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Abstract

Most quantum key distribution schemes depend either on a form of conjugate coding or on
the principle of putting more information into a quantum state than can possibly be read
out with a measurement. We construct a scheme that combines both these approaches. It
is built from Round-Robin Differential Phase Shift (RRDPS) and Unclonable Encryption.
Compared to RRDPS and BB84-like protocols our scheme has the advantage that it
thwarts simple attacks and forces the adversary to use entanglement. We provide a
security analysis in case of attacks without entanglement. Part of this analysis also applies
to the unmodified RRDPS.

1 Introduction

1.1 Quantum Key Distribution

Quantum Key Distribution (QKD) was the first application of quantum physics in cryptog-
raphy and is still the best known. QKD allows Alice and Bob to generate an unconditionally
secure key of arbitrary length, provided that they have an authenticated two-way classical
communication channel and a one-way quantum channel.
There are two main ‘flavours’ of QKD. In BB84 [1], the first ever QKD scheme, Alice encodes
a random data bit in one out of two qubit bases. This is called conjugate coding [2]. Bob
measures in a random basis and then tells Alice which basis that was. If the bases do not
match, they discard the result; if the bases do match, Alice and Bob have a shared secret
bit. An eavesdropper (Eve) is hindered by the fact that she does not know in which basis
Alice and Bob are working; any qubit manipulation by Eve is likely to be noticed by Alice
and Bob. There is a whole family of schemes that use the same principle [3, 4] but with a
different Hilbert space and/or a different set of bases. (Continuous-variable schemes based
on non-commuting observables [5, 6, 7, 8] also belong to this family.)
Another approach is Differential Phase Shift (DPS) encoding [9, 10, 11]. Here the basis is
known, but Alice puts more information into the quantum state than any measurement can
possibly extract. Bob extracts only a small random subset of Alice’s data. On the one hand,
this suffices for generating a random key; on the other hand, Eve is hindered by the fact
that she can not access all the data embedded in the quantum state. (Into this category we
can also place Bennett’s nonorthogonal states approach [12], since it too prevents reliable
extraction of all information.) We will refer to this approach as information overloading.

For an overview of quantum cryptography beyond QKD we refer to [13].
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1.2 Privacy amplification and noise tolerance

We will look at noise in abstracto, not taking into account the physics of noise in any way.
There are many sources of noise, e.g. particle source inefficiencies, detector inefficiencies, ther-
mal noise, channel noise, misalignment, particle loss etcetera, but we will ignore these distinc-
tions. Instead we will treat noise in a general way, namely as a nonzero probability β that a
data bit sent by Alice is received incorrectly by Bob (known as the Quantum Bit Error Rate).
Here we do not care about the dimension of the Hilbert space, or the number of qubits used
to convey one classical bit; we are not interested in the noise per qubit but only in the bit
error rate β in the communicated classical bit.
A QKD scheme has to allow for a fraction β of transmission errors. In the security analysis
it must be assumed that Eve has caused all the errors. By her actions Eve is able to gain an
amount of information IE(β) about Alice and Bob’s secret. The final step of a QKD scheme
typically is information reconciliation (error correction, e.g. the cascade method [14]) and
privacy amplification. The resulting key generation rate is given by r(β) = 1− h(β)− IE(β),
where h is the binary entropy function, h(β) = −β log2 β−(1−β) log2(1−β). The expression
1−h(β) is the maximum rate at which Alice can send information to Bob over a channel with
noise parameter β. From this Eve’s knowledge is subtracted. If β is so large that r(β) ≤ 0,
the QKD scheme cannot work on this channel.
Consider the following generic attack. It is not optimal but it allows us to easily reason about
classes of protocols. Eve steals a fraction of Alice’s quantum transmissions, and for these
Eve substitutes a fully entangled particle. One half of the entangled state goes to Bob, the
other half stays with Eve. After Alice and Bob have classically communicated about their
basis choices etc., Eve performs a measurement on the quantum states that she has from
Alice (“Attack A”) and on her states entangled with Bob’s (“Attack B”). Attack A requires
quantum memory. Attack B additionally requires entanglement. From the knowledge that
Eve gains it is easy to derive a lower bound on IE(β).
In the case of the BB84-like protocols, the effect of the attack is as follows. The fact that
Alice and Bob announce their basis choices allows Eve to perform measurements in precisely
these bases and hence learn secret bits with 100% accuracy in Attack A as well as attack B.
Bob’s measurements on the entangled states yield random outcomes; hence the probability
of a bit flip is 1

