
Function-Hiding Inner Product Encryption is Practical

Sam Kim1, Kevin Lewi1, Avradip Mandal2,
Hart Montgomery2, Arnab Roy2, and David J. Wu1

1Stanford University
2Fujitsu Laboratories of America

Abstract

In a functional encryption scheme, secret keys are associated with functions and ciphertexts
are associated with messages. Given a secret key for a function f and a ciphertext for a message x,
a decryptor learns f(x) and nothing else about x. Inner product encryption is a special case of
functional encryption where both secret keys and ciphertexts are associated with vectors. The
combination of a secret key for a vector x and a ciphertext for a vector y reveal 〈x,y〉 and
nothing more about y. An inner product encryption scheme is function-hiding if the keys and
ciphertexts reveal no additional information about both x and y beyond their inner product.

Recently, Bishop, Jain, and Kowalczyk (Asiacrypt 2015) and Datta, Dutta, and Mukhopad-
hyay (PKC 2016) showed how to construct function-hiding inner product encryption using
asymmetric bilinear maps with security in the standard model. In this work, we reduce the pa-
rameter sizes and the run-time complexity of the Asiacrypt 2015 and the PKC 2016 constructions
by more than a factor of 2 and 4, respectively. We achieve this efficiency by proving security in
the generic group model. We then show how function-hiding inner product encryption directly
yields single-key two-input functional encryption for general functions over a small message
space, which greatly improves upon the parameter sizes of existing constructions from standard
assumptions. We validate the practicality of our encryption scheme by implementing both
function-hiding inner product encryption and single-key two-input functional encryption. For
example, using our construction, encryption and decryption operations for vectors of length 50
complete in a tenth of a second in a standard desktop environment.

Keywords. Functional encryption, inner product encryption, bilinear maps.

1 Introduction

Traditionally, encryption schemes have provided an all-or-nothing approach to data access: users can
either fully recover the data, or recover none at all. In the last fifteen years, numerous primitives such
as identity-based encryption [BF01, Coc01], attribute-based encryption [SW05, BSW07, GVW13],
and predicate encryption [KSW08, OT09, GVW15] have been introduced to provide more fine-
grained control to encrypted data. Recently, these works have been unified under the general
umbrella of functional encryption (FE) [SS10, BSW11, O’N10]. In a functional encryption scheme,
the holder of the master secret key is able to delegate arbitrary decryption keys that allow users to
learn specific functions of the data, and nothing else. Specifically, given an encryption of a message x
and a secret key for a function f , a decryptor only learns the value f(x).

1

Functional encryption for inner products. While functional encryption for all circuits can
be constructed from a wide range of assumptions, existing constructions either only provide security
in restricted settings where the adversary must request for an a priori bounded number of secret
keys [SS10, GVW13, GKP+13], or rely on powerful and currently impractical primitives such as
multilinear maps or indistinguishability obfuscation [GGH+13, Wat15, GGHZ16]. Due to these
limitations with the state-of-the-art in constructing general-purpose functional encryption, the
cryptographic community has begun exploring constructions of practical FE schemes for more
restrictive function classes. As a starting point, numerous works have focused on the inner product
functionality [ABCP15, ALS15, BJK15, DDM16].

In an inner product encryption (IPE) scheme, both secret keys and ciphertexts are associated
with vectors x ∈ Znq and y ∈ Znq of length n over a ring Zq. Given a secret key skx for x and
a ciphertext cty for y, the decryption function outputs the value 〈x,y〉 ∈ Zq, which is the inner
product of their associated vectors. We emphasize that this definition of IPE is different from the
notion of inner product predicate encryption from [KSW08, SSW09, OT09, OT10, OT12]. In an
inner product predicate encryption scheme, a message m is encrypted with a tag y ∈ Znq . Decryption
keys are still associated with vectors x ∈ Znq . When a secret key for x is used to decrypt a ciphertext
with tag y, the output is m if 〈x,y〉 = 0 and ⊥ otherwise. In other words, decryption recovers the
message only if the vectors of the secret key and ciphertext are orthogonal. In contrast, decryption
in our setting outputs the actual value of the inner product.

Function-hiding IPE. Functional encryption enables delegation of decryption capabilities by
issuing different function keys to users. In many applications, however, we require the additional
property that the function keys themselves also hide the underlying function. This problem was
first considered by Shen, Shi, and Waters [SSW09] for inner-product predicate encryption in the
secret-key setting, and subsequently by many others in both the secret-key setting [AAB+15, BS15]
and the public-key setting [BRS13a, BRS13b]. Bishop, Jain, and Kowalczyk [BJK15] were the first
to give a direct construction of secret-key function-hiding IPE under an indistinguishability-based
definition from the Symmetric External Diffie-Hellman (SXDH) assumption in bilinear groups.
However, their security model imposes a somewhat unrealistic constraint on the adversary’s queries.
Subsequently, Datta, Dutta, and Mukhopadhyay [DDM16] showed how to construct a secret-key
function-hiding IPE from the SXDH assumption that removes the need for that additional constraint
on the adversary’s queries. In their construction, secret keys and ciphertexts of n-dimensional
vectors consist of 4n+ 8 group elements.

Recent and concurrent work. Recently, Ramanna [Ram16] proposed new constructions for
inner product encryption from the SXDH assumption, with applications to identity-based broadcast
encryption. However, this construction also requires the use of quasi-adaptive non-interactive zero
knowledge proofs. Concurrent to our work, Abdalla, Raykova, and Wee [ARW16] as well as Lee and
Lee [LL16] study how to use concrete assumptions on bilinear maps to obtain multi-input functional
encryption for inner products, but in a non-function-hiding setting.

1.1 Our Contributions

In this work, we give a new construction of a function-hiding inner product encryption where secret
keys and ciphertexts of n-dimensional vectors contain just n+ 1 group elements. This corresponds
to a noticeable reduction (by a factor of 4) in parameter sizes compared to the existing scheme of

2

Datta et al. We prove the security of our construction under a stronger simulation-based notion of
security in the generic group model. We then describe a number of new applications enabled by
inner product encryption. We highlight two of these applications here and give the full description
in Section 4:

• Biometric authentication: Biometric-based authentication has grown in popularity to both
augment and replace password-based authentication. Unlike the passwords in password-based
authentication, biometrics are inherently noisy, so requiring exact matches between a supplied
biometric and a user’s ground truth credential generally does not work. A more appropriate
metric is the closeness of the supplied biometric to the ground truth. We show that inner
product encryption can be used to compute Hamming distances between bitstrings. This
immediately gives a simple and efficient biometric-based authentication system.

• Nearest-neighbor search on encrypted data: Consider an encrypted database of docu-
ments D. Given a document d, the problem of k-nearest-neighbor search is that of finding
the top-k documents in D that are most similar to the query document d (for some def-
inition of document similarity). A commonly used metric for document similarity is `2
distance between a vectorial representation of documents. We show that inner product en-
cryption provides an efficient method to perform nearest-neighbor search over an encrypted
database. Our work contrasts with existing works on searchable symmetric encryption
(SSE) [SWP00, Goh03, CGKO06, BBO07] in that our protocols focus on retrieving similar
documents, while SSE primarily deals with retrieving documents based on exact or partial
keyword matches.

In addition to the above applications, we also show how to build a fully-secure single-key, two-input
functional encryption scheme in the “small-message” setting (i.e., for schemes over a polynomial-sized
plaintext space) using function-hiding IPE. Compared to existing functional encryption schemes
that do not rely on heavy machinery such as multilinear maps or indistinguishability obfuscation,
our scheme achieves significantly shorter ciphertexts.

IPE to two-input functional encryption. Multi-input functional encryption (MIFE) [GGG+14]
generalizes FE to the setting where decryption keys are associated with functions of several in-
puts. A special case of MIFE is two-input functional encryption where the decryption function
takes a secret key skf for a binary function f and two encryptions ctx and cty of messages x and
y, respectively, and outputs f(x, y). Notably, two-input functional encryption (for just a single
function1 f) suffices to construct property-preserving encryption [PR12] for binary properties. Such
a property-preserving encryption scheme is defined with respect to a Boolean predicate P on two
inputs. Then, there exists a publicly computable function that takes encryptions of messages x
and y and decides whether P (x, y) is satisfied. A special case of property-preserving encryption
(for the comparison predicate) that has been extensively studied in recent years is order-preserving
encryption (OPE) [AKSX04, BCLO09, BCO11], and its generalization, order-revealing encryption
(ORE) [BLR+15, CLWW16]. Property-preserving encryption for binary properties can be easily
constructed from a two-input functional encryption scheme by simply publishing a function key skP
for the predicate P . Checking whether two ciphertexts satisfy the predicate simply corresponds to
decryption in the underlying functional encryption scheme. In this work, we show that inner-product

1This setting where the functionality f is fixed in advance is referred to as the single-key setting.

3

encryption can be used very naturally to build a single-key, two-input functional encryption scheme
in the secret key setting for polynomially-sized domains. This gives a property-preserving encryption
scheme for arbitrary binary properties over small domains.

Currently, all alternative constructions of general-purpose MIFE rely on strong primitives such
as indistinguishability obfuscation [GGG+14] or multilinear maps [BLR+15]. While recent results
show how to transform any functional encryption scheme into a MIFE scheme [AJ15, BKS15],
applying these transformations to single-input functional encryption schemes based on standard
assumptions [GVW12, GKP+13] yields schemes that are secure only if the adversary obtains an
a priori bounded number of secret keys and ciphertexts.2 This means that even in the single-key
setting, the adversary is still restricted to making an a priori bounded number of message queries.
Moreover, in these existing constructions, the length of the ciphertexts is at least Ω(Q4) where Q is
the bound on the number of message queries the adversary makes.

In this work, we give an efficient construction of a single-key, two-input functional encryption
scheme for general functions in the secret-key setting where the message space is small. Because
the function f is a function of two inputs, there are two types of ciphertexts: “left” encryptions
of messages for the first input to f and “right” encryptions of messages for the second input to
f . The reduction to function-hiding inner product encryption is very simple and resembles the
“brute-force” construction of functional encryption from [BSW11, §4.1]. Specifically, if the message
space is the set {m1, . . . ,mn}, a “left” encryption of a message mi is just an IPE function key skei
for the basis vector ei (eii = 1 and eij = 0 for all i 6= j). A right encryption of a message mj is an
IPE ciphertext for the vector fj of functional evaluations where fjk = f(mk,mj). By construction,
〈ei, fj〉 = fji = f(mi,mj). Security of our construction follows from the fact that the IPE scheme is
function-hiding. In contrast to existing constructions of MIFE from standard assumptions, the size
of the ciphertexts in our two-input functional encryption scheme is independent of the number of
ciphertext queries the adversary makes.

Our construction. The starting point for our function-hiding IPE scheme is the constructions
of Bishop et al. [BJK15] and Datta et al. [DDM16], which leverage the power of dual pairing
vector spaces developed by Okamoto and Takashima [OT08]. The master secret key in their
constructions [BJK15, DDM16] consists of a random basis for a dual pairing vector space. In our
work, we scale this basis by a fixed value (dependent on the basis). We correspondingly scale the
components of the secret key. Our final scheme achieves shorter secret keys and ciphertexts, with
no loss in security. We give a formal security proof in the generic bilinear group model.

Although achieving security in the standard model is important, we are able to obtain a
significantly more efficient inner product encryption scheme (with full security) compared to
all previous constructions [BJK15, DDM16] by relying on idealized assumptions. A series of
works [FST10, AFK+12, Cos12] in the last 15 years have focused on constructing and characterizing
pairing-friendly elliptic curves where the complexity of all known non-generic attacks over these
curves is extremely high.3 The heuristic evidence thus strongly suggests that if we instantiate our
construction using one of these pairing-friendly elliptic curves, the best attacks will be generic in

2This limitation arises because the underlying FE scheme is only secure against “bounded collusions,” i.e., secure if
the adversary makes a bounded number of key generation queries. After applying the single-input-to-multi-input
transformation, this translates into an additional restriction on the number of ciphertexts the adversary can request.

