and
state the main theorem of the paper: if a key wrapping API
uses a secure AE-AD scheme for its wrapping mechanism and
its security policy is valid, then the API is secure.

There are three conditions required of the API policy. First,
we require that if a key with attribute a can be wrapped
under a key with attribute a′, then the enterprise security
policy should say that the compromise of a key with attribute
a′ compromises keys with attribute a. This is a reasonable
assumption as any wrap under a key with attribute a′ will no
longer provide any security for the key with attribute a.

Second, we require that the policy forbids wrapping under
external keys. This enforces the separation between keys used
by the API and keys protected by the API.

Finally, we require that valid policies forbid the creation of
key cycles. This is necessary, since standard security notions
for encryption do not imply security in the presence of key
cycles (see e.g. [CGH12]).



Definition 4. Let P be an API security policy. We say P is
valid with respect to the sacrifice function sacr if:
• For all a, a′ ∈ D, if P (a, a′) = 1, then a ∈ sacr (a′).
• For all a ∈ D and e ∈ E , P (a, e) = 0.
• The policy graph, i.e. the graph on D where there is an

edge a → a′ if and only if P (a′, a) = 1 (if and only if
a key with attribute a can be used to wrap a key with
attribute a′), is acyclic.

Remark 5. This definition of a valid policy is minimal since, if
any of the conditions are not met, then attacks will be possible:

1) If the first condition is false, then it will be possible
to create a wrap of a key k such that corrupting the
wrapping key does not compromise the handle pointing
to k. So k will be an uncompromised key (according
to the enterprise policy) that is trivially distinguishable
from random.

2) If the second condition is false, then there is an external
key k such that the adversary can create a wrap under k
and then try to decrypt the wrap with its challenge key.

3) The third condition is necessary since standard notions
of encryption security do not imply security in the
presence of key cycles. We could remove this condition
and show that the key wrapping APIs are still secure, if
we assume KDM security for the wrapping mechanism.
In this case, we would simply weaken the constraint on
the secrecy axiom to permit key cycles (see Section V),
prove the soundness of this axiom (by slightly modifying
the soundness proof of the original axiom) and then
the proof of the symbolic security property from the
axioms (Section VI) would need only minor changes to
accommodate the new constraint.

Even though the above definition captures a large class
of sensible security policies, it is all we need in order to
prove that a key wrapping API is a secure API, provided that
the wrapping mechanism is built using either a (randomised)
secure AE-AD scheme, as defined in [Rog02] or a Determin-
istic Authenticated Encryption scheme as in [RS06]. We refer
to these as randomised and deterministic AE-AD schemes,
respectively. We recall these security notions here:

A triple Π = (keygen,enc,dec) is called a randomised
(resp. deterministic) Secure Authenticated Encryption with
Associated Data (AE-AD) scheme if:
• Π is correct, i.e. for all messages m, data a, nonces r and

all k←$keygen (1η), dec (enc (m, a, r, k) , a, r, k) =
m (where nonces are ignored in the deterministic case),

• Π is private, i.e. no PPT adversary can distinguish
between an encryption oracle and an oracle returning
random strings of the appropriate length,

• Π is authenticated, i.e. given access to an encryption
oracle, no PPT adversary may produce triples (c, a, r)
(or pairs (c, a) in the deterministic case) that decrypt
successfully but where the c was not output by the
encryption oracle.

Full definitions are provided in Appendix ??.
Now we state the main Theorem of this paper.

Theorem 1. Let API = (K,D, E ,H,wm,P) be a key wrap-
ping API and let Π = (keygen,enc,dec) be a secure
deterministic or randomised AE-AD scheme. Suppose wm =
(keygen,wrap,unwrap) where wrap, on input (k, a, k′)
generates a fresh nonce r and returns the wrap packet
(enc (k, a, r, k′) , a, r) and unwrap, on input (w, k), parses
w as (c, a, r) and returns dec (c, a, r, k). Then, if P is valid
with respect to sacr, the key wrapping API is secure.

Remark 6. The hypotheses of this theorem are minimal. By
Remark 5, a valid policy is necessary to prevent attacks. Fur-
thermore, without assuming AE-AD security for the wrapping
mechanism, or some other way of securely binding attributes
to keys when wrapping, the first two attacks given in Remark 5
are still possible: the adversary simply wraps a key and
unwraps it with new attributes, circumventing any restrictions
given by the policy.

In order to prove Theorem 1, we define symbolic APIs,
using the language of CCSA, in Section IV. We give axioms
in Section V and prove these axioms sound under the assump-
tions of Theorem 1. In particular we give axioms that are
sound for both secure deterministic and randomised AE-AD
schemes. Therefore, due to the computational soundness of
CCSA, if one can show that a symbolic security property is
implied by the axioms, then the corresponding computational
security property holds in any computational API where the
wrapping mechanism is as in Theorem 1.

In Section VI, we show that the axioms entail the symbolic
security properties corresponding to the security definition
given in Definition 3. This proves Theorem 1.

IV. SYMBOLIC MODEL AND SOUNDNESS

To prove Theorem 1, we cast our problem in the setting
of the computationally complete symbolic attacker model
(CCSA) from [BC14]. The CCSA allows one to abstract away
a lot of the complexity of the usual computational models, yet
it entails computational guarantees.

In CCSA, we model the capabilities of an adversary as
a list of first-order axioms that cannot be broken by any
PPT adversary with non-negligible probability. For example,
a secrecy property for encryption could be expressed as the
formula {x}k ∼ {y}k, meaning that no PPT adversary can
distinguish an encryption of x from an encryption of y. This
is in contrast to Dolev-Yao style symbolic models where one
has to fully specify the abilities of the attacker as a finite list
of inference rules.

A security property in CCSA is expressed as the indistin-
guishability of two lists of terms, which is itself written as a
formula in first-order logic. For example, if φ is the list of
terms output to the adversary by the API where h points to
(k, a) in the initial state, and φ′ is where h points to (k′, a),
then the key secrecy property could be written φ ∼ φ′4. One
then proves that the axioms entail the security property. In
other words, an adversary can perform any action that does

4In fact, our key secrecy property is more complicated than this, since we
need to specify that h is uncompromised.



not contradict the axioms, but still cannot break the security
property.

Assigning a Turing Machine to each of the function symbols
used in a symbolic API is called a computational inter-
pretation of the symbolic API. For example, the function
symbol {_} could be interpreted as the encryption algorithm
enc. A computational model of the symbolic API is a
computational interpretation where certain function symbols
have fixed interpretations. For example, in a computational
model, the function symbol EQ is interpreted as the machine
that outputs 1 if its two inputs are equal (and outputs 0
otherwise). Crucially, the predicate symbol ∼ is interpreted
as computational indistinguishability of bitstrings. That is,
the formula x1, . . . , xn ∼ y1, . . . , yn is interpreted as the
statement that no polynomial-time adversary can distinguish
the interpretations of x1, . . . , xn from the interpretations of
y1, . . . , yn.

In a computational model, each axiom will be interpreted
as a statement about Turing Machines. If the statement is true,
then we say the axiom is sound in this model. Let A be a set of
axioms. The computational soundness theorem for CCSA says
that if A → φ ∼ φ′ then, in any computational model where
the axioms in A are sound, the computational interpretations
of the terms φ and φ′ are indistinguishable: no polynomial-
time adversary can distinguish them. In an API, the sequences
of terms φ and φ′ output by the API will depend on the inputs
of the (active) distinguishing adversary, and these inputs are
modelled using free function symbols gi; one must prove that
φ ∼ φ′ regardless of the interpretation of the symbols gi.

The axiomatic approach of CCSA gives an inherent modu-
larity to the model. In our case, we are able to specify only
the properties of the API security policy that are necessary,
rather than describing the whole policy, since these properties
correspond to the axioms used in the proof. Thus, at no extra
cost, we prove the security of multiple instantiations of key
wrapping APIs.

A. Symbolic Execution

In CCSA, protocols5 have a fixed structure: it is known a
priori what messages are expected at what stage (and therefore
what checks to carry out before returning a message, and
so on). In our computational API, even though the number
of oracle queries is constant in the security parameter, the
adversary may query its oracles in any order. Each possible
order of queries will induce a different sequence of output
terms from the symbolic API. The order does matter, since
the inputs from the adversary (in particular, the inputs to the
unwrap oracle) depend on the previous outputs seen by the
adversary so far. Therefore we have to fix a sequence of oracle
queries, obtaining a restricted computational API, and reason
about the output terms of the symbolic API corresponding to
this restricted computational API. Fixing a list of actions is

5The authors of [BC14] use the term protocols, but we will use their
model to describe APIs. Having fixed a list of API oracle queries, we obtain
a transition system that behaves like a protocol as described in [BC14].
Therefore we use ‘protocol’ and ‘API’ interchangeably.

not a significant restriction; we show in Appendix B how the
computational security definition given in Section II reduces
to the security of every possible restricted computational API.

We now give the language needed to describe the symbolic
API.

Terms are built over the sets F of function symbols, G of
free adversarial function symbols and N of names. The set
of all terms is written T := T (F ,G,N ). Syntactic equality
of the terms t and t′ is written t ≡ t′. Every term has a
sort. Within the sort message, there are subsorts key, nonce,
longnonce, handle, attribute and bool. Names have sort key,
nonce, longnonce, handle or attribute. There is a particular
name bad of sort attribute. The set F is described in Figure 3.

• Constants: true, false, fail
• Conditional branching: if _ then _ else _
• Logical operators: _ ∧ _, _ ∨ _, ¬_
• Pairing and projections: (_, _), π1 (_), π2 (_), π3 (_)
• Encryption and decryption: enc (_, _, _, _), dec (_, _, _, _)
• Equality test: wf (_), EQ (_, _)
• Random string: $ (_, _)
• Policy check: P (_, _)

Figure 3. Functions

We remark that certain function symbols above, e.g. the
boolean operators and the projections have obvious intended
meanings. We formalise these intended meanings either as
fixed computational interpretations in Section IV-C, or give
assumptions on these interpretations, which are reflected as
axioms, in Section V. This means that for functions like
encryption that have more than one obvious implementation,
we permit any implementation satisfying the assumptions.

We introduce some abbreviations for ease of notation. We
will write [b]x : y for (if b then x else y) and [b]x for
(if b then x else fail). This notation is extended to lists of
terms in the natural way: if ~v ≡ v1, . . . , vn and ~w ≡
w1, . . . , w2, then [b]~v : ~w ≡ [b]v1 : w1, . . . , [b]vn : wn.

We write {m}rk,a ≡ (enc (m, a, r, k) , a, r). This is just for
convenience: when unwrapping, the adversary must submit a
ciphertext, some associated data and a nonce to the API and
we prefer to express this triple as a single term called the wrap
packet. In the case of deterministic encryption, the nonce will
simply be ignored. Furthermore, we write

triple (x) ≡ EQ (x, (π1(x), π2(x), π3(x)))

uwp (x, k) ≡ [triple (x)] dec (π1(x), π2(x), π3(x), k)

This is so, when the adversary submits a wrap packet to uwp,
one checks that this packet is a triple (x′, x′′, x′′′) and, if so, its
components are taken for the inputs to dec. We use wf(x) ≡
¬EQ (x, fail) to test whether terms (in particular, ciphertexts)
are well-formed.

The set G consists of infinitely many function symbols
gi : messagei → message for each i ≥ 0, corresponding
to the computation of the adversary on the terms it has seen
previously.

Subterms are defined naturally as the internal components
of terms, and st(x) denotes the set of subterms of x. Positions
of subterms within terms are defined as usual.



Formulae may be built over terms using predicate symbols.
There is a predicate symbol ∼i for each natural number i;
each may be used between lists of i terms. We abbreviate
x1, . . . , xi ∼i y1, . . . , yi by x1, . . . , xi ∼ y1, . . . , yi. We use
the symbols ¬,∨,∧,→ to construct compound formulae as
normal, but these should not be confused with the function
symbols used to operate on terms of sort bool. For example,
b→ b′ is a term of sort bool, whereas (b ∼ b′)∧ (b′ ∼ b′′)→
(b ∼ b′′) is a (compound) formula.

We assume that each state q of a symbolic API is labelled
by the fully-specified actions used to reach it from the initial
state q0. Then, given an initial configuration valq0 : H →
(K ∪ {fail})×(D ∪ {fail}), we can recover the function valq :
H → message by modifying valq0 in the manner described
below. For convenience of notation, we write kq(h) and aq(h)
for π1 (valq(h)) and π2 (valq(h)) respectively.

We remark that valq is an inherent property of the state
q of the API and not a function symbol to be interpreted in
a model: valq(h) will always be instantiated by a particular
term of sort message, intended to be a key, attribute pair.

Finally we recall that, upon successfully unwrapping, the
adversary is given a handle that points (via val) to the result
of the unwrap. The new handle is determined by a function
freshhdl that takes a state as input and returns a handle that
is unused in state q, in the sense that valq(freshhdl(q)) ≡
(fail, fail). Again, this function depends on the internal state of
the API (in particular on valq) and not on the interpretation: in
each state q, freshhdl(q) will be instantiated by a particular
handle and the freshhdl symbol will not appear in the terms
output to the adversary.

Security properties in CCSA are expressed as the indistin-
guishability of sets of terms. We use the language introduced
above to describe the sets of terms that will correspond to our
key secrecy and handle consistency properties.

First, assume we are given a list of fully-specified actions
A1, . . . ,Am. This list induces a state transition system q0 →
q1 → · · · → qm as follows:

• The adversary’s initial knowledge, φ0, is the set of pairs
{(hj ,aq0(hj)) | 1 ≤ j ≤ m}.

• In state qi, the adversary has executed the actions
A1, . . . ,Ai−1 and received the list of terms φi. Then
φi+1 := φi; s where s is the output from the next action
Ai, described below.

If Ai = W(h1, h2), then

s ≡ [P (aqi(h1),aqi(h2))] {kqi(h1)}rkqi (h2),aqi (h1)

where r, a name of sort nonce used to indicate the (fresh)
randomness of the wrapping scheme, occurs in no other output
terms. The state qi+1 is such that valqi+1

= valqi .
If Ai = U(h), then

s ≡ [wf (u) ∧ P (π2 (gi (φi)) ,aqi(h))] freshhdl (qi)

where u ≡ uwp (gi (φi) ,kqi(h)). The state is updated as
follows: if h′ 6≡ freshhdl (qi) then valqi+1

(h′) ≡ valqi(h
′)

and, with u as above,

valqi+1 (freshhdl (qi))

≡ [wf (u) ∧ P (π2 (gi (φi)) ,aqi(h))]

(u, π2 (gi (φi))) : (fail, bad) ,

where bad ∈ D is a fixed attribute such that sacr (bad) =
{bad}.