2 . Eve can tamper with a fraction of transmissions up to 2β without being
noticed. This yield a bound1 IE(β) ≥ 2β. Since Attack B can be omitted here, Eve does not
actually need entanglement.
The situation is very different for the DPS family of protocols. These protocols effectively
thwart Attack A. Unfortunately, they are susceptible to a very simple variant of Attack B
(which we will call B∗) that requires neither quantum memory nor entanglement: In a fraction
2β of the rounds, Eve gives Bob a DPS-state containing random information known to Eve.
The tampering is noticed with probability 1

2 . When Bob has announced his subset, Eve knows
Bob’s measurement outcome. This yields a lower bound IE(β) ≥ 2β based on the existence
of the very practical attack B∗.2

1.3 Contributions

We propose a DPS-like QKD protocol which is far less vulnerable to Attack B∗. It is based
on a combination of both conjugate coding and information overloading. While our protocol

1For specific schemes such as BB84 itself and 6-state QKD, sharp bounds on IE(β) are known [4, 15].
2Refs. [10, 11] do not mention this attack and erroneously claim noise tolerance up to β = 0.5.
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does not reduce the effectiveness of attack B, and hence does not affect the bound IE(β) ≥ 2β,
it forces the attacker to use entanglement and quantum memory.

• We pick the best DPS scheme known to us, Round-Robin DPS (RRDPS) [10], and
the best conjugate coding scheme known to us, Unclonable Encryption (UE) [16]. We
construct a combined QKD protocol by running RRDPS in randomly chosen UE bases.

• We present a security analysis of our new scheme, in terms of min-entropy loss. We
study first Attack B∗ and then Attack A.
It turns out that Attack B∗ is far more powerful than Attack A. Even so, our scheme
reduces the min-entropy loss in case of Attack B∗, and in theory can even entirely
eliminate the min-entropy loss in the (impractical) limit of large Hilbert spaces. We
have to warn the reader that the numbers presented in the analysis of Attack B∗ are
subject to a conjecture whose validity we verified only for small Hilbert spaces.
Our analysis of Attack A applies not only to the combined scheme but also to the
original RRDPS scheme. We are not aware of any previous security analysis of RRDPS
in terms of min-entropy.

In Section 2 we briefly review the RRDPS scheme and the conjugate coding employed in
Unclonable Encryption. In Section 3 we describe the proposed scheme and in Section 4 we do
the analysis. Section 5 concludes with a short discussion of protocol variants, implementation
and future work.

2 Preliminaries

2.1 Notation

Random Variables (RVs) are denoted with capital letters, and their realisations in lowercase.
Sets are denoted in calligraphic font. The probability that a RV X takes value x is written
as Pr[X = x]. The expectation with respect to RV X is denoted as Exf(x) =

∑
x∈X Pr[X =

x]f(x). The notation ‘log’ stands for the logarithm with base 2. The min-entropy of X ∈
X is denoted as Hmin(X) = − log maxx∈X Pr[X = x], and the conditional min-entropy as
Hmin(X|Y ) = − log Ey maxx∈X Pr[X = x|Y = y]. The notation h stands for the entropy
function h(p) = p log 1

p + (1− p) log 1
1−p . Bitwise XOR is written as ‘⊕’. The Kronecker delta

is denoted as δab. The inverse of a bit b ∈ {0, 1} is written as b̄ = 1− b.
For quantum states we use Dirac notation, with the standard qubit basis states |0〉 and |1〉
represented as

(
1
0

)
and

(
0
1

)
respectively. The Pauli matrices are denoted as σx, σy, σz, and we

write σ = (σx, σy, σz). The standard basis is the eigenbasis of σz, with |0〉 in the positive
z-direction. The notation ‘⊗’ denotes the tensor (Kronecker) product of vectors. We write
1N for the N × N identity matrix. The fully mixed state is denoted as τN = 1

N 1N . In a
Hilbert space of dimension larger than 2 we use the notation |k〉 for the k’th basis state in the
standard basis. The notation ‘tr’ stands for trace. We will make use of the Positive Operator
Valued Measure (POVM) formalism.