3Note that this is not always the case for a generic model. For example, in the case of multilinear maps, there are
many examples of efficient, non-generic attacks on existing multilinear map candidates [CHL+15, BWZ14, CGH+15,
HJ15, CLR15, MF15, Cor15, CJL16, MSZ16].

4

nature. Though a proof in the generic group model is generally less satisfying than one in the
standard model, for most practical applications, using a scheme whose security analysis leverages
an idealized model is not a severe limitation. In fact, by considering constructions whose security
relies on the generic group model, we obtain a function-hiding IPE scheme whose secret keys and
ciphertexts are much shorter than those of existing schemes, and hence, quite efficient.

Implementation. To assess the practicality of our inner product encryption scheme, we provide
a complete and open-source implementation4 of our scheme in Python. We also perform a series of
micro-benchmarks on our inner product encryption scheme for a wide range of parameter settings.
Our results show that our encryption scheme is practical for a wide variety of real-world scenarios.
For example, encrypting vectors of length 50 completes in about a tenth of a second on a typical
desktop. Ciphertexts in our scheme are just a few KB. We describe our implementation and the
micro-benchmarks we perform in Section 5.

2 Preliminaries

2.1 Notation

For an integer n, we write [n] to denote the set {1, . . . , n}. For a finite set S, we write x
r←− S to

denote sampling x uniformly at random from S. We use bold lowercase letters (e.g., v,w) to denote
vectors and bold uppercase letters (e.g., B, B∗) to denote matrices. For a matrix B, we use B>

to denote the transpose of B and det(B) to denote its determinant. We recall that GLn(Zq) is
the general linear group of (n× n) matrices over Zq (i.e., invertible matrices over Zq). We write λ
for the security parameter. We say a function ε(λ) is negligible in λ, if ε(λ) = o(1/λc) for every
c ∈ N, and we write negl(λ) to denote a negligible function in λ. We say that an event occurs with
negligible probability if the probability of the event is negl(λ), and an event occurs with overwhelming
probability if its complement occurs with negligible probability.

2.2 Bilinear Groups

In this section, we recall some basic definitions on (asymmetric) bilinear groups [Jou00, BF01, Mil04].
Let G1 and G2 be two distinct groups of prime order q, and let g1 ∈ G1 and g2 ∈ G2 be generators
of G1 and G2, respectively. Let e : G1 ×G2 → GT be a function that maps two elements from G1

and G2 onto a target group GT , also of prime order q. In this work, we write the group operation
in G1, G2, and GT multiplicatively and write 1 to denote their multiplicative identity. We say that
the tuple (G1,G2,GT , q, e) is an asymmetric bilinear group if the following properties hold:

• The group operations in G1, G2, and GT , as well as the map e, are efficiently computable.

• The map e is non-degenerate: e(g1, g2) 6= 1.

• The map e is bilinear: for all x, y ∈ Zq, we have that e(gx1 , g
y
2) = e(g1, g2)

xy.

In this work, we will often work with vectors of group elements. Let G be a group of prime order q.
Then, for any group element g ∈ G, and row vector v = (v1, . . . , vn) ∈ Znq , where n ∈ N, we write gv

4Our open-source implementation is available at https://github.com/kevinlewi/fhipe.

5

https://github.com/kevinlewi/fhipe

to denote the vector of group elements (gv1 , . . . , gvn). Moreover, for any scalar k ∈ Zq and vectors
v,w ∈ Znq , we write

(gv)k = g(kv) and gv · gw = gv+w.

The pairing operation over groups is naturally extended to vectors as follows:

e(gv1 , g
w
2) =

∏
i∈[n]

e(gvi1 , g
wi
2) = e(g1, g2)

〈v,w〉.

2.3 Function-Hiding Inner Product Encryption

A (secret-key) inner product encryption (IPE) scheme is a tuple of algorithms Πipe = (IPE.Setup,
IPE.KeyGen, IPE.Encrypt, IPE.Decrypt) defined over a message space Znq with the following properties:

• IPE.Setup(1λ, S)→ (pp,msk): On input a security parameter λ and a set S ⊆ Zq, the setup
algorithm IPE.Setup outputs the public parameters pp and the master secret key msk.

• IPE.KeyGen(msk,x)→ skx: On input the master secret key msk and a vector x ∈ Znq , the key
generation algorithm IPE.KeyGen outputs a functional secret key skx.

• IPE.Encrypt(msk,y) → cty: On input the master secret key msk and a vector y ∈ Znq , the
encryption algorithm IPE.Encrypt outputs a ciphertext cty.

• IPE.Decrypt(pp, sk, ct) → z: On input the public parameters pp, a functional secret key sk,
and a ciphertext ct, the decryption algorithm IPE.Decrypt either outputs a message z ∈ Zq or
a special symbol ⊥.

Correctness. An IPE scheme Πipe = (IPE.Setup, IPE.KeyGen, IPE.Encrypt, IPE.Decrypt) defined
over a message space Znq is correct if for all sets S where |S| = poly(λ), and all non-zero vectors x,y ∈
Znq \ {0}, where 〈x,y〉 ∈ S, the following conditions holds. Letting (pp,msk) ← IPE.Setup(1λ, S),
skx ← IPE.KeyGen(msk,x), cty ← IPE.Encrypt(msk,y), then

Pr [IPE.Decrypt(pp, skx, cty) = 〈x,y〉] = 1− negl(λ).

Indistinguishability security. Previous works [ABCP15, ALS15, BJK15, DDM16] on inner
product encryption considered an indistinguishability notion of security. We review this definition
here. Let Πipe = (IPE.Setup, IPE.KeyGen, IPE.Encrypt, IPE.Decrypt) be an inner product encryption
scheme. We now define the following experiment between a challenger and an adversary A that
can make key generation and encryption oracle queries. In the following, we let Zq be our message
space and S ⊆ Zq be any polynomial-size subset of the message space.

Definition 2.1 (Experiment Exptipe-indb). Let b ∈ {0, 1}. The challenger computes (pp,msk) ←
IPE.Setup(1λ, S), gives pp to the adversary A, and then responds to each oracle query type made
by A in the following manner.

• Key generation oracle. On input a pair of vectors x0,x1 ∈ Znq \ {0}, the challenger
computes and returns sk← IPE.KeyGen(msk,xb).

6

• Encryption oracle. On input a pair of vectors y0,y1 ∈ Znq \ {0}, the challenger computes
and returns ct← IPE.Encrypt(msk,yb).

Eventually, A outputs a bit b′, which is also the output of the experiment, denoted by Exptipe-indb (A).

Definition 2.2 (Admissibility). For an adversary A, let Q1 and Q2 be the total number of key

generation and encryption oracle queries made by A, respectively. For b ∈ {0, 1}, let x
(1)
b , . . . ,x

(Q1)
b ∈

Znq \ {0} and y
(1)
b , . . . ,y

(Q2)
b ∈ Znq \ {0} be the corresponding vectors that A submits to the key

generation and encryption oracles, respectively. We say that A is admissible if for all i ∈ [Q1] and
j ∈ [Q2], we have that 〈

x
(i)
0 ,y

(j)
0

〉
=
〈
x
(i)
1 ,y

(j)
1

〉
.

Definition 2.3 (IND-Security for IPE). We say that an inner product encryption scheme Πipe =
(IPE.Setup, IPE.KeyGen, IPE.Encrypt, IPE.Decrypt) is fully-secure if for all efficient and admissible
adversaries A, ∣∣∣Pr[Exptipe-ind0 (A) = 1]− Pr[Exptipe-ind1 (A) = 1]

∣∣∣ = negl(λ).

Simulation-based security. Next, we strengthen the indistinguishability-based notion of security
by introducing a simulation-based definition.5 In the simulation-based definition, we require that
every efficient adversary that interacts with the real encryption and key generation oracles can be
simulated given only oracle access to the inner products between each pair of vectors the adversary
submits to the key generation and encryption oracles.

Definition 2.4 (SIM-Security for IPE). Let Πipe = (IPE.Setup, IPE.KeyGen, IPE.Encrypt, IPE.Decrypt)
be an inner product encryption scheme over a message space Znq . Then Πipe is SIM-secure if for all
efficient adversaries A, there exists an efficient simulator S = (S1,S2,S3) such that the outputs of
the following experiments are computationally indistinguishable:

RealA(1λ):

1. (pp,msk)← IPE.Setup(1λ)
2. b← AOKeyGen(msk,·), OEnc(msk,·)(1λ)
3. output b

IdealA,S(1λ):

1. initialize X ← ∅ and Y ← ∅
2. (pp, st)← S1(1λ)

3. b← AO
′
KeyGen(·), O

′
Enc(·)(1λ, pp)

4. output b

where the oracles OKeyGen(sk, ·), OEnc(sk, ·), O′KeyGen(·), O′Enc(·) are defined as follows:

• Oracles OKeyGen(sk, ·) and OEnc(sk, ·) represent the real encryption and key generation oracles,
respectively. Specifically, OKeyGen(sk,x) = IPE.KeyGen(sk,x) andOEnc(sk,y) = IPE.Encrypt(sk,y).

• Oracles O′KeyGen(·) and O′Enc(·) represent the ideal encryption and key generation oracles,
respectively. The two oracles are stateful and share counters i and j (initialized to 0 at the

5There are many lower bounds [BSW11, AGVW13] for the types of functional encryption that can be achieved under
a simulation-based definition in the standard model. These lower bounds do not apply in idealized models such as
the generic group model. See Remark 2.6 for additional details.

7

beginning of the experiment) a simulator state st (initialized to the state output by S1), and a
collection of mappings

Cip =
{

(i′, j′) 7→ 〈x(i′),y(j′)〉 : i′ ∈ [i], j′ ∈ [j]
}
,

where x(i) ∈ Znq and y(j) ∈ Znq are the inputs for the ith invocation of O′KeyGen(·) and the jth

invocation of O′Enc(·) by the adversary, respectively. At the beginning of the experiment, the
set Cip is initialized to the empty set.

– On the adversary’s ith invocation of O′KeyGen(·) with input vector x(i) ∈ Znq , the oracle
O′KeyGen sets i← i+ 1, updates the collection of mappings Cip, and invokes the simulator
S2 on inputs Cip and st. The simulator responds with a tuple (skx, st

′)← S2 (Cip, st). The
oracle updates the state st← st′ and replies to the adversary with the secret key skx.

– Similarly, on the adversary’s jth invocation of O′Enc(·) with input vector y ∈ Znq , the oracle
O′Enc sets j ← j + 1, updates the collection of mappings Cip, and invokes the simulator
S3 on input Cip and st. The simulator responds with a tuple (cty, st

′)← S3 (Cip, st). The
oracle updates the state st← st′ and replies to the adversary with the ciphertext cty.

Remark 2.5 (SIM =⇒ IND). It is straightforward to see that an IPE scheme that is secure under
the simulation-based definition (Definition 2.4) is also secure under the indistinguishability-based
definition (Definition 2.3).

Remark 2.6 (Lower Bound for SIM-Security). While the simulation-based notion of security (Defi-
nition 2.4) is very natural and captures the security guarantees we desire from a function-hiding
inner-product encryption scheme, simulation-security is impossible in the standard model. This
lower bound follows from the same argument made to show impossibility of non-interactive non-
committing encryption [Nie02] and of simulation-secure functional encryption in the public-key
setting [BSW11, §5.1]. We note that this lower bound only applies to function-hiding inner-product
encryption. These lower bounds do not hold in idealized models such as the random oracle or the
generic group model.