If Ai = C(h), then s ≡ kqi (h) and qi+1 is such that
valqi+1

= valqi . Note that if h does not point to a key in
state qi, then s ≡ fail.

We remark that these output terms correspond to the API
execution model in Section II.

B. Symbolic Security

In order to define the symbolic security properties, we
define the symbolic analogues to the notions of corrupt and
compromised attributes and handles introduced in Section II.
We remark that, if the function symbols EQ, ∨ and ∧ are
interpreted in the obvious way (which we will later insist
on), the following symbolic definitions are equivalent to the
computational definitions given previously.

Definition 7. Let q ∈ Q. Let C(H) be the set of handles h
such that the action C(h) occurred in the transitions q0 →
· · · → q. Then let x ∈ T . We say x is a corrupt attribute in
state q if corq (x) ∼ true, where

corq (x) ≡ EQ (x, bad) ∨
∨

h∈C(H)

EQ (x,aq (h)) .

Then for any y ∈ T \H we say y is a compromised attribute
in state q if compq(y) ∼ true, where

compq(y) ≡
∨
a∈D

∨
b∈sacr(a)

corq(a) ∧ EQ (y, b) .

Recall that a ∈ sacr(a) for any a ∈ D and, if b ∈ sacr(a)
and c ∈ sacr(b), then c ∈ sacr(a). With the axiom
EQ(x, x) ∼ true (which is obviously computationally sound
for any term x if EQ is interpreted as equality of bitstrings),
we can show that if a is a corrupt attribute in q, then a is a
compromised attribute in q and if a is compromised in q and
b ∈ sacr(a), then b is compromised in q.

Definition 8. Let q ∈ Q and h ∈ H. We say h is a
compromised handle in state q and write compq(h) if and
only if aq(h) is a compromised attribute in q.

By convention, bad is a corrupt attribute in any state. One
might wonder why the attribute of freshhdl(q) becomes the
always compromised attribute bad instead of remaining as fail
in the event that the unwrap action fails. This is so that, if one
tries to unwrap using a compromised handle, the new handle
is considered compromised regardless of the properties of the
adversary’s arbitrary input gi(φi) (which will typically depend
on a random tape). This is mostly a technicality needed for
uniformity later on: we will use the axioms to show that if
a handle is uncompromised then it points to either a genuine



key, attribute pair or the pair (fail, fail), whereas if the handle
used to unwrap is compromised then the axioms cannot be
used to express valq′ (freshhdl(q)) in such a simple way.
We can now state the symbolic version of security, and hence
the symbolic version of our main Theorem. This Theorem
states that that, given a handle h∗ pointing to an external key
k∗, the output φ∗ of an API execution in which h∗ is not
compromised is indistinguishable from the output of the same
execution but in which h∗ points to a key k† not appearing
in φ∗. Moreover this is true even if the adversary is given k∗

in plaintext at the start of both executions. Additionally, we
require that any uncompromised handle points to an honestly
generated key together with the attribute that key had in the
initial state.

Theorem 2. Let API = (K,D, E ,H,wm,P) be a key manage-
ment API such that P is valid with respect to sacr and the ax-
ioms of Section V are sound. Say valq∗0 (h∗) = (k∗, a∗) where
a∗ ∈ E . Let q†0 be identical to q∗0 except that valq†0

(h∗) =(
k†, a∗

)
, where k† is a key not appearing in φ∗ (in particular

k† 6= k∗). Finally, let t be a sequence of fully-specified actions
inducing the API executions (q∗0 , (k

∗, φ0)) → · · · → (q∗, φ∗)
and (q†0, (k

∗, φ0)) → · · · →
(
q†, φ†

)
. Then the following

security properties hold:
1) key secrecy:

[
¬compq∗ (h∗)

]
φ∗ ∼

[
¬compq† (h∗)

]
φ†

2) handle consistency:

φ†,¬compq†(h)→
∨
h0∈H

EQ(valq†(h),valq†0
(h0))

∼ φ†, true

In order to relate this symbolic theorem to the computational
security properties, we recall the computational interpretation
of the logic from [BC14].

C. Computational Interpretation

To express the computational semantics of functions and
predicates, we fix the computational interpretation of some
functions. For example, the function EQ is supposed to express
semantic equality, but without any restrictions it could be
interpreted by any Turing machine and it would be effectively
impossible to reason about it. Therefore we give fixed interpre-
tations for certain symbolic objects and define a computational
model to be any model satisfying our restrictions. Crucially,
there is a great deal of freedom in how a computational model
interprets the adversarial function symbols gi ∈ G, so that all
realistic attacks (i.e. those that run in polynomial-time and do
not have access to the internal randomness of the API) can be
captured by computational models. Once these interpretation
of terms are defined, the interpretation of the formula ~x ∼ ~y
is simply that no PPT adversary can distinguish between the
interpretation of ~x and the interpretation of ~y.

Intuitively, we ensure that the encryption and decryption
symbols are interpreted as (possibly deterministic) authen-
ticated encryption and decryption algorithms and we also
enforce some straightforward restrictions on pairs, projections,

equality and boolean symbols. Details can be found in Ap-
pendix A. If the computational interpretation of a formula
holds for any interpretation (with the aforementioned restric-
tions) of the function symbols, we say that this formula is
sound.

Given these restrictions on the computational interpretation,
we show that Theorem 2 entails Theorem 1. First we show that
we can reduce the security game to the case of a single list
of actions and then further reduce to when the test handle is
chosen at the start of the execution. Details are provided in
Appendix B.

V. AXIOMS

As in [BC14], we define axiom schemes γ ‖ θ(~v) where
γ is a constraint and ~v is the vector of free variables in the
formula θ. This is the set of all instances θ(~v)σ where σ is an
assignment of the free variables ~v to ground terms, and is such
that σ |= γ. For example, we define a constraint fresh(r; ~w)
such that σ |= fresh(r; ~w) if and only if r does not occur in
~wσ.

In this Section we give our axioms A. We use θ(~v) as a
shorthand for true ‖ θ(~v) (i.e. axioms which are satisfied in
any assignment of the free variables in ~v).

A. Basic Properties

In Figure 4 we give basic axioms, mostly proposed
in [BC14]. These state that ∼ forms an equivalence relation on
sets of terms, together with some essential properties of equal-
ity and conditional branching. In particular, we make regular
use of the axiom ~v, [EQ(x, y)]u(x) : z ∼ ~v, [EQ(x, y)]u(y) :
z. The soundness proof of the basic axioms not already present
in [BC14] can be found in Appendix C. We remark that Axiom
9 can be immediately derived from axiom IFEVAL in [BC16].

z1, [true]x : y, z2 ∼ z1, x, z2 (1)

z1, [false]x : y, z2 ∼ z1, y, z2 (2)

for f : s1 × · · · × sn → s
~v1, x1, . . . , xn ∼ ~v2, y1, . . . , yn

→ ~v1, f(x1, . . . , xn) ∼ ~v2, f(y1, . . . , yn)
(3)

~x ∼ ~x (4)

~x ∼ ~y → ~y ∼ ~x (5)

~x ∼ ~y ∧ ~y ∼ ~z → ~x ∼ ~z (6)

If p projects and permutes onto a sublist,
~x ∼ ~y → p (~x) ∼ p (~y) (7)

EQ(x, x) ∼ true (8)

~v, [EQ(x, y)]u(x) : w ∼ ~v, [EQ(x, y)]u(y) : w (9)

For c ∈ {true, false, fail} ∪ D ∪H
x ∼ c↔ ~v, x ∼ ~v, c (10)

Figure 4. Basic axioms

We now state an important lemma that allow us to talk about
semantic equality of terms.

Lemma 9. (Rewriting With Equalities) EQ(x, y) ∼ true if
and only if ~v, x ∼ ~v, y for any sequence of terms ~v. That is,



EQ(x, y) ∼ true if and only if x and y are indistinguishable
in any context.

This Lemma follows from the basic axioms. The complete
proof can be found in Appendix C. We remark that this
Lemma, seen here as a consequence of the axioms, also
follows immediately from axiom EQCONG in [BC16].

Remark 10. Since EQ(x, y) ∼ true means we can replace
x by y everywhere, we use the notation x = y in this
case. This considerably simplifies long formulae, but one must
note the distinction between syntactic equality x ≡ y, which
means that x and y are the same terms from T , and semantic
equality x = y, which means that x and y are (possibly)
different terms representing, up to a negligible probability,
the same underlying object. Obviously by the computational
interpretation of EQ, if x ≡ y then x = y.

Function symbols applied to terms of sort bool in the sym-
bolic model behave exactly as the corresponding operations
on the booleans {0, 1} in the computational model. We state
the corresponding axioms in Figure 5 and prove them sound
in Appendix C. Note that the boolean axioms described here
could be easily derived from the ones in [BC16], given a
proper axiomatisation of the logical connectives.

As a consequence of these axioms, we can manipulate terms
of sort bool within sets of terms in an intuitive way. We use
this manipulation regularly, without citing particular axioms,
in the proof of the symbolic theorem in Section VI.

b = [b]true : false (11)

x = [b]x : x (12)

[b1] ([b2]u : v) : w = [b1] ([b1 → b2]u : v) : w (13)

[b1]u : ([b2]v : w) = [b1]u : ([¬b1 → b2]v : w) (14)

• For any f : s1 × · · · × sn → s and for any ~v ≡ v1, . . . , vn
and ~w ≡ w1, . . . , wn with each vi, wi ∈ si,

f ([b]~v : ~w) = [b]f(~v) : f(~w) (15)

• Let f1 (X1, . . . , Xn) , f2 (Y1, . . . , Ym) be boolean functions
(propositional terms built using the connectives {¬,∧,∨,→}
and with n and m propositional variables, respectively). If
f1(X1, . . . , Xn)⇔ f2(Y1, . . . , Ym),

f1 (b1, . . . , bn) = f2 (b1, . . . , bm) (16)

Figure 5. Boolean axioms

We state the following as an example of the kind of formal
deduction that is possible:

Example 11. The formula b1 → b2 = [b1] b2 : true is true in
any model for the axioms previously listed.

Next we present an axiom that is non-trivial and has not
appeared in the literature before. The new axiom is used to
prove a formula ~v1, u1 ∼ ~v2, u2 by splitting it into multiple
cases. In order for this strategy to work, the cases must form,
with overwhelming probability, a perfect partition of the space
of possibilities. This is formalised in the following definition:

Definition 12. Let I be a finite indexing set such that
(
bi
)
i∈I

is a family of terms of sort bool. If the formula∨
i∈I

bi ∧
∧

i,j∈I,i6=j

¬
(
bi ∧ bj

)
= true

holds, then we say
(
bi
)
i∈I is a partition.

We remark that if
(
bi
)
i∈I is a partition, then, with over-

whelming probability, there is exactly one i ∈ I such thatq
bi

yσ
η,ρ

= 1.
If
(
bi1
)
i∈I and

(
bi2
)
i∈I are partitions (with the same index-

ing set), then we define the case disjunction axiom:∧
i∈I

(
~v1, b

i
1, [b

i
1]u1 ∼ ~v2, b

i
2, [b

i
2]u2

)
→ ~v1, u1 ∼ ~v2, u2 (17)

As we prove in Appendix C, this axiom is sound in all
computational models.

B. Cryptographic Axioms

The core of the proof relies on axioms representing our
cryptographic assumptions. To our knowledge, these axioms
have not appeared in this form before, but the soundness proofs
closely resemble others in the literature.

In Section V-C, we present some logical consequences of
these axioms that are what we actually use in the symbolic
proof.

The randomised version of the strong secrecy axiom states
that if an encryption key k appears in a sequence of terms in
essentially the way described in the AE-AD Privacy game -
only as an encryption key and never with the same nonce
for different plaintexts (and associated data) - then every
encryption under k can be replaced with a random string
(derived from a term of sort longnonce) while preserving in-
distinguishability. We formalise the constraint on k as follows:

Let the constraint enckey(k;~v) be true if and only if the
following conditions are satisfied:
• In ~v, the term k only appears in the position of an

encryption key with a term of sort nonce in the position
of the nonce and a term of sort attribute in associated
data position,

• If two encryptions under k appearing in ~v share the same
term in the position of the nonce, then the terms in the
plaintext and associated data positions are also identical.

Given a sequence of terms ~v, let $k (~v) be the sequence of
terms obtained by replacing every encryption enc (m, a, r, k)
under k appearing in ~v with a term $ (enc (m, a, r, k) , r′),
where r′ is a fresh term of sort longnonce that is indexed by
the encryption term. Indexing the long nonces this way means
that, if the same encryption term appears more than once in
~v, then it is replaced with the same random string in $k (~v).

When encryption is randomised, using fresh nonces in the
encryption terms ensures that ciphertexts created at different
times will not collide (up to a negligible probability). So
encryptions created at different times can be replaced by
different random strings, regardless of the underlying plaintext,



without an adversary being able to distinguish the change. We
do not have this guarantee when encryption is deterministic:
encryptions of the same message (i.e. wraps of the same
key) created at different times will give the same ciphertexts
and must be replaced by the same random string. So for the
deterministic version of our strong secrecy axiom, instead of
replacing all encryptions under k at once we only replace
the encryptions of a particular term. In addition we need to
check in the premise of the axiom that the computational
interpretation of this term is different to the interpretations
of other (syntactically different) terms encrypted under k. For
example, the encryption of π1 (x, y) will need to be replaced
by the same random string as the encryption of x, even though
the plaintexts are syntactically different.

Let us define $dk(~v,m, a) as the sequence of terms obtained
by replacing every encryption enc(m, a, r, k) under k appear-
ing in ~v with a term $ (enc(m, a, r, k), r′), where r′ is a fresh
term of sort longnonce that is indexed by (m, a, k). Note that
r′ must not depend on r as, in the deterministic interpretation
of encryption, r is ignored.

• Strong Secrecy of Wrapping (randomised):

enckey(k;~v) ‖ ~v ∼ $k (~v) (18)

• Strong Secrecy of Wrapping (deterministic):

enckey(k;~v) ‖
∧

{m′}rk,a∈ st(~v)

m′ 6≡m

(
EQ(m,m′)

)
= false

→ ~v ∼ $dk(~v,m, a) (19)

• Integrity of Wrapping:

enckey(k;x) ‖

wf (uwp(x, k)) =

wf(x) ∧
∨

{m}r
k,a
∈ st(x)

EQ
(
x, {m}rk,a

) (20)

• Correctness of Wrapping:

uwp
(
{m}rk,a , k

)
= m (21)

• Correctness of Projections:

π1 (x, y, z) = x (22)
π2 (x, y, z) = y (23)
π3 (x, y, z) = z (24)

• Random String Length Consistency: If K ⊆ K

$k
(
0k,A (~v)

)
∼ $k (~v) (25)

• Failure Propagation:

{fail}zx,y = fail = uwp(fail, x) (26)

Figure 6. Cryptographic axioms

Provided that the encryption and decryption symbols are to-
gether interpreted as a secure deterministic (resp. randomised)
AE-AD scheme with some simple correctness assumptions,

the deterministic (resp. randomised) version of these axioms
are sound. We prove this in Appendix C.