2.2 The Sasaki-Yamamoto-Koashi scheme (RRDPS)

Alice generates a random bitstring a ∈ {0, 1}N . She prepares the state

|µ(a)〉 = N−1/2
N−1∑

k=0

(−1)ak |k〉 (1)
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and sends it to Bob. Bob chooses a random integer r ∈ {1, . . . , N − 1}. Bob performs a

POVM measurement M (r) described by a set of 2N operators (M
(r)
ks )k∈{0,...,N−1},s∈{0,1},

M
(r)
ks =

1

2

|k〉+ (−1)s|k + r〉√
2

〈k|+ (−1)s〈k + r|√
2

. (2)

Here k + r should be understood as k + r mod N . The result of the measurement M (r)

on |µ(a)〉 is an random integer k ∈ {0, . . . , N − 1} and a bit s that equals ak ⊕ ak+r. Bob
announces k and r. Alice and Bob now have a shared secret bit ak ⊕ ak+r.
The physical implementation [10] is a pulse train: a photon is split into N coherent pieces
which are released at different, equally spaced, points in time. The phase (−1)ak⊕ak+r is
the relative phase of the field oscillation in the (k + r)’th pulse relative to the k’th. The
measurement M (r) is an interference measurement where one path is delayed by r time units.
The security properties are intuitively understood as follows. A measurement in an N -
dimensional Hilbert space can extract at most logN bits of information. The state |µ(a)〉,
however, contains N − 1 candidates for becoming Alice and Bob’s shared secret, which is a
lot more than logN . Eve can learn only a small fraction of the phase information. This
information is of limited use to her because she cannot force Bob to select precisely those
phases that she knows. (i) She connot force Bob to choose a specific value of r. (ii) Even if
she feeds Bob a state of the form |α〉 = (|`〉 + (−1)u|`+ r〉)/

√
2 where r accidentally equals

Bob’s r, then there is a 1
2 probability that Bob’s measurement yields k 6= ` (with random s).

For large N , Attack B is far more powerful than Attack A. In [10] experiments were reported
with N = 128.

2.3 Unclonable Encryption

Unclonable Encryption (UE) [17, 18, 16] is a technique by which Alice can send a classical
ciphertext through a quantum channel in such a way that either Bob or Eve receives the
cipherstate, but not both. We briefly discuss the four qubit bases introduced in [16]. Eight-
state UE applies the Quantum One Time Pad (QOTP) [19, 20, 21] to a specially chosen qubit
basis: the logical ‘0’ is represented as the vector (1, 1, 1)T/

√
3 on the Bloch sphere, and the

logical ‘1’ as the opposite point (−1,−1,−1)T/
√

3. QOTP encryption of a qubit needs two
bits of key material. Let the encryption key be denoted as (u,w) ∈ {0, 1}2. The encryption
operator is Euw = σwx σ

u
z . On the Bloch sphere, acting with σx on a state flips the signs of the

y and z coordinates; similarly, σz flips the x and y signs. The eight states obtained in this
way are located at the corners of a cube. Let the encoded data bit be denoted as g ∈ {0, 1}.
Then the eight points on the Bloch sphere are nuwg = (−1)g((−1)u, (−1)u+w, (−1)w)T/

√
3,

which in the 2-dimensional Hilbert space corresponds to the following cipherstates,

|ψuwg〉 = (−1)gu(
√
i)g cos α2 |g ⊕ w〉+ (−1)ug(

√
i)g sin α

2 |g ⊕ w〉, (3)

where α is defined as cosα = 1/
√

3. The coefficients in (3) are given by cos α2 =
√

1
2 + 1

2
√
3
≈

0.888 and sin α
2 =

√
1
2 − 1

2
√
3
≈ 0.460. The inner products between the cipherstates are given

by

|〈ψu′w′g′ |ψuwg〉|2 = 1
2 + 1

2nu′w′g′ · nuwg
= δuu′δww′δgg′ + (1− δuu′δww′)

[
δgg′

1

3
+ (1− δgg′)

2

3

]
. (4)

It is well know that the QOTP applied to any qubit state perfectly hides the state. Hence, if
Eve has |ψuwg〉 with (u,w) unknown to her, she cannot derive any information about g.
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3 The proposed scheme

We will consider a pulse train consisting of N pulses, with N = 2n, so that the RRDPS
Hilbert space is equivalent to n qubits. These qubits will be QOTP’ed independently. Each
RRDPS basis state enumerator k ∈ {0, . . . , N − 1} can be represented as a bitstring (kj)

n−1
j=0 ,

kj ∈ {0, 1}. For u ∈ {0, 1}n, w ∈ {0, 1}n, k ∈ {0, . . . , N − 1} we define

|u,w, k〉 def=

n−1⊗

j=0

|ψujwjkj 〉 (5)

where the single-qubit states in the right-hand-side are as defined by (3).