2.4 The Generic Group Model

In this work, we prove the security of our construction in a generic model of bilinear groups [BBS04,
BBG05], which is an extension of the generic group model [Nec94, Sho97]. In the generic group
model, access to the group elements is replaced by “handles.” An adversary in the generic group
model is also given access to a stateful oracle which implements the group operation, and in the
bilinear group setting, the pairing operation. The generic group oracle maintains internally a
mapping from handles to group elements, which it uses in order to consistently answer the oracle
queries. Thus, when a scheme is shown to satisfy some security property in the generic group model,
it means that no efficient adversary that only applies the group operations as a black-box can break
that security property. As noted in Section 1, there is strong heuristic evidence that suggests that
the best known attacks on existing pairing-friendly elliptic curves will be generic in nature.

Definition 2.7 (Generic Bilinear Group Oracle). A generic bilinear group oracle is a stateful oracle
G that responds to queries as follows.

8

• On a query BG.Setup(1λ), the generic bilinear group oracle will generate two fresh nonces

pp, sp
r←− {0, 1}λ and a prime q (as in the real setup procedure). It outputs (pp, sp, q). It will

store the values generated, initialize an empty table T ← {}, and set the internal state so
subsequent invocations of BG.Setup fail.

• On a query BG.Encode(k, x, i) where k ∈ {0, 1}λ, x ∈ Zq, and i ∈ {1, 2,t} (for the “left” group
G1, the “right” group G2, and the target group GT), the oracle checks that k = sp (returning

⊥ if the check fails). The oracle then generates a fresh nonce h
r←− {0, 1}λ, adds the entry

h 7→ (x, i) to the table T , and replies with h.

• On a query BG.Add(k, h1, h2) where k, h1, h2 ∈ {0, 1}λ, the oracle checks that k = pp, that
the handles h1, h2 are present in its internal table T , and are mapped to values (x1, i1) and
(x2, i2), respectively, and where i1 = i2 (returning ⊥ otherwise). If the checks pass, the oracle

generates a fresh handle h
r←− {0, 1}λ, computes x = x1 + x2 ∈ Zq, adds the entry h 7→ (x, i1)

to T , and replies with h.

• On a query BG.Pair(k, h1, h2) where k, h1, h2 ∈ {0, 1}λ, the oracle checks that k = pp, that
the handles h1, h2 are present in T , and are mapped to values (x1, 1) and (x2, 2), respectively

(returning ⊥ otherwise). If the checks pass, the oracle generates a fresh handle h
r←− {0, 1}λ,

computes x = x1x2 ∈ Zq, adds the entry h 7→ (x1x2,t) to T , and replies with h.

• On a query BG.ZeroTest(k, x) where k, x ∈ {0, 1}λ, the oracle checks that k = pp, that the
handle h is present in T , and that h maps to some value (x, i) (returning ⊥ otherwise). If the
checks pass, the oracle returns “zero” if x = 0 ∈ Zq and “non-zero” otherwise.

When analyzing schemes in a generic group model, it is often conducive to view the oracle queries as
operating over formal polynomials. We formalize this in the following remark adapted from [Zim15,
Remark 2.11]

Remark 2.8 (Oracle Queries Referring to Formal Polynomials [Zim15, Remark 2.11, adapted]).
Although the generic bilinear map oracle is defined formally in terms of “handles” (Definition 2.7), it
is more conducive to regard each oracle query as referring to a formal query polynomial. The formal
variables in this formal query polynomial are specified by the expressions supplied to the BG.Encode
oracle (as determined by the details of the construction), and the adversary can construct terms
that refer to new polynomials by making oracle queries for the generic group operations BG.Add
and BG.Pair. Rather than operating on a “handle,” each valid BG.ZeroTest query refers to a formal
query polynomial, and the result of the query is “zero” if the polynomial evaluates to zero when its
variables are instantiated with the joint distribution over their values in Zq as generated in the real
security game.

We will also require the Schwartz-Zippel lemma [Sch80, Zip79], stated as follows.

Lemma 2.9 (Schwartz-Zippel [Sch80, Zip79], adapted). Fix a prime p and let f ∈ Fp[x1, . . . , xn]
be an n-variate polynomial with degree at most d and which is not identically zero. Then,

Pr[x1, . . . , xn
r←− Fp : f(x1, . . . , xn) = 0] ≤ d/p.

9

3 Construction

In this section, we give our construction of function-hiding inner-product encryption. We then
show that the scheme is simulation-secure (Definition 2.4) in the generic group model. Fix a
security parameter λ ∈ N, and let n be a positive integer. Let S be a polynomial-sized sub-
set of Zq. We construct a function-hiding inner product encryption scheme Πipe = (IPE.Setup,
IPE.KeyGen, IPE.Encrypt, IPE.Decrypt) as follows.

• IPE.Setup(1λ, S): On input the security parameter λ, the setup algorithm samples an asym-
metric bilinear group (G1,G2,GT , q, e) and chooses generators g1 ∈ G1 and g2 ∈ G2. Then, it
samples B← GLn(Zq) and sets B? = det(B)·(B−1)>. Finally, the setup algorithm outputs the
public parameters pp = (G1,G2,GT , q, e, S) and the master secret key msk = (pp, g1, g2,B,B

?).

• IPE.KeyGen(msk,x): On input the master secret key msk and a vector x ∈ Znq , the key

generation algorithm chooses a uniformly random element α
r←− Zq and outputs the pair

sk = (K1,K2) =
(
g
α·det(B)
1 , gα·x·B1

)
.

Note that the second component is a vector of group elements.

• IPE.Encrypt(msk,y): On input the master secret key msk and a vector y ∈ Znq , the encryption

algorithm chooses a uniformly random element β
r←− Zq and outputs the pair

ct = (C1, C2) =
(
gβ2 , g

β·y·B?

2

)
.

• IPE.Decrypt(pp, sk, ct): On input the public parameters pp, a secret key sk = (K1,K2) and a
ciphertext ct = (C1, C2), the decryption algorithm computes

D1 = e(K1, C1) and D2 = e(K2, C2).

Then, it checks whether there exists z ∈ S such that (D1)
z = D2. If so, the decryption

algorithm outputs z. Otherwise, it outputs ⊥. Note that this algorithm is efficient since
|S| = poly(λ).

Correctness. As in [BJK15, DDM16], correctness holds when the plaintext vectors x and y
satisfy 〈x,y〉 ∈ S, for a polynomially-sized S. The correctness of Πipe follows from the fact that
for any secret key skx = (K1,K2) corresponding to a vector x and any ciphertext cty = (C1, C2)
corresponding to a vector y, we have that

D1 = e(K1, C1) = e(g1, g2)
αβ·det(B)

and
D2 = e(K2, C2) = e(g1, g2)

αβ·xB(B?)>y> = e(g1, g2)
αβ·det(B)·〈x,y〉,

where the last equality holds by the relation B(B?)> = det(B) · I, where I is the identity matrix.
Therefore, if 〈x,y〉 ∈ S, the decryption algorithm will correctly output 〈x,y〉.

10

Security. To prove security of Πipe in the generic group model, we construct a simulator which,
given only the inner products of the vectors corresponding to the key generation and encryption
queries, is able to correctly simulate the real distribution of the secret keys and ciphertexts.

Theorem 3.1. The inner product encryption scheme Πipe is SIM-secure in the generic group model.

Proof. In the following, we construct a generic bilinear group simulator S that interacts with
the adversary A such that the distribution of responses in the real scheme is computationally
indistinguishable from that in the ideal scheme. We begin by giving a high-level description of the
simulator. We then proceed to give a formal specification of the formal variables we use in the
proof, followed by a rigorous specification of the simulator. In the generic bilinear group model
(Definition 2.7), the simulator S also simulates the responses of the generic bilinear group oracle.

Sketch of the simulator. The simulator must respond to the key generation and encryption
queries (Definition 2.4) as well as the generic bilinear group operation queries (Definition 2.7). For
each key generation and encryption query, the simulator responds with a fresh handle corresponding
to each group element in the secret key and the ciphertext. Similarly, for each generic group
oracle query, the simulator responds with a fresh handle for the resulting group element. The
simulator maintains a table that maps handles to the formal polynomials the adversary forms via
its queries (Remark 2.8). The major challenge in the simulation is in answering the zero-test queries.
To consistently answer each zero-test query, the simulator first looks up the corresponding formal
polynomial in its table and decomposes it into a “canonical” form, that is, as a sum of “honest”
and “dishonest” components. The honest components correspond to a proper evaluation of the
inner product while the dishonest components include any remaining terms after the valid inner
product relations have been factored out. We argue, using properties of determinants, that if a query
polynomial contains a dishonest component, then the resulting polynomial cannot be the identically
zero polynomial over the formal variables corresponding to the randomly sampled elements in B.
Then, by the Schwartz-Zippel lemma, the simulator can correctly (with overwhelming probability)
output “nonzero” in these cases. Finally, in the ideal experiment, the simulator is given the value of
the inner product between each pair of vectors the adversary submits to the key generation and
encryption oracles, so it can make the corresponding substitutions for the honest inner product
relations and thus, correctly simulate the outputs of the zero-test oracle.

We now describe the formal variables in our construction and give the full specification of the
simulator. We conclude the proof by showing that our ideal-world simulator correctly simulates the
real distribution.

Definition 3.2 (Formal Variables for Πipe). Let Q be the total number of queries made by the
adversary A to each of the oracle query types. We define two (non-disjoint) sets of formal variables:

R =
{
d̂
}
∪
{
α̂(i), β̂(i)

}
i∈[Q]

∪
{
ŝ
(i)
` , t̂

(i)
`

}
i∈[Q],`∈[n]

and
T =

{
α̂(i), β̂(i)

}
i∈[Q]

∪
{
x̂
(i)
k , ŷ

(i)
k

}
i∈[Q],k∈[n]

∪
{
b̂k,`, b̂

?
k,`

}
k,`∈[n]

.

The universe U of formal variables is defined to be the union U = R∪ T .

11

Modeling the formal variables. In our security proof, the handles given to the adversary by
the key generation and encryption oracles represent polynomials entirely expressible in the formal
variables in R. In other words, the formal polynomials the adversary submits to the zero-test oracle
are all formal polynomials over the variables in R. To answer the zero-test queries, the simulator
performs a series of substitutions to re-express the adversary’s query polynomial as a polynomial
over the formal variables in T . We now describe more explicitly how we model the formal variables
in our scheme.

First, recall from our construction that B and B? are chosen such that B(B?)> = det(B) · I. In
particular, this means that

b?k,` = (−1)k+` det(Bk,`),

where we write b?k,` to denote the (k, `)th entry in B? and Bk,` to denotes the (k, `) minor of B

(i.e., the matrix formed by taking B and removing it kth row and `th column). Expanding the
determinant as a sum over permutations, we can express b?k,` as a polynomial in the components of
B. First, for an index k ∈ [n], let S¬k denote the set [n] \ [k]. Then, we have

b?k,` = (−1)k+` det(Bk,`) =
∑

σ:S¬k→S¬`

sgn(σ, k, `)
∏
r∈S¬k

br,σ(r), (3.1)

where σ : S¬k → S¬` ranges over the set of bijections from S¬k to S¬`, sgn is a sign function that
maps its inputs to the set {−1, 1}, and bk,` is the (k, `)th component of B. We collapse the sign of
the monomials into the sgn function because our argument will not require explicit modeling of the
signs.

For each k, ` ∈ [n], the simulator models the elements b̂k,`, b̂
?
k,` to be formal symbols representing

the variables bk,` and b?k,` from the construction, subject to the relation in Equation (3.1). In other

words, the simulator models b̂?k,` as a formal polynomial in the b̂i,j ’s:

b̂?k,` =
∑

σ:S¬k→S¬`

sgn(σ, k, `)
∏
r∈S¬k

b̂r,σ(r).

Also, for each i ∈ [Q] and k ∈ [n], the simulator models the elements α̂(i), β̂(i), x̂
(i)
k , ŷ

(i)
k as formal

symbols representing the variables α(i), β(i), x
(i)
k , y

(i)
k from the real scheme. Furthermore, for each

i ∈ [Q] and ` ∈ [n], the elements ŝ
(i)
` , t̂

(i)
` will be modeled as formal polynomials of the form

ŝ
(i)
` =

∑
k∈[n]

x̂
(i)
k · b̂k,` and t̂

(i)
` =

∑
k∈[n]

ŷ
(i)
k · b̂

?
k,`. (3.2)

We will also use the formal symbol B̂ as shorthand to represent the following matrix of formal
variables:

B̂ =

b̂1,1 · · · b̂1,n
...