C. Consequences of the Axioms

While assuming AE-AD security gives us that ciphertexts
are indistinguishable from random strings, we actually require
a significantly weaker result in order to prove the security of
key wrapping APIs: namely, that the encryptions of keys are
indistinguishable from encryptions of fresh random strings (of
the correct length). We call this the weak secrecy axiom.

For this axiom we have to introduce notation for replacing
plaintexts inside encryptions. For a vector of terms ~v, we
denote by 0k,A(~v) the result of replacing any wrap {k′}rk,a ∈
st(~v) with a ∈ A and k ∈ K, by {rk,k′}rk,a where rk,k′ denotes
a fresh key (indexed by (k, k′) in the same way as for $k

and $dk). For example, if ~v ≡ π1

(
{k′}rk,a

)
, {k′′}r

′

k,a′ , {k}
r
k′,a ,

then 0k,{a,a′} (~v) ≡ π1

(
{rk,k′}rk,a

)
, {rk,k′′}r

′

k,a′ , {k}
r
k′,a.

So that the weak secrecy axiom holds for both randomised
and deterministic encryption, we only allow this substitution
for terms where the plaintexts are in fact constants of sort
key (as opposed to more general terms whose computational
interpretations are equal to those of keys). This is the wellused
constraint, formally defined below.

We also prove that the weak secrecy axiom and the integrity
axiom, which hold when a key only occurs in the encryption
key position in a certain set of terms, also hold in a larger class
of terms where the key is usable: as well as encryption key
positions, the key might also occur in the plaintext position of
an encryption, provided that the encryption key is itself usable.
This is the case we will mostly encounter in our proofs. The
formal definition of the usablekey constraint is given below.

• Weak Secrecy of Wrapping:

enckey(k;~v),wellused(a;~v; k) ‖ ~v ∼ 0k,a (~v) (27)

• Usable Secrecy of Wrapping:

usablekey(k;~v),wellused(a;~v; k) ‖ ~v ∼ 0k,a (~v) (28)

• Usable Integrity of Wrap:

usablekey(k;x) ‖

wf (uwp(x, k)) = wf(x) ∧
∨

{m}r
k,a
∈ st(x)

EQ
(
x, {m}rk,a

)
(29)

• Key Freshness:

usablekey(k, t) ‖ EQ(k, t) = false (30)

Figure 7. Consequences of the cryptographic axioms

Definition 13. Let X be a set of terms. For all k ∈ K, we
say k is usable in X – and write usablekey (k;X) – if the
following holds:

1) Either enckey(k;X),
2) or if k appears in a plaintext position p.α in X , then

X|p ≡ {k}rk′,a such that



a) k′ ∈ K is usable in X , a is well used for k′ in X
and r is a term of sort nonce

b) if r occurs in a term {k′′}rk′,a′ ∈ st(X), then k′′ ≡
k and a′ ≡ a.

Definition 14. Let X be a set of terms. We say that
the attribute a is well-used for the key k in X (written
wellused(a;X; k)) if, for every {m}rk,a ∈ st(X), m is a
constant of sort key.

The proof that these axioms are consequences of the previ-
ous cryptographic axioms is proved in Appendix C.

D. Policy Axioms

We conclude this Section by giving, in Figure 8, axioms
reflecting the validity of a policy. These axioms are sound
under the conditions of Section III.

As before, there are three criteria: the first is that the policy
respects the sacrifice function, in the sense that if the policy
accepts the pair (x, a), then x must be semantically equal to
an attribute b such that b ∈ sacr(a). The second criterion
is that the policy never allows external keys to be used for
wrapping, so the policy will never accept (x, a) if a ∈ E .
Finally, the policy must forbid the creation of key cycles by
enforcing a strict partial ordering on attributes. Additionally
we give two useful consequences of these axioms, namely
stating that compromise is monotonic in the API execution
and that the compromise function respects the policy. These
axioms are sound as soon as the function implementing the
policy is valid with respect to sacr.

Policy axioms:

for a ∈ D: P(x, a) =

P(x, a) ∧
∨

b∈sacr(a)
EQ(x, b)

 (31)

for a ∈ E : P(x, a) = false (32)

• There exists a strict partial ordering ≺ on D such that:

(P(a, b) = true)→ a ≺ b (33)

Consequences of the policy axioms and the definition of comp:
• If there is a sequence of actions inducing a transition from state q

to state q′: compq(x)→ compq′ (x) = true (34)

• For x, y ∈ T \ H:(
compq(y) ∧ P (x, y)→ compq(x)

)
= true (35)

Figure 8. Policy axioms

VI. PROOF OF THE SYMBOLIC THEOREM

A detailed proof is provided in Appendix D. We provide
here an outline of the proof.

Before tackling the main Theorem, we prove that the frames
φ∗ and φ†, which are a priori very complicated sequences of
terms, can be rewritten in a relatively simple form. Let K0 be
the set of honestly-generated keys initially stored by the API.

We start by identifying sets of terms in which keys in K0

appear only as expected: if they are in a plaintext position

then they are protected by a properly-constructed wrap or
known to have a compromised attribute; if they appear in
an unwrap position (which cannot be simplified using the
integrity and correctness axioms) then they are known to have
a compromised attribute; and if they appear in a wrapping
position then the key’s attribute is internal and, either the wrap
is of a key from K0 and its corresponding attribute, or the
associated data of the wrap is a compromised attribute. We
remark that – by the policy axioms – uncompromised keys
are usable in such sets.

We then identify a sequence (F i)i∈I of boolean terms, in
which keys in K0 appear as above, that partition the space
of possibilities and give sufficient information to determine
whether or not any given handle or attribute is compromised.
We prove a number of invariants showing that keys in K0

only appear as expected in [F i]φ and [F i]valq(h) and so
uncompromised keys are usable in these terms. Additionally,
we show that under the conditions of the (F i), the internal
state of the API is consistent with its initial configuration.

Since k∗ is uncompromised, the usable secrecy axiom
allows us to remove every instance of it from [F i]φ until we
reach a set of terms where replacing k∗ by k† has no effect.
The main theorem then follows by the case disjunction axiom
(Axiom 17) applied to the partition (F i)i∈I .

VII. COMPOSING KEY WRAPPING WITH OTHER
FUNCTIONALITIES

In this Section we demonstrate how our security property
for a key wrapping API composes with the security of other
functionalities offered by a cryptographic API, provided that
keys used by the other functionalities are external. We will use
encryption (of data, not keys) as an example but the argument
can be easily adapted for other cryptographic primitives.

First, we define a game in which the adversary interacts
with a key wrapping API and an encryption scheme that uses
the external keys managed by the key wrapping API. For
simplicity, here the algorithms enc and dec used by the
encryption scheme (not the wrapping mechanism) take just
two arguments, the first being the key. Our game is very similar
to the one used to define API security in [KSW11].

The game is parameterised by a handle h∗ pointing to the
key k∗ with external attribute a∗. The adversary has access
to a real-or-random encryption oracle for k∗ and a (genuine)
decryption oracle for k∗. Much as in the real-or-random IND-
CCA game, the adversary tries to guess whether or not the
encryption oracle for k∗ is real, without passing any of its
outputs to the decryption oracle for k∗. But in addition, the
adversary is allowed to wrap and unwrap keys (according to
the policy from the key wrapping API), encrypt and decrypt
as normal under any external key other than k∗. Finally the
adversary may also corrupt any key, provided that they do not
compromise h∗. We formalise this below.

Definition 15. Let API = (K,D, E ,H,wm,P) be a key
wrapping API and let Π = (keygen,enc,dec) be an
encryption scheme. Then we say API′ = (API,Π) is a secure



encryption and wrapping API if, for all integers m and n, all
~a = a1, . . . , an ∈ Dn with a1 = a∗ ∈ E and all polynomial-
time adversaries A, the following advantage is a negligible
function of η:

AdvIND−CCA
API′ (A) := Pb

[
ExpCOMP

b (A,~a,m) = b
]
− 1

2

where the experiments ExpCOMP
b (A,~a,m) for b ∈ {0, 1} and

the new oracles are given in Figures 9 and 10.

Experiment ExpCOMP
b (A, a1, . . . , an,m):

st.C ← 0
st.V ← >
st.cor← []
st.e← []
For 1 ≤ i ≤ n
ki←$ keygen (1η)
st.val (hi)← (ki, ai)

st.H ← {h1, . . . , hn}
(h∗, a∗, k∗)← (h1, a1, k1)
st.T ← a∗

OAPI ←
(
Owrap,Ounwrap,Ocorrupt,Oenc

b ,Odec)
b′ ← AOAPI
If st.V = > Return b′

b′′←${0, 1}
Return b′′

Figure 9. Cryptographic API Security Experiment

Oracle Oenc
b (h,m):

st.C ← st.C + 1
If st.C > m Return �
(k, a)← st.val(h)
If a 6∈ E Return �
If h = h∗

If b
c← enc(k,m)

Else
m′←${0, 1}|m|
c← enc(k,m′)

st.e← st.e ∪ {c}
Return c

Else
Return enc(k,m)

Oracle Odec (h, c):
st.C ← st.C + 1
If st.C > m Return �
If c ∈ st.e then st.V ← ⊥
(k, a)← st.val(h)
If a 6∈ E Return �
Return dec(k, c)

Figure 10. Encryption and Decryption Oracles

We obtain the following composition theorem (the proof is
in Appendix E).

Theorem 3. Let API be key wrapping API satisfying the
hypotheses of Theorem 1 and let Π be an IND-CCA secure
encryption scheme. Then API′ = (API,Π) is a secure
encryption and wrapping API.

VIII. APPLICATIONS

A. Refinement of PKCS#11

We view PKCS#11 as the composition of a key wrapping
API and an encryption scheme in the sense of Theorem 3. We
describe a refinement of Version 2.4 of the PKCS#11 standard,
such that this composition is secure in the sense of Theorem 3.
Moreover, our refinement is less restrictive and our security
guarantees are stronger than in [Kün15].

The PKCS#11 standard does not make a distinction between
the key management module of a cryptographic token and
its other functionalities [OAS15a]. However, as the wrap and
decrypt attack from [BCFS10] demonstrates, not separating
keys for different functionalities can lead to attacks. Therefore
to obtain a secure refinement of PKCS#11 we first forbid the
creation of keys with attributes that can be used for multiple
roles and we do not allow attributes to be modified. We remark
that the standard explicitly supports the use of additional
restrictions on attributes such as these.

Our final additional assumption is that the wrapping mecha-
nism is a secure AE-AD encryption scheme (for example AES-
GCM, supported in PKCS#11 since version 2.4 of the stan-
dard) that binds attributes properly when wrapping. Note that
all our refinements are explicitly permitted by the PKCS#11
specification.

Then, Theorem 3 shows that an IND-CCA secure encryption
mechanism using external keys can be securely combined with
the key management functionalities of PKCS#11. More details
of this analysis can be found in Appendix F.

B. The Kremer-Steel-Warinschi API

In this Section we show how our result can be used to
encapsulate security proofs of other computational APIs that
have appeared in the literature. As an example we view the
API in [KSW11] as an instance of a generic API described
by our model and verify its security.

The authors of [KSW11] give a security definition for
APIs with wrapping and encryption mechanisms. As in our
composition result, the adversary is not supposed to distinguish
between real and fake encryptions under a particular challenge
key. The authors go on to describe an example implementation,
in which the wrapping policy is a simple hierarchy on keys
with external keys at the bottom level, and prove its security.
Clearly this is a valid policy according to our definition.
Therefore Theorem 3 subsumes the security proof given for
this particular API design in [KSW11].

IX. CONCLUSION

We give here a general definition of a key wrapping API,
parameterised by a wrapping mechanism and a wrapping
policy. We provide a set of simple conditions for a key
wrapping policy to be valid. Namely, forbidding creation
of wrapping cycles, not allowing wraps under external keys
and respecting the enterprise-level policy. We prove that if,
in addition to these policy conditions, the key wrapping
mechanism is implemented by an AE-AD encryption scheme
and attributes are properly transmitted, the external keys are
indistinguishable from random values and the key wrapping
API can be securely composed with an encryption scheme.

Our strong secrecy notion for external keys, together with
our generic notion of valid policies, allows us to prove that a
secure key wrapping API may be securely composed with an
encryption scheme. We are then able to give a configuration
of the key wrapping functionality of PKCS#11 such that the



encryption mechanism is as secure as when fresh keys are
used.

Since our proof technique relies on the CCSA from [BC14],
our theorem is derived from a set of relatively minimal
axioms representing computational assumptions. These axioms
are generic enough to be proven sound under a number of
different cryptographic hypotheses, notably deterministic and
randomised variants of authenticated encryption.

Ultimately, the hypotheses required for our security proof
- particularly the need to securely bind the attributes of keys
when wrapping - may be far from what currently happens
in practice. Nevertheless, we argue that this assumption is
essential for security, since one must enforce a separation
between keys used for wrapping and keys used for other
primitives. What we offer is a clear blueprint for building
secure key management APIs in the future:

1) Explicitly set out which keys are intended for wrapping
(internal) and which are intended for other uses (exter-
nal) and the intended security relationships between keys
(a sacrifice function).

2) Build an API that uses a secure AE-AD encryption
scheme to bind the attributes of keys to the wraps and
where, when wrapping keys, there is an explicit check
performed on attributes (an API security policy).

3) Verify that the API security policy is acyclic, respects
the sacrifice function and forbids the use of external keys
for wrapping.

In this way, one guarantees that external keys are as secure as
possible.
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APPENDIX A
COMPUTATIONAL INTERPRETATION

Any term t is interpreted as a PPT Mt with two random
tapes and one input tape. The interpretation of the term t, for
a security parameter η, honest randomness ρ1 and adversarial
randomness ρ2 is the bitstring s = Mt (1η; ρ1; ρ2), which
denotesMt computing on input 1η with random tapes ρ1 and
ρ2. If t has sort bool then s ∈ {0, 1}. The honest randomness
is used for fixing the interpretation of nonces and keys whereas
the adversarial randomness is used in the interpretation of
the adversarial functions g ∈ G. For ρ = (ρ1, ρ2), we
write JtKη,ρ = Mt (1η; ρ1; ρ2). We define Mt inductively as
follows:

For every n-ary function f ∈ F we fix a (deterministic)
Turing machine JfK taking n + 1 arguments (the additional
argument is the security parameter). In order for our model
to be a computational model, we insist that these machines
should satisfy some conditions.
• Mtrue takes no inputs and returns 1 (so JtrueK ∈ Dbool)
• Mfalse takes no inputs and returns 0 (so JfalseK ∈ Dbool)
• Mfail takes no inputs and returns a fixed bitstring (to

denote failure), which we label �
•

Mif _ then _ else _ (p, s, s1, s2) =

{
s1, if s = 1,

s2, if s = 0.