Protocol steps

1. Alice randomly selects u ∈ {0, 1}n, w ∈ {0, 1}n and a ∈ {0, 1}N .

2. Alice sends to Bob the state

|ν(u,w, a)〉 =
1√
N

N−1∑

k=0

(−1)ak |u,w, k〉. (6)

3. Bob acknowledges receipt. He stores the received quantum state.

4. After receiving Bob’s acknowledgement Alice announces u and w.

5. Bob randomly selects r ∈ {1, . . . , N−1}. He performs a POVM measurement described
by the following set of 2N operators,

M
(r,u,w)
ks =

1

2

|u,w, k〉+ (−1)s|u,w, k + r〉√
2

〈u,w, k|+ (−1)s〈u,w, k + r|√
2

, (7)

k ∈ {0, . . . , N −1}, s ∈ {0, 1}. Here k+ r stands for the arithmetic operation k+ r mod
N . If the transmitted state was not altered, the result of the measurement is a random
k and a bit s that equals ak ⊕ ak+r.

6. Bob announces r and k.

Alice and Bob now have a shared secret bit ak⊕ak+r. The above procedure is repeated many
times. Then the standard steps of information reconciliation (error correction) and privacy
amplification are performed.

4 Security analysis

We consider the following attack scenario. Eve steals Alice’s state |ν(u,w, a)〉 and stores it.
She chooses a state ϕ and sends |ϕ〉 to Bob.3 When Alice has announced u and w, Eve does a
measurement on |ν(u,w, a)〉 in order to obtain information about a. After Bob has announced
r and k, Eve has partial knowledge of Bob’s measurement outcome s.
We study two properties of the proposed scheme in this scenario: Eve’s knowledge about
Bob’s measurement results (Attack B∗) and her knowledge of Alice’s data a (Attack A).

3We use notation that distinguishes between a physical state |ϕ〉 and its mathematical description ϕ.
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Note that we do not consider scenarios in which Eve’s ϕ depends on the intercepted quantum
state. At the moment when Eve has to concoct ϕ, the quantum state she holds is still perfectly
QOTP-encrypted and reveals no information about a whatsoever.
Our scheme is as vulnerable to Attack B as the original RRDPS. Possible measures against
Attack B are briefly discussed in Section 5.

4.1 Eve’s knowledge about Bob’s outcome s (Attack B∗)

The most conservative approach is to determine the min-entropy of S given that Eve knows
U , W , R, K and Φ. Note that Φ is a classical random variable. Also note that although Eve
knows U,W,R,K, the Φ is independent of all these variables since Eve has to choose Φ before
she knows any of them. The conditional min-entropy is written as

Hmin(S|ΦUWRK) = − log Eϕuwrk max
s∈{0,1}

Pr[s|ϕuwrk]

= − log Eϕuwrk max
s∈{0,1}

Pr[ks|ϕuwr]
Pr[k|ϕuwr]

= − log Eϕuwr

N−1∑

k=0

max
s∈{0,1}

Pr[ks|ϕuwr]. (8)

In the last step we used that Pr[k|ϕuwr] does not depend on s, and that Eϕuwrk(· · · ) = Eϕuwr∑
k Pr[k|ϕuwr](· · · ). Next we write

max
s∈{0,1}

Pr[ks|ϕuwr] = max
s∈{0,1}

〈ϕ|M (r,u,w)
ks |ϕ〉

= max
s∈{0,1}

1

4

∣∣∣∣〈ϕ|u,w, k〉+ (−1)s〈ϕ|u,w, k + r〉
∣∣∣∣
2

=
1

4

∣∣∣∣〈ϕ|u,w, k〉
∣∣∣∣
2

+
1

4

∣∣∣∣〈ϕ|u,w, k + r〉
∣∣∣∣
2

+
1

4
max
s∈{0,1}

(−1)s〈ϕ|
(
|u,w, k〉〈u,w, k + r|+ |u,w, k + r〉〈u,w, k|

)
|ϕ〉

=
1

4

∣∣∣∣〈ϕ|u,w, k〉
∣∣∣∣
2

+
1

4

∣∣∣∣〈ϕ|u,w, k + r〉
∣∣∣∣
2

+
1

4

∣∣∣∣〈ϕ|
(
|u,w, k〉〈u,w, k + r|+ |u,w, k + r〉〈u,w, k|

)
|ϕ〉
∣∣∣∣ . (9)