. . .
...

b̂n,1 · · · b̂n,n

 .
Finally, the simulator models the formal symbol d̂ to be det(B). In particular, d̂ = det(B̂). Note
that this means that d̂ is a formal polynomial of degree n over the formal variables in the matrix B.
In our description of the simulator, it will be the case that the only polynomials the adversary can
form are those in the collection R (Definition 3.2).

12

Specification of the simulator. Fix an efficient adversary A that makes at most Q = poly(λ)
queries to the key generation, encryption, and group operation oracles. At the beginning of the
security game, the simulator initializes an empty collection of mappings Cip along with three empty
tables T1, T2, Tt ← {} which each map handles in {0, 1}λ to formal polynomials over the variables
of R. The simulator’s state consists of the mappings Cip and the tables T1, T2, Tt. In the following
description, we will implicitly assume that the simulator updates its internal state in response to
each query. For i ∈ [Q], on the ith oracle query made by the adversary A, the simulator S responds
as follows.

• Key generation queries. On input a vector x(i) ∈ Znq to O′KeyGen(·), the simulator S receives
as input a new collection C′ip of inner products and updates Cip ← C′ip. Then, S generates a

fresh handle h
r←− {0, 1}λ and adds the mapping h 7→ α̂(i) · d̂ to T1. Next, for each ` ∈ [n], S

generates a fresh handle h`
r←− {0, 1}λ and adds the mapping h` 7→ α̂(i) · ŝ(i)` to T1. Finally, S

sets K1 = h, K2 = (h1, . . . , hn), and responds with a secret key sk = (K1,K2).

• Encryption queries. On input a vector y(i) ∈ Znp to O′Enc(·), the simulator S receives as
input a new collection C′ip of inner products and updates Cip ← C′ip. Then, S generates a fresh

handle h
r←− {0, 1}λ and adds the mapping h 7→ β̂(i) to T2. Next, for each ` ∈ [n], S generates

a fresh handle h`
r←− {0, 1}λ and adds the mapping h` 7→ β̂(i) · t̂(i)` to T2. Finally, S sets C1 = h

and C2 = (h1, . . . , hn), and responds with ct = (C1, C2).

• Addition oracle queries. Given two handles h1, h2 ∈ {0, 1}λ, S checks to see if there exist
formal polynomials p1 and p2 for which the mappings h1 7→ p1 and h2 7→ p2 are present within
the same table Tτ for τ ∈ {1, 2,t} (returning ⊥ if this is not the case). Then, it generates a
fresh handle h← {0, 1}λ, adds the mapping h 7→ (p1 + p2) to Tτ , and returns h.

• Pairing oracle queries. Given two handles h1, h2 ∈ {0, 1}λ, S checks to see if there exist
formal polynomials p1 and p2 for which the mappings h1 7→ p1 is in T1 and h2 7→ p2 is in T2
(returning ⊥ if this is not the case). Then, it generates a fresh handle h← {0, 1}λ, adds the
mapping h 7→ (p1 · p2) to Tt, and returns h.

• Zero-test oracle queries. Given a handle h ∈ {0, 1}λ, S checks that there is a formal
polynomial p and a tag τ ∈ {1, 2,t} for which the mapping h 7→ p is present in Tτ (returning
⊥ if this is not the case). The simulator then proceeds as follows.

1. The simulator “canonicalizes” the formal polynomial p by expressing it as a sum of
products of formal variables in T with a poly(λ) number of terms. If p is identically zero,
then the simulator outputs “zero”.

2. If τ 6= t, the simulator outputs “non-zero”.

3. Otherwise, the simulator decomposes p by grouping its terms into the form

p =
∑
i,j∈[Q]

α̂(i)β̂(j) ·
(
pi,j

(
d̂,
{
ŝ
(i)
` , t̂

(j)
`

}
`∈[n]

)
+ fi,j

(
d̂,
{
ŝ
(i)
` , t̂

(j)
`

}
`∈[n]

))
, (3.3)

where for each i, j ∈ [Q], the formal polynomial pi,j is defined as

pi,j = ci,j ·

(
n∑
`=1

ŝ
(i)
` t̂

(j)
` − zi,j d̂

)
, (3.4)

13

where zi,j ∈ Zq is the scalar mapped by the pair (i, j) in Cip, the scalar ci,j ∈ Zq is the

coefficient (which could be 0) of the term ŝ
(i)
1 t̂

(j)
1 , and fi,j consists of all remaining terms

(if any).

4. For each i, j ∈ [Q], if fi,j consists of any terms, then the simulator outputs “non-zero”.

5. Otherwise, the simulator outputs “zero”.

Correctness of the simulator. We first note that the simulator’s responses to the key generation,
encryption, and group oracle queries made by the adversary A are distributed identically as in the
real experiment RealA(1λ). Hence, it remains to show that S correctly simulates the responses to
the zero-test queries. To do so, we give a step-by-step analysis of the correctness of the simulation
for responses to the zero-test queries made by the adversary A.

1. We first show that the canonicalization step at the beginning of the adversary’s response
procedure is efficient. First, the adversary can only obtain handles to new monomials by
querying the key generation and encryption oracles. In both cases, the formal variables in
the monomials the adversary obtains are contained in the set R (Definition 3.2). Thus, the
only formal polynomials the adversary is able to construct via its queries to the generic group
oracle are formal polynomials over the formal variables in R. Next, since the adversary can
make at most Q queries, the polynomial p it submits to the zero-test oracle have at most
poly(Q) terms and degree at most 2.

By applying the relations in Equation (3.2) and expanding the determinant d̂ as a formal
polynomial (of degree n) in the b̂k,`’s, we can express the formal polynomial p as a formal
polynomial over the formal variables in T . Since p has degree at most 2 over the variables in
R, we conclude that p can be expanded as a sum of at most poly(Q,n) monomials over the
formal variables in T and has degree at most d = poly(n). Since both the input polynomial
and the expanded canonicalized polynomial are polynomially-sized, this process is efficient.
Finally, if the canonicalized polynomial is the identically zero polynomial, then the simulator
correctly outputs “zero”.

2. Consider the case where τ = 1. By construction, the only monomials the adversary obtains
where τ = 1 are the monomials it receives in response to key generation queries. Then, we
can write the formal polynomial p as follows:

p =
∑
i∈[Q]

α̂(i)

c(i)0 d̂ +
∑
`∈[n]

c
(i)
` ŝ

(i)
`

 =
∑
i∈[Q]

α̂(i)

c(i)0 d̂ +
∑
`∈[n]

c
(i)
`

∑
k∈[n]

x̂
(i)
k b̂k,`

 , (3.5)

where c
(i)
0 , . . . , c

(i)
n ∈ Zq are scalars. By admissibility, each of the adversary’s queries x(i) to

the key generation oracle is non-zero. In other words, for all i ∈ [Q], there exists some k ∈ [n]

such that x̂
(i)
k 6= 0. Thus, for all i ∈ [Q], the sum

∑
k∈[n] x̂

(i)
k b̂k,` is not the identically zero

polynomial over the formal variables {b̂k,`}k,`∈[n]. We conclude from Equation (3.5) that if p
is not the identically zero polynomial, then it cannot be the identically zero polynomial over
the formal variables {α̂(i)}i∈[Q] and {b̂k,`}k,`∈[n] (after expanding d̂ as a formal polynomial of

degree n in the b̂k,`’s). Importantly, this holds irrespective of the adversary’s choice of queries

14

x(1), . . . ,x(Q) (provided they are all non-zero). Since the variables
{
α̂(i)
}
i∈[Q]

and {b̂k,`}k,`∈[n]
are distributed uniformly and independently in the real game, and moreover, the polynomial p
has degree poly(n) = poly(λ) in those variables, we conclude by Schwartz-Zippel (Lemma 2.9)
that p evaluates to non-zero in the real distribution with overwhelming probability. Correctness
of the simulation then follows with overwhelming probability.

The case for τ = 2 follows analogously. In this case, we express p as a formal polynomial

(of poly(n) degree) over the formal variables {β̂(i)}i∈[Q], {b̂?k,`}k,`∈[n], and {ŷ(i)k }i∈[Q],k∈[n]. By

the same argument as above, if y(i) 6= 0 for all i ∈ [Q], then irrespective of the actual values
of y(i), the polynomial p is not the identically zero polynomial over the remaining formal
variables {β̂(i)}i∈[Q], {b̂?k,`}k,`∈[n]. In isolation, each of the variables b?k,` is distributed uniformly
and independently in the real scheme, and so, correctness of the simulation again follows by
Schwartz-Zippel.

3. We show that the decomposition performed by the simulator preserves the modeling between
the formal symbols and the elements of Zq they represent in the real distribution. First, note
that we can always decompose the polynomial p into a sum of monomials. By construction,
every monomial the adversary obtains from the key generation oracle include the variable
α̂(i) for some i ∈ [Q]. Similarly, every monomial the adversary obtains from the encryption
oracle includes the variable β̂(i) for some i ∈ [Q]. Since polynomials in the target group
(where τ = t) can only be formed by multiplying together two polynomials in each of the
two base groups, it follows that each monomial in the target group must contain α̂(i) and
β̂(j) for some i, j ∈ [Q]. Hence, the simulator in this step simply groups like terms for each
i, j ∈ [Q] to obtain the decomposition in Equation (3.3). Note that this step is efficient since
the canonicalized polynomial p only has poly(Q,n) monomials.

4. Fix a pair of indices i, j ∈ [Q], and suppose that fi,j contains at least a single term. We
argue that the polynomial fi,j cannot be the identically zero polynomial when expressed as a

polynomial over the formal variables b̂k,` (for k, ` ∈ [n]). More importantly, this must hold
irrespective of the adversary’s choice of (admissible) queries

{
x(i),y(i)

}
i∈[Q]

. The claim then

follows by the Schwartz-Zippel lemma. To do this, we first give a characterization lemma that
classifies the polynomial fi,j into one of three possibilities:

Lemma 3.3. The polynomial fi,j from Step 3 formed by the adversary A must either:

• contain a “cross-term” of the form c · ŝ(i)`1 t̂
(j)
`2

, where c ∈ Zq is non-zero and `1 6= `2,

• contain no cross-terms, but instead contain a “consistent” term of the form c · ŝ(i)` t̂
(j)
` for

some non-zero scalar c ∈ Zq and ` ∈ [n], or

• is a polynomial in the terms d̂, ŝ
(i)
` , and d̂ · t̂(j)` for ` ∈ [n].

In particular, fi,j cannot contain any terms of the form c1 · t̂(j)` or c2 · d̂ · ŝ(i)` , for any coefficients
c1, c2 ∈ Zq and ` ∈ [n].

This lemma follows immediately by inspection of the structure of fi,j . We now give a high-level
survey of our basic argument, covering each possible case for the polynomial fi,j .

15

• First, we show that if fi,j contains any “cross-terms” of the form c · ŝ(i)`1 t̂
(j)
`2

, where c ∈ Zq
is non-zero and `1 6= `2, then fi,j cannot be identically zero over the b̂k,` variables,
irrespective of the adversary’s choice of (admissible) queries

{
x(i),y(i)

}
i∈[Q]

.

• Next, we consider the case where fi,j does not contain any cross-terms, but instead,

contains a “consistent” term of the form c · ŝ(i)` t̂
(j)
` for some non-zero scalar c ∈ Zq

and ` ∈ [n]. We assume, towards a contradiction, that fi,j is the identically zero
polynomial when instantiated with the adversary’s queries

{
x(i),y(i)

}
i∈[Q]

and making

the substitutions from Equation (3.2). We show then that it must be the case that fi,j

actually contains a linear combination of all of the ŝ
(i)
` t̂

(j)
` terms for each ` ∈ [n], together

with the d̂ term. However, by construction of the simulator, this linear combination has
already been factored out of fi,j in the previous step (Step 3). This yields the desired
contradiction, and we conclude that fi,j cannot be the identically zero polynomial.