•

M_∧_ (p, s1, s2) =

{
1, if s1 = s2 = 1,

0, otherwise.

•

M_∨_ (p, s1, s2) =

{
1, if s1 = 1 or s2 = 1,

0, otherwise.

•

M¬_ (p, s) =

{
1, if s = 0,

0, otherwise.

•

MEQ (p, s1, s2) =

{
1, if s1 = s2,

0, otherwise.

•

M0 (p) = 0keylen(1η)

•

M$ (p, s1, s2) = the first |s1| bits of s2

We write enc and dec for the machines JencK and JdecK,
respectively. We make the following assumptions about these
algorithms:
• The machine enc, on input (p, sm, sa, sr, sk), outputs

the authenticated encryption of sm under the key sk
with associated data sa and nonce sr. For deterministic
encryption enc can just ignore sr.

• The machine dec, on input (p, sc, sa, sr, sk) attempts to
decrypt sc under the key sk with associated data sa and
nonce sr. If the decryption fails, the machine outputs �.

The n-ary adversarial function gi is interpreted as an arbi-
trary PPT taking n+1 arguments. When used for interpreting a
term, it is given randomness ρ2. In this way all the adversarial
functions share the same randomness.

Every n ∈ N of sort s is interpreted as a PPTMs taking its
randomness from ρ1 according to its sort. In other words we fix
a PPT for each sort, that given a random tape and the security
parameter returns the value of a name of this sort. In order to
ensure that all nonces and keys are sampled independently, we
fix a (polynomial-time) extraction procedure such that, for any
infinite sequence ρ1 of bits, there is an infinite subsequence
ρn1 of ρ1 for each n ∈ N . This extraction is such that the
subsequences ρn1

1 and ρn2
1 are disjoint if n1 6≡ n2. In this

way, if each bit of ρ1 is selected uniformly at random from
{0, 1}, then the bits of ρn1 for each n ∈ N are independent and
uniformly random elements of {0, 1}. The randomness used
for the interpretation of a name n is ρn1 , hence every name is
interpreted uniformly at random.

This interpretation of each sort is as expected, for example
if k is of sort key, JkKη,ρ = keygen

(
1η; ρk1

)
and this will

always have length keylen (1η). Further, we insist that the
interpretations of names of sorts handle, attribute do not
depend on ρ. Note that we separate the sorts nonce and
longnonce. This is because a term r of sort longnonce will be
used to replace a real ciphertext c by a random string of the
same length (in particular, by $ (c, r)). Thus, the length of long
nonces must be at least the length of arbitrary ciphertexts. On
the other hand, ordinary nonces will be used by the encryption
scheme and so it is unreasonable for them to be arbitrarily
long.

We can now recall, from [BC14], the computational inter-
pretation of an arbitrary term t ∈ T (F ,G,N ), given a security
parameter η and a random sampling ρ = ρ1, ρ2:
• For n ∈ N of sort s, JnKη,ρ =Ms(1

η; ρ1)
• For f ∈ F ,

Jf(t1, . . . , tn)Kη,ρ = JfK (1η, Jt1Kη,ρ , . . . , JtnKη,ρ)

• For g ∈ G

Jg(t1, . . . , tn)Kη,ρ = JgK (1η, ρ2 Jt1Kη,ρ , . . . , JtnKη,ρ)

Note that the interpretation of names only depends on ρ1,
whereas the interpretation of the adversarial functions only
depends on ρ2 (and the values of their arguments). In this way
we separate the randomness used by the adversary to compute
its successive queries and the randomness used by the API.

Finally, we fix the interpretation of the formulae
u1, . . . , un ∼ v1, . . . vn. As in [BC14], a formula of this form
is interpreted, given a security parameter η and a sampling
ρ, as the computational indistinguishability of the sequences
of bitstrings Ju1, . . . , unKη,ρ and Jv1, . . . , vnKη,ρ. Formally, a
computational model (an interpretation of the names, variables
and function symbols) satisfies the formula ψ ≡ u1, . . . , un ∼



v1, . . . , vn if and only if, for all polynomial-time adversaries
A with access to the random tape ρ2, the following advantage
is negligible in η:

Adv∼ψ (A) := P
[
A
(
Ju1, . . . , unK

σ
η,ρ ; ρ2

)
= 1
]

− P
[
A
(
Jv1, . . . , vnK

σ
η,ρ ; ρ2

)
= 1
]
,

where the probabilities are over the choice of ρ1 and ρ2.
Note that the distinguisher has access to the random tape used
for computing the adversarial functions. In this way, we can
consider that the interpretation of every function in G, and the
distinguisher, are different phases of the same adversary.

APPENDIX B
REDUCING COMPUTATIONAL SECURITY

We define new computational security experiments that
closely resemble the symbolic security properties proved in
Theorem 2.

In the original computational security definitions, API ex-
ecutions have a variable structure, since queries can occur
in any order. This is unlike the symbolic security properties
where there are fixed sequences of output terms to compare.
We therefore define new experiments where, in each experi-
ment, the adversary executes a particular list of fully-specified
actions.

Another important difference between the computational
and symbolic security definitions is as follows: in the symbolic
key secrecy property, an external key k∗ is chosen before the
API execution, and the adversary sees k∗ in both φ∗ and φ†,
but the handle h∗ may or may not point to k∗. So, to reflect
this in our new computational games, we have one game for
each possible test handle hi and, at the start of the games, the
adversary learns the value of a key that may or may not be
pointed to by hi.

Finally, in the symbolic security properties, we say that
no adversary can distinguish between sets of terms that arise
from an API execution. To model this, the adversary A in the
new experiments has two, independent components A1 and
A2: in the key secrecy experiments, A1 makes oracle queries
determining an API execution, and A2 sees the inputs and
outputs of these queries only if the API execution does not
compromise the test handle and the test handle has an external
attribute. Similarly, in the handle consistency experiments we
have A1 who executes an API and A2 who tries to distinguish,
from the bit 0, the value of a test for handle inconsistency.

Definition 16. Let L ∈ Actm, 1 ≤ i ≤ n and b ∈
{0, 1}. Then, we define the restricted key secrecy experiments
ExpKEYSEC

L,i,b and the restricted handle consistency experiments
ExpHDLCON

L,i,b , where the formal definitions of these experi-
ments and the relevant oracles are given in Figure 11.

We prove in Lemma 17 that security according to the
experiments ExpKEYSEC

b and ExpHDLCON
b reduces to security

according to the experiments ExpKEYSEC
L,i,b and ExpHDLCON

L,i,b

for all L ∈ Actm and 1 ≤ i ≤ n. This is because the number
of handles n and the number of fully-specified actions m are

assumed to be constant in the security parameter. Moreover,
the latter experiments correspond exactly to the symbolic
security properties proved in Theorem 2. This is how we
relate our symbolic security properties to the computational
definitions of security and obtain Theorem 1.

Oracle OAPI (x):
If st.L = [] Return �(
A,L′

)
← st.L

st.L← L′

If A = W (h1, h2)
st.Q← st.Q ∪ {(A,Owrap (h1, h2))}
Return Owrap (h1, h2)

If A = U (h)
st.Q← st.Q ∪ {(A, x,Ounwrap (x, h))}
Return Ounwrap (h, x)

If A = C (h)
st.Q← st.Q ∪

{(
A,Ocorrupt (h)

)}
Return Ocorrupt (h)

Experiment ExpKEYSEC
L,i,b (A1,A2, a1, . . . , an,m):

st.L← L
st.C ← 0
st.T ← ai
st.V ← >
st.cor← []
st.Q← []
For 1 ≤ j ≤ n
kj←$ keygen (1η)
st.val (hj)← (kj , aj)

st.H ← {h1, . . . , hn}
If b
k←$ keygen (1η)
st.val (hi)← (k, ai)

y ← AO
API

1 (1η, ki)
z ← �
If st.V = > and ai ∈ E
z ← st.Q

b′ ← A2 (1η, z)
Return b′

Experiment ExpHDLCON
L,i,b (A1,A2, a1, . . . , an,m):

st.L← L
st.C ← 0
st.T ← ai
st.V ← >
st.cor← []
st.Q← []
For 1 ≤ j ≤ n
kj←$ keygen (1η)
st.val (hj)← (kj , aj)

st.H ← {h1, . . . , hn}
k←$ keygen (1η)
st.val (hi)← (k, ai)

y ← AO
API

1 (1η, ki)
z ← (st.Q, 0)
If b = 0

For h ∈ st.H
(k, a)← st.val(h)
If (k, a) 6∈ st.val0

If for all ac ∈ st.cor, a /∈ sacr (ac)
z ← (st.Q, 1)

b′ ← A2 (1η, z)
Return b′

Figure 11. API oracle, Restricted Key Secrecy Experiment and Restricted
Handle Consistency Experiment for (L, i, b)

Lemma 17. If, for all integers m and n, all ~a ∈ Dn, all
polynomial-time adversaries A1 and A2, all L ∈ Act and all



1 ≤ i ≤ n, the advantages

AdvKEYSEC
APIm,L,i (A1,A2) :=

Pb
[
ExpKEYSEC

L,i,b (A1,A2,~a,m) = b
]
− 1

2

AdvHDLCON
APIm,L,i (A1,A2) :=

Pb
[
ExpHDLCON

L,i,b (A1,A2,~a,m) = b
]
− 1

2

are negligible in η, then API is a secure key wrapping API.

Proof. Consider an adversary A in the original key secrecy ex-
periment with m queries. For each L ∈ Actm and 1 ≤ i ≤ n
we construct an adversary BL,i for the same experiment who
computes as follows: BL,i submits the handle hi to the test
oracle, then simulates A, forwarding all queries and replies
to its API oracle for as long as the queries from A agree
with L. If A tests hi, BL,i sends the reply from its test
oracle it received at the start of the game. If, at any point, A
deviates from L or tests a handle other than hi, then BL,i stops
simulating A, continues its execution of the API according
to L (submitting random inputs to the unwrap queries when
necessary) and finally outputs a random bit. If the entire
execution from A agrees with L and A tests hi, then BL,i
returns the bit that A returns.

For b ∈ {0, 1}, let

Ob = (Owrap,Ounwrap,Ocorrupt,Otest
b )

Then, for any adversary A, let bad(A) be the event that
AOb (1η) compromises its test handle or its test handle does
not have an external attribute. Without loss of generality this
is independent of b. Then,

P
[
ExpKEYSEC

b (A, a1, . . . , an,m) = 1
]

=

1

2
P [bad(A)] + P

[
AOb (1η) = 1 ∩ ¬bad(A)

]
so

AdvKEYSEC
APIm (A) =

P
[
AO1 (1η) = 1 ∩ ¬bad(A)

]
−P
[
AO0 (1η) = 1 ∩ ¬bad(A)

]
Let E (L, i) be the event that the entire execution from A

agrees with L and A tests hi, which is independent of the
bit b in the experiment. Without loss of generality, we assume
that A makes exactly m oracle queries apart from queries
to the test oracle, and tests exactly one handle. Therefore∑

L∈Actm
∑n
i=1 P [E (L, i)] = 1. Then we have

P
[
AOb (1η) = 1 ∩ ¬bad(A)

]
=

∑
L∈Actm

n∑
i=1

P
[
AOb (1η) = 1 ∩ ¬bad(A) ∩ E (L, i)

]
=

∑
L∈Actm

n∑
i=1

P
[
BObL,i (1η) = 1 ∩ ¬bad (BL,i) ∩ E (L, i)

]

Now

P
[
BObL,i (1η) = 1 ∩ ¬bad (BL,i) ∩ E (L, i)

]
= P

[
BObL,i (1η) = 1 ∩ ¬bad (BL,i)

]
− 1

2
P [¬bad (BL,i) ∩ ¬E (L, i)]

So that

AdvKEYSEC
APIm (A) =∑
L∈Actm

n∑
i=1

P
[
BO1

L,i (1η) = 1 ∩ ¬bad (BL,i)
]
−

P
[
BO0

L,i (1η) = 1 ∩ ¬bad (BL,i)
]

which proves

AdvKEYSEC
APIm (A) =

∑
L∈Actm

n∑
i=1

AdvKEYSEC
APIm (BL,i)

Now consider the following adversary (A1,A2) in the re-
stricted key secrecy experiment corresponding to (L, i, b): A1

simulates BL,i, first sending ki to BL,i when it makes its
test query at the start of the execution, then forwarding the
remaining oracle queries from BL,i to its API oracle (which
is possible since BL,i follows L) and sending the responses to
BL,i. If ¬bad (BL,i) occurs then A1 does not compromise hi
and A2 receives the inputs and outputs of the oracle queries.
In this case, A2 uses the queries to simulate the execution
of BL,i again and outputs the same bit that BL,i outputs.
Otherwise, A2 outputs a random bit. Note that sending ki to
BL,i regardless of b, but having hi possibly point to a different
key in the API, will not change the distinguishing advantage
of BL,i; all keys are drawn fresh at the start of each game
and so the view of BL,i is the same whether the key it sees
depends on b or the internal API key depends on b. Therefore
it is clear that

AdvKEYSEC
APIm,L,i (A1,A2) = AdvKEYSEC

APIm (BL,i)

So if, for each L ∈ Actm, each 1 ≤ i ≤ n
and all polynomial-time adversaries A1,A2, the advan-
tage AdvKEYSEC

APIm,L,i (A1,A2) is negligible in η, the advantage
AdvKEYSEC

APIm (A) must also be negligible in η for any PPT A.
By a similar argument, if for each L ∈ Actm, each 1 ≤ i ≤

n and all polynomial-time adversaries A1,A2, the advantage
AdvHDLCON

APIm,L,i (A1,A2) is negligible in η, then the advantage
AdvHDLCON

APIm (A) must also be negligible in η for any PPT A.
This proves the Lemma.

Proposition 18. Theorem 1 follows from Theorem 2.

Proof. The advantages AdvKEYSEC
APIm,L,i (A1,A2) and

AdvHDLCON
APIm,L,i (A1,A2) correspond exactly to the

distinguishing advantages against the key secrecy and
handle consistency formulae in Theorem 2. Therefore the
Proposition follows from the computational soundness
theorem in [BC14] and the reduction in Lemma 17.