In the last step we used that the operator (· · · ) is Hermitian, which implies that it has real
expectation values. We note that

∑
k |〈ϕ|u,w, k〉|2 = 1 and

∑
k |〈ϕ|u,w, k + r〉|2 = 1. This

yields the following expression for the min-entropy loss,

Hmin(S)− Hmin(S|ΦUWRK)

= log

(
1 +

1

2
Eϕuwr

N−1∑

k=0

∣∣∣∣〈ϕ|
(
|u,w, k〉〈u,w, k + r|+ |u,w, k + r〉〈u,w, k|

)
|ϕ〉
∣∣∣∣

)
. (10)

Now we have to determine which strategy for choosing ϕ maximizes the min-entropy loss
(10). Numerics for n = 2 and n = 3 indicate that states of the form |ϕ〉 = |b〉 =

⊗n−1
j=0 |bj〉

achieve the maximum. This leads us to the following conjecture.

6



Conjecture 4.1 Setting |ϕ〉 = |b〉 for any b ∈ {0, . . . , 2n−1} maximizes the min-entropy loss
(10).

There are some heuristic arguments in support of the conjecture. We expect the optimal
attack state |ϕ〉 to exhibit a large amount of symmetry, given all the symmetries in the
problem. Indeed, the qubit basis states |0〉, |1〉 have the special property that they are
maximally removed from the eight cipherstates |ψuwg〉 (3).
We work with Conjecture 4.1 and set |ϕ〉 = |0〉 = |0〉⊗n. We obtain an expression for the
min-entropy loss, as specified in Theorem 4.3 below.

Lemma 4.2

〈0|u,w, k〉〈u,w, `|0〉 =
n−1∏

j=0

[
δwjkjδ`jkj cos2 α2 + (−1)wjδ`jkj sin α

2 cos α2 + δwjkj
δ`jkj sin2 α

2

]
.

(11)

Proof: See Appendix A. �

Theorem 4.3 Consider the QKD protocol as described in Section 3. If Eve replaces Alice’s
state by |0〉, then Eve’s knowledge about Bob’s measurement outcome S is given by

Hmin(S)− H
|ϕ〉=|0〉
min (S|UWRK) = log

(
1 +

(1 + sinα)n − 1

2n − 1

)
(12)

where sinα =
√

2/3 ≈ 0.816.

Proof: See Appendix B. �
In support of Conjecture 4.1 we note that no factorizable state, i.e. of the form |ϕ〉 =⊗n−1

j=0 |ϕj〉, does better than |ϕ〉 = |0〉.

Lemma 4.4 For any factorizable state |ϕ〉 =
⊗n−1

j=0 |ϕj〉 it holds that

Hmin(S)− Hmin(S|UWRK) ≤ log

(
1 +

(1 + sinα)n − 1

2n − 1

)
. (13)

Proof: See Appendix C. �
Fig. 1 shows the min-entropy loss (12) as a function of n. Already at small n the loss is well
below 1. (Note that bare RRDPS can routinely handle pulse trains with n = 7.) In order to
push the loss towards zero, unrealistically large n is required.

Conjecture 4.1 Setting |'i = |bi for any b 2 {0, . . . , 2n�1} maximizes the min-entropy loss
(10).

There are some heuristic arguments in support of the conjecture. We expect the optimal
attack state |'i to exhibit a large amount of symmetry, given all the symmetries in the
problem. Indeed, the qubit basis states |0i, |1i have the special property that they are
maximally removed from the eight cipherstates | uwgi (3).
We work with Conjecture 4.1 and set |'i = |0i = |0i⌦n. We obtain an expression for the
min-entropy loss, as specified in Theorem 4.3 below.

Lemma 4.2

h0|u, w, kihu, w, `|0i =
n�1Y

j=0

h
�wjkj

�`jkj
cos2 ↵

2 + (�1)wj�`jkj
sin ↵

2 cos ↵
2 + �wjkj

�`jkj
sin2 ↵

2

i
.