• For the final case, if fi,j contains neither a cross-term nor a consistent term, then it must

not contain any terms of the form ŝ
(i)
`1
t̂
(j)
`2

. In particular, it must be a non-zero polynomial

in d̂, d̂ · t̂(j)` , and ŝ
(i)
` for ` ∈ [n]. We then argue, by a similar argument used in Step 2,

that by expanding each term into the underlying formal variables b̂k,` for k, ` ∈ [n], each
of the terms that make up fi,j are linearly independent. This allows us to conclude that
fi,j cannot be identically zero.

We now describe the argument in detail. First, we rewrite fi,j as a polynomial over the formal

variables x̂
(i)
k , ŷ

(j)
k , b̂k,` for k, ` ∈ [n], and then reason about the structure of the terms in fi,j to

obtain the desired conclusion. We begin by expressing the quantities ŝ
(i)
`1
t̂
(j)
`2

as a polynomial

in the b̂k,`’s by making the substitutions in Equations (3.1) and (3.2). For ease of notation, we
absorb the sign of each term in the cofactor expansion of Equation (3.1) into an (unspecified6)
function sgn with output space {−1, 1}, as they are not important in our argument. Then, we
obtain

ŝ
(i)
`1
t̂
(j)
`2

=

 ∑
k1∈[n]

x̂
(i)
k1
· b̂k1,`1

 ∑
k2∈[n]

ŷ
(j)
k2
· b̂?k2,`2

=

∑
k1,k2∈[n]

x̂
(i)
k1
· ŷ(j)k2 · b̂k1,`1 · b̂

?
k2,`2

=
∑

k1,k2∈[n]

x̂
(i)
k1
· ŷ(j)k2 · b̂k1,`1 ·

 ∑
σ:S¬k2→S¬`2

sgn(σ, k1, k2)
∏

r∈S¬k2

b̂r,σ(r)

ŝ
(i)
`1
t̂
(j)
`2

=
∑

k1,k2∈[n]

∑
σ:S¬k2→S¬`2

x̂
(i)
k1
· ŷ(j)k2 · b̂k1,`1 · sgn(σ, k1, k2)

∏
r∈S¬k2

b̂r,σ(r). (3.6)

6Specifically, our argument only considers the types of monomials that appear in the cofactor expansion. Since every
monomial appears at most once in the cofactor expansion, no cancellations occur in the signed expansion. Thus,
disregarding the signs does not affect the correctness of the argument.

16

Similarly, we can express d̂ as

d̂ =
∑

σ:[n]→[n]

∏
r∈[n]

b̂r,σ(r) · sgn(σ),

where again, we absorb the signs into the sgn function.

To complete the proof, we perform a case-by-case analysis over the possible monomials in fi,j .

Our case-by-case analysis will proceed by examination of the structure of the determinant d̂.
First, recall that B̂ is the following matrix of formal variables:

B̂ =

b̂1,1 · · · b̂1,n
...

. . .
...

b̂n,1 · · · b̂n,n

 ,
and that d̂ = det(B̂).

• Case 1: Suppose fi,j contains a scalar multiple of a cross-term, which is a term of the

form ŝ
(i)
`1
t̂
(j)
`2

, where `1 6= `2. Consider its expansion into the sum of monomials given in
Equation (3.6). By inspection, we see that each monomial in the expansion contains
the product of b̂k1,`1 and b̂r,`1 for some r 6= k2. Moreover, none of the monomials in the

expansion contains the variable b̂r,`2 for all r ∈ [n]. In other words, each monomial in

the expansion of ŝ
(i)
`1
t̂
(j)
`2

contains the product of exactly two (not necessarily distinct)

variables in column `1 of B̂ but no variables in column `2. Furthermore, observe that in

the expansion of all consistent terms, (that is, terms of the form ŝ
(i)
` t̂

(j)
` for some ` ∈ [n],

and the term d̂), each monomial contains exactly one variable from each column of B̂.

This means that none of the products in the expansion of ŝ
(i)
`1
t̂
(j)
`2

can be canceled by
monomials appearing in in the expansion the other terms in fi,j . Thus, fi,j cannot be
the identically zero polynomial in the formal variables in T .

• Case 2: We can now assume without loss of generality that fi,j is a linear combination

of the consistent terms ŝ
(i)
` t̂

(j)
` for some ` ∈ [n], along with the term d̂. Recall, from the

definition of pi,j in Equation (3.4), that fi,j cannot contain a non-zero multiple of ŝ
(i)
1 t̂

(j)
1 .

Thus, in our analysis below, ` 6= 1. We consider two subcases based on the vectors x(i)

and y(j), neither of which can be the all-zeroes vector.

(a) Suppose x(i) and y(j) are non-zero in exactly one coordinate k—that is, x
(i)
k 6= 0 and

y
(j)
k 6= 0. Then, note that for each ` ∈ [n], the expansion from Equation (3.6) of each

consistent term ŝ
(i)
` t̂

(j)
` is a sum of monomials which each contain b̂k,`, but do not

contain b̂k,`∗ for any `∗ 6= `. Hence, if d̂ is not present in fi,j , then these monomials

can never be cancelled out. Thus, fi,j cannot be identically zero. Alternatively, if d̂

is present in fi,j , then note that the expansion of d̂ consists of a product containing

the variable b̂k,1, but since the term ŝ
(i)
1 t̂

(j)
1 is absent in fi,j , we again have that fi,j

cannot be identically zero in this case.

17

(b) On the other hand, suppose there exist k1, k2 ∈ [n] with k1 6= k2 and for which

x
(i)
k1
6= 0 and y

(j)
k2
6= 0. Then, the expansion from Equation (3.6) of the term ŝ

(i)
` t̂

(j)
`

contains a monomial that contains the product of both b̂k1,` and b̂k1,1 (here, we have
used the fact that ` 6= 1), but does not contains a monomial that contains the product
of the variables b̂k1,`∗ and b̂k1,1 for any `∗ 6= `. Furthermore, the term d̂ expands

into a sum of monomials that each contain exactly one variable from each row of B̂,
and so d̂ cannot cancel any of these monomials. Hence, these monomials cannot be
cancelled in the expansion of fi,j , and therefore fi,j cannot be identically zero. Note

that in the honest evaluation, the monomials that contain the product b̂k1,`b̂k1,1 are

cancelled out by monomials appearing in the expansion of ŝ
(i)
1 t̂

(j)
1 . However, these

monomials are not present in the expansion of fi,j .

• Case 3: Finally, we have that case where fi,j contains neither a cross-term nor a

consistent term. Then, it must not contain any terms of the form ŝ
(i)
`1
t̂
(j)
`2

, and instead,

must be a non-zero polynomial in d̂, ŝ
(i)
` , and d̂ · t̂(j)` for ` ∈ [n]. Explicitly, the polynomial

fi,j can be written as

fi,j = c1 · d̂ +
∑
`∈[n]

c2,` · ŝ
(i)
` +

∑
`∈[n]

c3,` · d̂ · t̂
(j)
` ,

for scalars c1, c2,1, . . . , c2,n, c3,1, . . . , c3,n ∈ Zq, where at least one of these coefficients
must be non-zero. Applying the substitutions from Equation (3.2) and expanding the
determinant as a polynomial over b̂k,` for k, ` ∈ [n], we conclude that d̂ is a polynomial of

degree n, the terms ŝ
(i)
` are polynomials of degree 1, and the terms d̂ · t̂(j)` or polynomials

of degree (2n − 1) over the formal variables b̂k,`. This step relies on the fact that the
adversary’s queries x,y are non-zero, and thus, irrespective of the actual values of x,y,

the expansion of ŝ
(i)
` and t̂

(j)
` as a function of b̂k,` yields a polynomial that is not identically

zero. Finally, all of the monomials in the summation are linearly independent over the
polynomial ring Zq[b̂1,1, . . . , b̂n,n], and so, since at least one of the coefficients is non-zero,
we conclude that fi,j is not identically zero.

We have shown in all cases that fi,j cannot be identically zero over the formal variables b̂k,`
for k, ` ∈ [n] irrespective of the adversary’s queries (provided they are non-zero). Moreover,
fi,j can always be expressed as a polynomial of degree poly(Q,n), so the simulator correctly
outputs “non-zero” with overwhelming probability.

5. Finally, if the simulator has reached this step, then this means that for all i, j ∈ [Q], the

18

polynomial fi,j is identically zero. Note that we can express pi,j as

pi,j = ci,j ·

∑
`∈[n]

ŝ
(i)
` t̂

(j)
` − z d̂

= ci,j ·

∑
`∈[n]

∑
k1,k2∈[n]

x̂
(i)
k1
· ŷ(j)k2 · b̂k1,`1 · b̂

?
k2,`2 − z d̂

= ci,j ·

 ∑
k1,k2∈[n]

x̂
(i)
k1
· ŷ(j)k2 ·

∑
`∈[n]

b̂k1,`1 · b̂?k2,`2

− z d̂

Now, instantiating the formal variables with the values they represent in the real distribution,
and using the fact that B(B?)> = det(B) · I, we have

pi,j = ci,j ·

∑
k∈[n]

x
(i)
k · y

(i)
k · det(B)− zi,j · det(B)

 .

Since zi,j ∈ Zq is the scalar mapped by the pair (i, j) in the collection of inner product
mappings Cip, this means that zi,j = 〈x(i),y(j)〉, and so

pi,j = ci,j · det(B) · 0 = 0.

Thus, p can be rewritten as

p =
∑
i,j∈[Q]

α̂(i)β̂(j) · (0 + 0),

and so p is identically zero. The simulated and the real distribution are identical in this case.

We have shown that the distribution of the simulated responses and the real responses are statistically
indistinguishable, which concludes the proof.

4 Applications

In Section 4.1, we describe several natural applications of function-hiding IPE, including biometric
authentication, performing nearest-neighbor searches on an encrypted database, and secure linear
regression. Then, in Section 4.2, we show how to construct two-input functional encryption for
small domains from any function-hiding inner product encryption scheme.

4.1 Natural Applications of Function-Hiding IPE

Biometric authentication. Suppose an organization wants to deploy a biometric-based authen-
tication system (e.g., fingerprint readers, iris scanners) to restrict access to certain areas within a
complex. The biometric scanner is interfaced to an external authentication server that enforces
the authorization policies. By offloading the authentication to a central server, it is no longer
necessary for every biometric scanner to store the list of employee biometric signatures or their

19

authorization policies. However, as with password-based authentication, it is a security risk to store
each employee’s biometric information in the clear on the server. In password-based authentication,
the server typically stores a salted hash of each user’s password, which allows it to check whether
or not a user has provided the correct password without needing to store the user’s password in
the clear. In contrast to passwords, biometrics are noisy by nature. In the biometrics setting,
authentication should succeed when the provided biometric is “close” to a user’s stored credential.
Consequently, hashing-based methods are not appropriate in this setting. A better approach is to
compute a Hamming distance between the provided biometric and a user’s stored credential, where
authentication succeeds only if this Hamming distance is small.

Inner product encryption provides an efficient way to compute Hamming distances between
pairs of secret vectors. Given two binary vectors x,y ∈ {0, 1}n, let x′,y′ ∈ {−1, 1}n be the vectors
where each 0-entry in x and y is mapped to −1 in x′ and y′, and each 1-entry of x and y is mapped
to 1 in x′ and y′, respectively. Then, by construction, 〈x′,y′〉 = n− 2 · d(x,y), where d(x,y) is the
Hamming distance between x and y. Thus, given only the encryptions of x and y, a decryptor can
compute their Hamming distance using only the public parameters and without learning anything
else about x and y.