APPENDIX C
SOUNDNESS OF THE AXIOMS

A. Basic Properties

We give here a soundness proof of the basic axioms found
in Figure 4 that are not proved sound in [BC14].

Lemma 19. The axioms in Figure 4 are sound in all compu-
tational models.

Proof. Axioms 1 to 8 were proved sound in [BC14]. It
remains to prove axioms 9 and 10. For axiom 9, we note
that if JxKση,ρ = JyKση,ρ, then J[EQ(x, y)]u(x) : wKση,ρ =
Ju(x)Kση,ρ = Ju(y)Kση,ρ; otherwise, J[EQ(x, y)]u(x) : wKση,ρ =
JwKση,ρ. Therefore, in either case,

J~v, [EQ(x, y)]u(x) : wKση,ρ = J~v, [EQ(x, y)]u(y) : wKση,ρ

and hence, if ψ is axiom 9, then for any adversary A,
Adv∼ψ (A) = 0.

For axiom 10, we note that ~v, x ∼ ~v, c implies x ∼ c by
axiom 7. For the converse, we remark that, as JcKση,ρ does not
depend on ρ, the computational interpretation of the formula
x ∼ c is equivalent to the statement that P(JxKση,ρ 6= JcKση,ρ) =
negl(η) for some negligible function negl. Hence, for all
adversaries A, we have

P
[
A
(
J~v, xKση,ρ

)
6= A

(
J~v, cKση,ρ

)]
≤ negl(η)

whence, for ψ′ ≡ ~v, x ∼ ~v, c, we have Adv∼ψ′ (A) ≤ negl(η).

We now prove the lemma showing that if EQ(x, y) ∼ true
then x and y are indistinguishable in any context.

Proof of Lemma 9. Let ~v be any sequence of terms and sup-
pose EQ(x, y) ∼ true. We get ~v, x ∼ ~v, [true]x by axiom 1.
By axiom 10, this is equivalent to ~v, x ∼ ~v, [EQ(x, y)]x and
the right hand side is indistinguishable from ~v, [EQ(x, y)] y
by axiom 9. Again axiom 10 yields ~v, x ∼ ~v, [true] y which
becomes ~v, x ∼ ~v, y by axiom 1.

On the other hand, if ~v, x ∼ ~v, y for any sequence of terms
~v then, in particular, x, x ∼ x, y and therefore EQ(x, x) ∼
EQ(x, y) by axiom 3. By axiom 8 and the reflexivity (axiom 4)
and transitivity (axiom 6) of ∼, we find EQ(x, y) ∼ true.

B. Axioms of Boolean terms

In this Section, we prove the soundness of the axioms for
manipulating boolean terms.

Lemma 20. For any b, b1, . . . , bn, b′1, . . . , b
′
n of sort bool, the

axioms in Figure 5 are sound in all computational models.

Proof. The soundness of these axioms is immediate from the
computational interpretations of if _ then _ else _,¬,∧,∨ and
→, and reflect the fact that the function symbols we use to
operate on terms of sort bool perfectly capture the operators
in propositional logic.

Lemma 21. The case disjunction axiom 17 is sound in all
computational models.

Proof. Let (bi1)i∈I and (bi2)i∈I be partitions and assume
~v1, b

i
1, [b

i
1]u1 ∼ ~v2, b

i
2, [b

i
2]u2 for all i ∈ I . Let A be an

adversary against ψ ≡ ~v1, u1 ∼ ~v2, u2.
We consider, for each i ∈ I , the adversary Ai against

ψi ≡ ~v1, b
i
1, [b

i
1]u1 ∼ ~v2, b

i
2, [b

i
2]u2 built as follows. On input

~x, xb, xu, if xb = 1, then Ai returns A(~x, xu). Otherwise, Ai
draws a random bit and returns it.

Since the families
(
bi1
)
i∈I and

(
bi1
)
i∈I perfectly partition

the space of possibilities except with negligible probability,
we remark that there exists a negligible function negl such
that ∣∣∣∣∣Adv∼ψ (A)−

∑
i∈I

Adv∼ψi (Ai)

∣∣∣∣∣ ≤ negl(η)

and, since each Adv∼ψi (Ai) is assumed to be negligible in η,
this completes the proof.

C. Cryptographic Axioms

In this Section, we prove the soundness of the cryptographic
axioms, assuming that the wrapping mechanism is a correct,
secure AE-AD scheme.

Lemma 22. The randomised (resp. deterministic) version of
the axioms in Figures 6 are sound in all computational models
such that:

• The interpretations of π1, π2 and π3 are the first, second
and third projections of triples of bitstrings, respectively.

• The triple of algorithms Π = (keygen,enc,dec) is
a correct, secure randomised (resp.deterministic) AE-AD
scheme in the sense of [Rog02] (resp. [RS06]) such that
an encryption or decryption of � returns �.

Proof. We first prove the secrecy axiom. Let ~v be such that
enckey (k;~v) is satisfied. Suppose the probability, over all
choices of ρ, that A can distinguish J~vKση,ρ from J$k (~v)Kση,ρ
is a non-negligible function of η. Then we build an adversary
B against the AE-AD privacy game as follows. Let O?

η be
the oracle given in the randomised AE-AD privacy game,
and Oenc

η ,Od,?η the encryption and challenge oracle from the
deterministic AE-AD game. We will prove both soundness of
the deterministic version and randomised version of the axiom
at the same time as the proofs are very similar.

Then, for each term t appearing in ~v, we recursively define,
for the randomised case (using memoisation to ensure that we
do not repeat queries):

τ(t, ρ) =
O?
η (τ(m, ρ), τ(a, ρ), τ(r, ρ)) , if t = enc (m, a, r, k)

JfK (τ (t1, ρ) , . . . , τ (tn, ρ)) , if t = f(t1, . . . , tn)

JtKση,ρ otherwise.



and for the deterministic case, we fix the message to be
replaced, m, and its attribute a, and recursively define:

τd(t, ρ) =

Od,?η
(
τd(m, ρ), τd(a, ρ)

)
, if t = enc (m, a, r, k)

Oenc
η

(
τd(m′, ρ), τd(a, ρ)

)
,

if t = enc (m′, a′, r, k) ,m, a 6≡ m′, a′

JfK
(
τd (t1, ρ) , . . . , τd (tn, ρ)

)
, if t = f(t1, . . . , tn)

JtKση,ρ otherwise.

The sequences of bitstrings ~xv = τ (~v, ρ) and ~xdv = τd (~v, ρ)
are defined in the natural way.

The adversary B first selects ρ uniformly at random and
then constructs ~xv ( ~xdv for the deterministic case), making each
oracle query at most once, i.e. each response to an oracle query
is recorded by B and, if the term enc (m, a, r, k) appears more
than once in ~v, B retrieves the oracle response from memory.

For the randomised case, due to the constraint enckey (k;~v),
each nonce appears in at most one encryption under k, but
this encryption can appear in multiple places in ~v. Querying
the encryption only once from the oracle ensures that B is a
nonce-respecting AE-AD adversary.

For the deterministic case, we remark that no two attributes
may collide, so if attributes are syntactically different then
their interpretations are different. Additionally, the premise
of the axiom ensures that, with overwhelming probability
1− pcol(η), the query to the challenge oracle is distinct from
every query to the encryption with this attribute. It follows that,
with probability 1−pcol(η), B is a valid adversary against the
privacy game.

Having constructed ~xv (resp. ~xdv), B submits ~xv (resp. ~xdv)
to A and returns A( ~xv) (resp. A( ~xdv)). We claim that the
distribution of ~xv (resp. ~xdv) is equal to the distribution of
J~vKση,ρ or J$k (~v)Kση,ρ (resp. J$k (~v,m, a)Kση,ρ), depending on
the AE-AD oracle. Suppose there is a (computational) key
k′ such that O?

η = Oenc
η,k′ . Since k′ is sampled randomly

from keygen (1η), the distribution of k′ is equal to the
distribution of JkKση,ρ with ρ selected uniformly at random
by B. Similarly, if O?

η = O$
η , then the oracle, on input

(m, a, r), returns a random string of the same length as
enc (m, a, r, k); this is exactly what is given by the interpre-
tation of $ (enc (m, a, r, k) , r′) for a fresh long nonce r′. This
proves that the distribution of ~xv is equal to the distribution of
J~vKση,ρ or J$k (~v)Kση,ρ. Similar arguments give the result in the
deterministic case, depending on whether the challenge oracle
return a genuine encryption or a random string.

We conclude that in the randomised case, with ψ ≡ ~v ∼
$k (~v),

Adv∼ψ (A) ≤ AdvPRIV
Π (B) .

In the deterministic case, we have to take into account the
possibility of a collision of messages, we get, with ψd ≡ ~v ∼
$k (~v,m, a)

Adv∼ψd (A) ≤ AdvPRIV
Π (B) + pcol.

Next we prove the integrity axiom. As the authenticity game
is the same in the deterministic and randomised cases, we have
one proof for both cases. Let x be such that enckey(k;x) and
the integrity axiom is false, i.e. there is a polynomial-time
adversary A which can distinguish between

r
EQ
(
wf (uwp(x, k)) ,

wf(x) ∧
∨

{m}rk,a∈ st(x)

EQ
(
x, {m}rk,a

) )zσ
η,ρ

and JtrueKση,ρ. Rewriting the previous statement, the bits b1
and b2 are not equal with non-negligible probability p, where

b1 = Jwf (uwp(x, k))Kση,ρ

b2 =

u

vwf(x) ∧
∨

{m}rk,a∈ st(x)

EQ
(
x, {m}rk,a

)}
~

σ

η,ρ

We show that, under this assumption, there is an adversary B
such that AdvAUTH

Π (B) = p.
First remark that, if b2 = 1 then we may replace x in b1

by {m}rk,a which, by correctness, gives b1 = 1 (if x is well
formed, then so is m by the failure propagation axiom). So if
b1 6= b2 then we must have b1 = 1 and b2 = 0. Recall that

uwp (x, k) ≡ [triple (x)] uwp (π1(x), π2(x), π3(x), k) .

Therefore, b1 = 1 if and only if

JxKση,ρ = J(π1(x), π2(x), π3(x))Kση,ρ

=
(
Jπ1(x)Kση,ρ , Jπ2(x)Kση,ρ , Jπ3(x)Kση,ρ

)
such that dec

(
Jπ1(x)Kση,ρ , Jπ2(x)Kση,ρ , Jπ3(x)Kση,ρ , JkK

σ
η,ρ

)
succeeds. Thus x will yield a forgery in the AE-AD authen-
ticity game.

The adversary B proceeds as follows. First, B selects
(sufficiently many bits of) ρ at random and returns the
triple (τ (π1(x), ρ) , τ (π2(x), ρ) , τ (π3(x), ρ)), where τ is
as above but with O?

η = Oenc
η,k′ and k′←$keygen (1η)

as in the AE-AD authenticity game (making each ora-
cle query at most once, as before). By the constraint
enckey(k;x), B is a nonce-respecting adversary. If b1 = 1
and b2 = 0, which occurs with probability p, then τ(x, ρ)
is not the output of an oracle query, but is such that
dec (τ (π1(x), ρ) , τ (π2(x), ρ) , τ (π3(x), ρ) , sk) 6= �. Thus B
outputs a forgery with probability p.

The soundness of the correctness axioms and the failure
propagation axiom is immediate. It remains to prove the nonce
length consistency axiom. Since 0k (~v) only differs from ~v in
the plaintexts encrypted under k, but the plaintexts in 0k (~v)
and ~v have the same length, and since $k (~w) only depends
on the length of plaintexts encrypted under k, we have that
$k (0k (~v)) ∼ $k (~v). Note that the two sets of terms are not
necessarily equal, since the long nonces chosen to replace the
encryptions can differ in the two sets. The random strings used
to replace the encryptions will not necessarily be the same, but



will have the same length and therefore come from the same
distribution.

D. Consequences of the Cryptographic Axioms

In this Section we derive the weak secrecy axiom, the usable
secrecy and integrity axioms and the key freshness axiom from
the previous cryptographic axioms.

Lemma 23. The axioms in Figure 7 are sound in any model
for the previous axioms.

Proof. First we prove the weak secrecy axiom. For the non-
deterministic case, the result follows from the random string
length consistency axioms and the strong secrecy axiom, as
follows:

Assume that enckey(k;~v). Then we also have
enckey (k; 0k,a (~v)). So, by the strong secrecy axiom,
we have ~v ∼ $k (~v) and 0k,a (~v) ∼ $k (0k,a (~v)). By
the random string length consistency axiom, we obtain
0k,a (~v) ∼ $k (~v). By transitivity and reflexivity of ∼, we
have ~v ∼ 0k,a (~v).

For the deterministic case, we can use the same reasoning
as above once we have checked that the additional premise
of the strong secrecy axiom holds for ~v and 0k,a (~v), i.e. that
syntactically different plaintexts under k do not collide. As the
attribute a is well-used for k in ~v (and hence in 0k,a (~v) too),
all encryptions under k with associated data a in these terms
are encryptions of keys. Therefore it remains to show that
syntactically different keys do not collide. This follows from
the integrity axiom. Firstly, consider x′ ≡ {x}yk′,z . Clearly we
have enckey(k;x′) since k does not appear in x′. Applying
the integrity axiom, we have wf

(
uwp({x}yk′,z , k)

)
= false

since the disjunction on the right hand side is empty. By the
definition of wf and the axioms for boolean terms, we obtain
uwp({x}yk′,z , k) = fail. On the other hand, the axioms for

equality show that EQ(k, k′)→
(
uwp({x}yk′,z , k) = x

)
from

which we get EQ(k, k′) → (fail = x). With, for example,
x = true we can obtain EQ(k, k′) = false, as required. (We ac-
tually need another axiom: EQ(true, false) = EQ(true, fail) =
EQ(false, fail) = false, which is obviously sound in any
computational model.)

The proof of the usable secrecy axiom follows intuitively the
hybrid argument for proving computational soundness of static
equivalence in [AR07]. Indeed, we start by replacing the en-
cryptions under keys k such that enckey(k;~v) by encryptions
of fresh keys, and continue by induction. In the CCSA model,
this hybrid argument is simply reflected by using transitivity
of ∼.

More precisely, we reason by induction on the length of the
derivation of usability of k. If the length of the derivation is
1, the result holds trivially as enckey(k,~v) holds.

Assume that the axiom holds for any k, ~x such that k can
be deemed usable in ~x in at most n steps. Let ~v be such that
k can be shown usable in ~v in at most n + 1 steps. Let K
be the set of keys k′ occurring at the last step of the usability

proof of k and let Ak′ be the corresponding set of well-used
attributes.