In our biometric authentication example, each biometric scanner is given the master secret key
for a function-hiding IPE scheme. The authentication server stores an encryption of each user’s
biometric under the master secret key (but does not store the master secret key itself). When an
employee tries to authenticate using a biometric scanner, the scanner reads the employee’s biometric,
encrypts it using the secret key, and sends it to the authentication server. The server computes
the Hamming distance of the encrypted biometric with the stored biometric for the employee.
Authentication succeeds if the resulting Hamming distance is small. Since the authentication server
only stores encrypted credentials, a compromise of the authentication server does not result in a
compromise of any employees’ biometric information,

Nearest-neighbor search on encrypted data. Another application of inner product encryption
is in performing nearest-neighbor search over an encrypted database. A simple way of measuring
document similarity is to first embed the documents into an Euclidean space and then measure the
`2-distance between the vectors corresponding to the documents. Suppose an organization has an
encrypted set of documents and wants to allow employees to search for similar documents. With
each document, the server stores an encryption of the vector representation of the document. Then,
each employee who is authorized to search for documents in the database is given the master secret
key for the IPE scheme. When an employee wants to find the set of documents that most closely
matches her query, she first projects her query into the feature space, encrypts the resulting query
vector, and sends the encrypted query vector to the database. The database then computes the
`2-distance between the query vector and each document, and returns the set of documents with
the smallest `2-distance (i.e., the nearest neighbors).

Using an IPE scheme, it is straightforward to construct an encryption scheme that allows a
decryptor to compute the `2-distance between two encrypted vectors. Specifically, given two vectors
x,y ∈ Znq , their `2-distance is given by ‖x− y‖2 = ‖x‖2 − 2〈x,y〉+ ‖y‖2. Now, define the vectors
x′ = (‖x‖2 ,−2x1, . . . − 2xn, 1) ∈ Zn+2

q and y′ = (1, y1, . . . yn, ‖y‖2) ∈ Zn+2
q . By construction, we

have that 〈x′,y′〉 = ‖x− y‖2. Thus, an inner product encryption scheme yields a scheme that
supports computing the `2-distance between encrypted vectors. This in turn gives a solution for
nearest-neighbor search over encrypted documents.

20

Secure linear regression. Linear regression is an indispensable tool in statistical analysis. Given
a sequence of points (x1, y1), . . . , (xn, yn), the goal is to fit a line y = mx+ c for which the errors
ei = yi − (mxi + c) for i ∈ [n] are minimized. In the least-squares approach, setting the parameters
as

m =
1

nσ2

n∑
i=1

(xi − x̄)(yi − ȳ) and c = ȳ −mx̄

minimizes the sum of squared errors
∑n

i=1 ei
2, where x̄ and ȳ denote the means of {x1, . . . , xn} and

{y1, . . . , yn}, respectively, and σ is the standard deviation of {x1, . . . , xn}.
Suppose there are two clients Alice and Bob who each hold a list of secret values X = (x1, . . . , xn)

and Y = (y1, . . . , yn), respectively. They want to allow a data-mining server S to compute various
aggregate statistics such as the mean, the standard deviation, and the linear regression coefficients
on their joint data while preserving the privacy of individual data values, and without having to
store or manipulate the data itself. We describe how to efficiently compute the regression parameters
m and c using a function-hiding inner product encryption scheme Πipe as follows. First, a trusted
third party generates the public parameters pp and master secret key msk by running the setup
algorithm, sending msk to the clients A and B, and pp to the server S. Alice then constructs a
vector x = (x1 − x̄, . . . , xn − x̄), and sends the mean of her values x̄, the standard deviation σ, the
total number of values n, and skx ← IPE.KeyGen(msk,x) to S. Similarly, Bob constructs a vector
y = (y1 − ȳ, . . . , yn − ȳ), and sends the mean of his values ȳ and cty ← IPE.Encrypt(msk,y) to S.
Using the public parameters pp, the server S simply computes

m← IPE.Decrypt(pp, skx, cty)/(nσ2) and c← ȳ −mx̄.

The function-hiding property of the underlying inner product encryption scheme ensures that the
server learns nothing more about the secret values held by Alice and Bob, other than their means
x̄, ȳ, and the standard deviation σ.

One important caveat to note in this procedure is that the decryption operation IPE.Decrypt
from Section 3 requires solving the discrete logarithm problem in GT . Thus, S must have an a
priori estimate of the range of possible values for m. In many real-world applications, the server S
has prior knowledge about the distributions of X and Y, and thus, can approximately bound the
value of the regression coefficients between them. Alternatively, Alice and Bob can also quantize
their input values to an appropriate precision so that decryption is always efficient for S.

4.2 General Two-Input Functional Encryption

Multi-input functional encryption (MIFE) was introduced by Goldwasser et al. [GGG+14] who gave
constructions based on indistinguishability obfuscation [BGI+12, GGH+13]. However, given that
the current state of candidate constructions for indistinguishability obfuscation are prohibitively
inefficient, multi-input functional encryption is still considered a theoretical concept. Recently,
Boneh et al. [BLR+15] showed how to construct multi-input functional encryption using multilinear
maps, resulting in a more efficient and “implementable” scheme. Unfortunately, numerous recent
attacks on multilinear maps in the public-key setting [CHL+15, BWZ14, CGH+15, HJ15, CLR15,
MF15, Cor15, CJL16, MSZ16] have raised some doubts over the security of constructions relying
on these primitives. In this section, we show how a function-hiding inner production encryption
scheme can be leveraged to build a single-key two-input functional encryption scheme. As described
in Section 1, single-key two-input functional encryption can be used to build order-revealing, and
more generally, property-preserving encryption.

21

The bounded-message setting. Recently, Ananth and Jain [AJ15] as well as Brakerski, Ko-
margodski, and Segev [BKS15] describe an “arity-amplification” transformation for constructing
multi-input functional encryption starting from any single-input functional encryption scheme.
In the secret-key setting, they show that starting from the Gorbunov et al. [GVW12] functional
encryption scheme, it is possible to obtain two-input (and more generally, multi-input) functional
encryption from standard assumptions (the existence of one-way functions and low-depth PRGs.)
in the bounded-message setting.7 In the bounded-message setting, the adversary can only make an a
priori bounded number Q of ciphertext queries. In the case of the Gorbunov et al. scheme, the
size of the scheme parameters and ciphertexts both grow with Ω(Q4D2), where D is the depth of
the circuit family needed to evaluate the function and apply the arity-amplification transformation.
Subsequently, Goldwasser et al. [GKP+13] showed how to construct succinct single-key functional
encryption in the bounded collusion setting from the Learning with Errors (LWE) assumption. To
extend their construction to multiple key queries (needed for the arity-amplification transformation
for multi-input functional encryption), they apply the generic conversion from [GVW12], thus
resulting in ciphertext sizes that still grow with Ω(Q4), but independent of the depth D.

The small-domain setting. We consider a new setting for secret-key multi-input functional
encryption, which we call the small-domain setting. In the (single-key) small-domain setting, the
security experiment places no restrictions on the number of ciphertexts the adversary can request,8

but instead requires that the size of the plaintext space be polynomial in the security parameter λ.
In contrast, the bounded-message setting allows large plaintext spaces, but there is an a priori
bound on the number of ciphertexts that can be given out. In our new small-domain setting, the
message-space must be polynomial-sized, but in exchange, we can support an a priori unbounded
number of encryptions under an indistinguishability-based notion of security and in the single-key
setting. This is advantageous when the same plaintext is encrypted multiple times under a function
that does not reveal whether two ciphertexts encrypt the same plaintext. We note though that if
the function of interest leaks equality relations between messages (i.e., the encryption scheme can
be deterministic), then a variant of the “brute-force” scheme from [BSW11, §4.1] can also be used
to construct a single-key two-input functional encryption scheme in the small-domain setting. In
the secret-key setting, this brute-force construction can be based on the existence of any one-way
function. However, it is not clear how to adapt the construction to the setting where the same
message can be encrypted many times, and the function of interest does not reveal equality relations.

In this section, we show how to construct a single-key two-input functional encryption scheme in
the secret-key setting from function-hiding inner product encryption. Our construction is a direct
application of inner product encryption, and as a result, our ciphertext sizes are linear in the size
of the domain, and independent of both the complexity of the function (so long as the function is
efficiently computable) and the number of ciphertext queries the adversary makes. We now define

7Originally, Gorbunov et al. [GVW13] showed that their scheme is secure in the bounded-collusion setting—that is,
secure against adversaries that only make an a priori bounded number of key generation queries. However, after
applying the arity-amplification transformation of [AJ15, BKS15] to obtain a two-input functional encryption scheme,
each encryption query requires making a key generation query to the underlying scheme. As a result, there is a limit
on both the number of key generation and the number of encryption queries the resulting scheme can support.

8Boneh et al. [BSW11] showed that simulation-based notions of security are impossible in the setting where the
adversary can make adaptive key generation queries and an a priori unbounded number of ciphertext queries.
However, their lower bound does not extend to indistinguishability-based notions of security or to the setting where
the adversary cannot make adaptive key generation queries.

22

the syntax and correctness requirements on a single-key two-input functional encryption scheme in
the secret-key setting.

Definition 4.1 (Single-Key Two-Input Functional Encryption in the Secret-Key Setting). For
a security parameter λ and an efficiently computable function f : [N] × [N] → Zq, a secret-
key two-input functional encryption scheme for f is a tuple of algorithms Π = (TIFE.Setup,
TIFE.EncryptL,TIFE.EncryptR,TIFE.Decrypt) with the following properties.

• TIFE.Setup(1λ)→ (pp, sk). On input the security parameter λ, the setup algorithm outputs
the public parameters pp and the secret key sk.

• TIFE.EncryptL(sk, x) → ctL. On input the secret key sk and a message x ∈ [N], the left
encryption algorithm outputs a ciphertext ctL.

• TIFE.EncryptR(sk, y) → ctR. On input the secret key sk and a message y ∈ [N], the right
encryption algorithm outputs a ciphertext ctR.

• TIFE.Decrypt(pp, ctL, ctR) → z. On input the public parameters pp and two ciphertexts ctL
and ctR, the decrypt algorithm outputs an element z ∈ Zq.

Definition 4.2 (Correctness). A two-input functional encryption scheme is correct if for a security
parameter λ ∈ N, all messages x, y ∈ [N], and (pp, sk)← TIFE.Setup(1λ), we have that

Pr [TIFE.Decrypt(pp,TIFE.EncryptL(sk, x),TIFE.EncryptR(sk, y)) = f(x, y)] = 1− negl(λ).

Two-input functional encryption security. We define security for two-input functional en-
cryption in the context of the following experiment between a challenger and an adversary A that
can make left encryption and right encryption oracle queries.

Definition 4.3 (Experiment Expttifeb). Let b ∈ {0, 1}. The challenger samples the public parameters
and secret key (pp, sk) ← TIFE.Setup(1λ), and sends pp to the adversary A. It then responds to
oracle query type by A as follows:

• Left encryption oracle. On input two messages x0, x1 ∈ [N], the challenger computes and
outputs ctL ← TIFE.EncryptL(sk, xb).

• Right encryption oracle. On input two messages y0, y1 ∈ [N], the challenger computes
and outputs ctR ← TIFE.EncryptR(sk, yb).

Eventually, A outputs a bit b′, which is also the output of the experiment. We denote this Expttifeb (A).

Definition 4.4 (Admissibility). For an adversary A, let QL and QR be the total number of
left encryption and right encryption oracle queries made by A, respectively. For b ∈ {0, 1}, let

x
(1)
b , . . . , x

(QL)
b ∈ [N] and y

(1)
b , . . . , y

(QR)
b ∈ [N] be the corresponding messages that A submits to the

oracles. We say that A is admissible if for all i ∈ [QL] and j ∈ [QR], we have that

f
(
x
(i)
0 , y

(j)
0

)
= f

(
x
(i)
1 , y

(j)
1

)
.