For each k′ ∈ K we have enckey(k′;~v) and
hence enckey(k′; 0k,a(~v)). For each a′ ∈ Ak′ we have
wellused(a′, ~v, k′) and hence wellused(a′, 0k,a~v, k

′). We write
A = (Ak′)k′∈K . We write 0K,A(~v) as a shorthand for
0k1,Ak1 ◦ · · · ◦ 0kn,Akn (~v) with K = {k1, . . . , kn}. Multiple
applications of the weak secrecy axiom yield

~v ∼ 0K,A(~v) and 0k,a(~v) ∼ 0K,A(0k,a(~v))

As k can be deemed usable in at most n steps in 0K,A(~v),
the induction hypothesis yields

0K,A(~v) ∼ 0k,a(0K(~v))

We conclude the proof by transitivity of ∼ and remarking that
0k,a(0K,A(~v)) ≡ 0K,A(0k,a(~v)).

The usable secrecy axiom and the (first) integrity axiom
together imply the usable integrity axiom.

We say that (k′, a) protects k in x if there is a wrap of the
form {k}−k′,a in st(x). We define the protecting set K of k in
x as the least fixed point of the protects relation containing k.

Now, k is usable in x if and only if:
• Every (k′, a) ∈ K is usable in x with a well used for k′.
• k only appears protected by keys in K or in an encryption

key position in x (with nonces used correctly and proper
attributes)

For a term t we denote by t̃ the result of replacing any wrap
{k′}rk′′,a ∈ st(t), where k′′ ∈ K, by {rk′,k′′}ak′′,r.

Now let

t ≡ EQ

(
wf (uwp(x, k)) ,

wf(x) ∧

( ∨
{m}rk,a∈ st(x)

EQ
(
x, {m}rk,a

)))

We must prove that t ∼ true if k is usable in x.
Since K is also the protecting set of k in t, and k is usable

in t, every key in K is usable in t. Therefore by repeated
applications of the usable secrecy axiom we get t ∼ t̃.

Now, observe that we have enckey(k; t̃) by the definition
of t̃ and K. In particular, all wraps under k in st(x) have a
term r of sort nonce in the position of the nonce (such that
r̃ ≡ r). These two remarks show that, if w ≡ {m}rk,a ∈ st(x),
then w̃ ≡ {m̃}rk,ã ∈ st(x̃). Thus,

t̃ ≡ EQ

(
wf (uwp(x̃, k)) ,

wf(x̃) ∧

( ∨
{m}rk,a∈ st(x)

EQ
(
x̃, {m̃}rk,ã

)))

and we would like to apply the integrity axiom to conclude,
but a priori the large disjunction operator has the wrong form.
Nevertheless, each {m}rk,a ∈ st(x) corresponds to the term



{m̃}rk,ã ∈ st (x̃). So we can index the disjuncts by this term
instead. This shows that∨
{m}rk,a∈ st(x)

EQ
(
x̃, {m̃}rk,ã

)
≡

∨
{m̃}rk,ã∈ st(x̃)

EQ
(
x̃, {m̃}rk,ã

)
≡

∨
{m}rk,a∈ st(x̃)

EQ
(
x̃, {m}rk,a

)

Since enckey(k; x̃), we may use the integrity axiom to
obtain t̃ ∼ true. Then t ∼ true by the transitivity of ∼.

Finally, the key freshness axiom follows easily from the
weak secrecy axiom, and the basic axioms.

E. Policy Axioms

Finally, we use the properties of valid policies to derive the
axioms describing key compromise.

Lemma 24. Axioms (34) and (35) are logical consequences of
the axioms in Figures 4, 5 and the policy axioms in Figure 8.

Proof. Axiom (34). Recall that we overload comp: for a han-
dle h we take compq(h) as a shorthand for compq(aq(h)).

First, for x ∈ T \ H we have:

compq(x) ≡
∨
a∈D

∨
b∈sacr(a)

corq(a) ∧ EQ (x, b)

It is enough to remark that corq(a) → corq′(a) = true to
conclude.

Now let h ∈ H. If h is unused in state q, which is a property
of the state, we have compq(h) = false which yields our
result. Now assume that h is not unused so that compq(h) ≡
compq(aq(h)). We remark that aq′(h) = aq(h) since the
value of used handles are never modified. The result follows
from the case x ∈ T \ H:

compq(aq(h))→ compq′(aq(h))

Axiom (35). First remark that

∨
a∈D

∨
b∈sacr(a)

corq(a) ∧ EQ (y, b)

 ∧ P (x, y)

=

∨
a∈D

∨
b∈sacr(a)

corq(a) ∧ EQ (y, b) ∧ P (x, y)


=

∨
a∈D

∨
b∈sacr(a)

corq(a) ∧ EQ (y, b) ∧ P (x, b)



By validity of the policy and transitivity of the sacrifice
function, we get for any a∨

b∈sacr(a)

EQ (y, b) ∧ P (x, b)

=
∨

b∈sacr(a)

EQ (y, b) ∧ P (x, b) ∧
∨

c∈sacr(b)

EQ(x, c)

=
∨

b,c∈sacr(a)

EQ (y, b) ∧ P (x, b) ∧ EQ(x, c)

Using the definition of comp and the two previous equal-
ities, we get

compq(y) ∧ P (x, y) = compq(y) ∧ P (x, y) ∧ compq(x)

The lemma then follows from Axiom 16.

APPENDIX D
PROOF OF THE MAIN THEOREM

Before tackling the main Theorem, we prove that the frames
φ∗ and φ†, which are a priori very complicated sequences of
terms, can be rewritten in a relatively simple form. First, we
must introduce some notation:

In an API execution with initial state q0, if kq0(h) = k then
we will write ak for aq0(h) and often call this the attribute of
k. It is well-defined given the assumption from Section II that
all initial configurations are honest. By convention, afail ≡ fail.
Finally we write

K0 = {k ∈ K | ∃h ∈ H,kq0(h) = k} .

The following definition is used to identify sets of terms
in which keys in K0 appear only as expected: if they are
in a plaintext position then they are protected by a properly-
constructed wrap or known to have a compromised attribute; if
they appear in an unwrap position (which cannot be simplified
using the integrity and correctness axioms) then they are
known to have a compromised attribute; and if they appear
in a wrapping position then the key’s attribute is internal and,
either the wrap is of a key from K0 and its corresponding
attribute, or the associated data of the wrap is a compromised
attribute. The only caveat is that, if (in the ∗ case), the key
pointed to by h∗ is initially given to the adversary, then there
is an element k∗ ∈ K0 which appears in plaintext without
initially having a compromised attribute. So the condition on
keys appearing in plaintext positions can only be assured for
internal keys in this case (since k∗ is an arbitrary external key).
Therefore we have to have two slightly different versions of
this definition depending on whether h∗ points to k∗ or k†:

Definition 25. Let X be a set of terms. We say X is
(q0, q, F )†-normal if, for each k ∈ K0, the following holds:

1) If k appears in a plaintext position p.α in X , then
a) either X|p = {k}rk′,ak where k′ ∈ K0,

P (ak, ak′) = true and r has sort nonce
b) or

(
F → compq (ak)

)
= true

2) If k appears in an unwrap key position in X , then(
F → compq (ak)

)
= true



3) If {u}wk,v ∈ st(X) then ak /∈ E , v has sort attribute and
a) either u ≡ k′, v ≡ ak′ for some k′ ∈ K0

b) or
(
F → compq (v)

)
= true

If Point 1) holds for all k ∈ K0 with ak /∈ E (but the other
Points hold for all k ∈ K0), then we say X is (q0, q, F )∗-
normal).

Lemma 26. Say P is valid with respect to sacr. If X is
(q0, q, F )

†-normal and k ∈ K0 has ak uncompromised in q,
then k is usable in X . If X is (q0, q, F )

∗-normal and k ∈ K0

has ak uncompromised in q and ak 6∈ E , then k is usable in
X .

Proof. The Lemma follows immediately from the definition
of usable keys.

The next definition identifies sequences of boolean terms
that partition the space of possibilities in a neat way (in
the sense of normality as defined above) and give sufficient
information to determine whether or not any given handle or
attribute is compromised.

Definition 27. Let q ∈ Q and Iq an indexing set. We
say the sequence of boolean terms

(
ψiq
)
i∈Iq

is a (q0, q)
†-

valid partition (respectively, a (q0, q)
∗-valid partition if the

following hold:

1)
∨
i∈Iq ψ

i
q = true

2) For each i, j ∈ Iq with i 6= j, we have ψiq ∧ψjq ∼ false.
3) For each i ∈ Iq , ψiq is

(
q0, q, ψ

i
q

)†
-normal (resp.,(

q0, q, ψ
i
q

)∗
-normal)

4) For each i ∈ Iq and x ∈ H ∪ D, either(
ψiq → compq(x)

)
= true or

(
ψiq → ¬compq(x)

)
=

true.

Remark 28. Due to Axiom 34, if there is a transition from state
q to state q′ then a (q0, q, F )

†-normal set X is also (q0, q
′, F )

†-
normal set and a (q0, q, F )

∗-normal set X is also (q0, q
′, F )

∗-
normal set. However a (q0, q)

†-valid partition is not necessarily
a (q0, q

′)
†-valid partition (and similarly for ∗) since ψiq →

¬compq(x) does not imply ψiq → ¬compq′(x).

Now we formalise rewriting the frame in a simple form,
giving six invariants that are true of the terms output by any
API execution. The main idea is that the usable integrity axiom
and Lemma 26 will together ensure that, if the adversary’s
free function g(φ) is successfully unwrapped using an un-
compromised key k, then g(φ) must be semantically equal to a
previously created wrap under k. This partitions the possibility
space for g(φ) into the different wraps under k appearing in
φ and, within each section of this partition, i.e. each choice
of g(φ), the term containing the unwrap can be simplified
by the correctness axiom. So one can think of the booleans
F i mentioned in the invariants as determining which of the
possible wraps was unwrapped at each stage.

Invariant 1 says that we can choose the F i to have a normal
form that also enables one to deduce whether or not a given
handle or attribute is compromised.

Invariant 2 says the frame can be rewritten in a normal form
under the conditions of the F i (by rewriting unwraps).

Invariant 3 says that, under the conditions of the F i, if a
handle is uncompromised then it points to a key from K0 and
the attribute of that key, or the pair (fail, fail). That is, handles
not known to be compromised cannot point to keys imported
by the adversary.

Invariant 4 says that, under the conditions of the F i, if
a handle is compromised then the handle points to a term
in normal form whose second projection is a compromised
attribute.

Invariant 5 says that each wrap appearing in the rewritten
terms uses valid randomness: names of sort nonce not used
anywhere other than in the nonce position of this wrap.

Finally, invariant 6 says that the conditions F i in the † case
can be obtained by the F i in the ∗ case (and similarly for the
corresponding rewritten frame, etc.), just by replacing every
occurrence of k† by k∗.

Proposition 29. Under the hypotheses of Theorem 2, for the
executions

(q∗0 , (k
∗, φ0))→ · · · → (q∗, φ∗)

(q†0, (k
∗, φ0))→ · · · → (q†, φ†)

there exist an indexing set Iq† and a sequence of booleans(
F iq†

)
i∈I

q†
(respectively, an indexing set Iq∗ and a sequence

of booleans
(
F iq∗
)
i∈Iq∗

) such that:

1)
(
F iq†

)
i∈I

q†
is a

(
q†0, q

†
)†

-valid partition

(resp.,
(
F iq∗
)
i∈Iq∗

is a (q∗0 , q
∗)
∗-valid partition)

2) There exists a family
(
φiq†

)
i∈I

q†
(resp.,

(
φiq∗
)
i∈Iq∗

) of

frames, such that for each i ∈ Iq† (resp., i ∈ Iq∗ ):
a)
[
F iq†

]
φ† =

[
F iq†

]
φiq†

(resp.,
[
F iq∗
]
φ∗ =

[
F iq∗
]
φiq∗ )

b) φiq† is
(
q†0, q

†, F iq†

)†
-normal

(resp., φiq∗ is
(
q∗0 , q

∗, F iq∗
)∗

-normal)

3) There exists a family
(
κiq†

)
i∈I

q†
(resp.,

(
κiq∗
)
i∈Iq∗

) of

maps H → K0 ∪ {fail} such that, for each i ∈ Iq†
(resp., i ∈ Iq∗ ) and each h ∈ H such that F iq† →
¬compq†(h) = true,[

F iq†
]
valq†(h) =

[
F iq†
] (
κiq†(h), aκi

q†
(h)

)
respectively,[

F iq∗
]
valq∗(h) =

[
F iq∗
] (
κiq∗(h), aκi

q∗ (h)

)
4) There exist a family

(
τ iq†

)
i∈I

q†
(resp.,

(
τ iq∗
)
i∈Iq∗

) of

maps H → T ×D such that, for each i ∈ Iq† (resp., i ∈
Iq∗ ) and each h ∈ H such that F iq† → compq†(h) =
true



a)
[
F iq†

]
valq†(h) =

[
F iq†

]
τ iq†(h)

resp.,
[
F iq∗
]
valq∗(h) =

[
F iq∗
]
τ iq∗(h)

b) if τ iq†(h) ≡ (t, a) (resp. τ iq∗(h) ≡ (t, a)) then

i) t is
(
q†0, q

†, F iq†

)†
-normal (resp.(

q∗0 , q
∗, F iq∗

)∗
-normal)

ii)
(
F iq† → compq† (a)

)
= true

resp.,
(
F iq∗ → compq∗ (a)

)
= true

5) For each i ∈ Iq† (resp., i ∈ Iq∗ ) and each
x ≡ {u}rv,w ∈ st

(
F iq† , φ

i
q† , τ

i
q†(h)

)
h∈H

resp., {u}rv,w ∈ st
(
F iq∗ , φ

i
q∗ , τ

i
q∗(h)

)
h∈H

a) r is a name of sort nonce
b) r appears nowhere in st

(
F iq† , φ

i
q† , τ

i
q†(h)

)
h∈H

other than in the position of the randomness in
x.

6) Iq† = Iq∗ such that for every i ∈ Iq†
a) F iq∗ = F iq†

[
k∗/k†

]
b) φiq∗ = φiq†

[
k∗/k†

]
c) for every h ∈ H we have κiq∗(h) = κiq†(h)

[
k∗/k†

]
d) for every h ∈ H we have τ iq∗(h) = τ iq†(h)

[
k∗/k†

]
(where, for any terms t, t′ and any sequence of terms ~v,
we write ~v [t′/t] for the sequence of terms obtained by
replacing every occurrence of t in ~v by t′.)

Proof of Proposition 29. The proof is by induction and con-
sidering the effect of each possible fully-specified action.

We first prove the invariants in the † case, and then apply
invariant 6 to obtain the corresponding invariants in the ∗ case.