Definition 4.5 (Two-Input Functional Encryption Security). We say that a two-input functional
encryption scheme satisfies indistinguishability under a chosen plaintext attack (IND-CPA) security
if for all efficient and admissible adversaries A,∣∣∣Pr[Expttife0 (A) = 1]− Pr[Expttife1 (A) = 1]

∣∣∣ = negl(λ).

23

Construction. Fix a security parameter λ, a positive integer N , an efficiently computable two-
input function f : [N] × [N] → Zq. Let Πipe = (IPE.Setup, IPE.KeyGen, IPE.Encrypt, IPE.Decrypt)
be a function-hiding IPE scheme defined over the message space ZN+1

q . We construct a two-input
functional encryption scheme Πtife = (TIFE.Setup,TIFE.EncryptL,TIFE.EncryptR,TIFE.Decrypt) as
follows.

• TIFE.Setup(1λ). The setup algorithm computes and outputs (pp, sk)← IPE.Setup(1λ).

• TIFE.EncryptL(sk, x). For x ∈ [N], let ex ∈ ZN+1
q be the basis vector where (ex)i = 0 for all

i 6= x and (ex)x = 1. The left encrypt algorithm outputs ctL ← IPE.KeyGen(sk, ex).

• TIFE.EncryptR(sk, y). For y ∈ [N], let fy ∈ ZN+1
q be the vector such that for all x ∈ [N],

fy,x = f(x, y) and fy,N+1 = 1. The right encrypt algorithm outputs ctR ← IPE.Encrypt(sk, fy).

• TIFE.Decrypt(pp, ctL, ctR). The decryption algorithm outputs z ← IPE.Decrypt(pp, ctL, ctR).

Correctness. Let (pp, sk) be the public parameters and secret key output by TIFE.Setup(1λ),
which corresponds to the public parameters and secret key, respectively, of the underlying IPE scheme
Πipe. For any two inputs x, y ∈ [N], let ctL = TIFE.EncryptL(sk, x) and ctR = TIFE.EncryptR(sk, y).
By correctness of Πipe, the following holds with overwhelming probability:

TIFE.Decrypt(pp, ctL, ctR) = 〈ex, fy〉 = fy,x = f(x, y).

Security. The security of Πtife follows fairly straightforwardly from the function-hiding properties
of Πipe.

Theorem 4.6. If Πipe is fully-secure under an indistinguishability based notion of security, (Defini-
tion 2.3), then the two-input functional encryption scheme Πtife is IND-CPA secure (Definition 4.5).

Proof. Suppose A is an efficient algorithm that can distinguish between experiments Expttife0 and
Expttife1 with some non-negligible probability. We use A to construct an algorithm B that distinguishes
between Exptipe-ind0 and Exptipe-ind1 with the same non-negligible probability.

Fix some b ∈ {0, 1}. Algorithm B proceeds as follows. At the beginning of the game, B receives

the public parameters pp from the challenger in Exptipe-indb and sends pp to A. Whenever A queries
the left encryption or the right encryption oracle, algorithm B simulates the response by making an
appropriate query to its key generation or encryption oracle, as follows:

• Left encryption oracle. On input a pair of messages x0, x1 ∈ [N], algorithm B constructs
the vectors u0,u1 ∈ ZN+1

p \ {0}. For b ∈ {0, 1}, ub is the canonical basis vector that is 0
everywhere except at position xb, where it is 1. Algorithm B submits the pair of vectors u0,u1

to the key generation oracle in Exptipe-indb and obtains a secret key ctL, which it forwards to A.

• Right encryption oracle. On input a pair of messages y0, y1 ∈ [N], algorithm B constructs
two vectors vb ∈ ZN+1

p \ {0}, where vb,i = f(i, yb) for b ∈ {0, 1} and i ∈ [N] and vb,N+1 = 1
for b ∈ {0, 1}. Algorithm B submits the pair of vectors v0,v1 to the encryption oracle in

Exptipe-indb and obtains a ciphertext ctR, which it forwards to A.

24

Eventually, A outputs a bit b′, which B outputs. This concludes the description of algorithm B.

We claim that B is an admissible adversary for Exptipe-indb . By construction, all the queries
algorithm B makes to the key generation and encryption oracles are non-zero. Next, let Q1 be
the number of key generation oracle queries and Q2 be the number of encryption oracle queries
that algorithm B makes. By construction of algorithm B, Q1 and Q2 are the number of left and

encryption queries, respectively, submitted by A. For i ∈ [Q1] and j ∈ [Q2], let x
(i)
0 , x

(i)
1 ∈ [N] and

y
(j)
0 , y

(j)
1 ∈ [N] be the inputs submitted by A on its ith left encryption query and jth right encryption

query, respectively, and let u
(i)
0 ,u

(i)
1 and v

(j)
0 ,v

(j)
1 be the corresponding inputs B submits on its ith

key generation oracle query and jth encryption oracle query, respectively.

By correctness, f(x
(i)
b , y

(j)
b) = 〈u(i)

b ,v
(j)
b 〉. Since A is admissible, we have that f(x

(i)
0 , y

(j)
0) =

f(x
(i)
1 , y

(j)
1). Thus, 〈u(i)

0 ,v
(j)
0 〉 = 〈u(i)

1 ,v
(j)
1 〉, and B is admissible. We conclude that B has perfectly

simulated the challenger of Expttifeb , and so Pr[Exptipe-indb (B) = 1] = Pr[Expttifeb (A) = 1].

5 Implementation and Evaluation

To evaluate the practicality of our main construction, we implemented our function-hiding IPE
as well as our two-input functional encryption scheme. Our library is publicly available under a
standard open-source license. Our implementation uses the Charm [AGM+13] library to implement
the pairing group operations (backed by PBC [Lyn06]), and FLINT [HJP13] for the finite field
arithmetic in Zq. In our benchmarks, we measure the time needed to encrypt, issue keys for, and
compute the inner product for N -dimensional binary vectors for several different values of N . We
run all of our benchmarks on a Linux desktop with an 8-core Intel Core i7-4790K 4.00GHz processor
and 16GB of RAM.

In our implementation, the running time of the setup algorithm is dominated by the inversion
of a random n× n matrix in Zq, where q is either a 160-bit or 224-bit prime, corresponding to 80
and 112 bits of security, respectively. The inverse computation was done näıvely in O(n3) time in
C. Although this procedure is quite computationally expensive, we note that it only needs to be
performed once, and can be done offline on a more powerful machine. As a point of reference, at the
80-bit security level, the setup algorithm completes in about 5 minutes on the desktop for vectors
of dimension N = 100. Since all of the other IPE operations are agnostic to the actual values in
the matrices B and B?, for the benchmarks with higher-dimensional vectors (that is, N > 100),
we measure the performance with respect to matrices B and B? that are sampled uniformly at
random (rather than setting B? to be a scaled inverse of B> as in the normal setup algorithm).
Using simulated rather than real matrices has no effect on the micro-benchmarks of the underlying
IPE operations.

Recall from Section 3 that the decryption routine in our IPE scheme requires computing a discrete
logarithm. We implemented the baby-step giant-step algorithm [Sha71] for computing discrete logs.
In our benchmarks, we measured the runtime of each of the elementary IPE operations as well
as the size of the IPE ciphertexts for vectors of varying dimension N . The concrete performance
numbers are summarized in Table 1 and Figure 1.

From Table 1, we see that key generation and encryption operations complete in just a few
hundred milliseconds, even for high-dimensional vectors. Decryption is slightly slower, requiring on

25

MNT159 (λ = 80) MNT224 (λ = 112)

N Keygen Encrypt Decrypt |ct| Keygen Encrypt Decrypt |ct|

5 0.8 ms 2.6 ms 9.9 ms 791 B 1.4 ms 3.9 ms 20.2 ms 990 B
10 1.2 ms 4.5 ms 24.1 ms 1.4 KB 1.9 ms 7.5 ms 40.1 ms 1.9 KB
30 2.4 ms 12.5 ms 67.1 ms 4.0 KB 4.1 ms 21.1 ms 112.3 ms 5.4 KB
50 4.0 ms 20.7 ms 110.2 ms 6.6 KB 6.6 ms 34.9 ms 184.4 ms 9.0 KB

100 9.8 ms 43.2 ms 217.8 ms 13.0 KB 14.5 ms 71.4 ms 366.4 ms 17.7 KB
250 40.9 ms 124.4 ms 540.9 ms 32.3 KB 52.2 ms 194.6 ms 907.0 ms 44.1 KB
500 140.6 ms 310.5 ms 1.1 s 64.6 KB 163.0 ms 447.7 ms 1.8 s 88.0 KB
750 303.7 ms 555.9 ms 1.6 s 96.8 KB 333.3 ms 753.3 ms 2.7 s 132.0 KB

Table 1: Micro-benchmarks for our inner product encryption scheme over two different
pairing curves: MNT159 (for 80 bits of security) and MNT224 (for 112 bits of security).
For N > 100, we used a simulated setup procedure where the matrices B and B? that
would normally be generated by the setup procedure are instead sampled uniformly at
random. For the run-time measurements of the basic IPE operations (Keygen, Encrypt,
and Decrypt), we average the performance over 10 runs. We also measure the size |ct|
of the IPE ciphertexts.

the order of a few seconds for vectors containing 500 components. The difference in run-times is due
to the fact that decryption require N pairing operations, while key generation and encryption only
require group exponentiation. On the desktop, a single group exponentiation takes about 0.6 ms,
while a pairing takes about 2 ms. It is also worth noting that while the only essential difference
between key generation and encryption in our IPE scheme is that key generation operates over G1

while encryption operates over G2, there is a fairly substantial difference in the run-times of the two
operations (generally speaking, at least a factor of 2x). This is an artifact of using an asymmetric
pairing group. Group operations in G1 are faster than those in G2, so as a result, key generation is
much faster than encryption in our IPE scheme.

5.1 Applications

In this section, we revisit some of our example applications from Section 4, and show how our
function-hiding inner production encryption can be efficiently applied in those scenarios.

Biometric authentication. In addition to fingerprint scanning, ocular biometrics such as iris
scanning and retina scanning are a popular form of biometrics. In recent work, Hämmerle-
Uhl et al. [HPPU15] show how a typical iris recognition code consisting of 640 bits is sufficiently
descriptive to uniquely identify individuals with considerable accuracy. Thus, in the biometric
authentication example described in Section 4, the authentication server would store an encryption
of the 640-bit descriptor of each user under a function-hiding inner product encryption scheme.
Each iris scanner is given the secret key for the IPE scheme. To authenticate a user, the scanner
scans the user’s iris, computes the 640-bit descriptor for the resulting scan, extracts a secret key
corresponding to the descriptor, and sends the secret key to the server. The authentication server
computes the Hamming distance between the user’s iris profile and the ground truth in the database

26

0 200 400 600 800

1

10

100

1,000

Vector Length (N)

C
om

p
u

ta
ti

o
n

T
im

e
(m

s)
Keygen
Encrypt
Decrypt

Figure 1: Micro-benchmarks of each of the elementary operations of our function-hiding
IPE scheme over the MNT159 curve (provides λ = 80 bits of security).

and accepts if the Hamming distance is sufficiently low.
To leverage this solution, we require a function-hiding inner product encryption scheme that

supports vectors of length 640. As our benchmarks show (Table 1), for both 80 and 112 bits of
security, the time needed to encrypt the 640-bit description of an iris scan completes within a
second, and the time needed to measure the Hamming distance with respect to a ground truth
(i.e., decryption) requires at most two seconds. We conclude that using our scheme, biometric
authentication based on iris scans requires just 2-3 seconds of computation. This is quite reasonable
for environments where iris scans are used to control physical access to restricted areas.

Nearest-neighbor search on encrypted data. To support nearest-neighbor search (based on `2
distance) on encrypted documents, we first represent documents as a vector of words. One such
representation is a binary vector where each component corresponds to a word in the dictionary and
the vector has a 1 in each position that corresponds to a word that appears in the document. While
the resulting representation can be high-dimensional, applying standard dimensionality-reduction
techniques will yield a more compact representation that is more suitable for our methods. For
example, Wei and Croft [WC06] describe a topic-modeling based approach that clusters documents
based on topic. They show that a set of only a few hundred vectors is sufficient to describe a database
containing hundreds of thousands of documents. Thus, using a topic-based embedding of documents,
each document can be represented as a vector with dimension under 1000. Nearest-neighbor search
based on `2 distance can then be performed using our function-hiding inner production encryption
scheme in a second or two.

Order-revealing encryption. As noted in Section 1, single-key two-input functional encryp-
tion suffices to build property-preserving encryption for binary properties over a small message
space. An important special case of two-input property-preserving encryption is order-revealing
encryption. Our inner-product encryption scheme gives a direct solution to order-revealing encryp-

27

tion that achieves the best-possible notion of security introduced by Boldyreva et al. [BCLO09].9

Previous constructions of order-revealing encryption either do not achieve this notion of secu-
rity [BCLO09, BCO11, CLWW16], or rely on extremely strong cryptographic primitives and thus,
are very impractical [BLR+15, GGG+14]. Our inner product encryption scheme provides an al-
ternative solution to this problem in the setting where we have a bounded message space. As a
concrete example of a scenario with a bounded message space, suppose an analyst seeks to encrypt
users’ ages or salary ranges in a database. By construction, the message space in this setting only
contains only a small number of possible values (e.g., at most 150). In this case, encryption requires
less than a tenth of a second, and decryption requires a quarter of a second. We note, though, that
in this bounded-message setting, ORE can also be efficiently constructed directly from one-way
functions using an adaptation of the Boneh et al. brute-force construction [BSW11]. However, this
type of construction does not support two-input functionalities that do not reveal equality relations.
In contrast, our IPE construction gives single-key two-input functional encryption for all two-input
functionalities over a small domain.

6 Conclusions

In this work, we constructed a fully-secure, secret-key, function-hiding inner product encryption
scheme with secret keys and ciphertexts that are considerably shorter than those in all existing
constructions of function-hiding IPE. We proved the security of our construction in a generic model
of bilinear maps. We also highlighted several natural applications of function-hiding inner product
encryption and showed how this primitive directly gives a construction of single-key, two-input
functional encryption for arbitrary functions over polynomial-sized plaintext spaces. Finally, to
affirm the real-world practicality of our construction, we implemented and benchmarked our inner
product encryption scheme on a wide range of parameter settings. We conclude with several
interesting open problems for further study:

1. Can we construct function-hiding inner product encryption with equally short secret keys and
ciphertexts from a concrete assumption in bilinear groups (such as the k-Linear assumption)?

2. Can we obtain two-input functional encryption for general functions from function-hiding
inner product encryption where the encrypted vectors are sublinear in the size of the plaintext
space?

Acknowledgments

This work was supported by NSF, DARPA, the Simons foundation, a grant from ONR, and an NSF
Graduate Research Fellowship. Opinions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of DARPA.

9This “best-possible” notion of semantic security essentially states that ciphertexts in the ORE scheme reveal no
additional information other than the ordering between their underlying plaintext values.

28

References

[AAB+15] Shashank Agrawal, Shweta Agrawal, Saikrishna Badrinarayanan, Abishek Kumarasub-
ramanian, Manoj Prabhakaran, and Amit Sahai. On the practical security of inner
product functional encryption. In PKC, pages 777–798, 2015.

[ABCP15] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple
functional encryption schemes for inner products. In PKC, 2015.

[AFK+12] Diego F. Aranha, Laura Fuentes-Castañeda, Edward Knapp, Alfred Menezes, and
Francisco Rodŕıguez-Henŕıquez. Implementing pairings at the 192-bit security level. In
Pairing-Based Cryptography, pages 177–195, 2012.

[AGM+13] Joseph A. Akinyele, Christina Garman, Ian Miers, Matthew W. Pagano, Michael
Rushanan, Matthew Green, and Aviel D. Rubin. Charm: a framework for rapidly
prototyping cryptosystems. Journal of Cryptographic Engineering, 3(2):111–128, 2013.

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Func-
tional encryption: New perspectives and lower bounds. In CRYPTO, pages 500–518,
2013.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In CRYPTO, pages 308–326, 2015.

[AKSX04] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order-
preserving encryption for numeric data. In ACM SIGMOD, pages 563–574, 2004.

[ALS15] Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional encryption
for inner products, from standard assumptions. IACR Cryptology ePrint Archive,
2015:608, 2015.

[ARW16] Michel Abdalla, Mariana Raykova, and Hoeteck Wee. Multi-input inner-product
functional encryption from pairings. Cryptology ePrint Archive, Report 2016/425, 2016.
http://eprint.iacr.org/.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption
with constant size ciphertext. In EUROCRYPT, pages 440–456, 2005.

[BBO07] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and efficiently
searchable encryption. In CRYPTO, pages 535–552, 2007.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In CRYPTO,
pages 41–55, 2004.

[BCLO09] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. Order-
preserving symmetric encryption. In EUROCRYPT, pages 224–241, 2009.

[BCO11] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. Order-preserving encryption
revisited: Improved security analysis and alternative solutions. In CRYPTO, pages
578–595, 2011.

29

http://eprint.iacr.org/

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing.
In CRYPTO, 2001.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6,
2012.

[BJK15] Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-hiding inner product
encryption. In ASIACRYPT, 2015.

[BKS15] Zvika Brakerski, Ilan Komargodski, and Gil Segev. From single-input to multi-input
functional encryption in the private-key setting. IACR Cryptology ePrint Archive,
2015:158, 2015.

[BLR+15] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe
Zimmerman. Semantically secure order-revealing encryption: Multi-input functional
encryption without obfuscation. In EUROCRYPT, pages 563–594, 2015.

[BRS13a] Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private identity-based
encryption: Hiding the function in functional encryption. In CRYPTO, pages 461–478,
2013.

[BRS13b] Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private subspace-
membership encryption and its applications. In ASIACRYPT, pages 255–275, 2013.

[BS15] Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-key
setting. In TCC, pages 306–324, 2015.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based
encryption. In IEEE S&P, pages 321–334, 2007.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In TCC, pages 253–273, 2011.

[BWZ14] Dan Boneh, David J. Wu, and Joe Zimmerman. Immunizing multilinear maps against
zeroizing attacks. IACR Cryptology ePrint Archive, 2014:930, 2014.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K. Maji,
Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without
low-level zeroes: New MMAP attacks and their limitations. In CRYPTO, pages 247–266,
2015.

[CGKO06] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable
symmetric encryption: improved definitions and efficient constructions. In ACM CCS,
pages 79–88, 2006.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
Cryptanalysis of the multilinear map over the integers. In EUROCRYPT, pages 3–12,
2015.

30

[CJL16] Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm for NTRU problems
and cryptanalysis of the GGH multilinear map without an encoding of zero. IACR
Cryptology ePrint Archive, 2016:139, 2016.

[CLR15] Jung Hee Cheon, Changmin Lee, and Hansol Ryu. Cryptanalysis of the new CLT
multilinear maps. IACR Cryptology ePrint Archive, 2015:934, 2015.

[CLWW16] Nathan Chenette, Kevin Lewi, Stephen A. Weis, and David J. Wu. Practical order-
revealing encryption with limited leakage. In FSE, 2016.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In
Cryptography and Coding, pages 360–363, 2001.

[Cor15] Jean-Sébastien Coron. Cryptanalysis of GGH15 multilinear maps, 2015.

[Cos12] Craig Costello. Particularly friendly members of family trees. IACR Cryptology ePrint
Archive, 2012:72, 2012.

[DDM16] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Functional encryption for
inner product with full function privacy. In PKC, 2016.

[FST10] David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-friendly elliptic
curves. J. Cryptology, 23(2):224–280, 2010.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao
Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption.
In EUROCRYPT, pages 578–602, 2014.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, pages 40–49, 2013.

[GGHZ16] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryption
without obfuscation. In TCC, pages 480–511, 2016.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
STOC, pages 555–564, 2013.

[Goh03] Eu-Jin Goh. Secure indexes. IACR Cryptology ePrint Archive, 2003:216, 2003.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In CRYPTO, pages 162–179,
2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption
for circuits. In STOC, pages 545–554, 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for
circuits from LWE. In CRYPTO, pages 503–523, 2015.

31

[HJ15] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. IACR Cryptology ePrint Archive,
2015:301, 2015.

[HJP13] W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library for Number Theory,
2013. Version 2.4.0, http://flintlib.org.

[HPPU15] Jutta Hämmerle-Uhl, Georg Penn, Gerhard Pötzelsberger, and Andreas Uhl. Size-
reduction strategies for iris codes. International Journal of Computer, Electrical,
Automation, Control and Information Engineering, 9(1), 2015.

[Jou00] Antoine Joux. A one round protocol for tripartite diffie-hellman. In ANTS, 2000.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In EUROCRYPT, pages
146–162, 2008.

[LL16] Kwangsu Lee and Dong Hoon Lee. Two-input functional encryption for inner products
from bilinear maps. Cryptology ePrint Archive, Report 2016/432, 2016. http://

eprint.iacr.org/.

[Lyn06] Ben Lynn. The pairing-based cryptography library. Internet: crypto. stanford.
edu/pbc/[Mar. 27, 2013], 2006.

[MF15] Brice Minaud and Pierre-Alain Fouque. Cryptanalysis of the new multilinear map over
the integers. IACR Cryptology ePrint Archive, 2015:941, 2015.

[Mil04] Victor S. Miller. The weil pairing, and its efficient calculation. J. Cryptology, 17(4),
2004.

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over GGH13. IACR Cryptology ePrint
Archive, 2016:147, 2016.

[Nec94] V.I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm.
MATHEMATICAL NOTES, 55, 1994.

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In CRYPTO, pages 111–126, 2002.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint
Archive, 2010:556, 2010.

[OT08] Tatsuaki Okamoto and Katsuyuki Takashima. Homomorphic encryption and signatures
from vector decomposition. In Pairing, 2008.

[OT09] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption for
inner-products. In ASIACRYPT, 2009.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with
general relations from the decisional linear assumption. In CRYPTO, pages 191–208,
2010.

32

http://flintlib.org
http://eprint.iacr.org/
http://eprint.iacr.org/

[OT12] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure unbounded inner-product
and attribute-based encryption. In ASIACRYPT, pages 349–366, 2012.

[PR12] Omkant Pandey and Yannis Rouselakis. Property preserving symmetric encryption. In
EUROCRYPT, pages 375–391, 2012.

[Ram16] Somindu C. Ramanna. More efficient constructions for inner-product encryption. IACR
Cryptology ePrint Archive, 2016:356, 2016.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4), 1980.

[Sha71] Daniel Shanks. Class number, a theory of factorization, and genera. In Proc. Sympos.
Pure Math., pages 415–440, 1971.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In EURO-
CRYPT, 1997.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In ACM CCS, pages 463–472, 2010.

[SSW09] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems. In
TCC, pages 457–473, 2009.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
pages 457–473, 2005.

[SWP00] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In IEEE S&P, pages 44–55, 2000.

[Wat15] Brent Waters. A punctured programming approach to adaptively secure functional
encryption. In CRYPTO, pages 678–697, 2015.

[WC06] Xing Wei and W. Bruce Croft. Lda-based document models for ad-hoc retrieval. In
SIGIR, pages 178–185, 2006.

[Zim15] Joe Zimmerman. How to obfuscate programs directly. In EUROCRYPT, 2015.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM, 1979.

33

	Introduction
	Our Contributions

	Preliminaries
	Notation
	Bilinear Groups
	Function-Hiding Inner Product Encryption
	The Generic Group Model

	Construction
	Applications
	Natural Applications of Function-Hiding IPE
	General Two-Input Functional Encryption

	Implementation and Evaluation
	Applications

	Conclusions