Note that the base case is obvious. Let 4 ∈ {∗, †}. We set
Iq40

= {−}, F−
q40

= true, φ−
q40

= (k∗, φ0), κ−
q40

= valq40
and

τ−
q40

(h) = (fail, bad) for all h ∈ H. Then invariants 1, 2, 3, 4,
5 and 6 are immediate.

Now suppose the result holds for the execution(
q†0, (k

∗, φ0)
)
→ · · · →

(
q†, φ†

)
and let the action A

induce the transition
(
q†, σ†, φ†

)
→ (qM, σM, φM) .

Action A ≡W(h1, h2).

We take IqM ≡ Iq† and
(
F iqM
)
i∈IqM

≡
(
F iq†

)
i∈I

q†
. Since

no new attributes or handles are compromised by the wrap
action we have compqM(x) = compq†(x) which means that
a
(
q0, q

†)†-valid partition is a (q0, q
M)
†-valid partition, proving

invariant 1.
Now, we prove invariant 2. We have φM ≡ φ†; t where

t ≡
[
P
(
aq†(h1),aq†(h2)

)] {
kq† (h1)

}r
k
q† (h2),a

q† (h1)
.

By the axioms in Section V-A, we then have
[
F iqM
]
φM ≡[

F iq†

]
φ†;
[
F iq†

]
t. By 1 in the induction hypothesis, each F iq†

tells us whether or not h1 and h2 are compromised in q†.
We consider each case in turn. Suppose i is such that h1 and
h2 are both uncompromised in q†. Write k1 ≡ κiq†(h1) and
k2 ≡ κiq†(h2). By invariant 3 of the induction hypothesis, we

may replace valq†(h1) and valq†(h2) in t by (k1, ak1) and
(k2, ak2). Therefore, by the correctness of π1 and π2,[

F iqM
]
φM ≡

[
F iq†
]
φiq† ; [P (ak1 , ak2)] {k1}rk2,ak1 .

Either P (ak1 , ak2) = true or P (ak1 , ak2) = false and this is
determined by h1, h2 and i. In either case, the resulting φiqM

is
(
q†0, q

M, F iqM
)†

-normal since φiq† is.

Say h1 is uncompromised in q† but h2 is compromised.
By the definition of compromised handles and the transitivity
of sacr,

[
F iqM
]
φM =

[
F iq†

]
φiq† ; fail, which obviously satisfies

the conditions in invariant 2.
Next suppose h1 is compromised in q† but h2 is uncom-

promised. By replacing valq†(h1) by τ iq†(h1) and valq†(h2)
by (k2, ak2) due to invariants 3 and 4, we find that[

F iqM
]
φM =

[
F iq†
]
φiq† ; [P (t2, ak2)] {t1}rk2,t2

where t1 ≡ π1

(
τ iq†(h1)

)
and t2 ≡ π2

(
τ iq†(h1)

)
. Normality

is almost immediate from the normality of τ iq†(h1), except
the requirement that a key appearing in the position of a
wrapping key does not have an external attribute. There is
nothing to prove if ak2 /∈ E and, if not, the validity of
P gives P

(
π2

(
τ iq†(h1)

)
, ak2

)
= false and

[
F iqM
]
φM =[

F iq†

]
φiq† ; fail, which is normal.

Finally for invariant 2, if both handles are compromised in
q† then we replace valq†(h1) and valq†(h2) by τ iq†(h1) and
τ iq†(h1), obtaining a sequence of terms that is immediately
normal, thanks to the normality of τ iq†(h1) and τ iq†(h2).

Invariants 3 and 4 for this action are immediate from the
induction hypothesis since, by construction, valqM = valq† ,(
q0, q

†, F iq†

)†
-normality implies

(
q0, q

M, F iqM
)†

-normality and
handles and attributes are compromised in qM if and only if
they are compromised in q†. Invariant 5 is also immediate
by construction since any new wrap added to the frame is
produced with fresh, valid randomness.
Action A ≡ C(h).

Again set IqM ≡ Iq† and
(
F iqM
)
i∈IqM

≡
(
F iq†

)
i∈I

q†
. As be-

fore, compq†(x) implies compqM(x) and so
(
q†0, q

†, F iq†

)†
-

normality implies
(
q†0, q

M, F iqM
)†

-normality. This shows that

the first three conditions in the definition of a (q0, q
M)
†-valid

partition are satisfied by
(
F iqM
)
i∈IqM

. The final condition is
more complicated because it is likely that new attributes (and
therefore new handles) are compromised in qM by A.

If h is compromised in q†, then no new handles and
attributes are compromised by the corruption. Therefore(
F iq†

)
i∈I

q†
does indeed give the compromised handles and

attributes in qM.
Suppose instead that h is uncompromised in q†. so that[
F iq†

]
valq†(h) =

[
F iq†

]
(k, ak) where k = κiq†(h). Let x ∈



H ∪ D. If x is compromised in q† then x is compromised in
qM. Suppose instead that x is uncompromised in q†. Say x is
a handle, h′. Then we have

[
F iq†

]
valq†(h

′) =
[
F iq†

]
(k′, ak′)

where k′ = κiq†(h
′) . Then x is not compromised in q† if

and only if ak′ ∈ sacr (ak). Similarly, if x ≡ a′ ∈ D then
x is compromised in q† if and only if a′ ∈ sacr (ak). This

shows that the fourth condition of a
(
q†0, q

M
)†

-valid partition
is satisfied by

(
F iqM
)
i∈IqM

.

For invariant 2, first recall that φM ≡ φ†;kq†(h). For
each i, F iq† either implies that h is compromised in q† or
that h is uncompromised in q†. In the first case we have[
F iqM
]
φM =

[
F iq†

] (
φiq† ;π1

(
τ iq†(h)

))
and in the second

case we have
[
F iqM
]
φM =

[
F iq†

] (
φiq† ;π1

(
κiq†(h)

))
where

normality in both cases is immediate from the induction
hypothesis.

For invariant 3, we remark that for any h′ ∈ H,(
¬compqM (h′)→ ¬compq† (h′)

)
= true so we can directly

apply invariant 3 of the induction hypothesis.
For invariant 4, we have to fix the value of τ iqM(h′) for each

h′ ∈ H. If h is compromised in q† then valqM(h′) ≡ valq†(h
′)

by definition and we can directly apply invariant 4 of the
induction hypothesis. For the latter case, invariant 3 of the in-
duction hypothesis gives us

[
F iq†

]
valq†(h

′) =
[
F iq†

]
(k′, ak′)

where k′ ≡ κiq†(h
′), so we take τ iq†(h

′) = (k′, ak′), which

is obviously normal. Note that π2

(
τ iq†(h

′)
)

= ak′ which,
by the same reasoning as in the proof of invariant 1 for
this action, satisfies

(
F iq† → ak′ ∈ sacr (ak)

)
= true and

hence
(
F iq† → compq (ak′)

)
= true as required for the final

condition in invariant 4.
Invariant 5 is immediate, since we have not introduced any

new wraps in any terms.
Action A ≡ U(h).

This is the most complicated action to prove because the(
F iqM
)
i∈IqM

need to take care of the different possible results

of unwrapping the adversary’s function gq†
(
φ†
)
. Therefore

we cannot simply reuse Iq† and
(
F iq†

)
i∈I

q†
as we did for the

previous actions. Instead we take IqM =
⋃
i∈I

q†
Ji where the

index sets Ji will depend on the properties of F iq† .
Say F iq† → compq†(h) = true. Let τ iq†(h) = (t, ah). Then

take Ji = {((i, a)|a ∈ D, a ∈ sacr(ah))} ∪ {(i,⊥)} and

F
(i,a)
qM ≡ F iq† ∧ wf(u′) ∧ EQ

(
a, π2(g(φiq†))

)
F

(i,⊥)
qM ≡

F iq† ∧

¬wf(u′) ∨ ∧
a∈sacr(ah)

(
¬EQ

(
a, π2(g(φiq†))

))
where g is a shorthand for gn−1, n is the number of transitions
from q†0 to q† and u′ ≡ uwp

(
g
(
φiq†

)
, t
)

.

We check Points 2 to 5 for the (i, a) in such Ji.
By definition,

φM ≡ φ†;
[
wf(u) ∧ P

(
π2(g

(
φ†
)
),aq†(h)

)]
hf

where u ≡ uwp
(
g
(
φ†
)
,kq†(h)

)
and hf ≡ freshhdl(q†).

By invariants 2 and 4, under the conditions of F iq† we may
replace any occurrence of φ† with φiq† and any occurrence of
valq†(h) with τ iq†(h). Then it is easy to show that[

F
(i,a)
qM

]
φM =

[
F iq†
] (
φiq† ; [wf(u′) ∧ P (a, ah)] (hf )

)
where by convention P (⊥, _) ≡ false. The only non-trivial
case of proving the above is when a = ⊥, but it follows
from the policy axioms. Now, since compromise in q† implies

compromise in qM, we have that
(
q†0, q

†, F iq†

)†
-normality

implies
(
q†0, q

M, F iq†

)†
-normality, so we may take

φ
(i,a)
qM ≡ φiq† ; [wf(u′) ∧ P (a, ah)] (hf )

which satisfies the conditions of invariant 2 thanks to the
normality of φiq† and τ iq†(h).

Invariants 3 and 4 are immediate for all handles h′ 6≡ hf
since valqM(h′) ≡ valq†(h

′) in this case and compqM(h′)
is logically equivalent to compq†(h

′), so we may take
κ

(i,a)
qM (h′) ≡ κiq†(h

′) and τ (i,a)
qM (h′) ≡ τ iq†(h

′).

We prove invariant 3 for hf . Put κ(i,a)
qM (hf ) ≡ fail. Intu-

itively, this is because hf is considered compromised in qM

whether or not the unwrap succeeds, since h is compromised
in q†. So the conditions in invariant 3 will evaluate to false.
Formally, for any term x, we have[

¬compqM (hf ) ∧ F (i,a)
qM

]
x = fail.

Since we may take x ≡ valqM (hf ) or x ≡ (fail, fail), the
condition of invariant 3 is satisfied.

Next, we prove invariant 4 for hf . By definition,[
F

(i,a)
qM

]
valqM (hf ) =[

F
(i,a)
qM

] ([
wf (u) ∧ P

(
t2,aq†(h)

)]
(u, t2) : (fail, bad)

)
where t2 ≡ π2

(
g
(
φiq†

))
. As before we may replace u by u′

and aq†(h) by ah, so for a 6≡ ⊥ the above is equal to[
F

(i,a)
qM

]
([P (a, ah)] (u′, a) : (fail, bad)) .

Therefore, for a ∈ sacr(ah) such that P (a, ah) = true we
put τ (i,a)

qM (hf ) = (u′, a) and for a ∈ sacr(ah) such that
P (a, ah) = false we put τ (i,a)

qM (hf ) = (fail, bad). For a = ⊥,
either the unwrap is not well-formed or the policy will reject
the unwrap, so we may set τ (i,⊥)

qM (hf ) = (fail, bad). Since all
keys from K0 appearing in τ (i,a)

qM (hf ) must appear in φiq† or

τ iq†(h), it follows from the induction hypothesis that τ (i,a)
qM (hf )

is
(
q†0, q

†, F iq†

)†
-normal and hence

(
q†0, q

M, F
(i,a)
qM

)†
-normal,



as required for Part 4(b)i. For Part 4(b)ii, recall that
compq†(h) = compq†(h) ∧ compqM (hf ) so that(
F iq† → compq†(h) ∧ compqM (hf )

)
= true and hence(

F
(i,a)
qM → compqM (hf )

)
= true as required.

Invariant 5 is immediate since there are no wraps
in st

(
F iqM , φ

i
qM , τqM

)
h∈H that did not appear in

st
(
F iq† , φ

i
q† , τq†

)
h∈H

.

Now we suppose F iq† → ¬compq†(h) = true. Set

κiq†(h) ≡ k so that
[
F iq†

]
valq†(h) =

[
F iq†

]
(k, ak). Then

let W be the set of wraps appearing in st
(
φiq†

)
such that k

is in the wrapping key position. By invariant 5, each element
w ∈ W uses a different term for its randomness and, by the
normality of φiq† , if ak ∈ E then W is empty.

Then define Ji ≡ {(i, 1) , (i, 2, w) | w ∈W}. Indices of the
form (i, 1) will be used to identify when the unwrap fails.
Indices of the form (i, 2, w) will be used to identify when
the adversary is trying to unwrap w ∈ W . We will use the
usable integrity axiom to prove that these are the only two
possibilities. We define

F
(i,1)

q†
≡ ¬wf(g(φiqM)) ∨

∧
w∈W

¬EQ(w, g(φiqM))

F
(i,2,w)

q†
≡ wf(g(φiqM)) ∧ EQ(w, g(φiqM))

By invariant 5 and normality of φiqM , k is usable in φiqM . By
the usable integrity axiom, we get

F
(i,1)

q†
= ¬wf

(
uwp

(
g
(
φiqM
)
, k
))

In the case j = (i, 1), we set κj
q†

(freshhdl(q)) = fail, for
every h 6≡ freshhdl(q) κj

q†
(h) = κiqM(h) φj

q†
= φiqM , and

φj
q†

= φiqM invariants 2, 3, 4, 5 follow.

In the case j = (i, 2, w), by
(
q†0, q

M, FqM)
)†

normality of
φiqM yields

• Either w = {k′}rk,ak′ we set κj
q†

(freshhdl(q)) = k′. For
every h 6≡ freshhdl(q), put κj

q†
(h) = κiqM(h). Also set

τ j
q†

= τ iqM and φj
q†

= φiqM ; freshhdl(q). Invariants 2, 3,
4, 5 follow.

• Or w = {u}rk,v with v ∈ D we set τ j
q†

(freshhdl(q)) =

(u, v). For every h 6≡ freshhdl(q), put τ j
q†

(h) = τ iqM(h).
Also set κj

q†
= κiqM and φj

q†
= φiqM ; freshhdl(q).

We remark that compqM(v) = compqM(freshhdl(qM))
from which invariants 2, 3, 4, 5 follow.

Remarking that
∨
j∈Ji F

j
q†

= F iqM and for j 6= j′ F j
q†
∧F j

′

q†
=

false, we get that Fq† is a (q†0, q
†)-valid partition.

Finally, remark that if we obtain (F iq∗)i∈Iq† , (φiq∗)i∈Iq† ,
(κiq∗)i∈Iq† and (τ iq∗)i∈Iq† by replacing every occurrence of
k† in (F iq†)i∈Iq† , (φiq†)i∈Iq† , (κiq†)i∈Iq† and (τ iq∗)i∈Iq† with
k∗, as is mandated by invariant 6, then invariants 1, 2, 3, 4
and 5 hold in the ∗ case, since they hold in the † case.

We then obtain the proof of the symbolic theorem from the
invariants.

Proof of Theorem 2. The main theorem follows easily from
the invariants. First we remark that the handle consistency
property

φ†,¬compq†(h)→
∨
h0∈H

EQ(valq†(h),valq†0
(h0))

∼ φ†, true

is true if and only if[
¬compq†(h)

] ∨
k∈K0

EQ(val(h), (k, ak))

=
[
¬compq†(h)

]
true.

Let I> be the set of indices such that F iq∗ →
¬compq∗(h

∗) = true. We write for 4 ∈ {∗, †}:

F⊥q4 ≡
∨
i 6∈I>

F iq4

=
∧
i∈I>

¬F iq4 (as (F iq4)i∈I is a valid partition)

The proof goes as follows: the (F iq∗)i∈I>∪{⊥}, (F
i
q†)i∈I>∪{⊥}

families satisfy the preconditions of the case disjunction ax-
iom, hence it is enough to prove for every i

1) The relevant restrictions of the frame are indistinguish-
able:

F iq∗ , [F
i
q∗ ][¬compq∗(h

∗)]φ∗i ∼
F iq† , [F

i
q† ][¬compq†(h

∗)]φ†i

2) For every h, h′ ∈ H the handle consistency property
holds:[

F iq† ∧ ¬compq†(h)
] ∨
k∈K0

EQ(val(h), (k, ak))

=
[
F iq† ∧ ¬compq†(h)

]
true

Let us start by proving 1. First, consider i 6= ⊥.
By definition of I>, we have F iq† → ¬compq†(h

∗) = true.
We remark, by invariant 6 that

F ∗i , [F
∗
i ]φ∗i ≡

(
F †i , [F

†
i ]φ†i

) [
k∗/k†

]
As F †i and φ†i are (q†0, q

†, F iq†)
†-normal, k† only appears under

wraps by usable keys with attribute a∗. Let us call K this
set of usable keys. Note that the attribute a∗ is well used by
normality. By the usable secrecy axiom we get

F †i , [F
†
i ]φ†i ∼ 0K,a∗(F

†
i ), [0K,a∗(F

†
i )]0K,a∗(φ

†
i ).

Similarly, we get on the star side

F ∗i , [F
∗
i ]φ∗i ∼ 0K,a∗(F

∗
i ), [0K,a∗(F

∗
i )]0K,a∗(φ

∗
i ).



As neither k∗ nor k† appear in K, we still have

0K,a∗(F
∗
i ), [0K,a∗(F

∗
i )]0K,a∗(φ

∗
i ) ≡(

0K,a∗(F
†
i ), [0K,a∗(F

†
i )]0K,a∗(φ

†
i )
)

[k∗/k†]

Additionally, note that k† does not appear in
0K,a∗(F

†
i ), [0K,a∗(F

†
i )]0K,a∗(φ

†
i ) as all the wraps in

which k† could have appeared are replaced by wraps of fresh
keys, hence

0K,a∗(F
∗
i ), [0K,a∗(F

∗
i )]0K,a∗(φ

∗
i )

≡ 0K,a∗(F
†
i ), [0K,a∗(F

†
i )]0K,a∗(φ

†
i )

We conclude by reflexivity and transitivity of ∼.
We now consider the case i = ⊥. As (F iq4)i∈I is a valid

partition, by the definition of I> we have

F⊥q4 → compq4(h∗) = true

We therefore have to prove F⊥q∗ ∼ F⊥q† . We remark that by
the definition of normality, the key k∗ only appears encrypted
under keys that are jointly usable in all F iq∗ for i ∈ I>. We
conclude ∨

i∈I>

F iq∗ ∼
∨
i∈I>

F iq∗

by the same arguments we used for the i 6= ⊥ case. This
concludes the proof of point 1.

In order to prove point 2 we start by remarking that if
F iq† → compq†(h) = true then the property is trivial. We
now assume F iq† → ¬compq†(h) = true. By invariant 3, we
have [

F iq†
]
valq†(h) =

[
F iq†
]
κiq†(h)

=
[
F iq†
]

(k, ak) for some k ∈ K0

from which point 2 follows immediately.

APPENDIX E
PROOF OF THE COMPOSITION THEOREM

In this Section we prove that a key wrapping API using a
secure AE-AD wrapping mechanism and a valid policy can
be composed with an IND-CCA secure encryption scheme to
give a secure wrap and encrypt API.

Proof of Theorem 3. The proof is a fairly standard hybrid
argument. We construct four experiments Hb′

b for b, b′ ∈ {0, 1}
which are slight modifications of the experiments ExpCOMP

b .
At the start of each new experiment we generate a fresh
key k†. We modify the oracle Oenc

b so that, if b′ = 0
and if h = h∗, we replace k∗ by k† before encrypting.
In all other respects, the experiment Hb′

b is identical to
ExpCOMP

b . Let Pb,b′ = P
[
Hb′

b (A,~a,m) = 1
]
. By construc-

tion, H1
b (A,~a,m) = ExpCOMP

b (A,~a,m). So we have

AdvIND−CCA
API′ (A) =

1

2
(P1,1 − P0,1)

=
1

2
[(P1,1 − P1,0) + (P1,0 − P0,0) + (P0,0 − P0,1)] .

We show that there is a key management API satisfying
the conditions of Theorem 1 which can be attacked with
advantage 1

2 (P1,1 − P1,0) or 1
2 (P0,0 − P0,1), so these must

both be negligible. We also show that there is an IND-CCA
adversary against the encryption scheme which wins with
probability 1

2 (P1,0 − P0,0), so this must also be negligible.
Therefore AdvIND−CCA

API′ (A) is negligible.
Consider the adversary A in the experiments H1

b and H0
b .

These experiments differ only in whether or not encryption
queries using the handle h∗ are responded to with encryptions
(either of the adversary’s message or a random message of the
same length) using the real key k∗ or a fresh, random key k†.
So we can build an adversary B in the KEYSEC game for
the key wrapping API that uses A as follows:

First, B tests h∗ at the start of the game, receiving either k∗

or a fresh random key k†. Then, B submits any other external
handles (handles hi 6= h∗ such that ai ∈ E) to its corrupt
oracle, learning the values of these keys. When A makes any
queries to wrap,unwrap or corrupt, B forwards these to
its oracles and returns the responses to A. For queries to enc
and dec under handles h 6= h∗, B answers faithfully using the
corrupted external keys (if the corresponding attributes are not
in E , then B answers with �). For queries to enc or dec under
h∗, B answers with its test key: encrypting the real message
if b = 1 and a random message of the same length if b = 0.
Finally, when A submits a guess, B forwards this guess.

It is clear that B wins the KEYSEC game with advantage
1
2 |Pb,1 − Pb,0|, as long as, according to the sacrifice function,
corrupting the external handles other than h∗ does not com-
promise h∗. But from API we can build a new API API∗ that
also satisfies the conditions of Theorem 1 and in which the
corruption of external handles does not compromise the other
external handles.

Concretely, we “split” the external attributes from API so
that each handle in the KEYSEC game for API∗ with an
external attribute has a unique attribute. That is, we replace
any external attributes that collide among a1, . . . , an in the
IND− CCA game played by A by unique external attributes
in the KEYSEC game played by B. The policy for API∗

simply agrees with the policy for API (i.e. the value of the
new policy on a new external attribute a is given by the value
of the old policy on the external attribute from which a was
split). This means that all queries to API given by A that are
allowed by the policy in API will be allowed by the policy in
API∗. Then we modify the sacrifice function so that, for all
external attributes a and a′ we have a ∈ sacr(a′) ⇔ a = a′.
This means that the compromise of external attributes will not
lead to the compromise of other external attributes (which is
a reasonable restriction anyway since one cannot wrap under
external keys). Since the policy automatically rejects wraps
under external keys, the new policy will be valid with respect
to the new sacrifice function. With the new external attributes
and new sacrifice function, B will not compromise h∗ in the
KEYSEC game for API∗ unless A does in the IND− CCA
game for API′. By Theorem 1 applied to API∗, we have that
Pb,1 − Pb,0 is negligible for b ∈ {0, 1}.



It remains to prove that P1,0 − P0,0 is negligible. Consider
the adversary A in the experiments H0

1 and H0
0 . These

experiments differ only in whether encryptions using a key k†

which cannot be wrapped, unwrapped or corrupted are genuine
or encryptions of random messages. We construct an adversary
B in the IND− CCA game for the encryption scheme who
simulates the IND− CCA API game with its own keys, an-
swering all oracle queries honestly apart from encryption and
decryption queries using h∗, which it submits to its IND-CCA
oracles. If A tries to compromise h∗, B aborts the simulation
and outputs a random bit. Otherwise, B forwards the bit that A
submits. Note that B is a valid adversary for the IND− CCA
encryption game (not decrypting the outputs of the encryption
oracle) if A has non-zero advantage in the API game. Then we
have that the advantage Pb

[
BO

enc
b,k∗ ,O

dec
k∗ = b

]
− 1

2 of B against
the IND− CCA game for the encryption scheme is exactly
1
2 (P1,0 − P0,0), so this quantity is indeed negligible.

APPENDIX F
REFINEMENT OF PKCS#11

In this Section, we make precise our secure refinement of
the PKCS#11 specification.

Formally, we consider a subset of PKCS#11 operations
relating to the management of symmetric keys, namely
C_WrapKey, C_UnwrapKey, C_GetAttributeValue
and C_SetAttributeValue, and show that, if certain
attributes that are modifiable in the standard are made un-
modifiable, and the wrapping mechanism is a secure AE-
AD scheme transmitting the attributes of keys as associated
data, then the resulting key wrapping functionality can be
securely composed with an IND-CCA secure encryption. Note
that the security policy of PKCS#11 must only depend on
unmodifiable attributes (otherwise an adversary can simply
change the attributes and undermine the policy). Therefore,
while modifiable attributes (such as a human-readable name
for a key) may aid usability, they are omitted from our
discussion.

In PKCS#11, all objects, including keys, consist entirely
of a list of attributes. In particular, the cryptographic value
of a key is just another object attribute. There is a com-
mand, C_GetAttributeValue, which returns the list of
attributes of an object. However, if the object is a key
with CKA_SENSITIVE set to CK_TRUE, the value of the
key will not be revealed. Clearly, any symmetric keys with
CKA_SENSITIVE set to CK_FALSE cannot be used to pro-
tect data or other keys. Therefore, we assume that all keys have
been generated on the token prior to its execution and that all
keys have the attribute CKA_SENSITIVE set to CK_TRUE.

While C_SetAttributeValue can be used to mod-
ify certain attributes, it cannot be used to change
CKA_SENSITIVE from CK_TRUE to CK_FALSE (this at-
tribute is sticky-on) or CKA_EXTRACTABLE from CK_FALSE
to CK_TRUE (this attribute is sticky-off ). However, by default,
the attributes CKA_WRAP and CKA_UNWRAP are modifiable,
so it is impossible to have a set of external keys that cannot
be used for wrapping (and therefore remain indistinguishable

from random) without strengthening the PKCS#11 attribute
policy. Therefore we impose the following additional re-
striction, which is both for security and convenience: the
attributes CKA_WRAP, CKA_UNWRAP, CKA_EXTRACTABLE,
CKA_TRUSTED and CKA_WRAP_WITH_TRUSTED are both
sticky-on and sticky-off (i.e. unmodifiable).

The attribute CKA_TRUSTED is used by PKCS#11 to
identify trusted wrapping keys and only has a meaning for
those keys such that CKA_WRAP = CK_TRUE. On the other
hand, the attribute CKA_WRAP_WITH_TRUSTED identifies
keys that may only be wrapped under trusted wrapping keys.
This attribute only has a meaning for those keys such that
CKA_EXTRACTABLE = CK_TRUE.

A policy in our model specifies what keys a
particular key may wrap. Considering the attributes
CKA_WRAP, CKA_EXTRACTABLE, CKA_TRUSTED and
CKA_WRAP_WITH_TRUSTED, the PKCS#11 documentation
identifies nine meaningful key templates (choices of values
for certain attributes). We denote these key templates as
follows: ayx is the template of a key that
• cannot wrap if x = 0 and is an untrusted (resp. trusted)

wrapping key if x = u (resp. x = t)
• cannot be wrapped if y = 0 and can be wrapped under

trusted (resp. trusted or untrusted) keys if y = t (resp.
y = u).

We obtain a secure subset of the wrapping operations
permitted by PKCS#11 as follows:

Let E =
{
a0

0, a
t
0, a

u
0

}
and let D = E ∪

{
a0
u, a

t
u, a

0
t

}
.

We note that the PKCS#11 policy, viewed as a function on
D × D, prevents wrapping under external keys as required.
Furthermore, D is maximal: if there were keys of templates
att, a

u
t or auu, then the policy graph would have a cycle,

which is forbidden in our model. Thus, by Theorem 1, for
any sacrifice function on templates respected by the policy
(i.e. any graph on the six templates with the wrapping policy
as a subgraph), any external keys not trivially compromised
according to the sacrifice function will be indistinguishable
from random in any execution of the key wrapping API,
provided that some conditions on the wrapping mechanism are
satisfied. Moreover, Theorem 3 shows that the external keys
can be used by an IND-CCA secure encryption scheme and
the wrapping mechanism will not interfere with the security
of the encryption scheme.

We note that imposing additional restrictions on attribute
combinations as we have done is explicitly authorised by
the PKCS#11 documentation. On Page 131, it reads: “to
partition the wrapping keys so they can only wrap a subset
of extractable keys the attribute CKA_WRAP_TEMPLATE can
be used on the wrapping key to specify an attribute set that will
be compared against the attributes of the key to be wrapped”
[OAS15a].

Our security theorem for key wrapping APIs requires that
the wrapping mechanism is a secure AE-AD scheme that
automatically sends the attributes of keys as associated data
when wrapping and chooses a fresh, random nonce for each
wrap. This is explicitly supported in PKCS#11, since version



2.4 of the standard added support for the use of AES-GCM
for key wrapping with arbitrary IVs (nonces) and arbitrary as-
sociated data [OAS15b]. One could easily configure the wrap
command to generate a random IV, retrieve the associated data
using C_GetAttributeValue and output these parameters
along with the ciphertext.

We remark that the template policy we consider here is
more general than the one proven correct in [Kün15], at
the cost of assuming that the wrapping scheme is AE-AD
secure (or possibly a secure Deterministic Authenticated En-
cryption scheme) and that attributes are transmitted properly
through the associated data. In particular, the policy proposed
in [Kün15] prevents transmitting any wrapping key between
devices, while ours allows this behaviour for the template
atu (an untrusted wrapping key that can be wrapped under
any trusted wrapping key). This behaviour allows devices to
exchange one long term managing key, and then use it to
establish short-lived external keys. This would typically be
needed for creating session keys.
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