(11)

Proof: See Appendix A. ⇤

Theorem 4.3 Consider the QKD protocol as described in Section 3. If Eve replaces Alice’s
state by |0i, then Eve’s knowledge about Bob’s measurement outcome S is given by

Hmin(S) � H
|'i=|0i
min (S|UWRK) = log

✓
1 +

(1 + sin↵)n � 1

2n � 1

◆
(12)

where sin↵ =
p

2/3 ⇡ 0.816.

Proof: See Appendix B. ⇤
Fig. 1 shows the min-entropy loss (12) as a function of n. Already at small n the loss is well
below 1. (Note that bare RRDPS can routinely handle pulse trains with n = 7.) In order to
push the loss towards zero, unrealistically large n is required.

Figure 1: Min-entropy loss as a function of n, the number of qubits. The length of the pulse
train is N = 2n.
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Figure 1: Min-entropy loss as a function of n, according to (12).
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4.2 Eve’s knowledge about Alice’s secret bit (Attack A)

After Alice has revealed the QOTP key (u,w), Eve decrypts |ν(u,w, a)〉 and obtains an
ordinary RRDPS state in the |ψ000〉, |ψ001〉 qubit basis. From this point onward the analysis
is the same as for RRDPS (Section 2.2) with N = 2n. We switch to the standard basis for
notational simplicity. We write C = Ak ⊕ Ak+r. Eve knows k and r. Eve possesses the
RRDPS state |µ(a)〉,

|µ(a)〉 =
1√
N

N−1∑

t=0

(−1)at |t〉 (14)

but she does not know a. We can define a mixed state ρ(k,r) for the classical random variable
C and Eve’s state as follows,

ρ(k,r) =
∑

c∈{0,1}

1
2 |c〉〈c| ⊗ ρ(k,r)c , where ρ(k,r)c

def
=

∑

a∈{0,1}N :
ak⊕ak+r=c

(12)N−1|µ(a)〉〈µ(a)|. (15)

There are 2N−1 strings a compatible with each possible c. The part of the quantum system
held by Eve is denoted as ρEve.

Lemma 4.5 It holds that

Nρ
(k,r)
0 = 1 + |k〉〈k + r|+ |k + r〉〈k| ; Nρ

(k,r)
1 = 1− |k〉〈k + r| − |k + r〉〈k|. (16)

Proof: See Appendix D. �
From Lemma 4.5 it immediately follows that ρ

(k,r)
0 + ρ

(k,r)
1 = 2τN and tr ρ

(k,r)
c = 1.

Corollary 4.6

(Nρ
(k,r)
0 )2 = 1 + 2|k〉〈k + r|+ 2|k + r〉〈k|+ |k〉〈k|+ |k + r〉〈k + r|

(Nρ
(k,r)
1 )2 = 1− 2|k〉〈k + r| − 2|k + r〉〈k|+ |k〉〈k|+ |k + r〉〈k + r|. (17)

Proof: Follows directly from Lemma 4.5. �
We follow the approach of [22] and express Eve’s uncertainty about C, given the classical
R,K and her mixed quantum state (ρEve), as

Hmin(C|RKρEve) = − log Erk max
Q0,Q1

Ectr ρ
(k,r)
c Qc. (18)

Here the operators Q0, Q1 form a POVM measurement set, satisfying the constraint Q0+Q1 =
1. Furthermore Q0 and Q1 have to be positive semidefinite.

Theorem 4.7 The entropy loss in C due to Eve’s knowledge of R,K and her possession of
the quantum state is

Hmin(C)− Hmin(C|RKρEve) = log(1 +
2

N
). (19)

Proof: We omit the superscipts (k, r) for brevity. The maximisation in (18), using the La-
grange multiplier approach, yields the following system of equations [23],

ρ0Q0 = ΛQ0, ρ1Q1 = ΛQ1 (20)
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where Λ is the Lagrange multiplier for the constraint Q0 +Q1 = 1; it must be Hermitian and
has to satisfy Λ = ρ0Q0 + ρ1Q1. Once the solution is found the min-entropy reduces to

Hmin(C|RKρEve) = − log Erk
1
2tr Λ = 1− log Erktr Λ. (21)

It is readily verified that the solution is given by Qc = N
2 ρc and

Λ =
N

2
(ρ20 + ρ21) =

1

N

(
1 + |k〉〈k|+ |k + r〉〈k + r|

)
. (22)

In the last line we made use of Corollary 4.6. We get tr Λ = N+2
N . Substitution into (21)

yields (19). �
Theorem 4.7 tells us that the RRDPS protocol is very good at hiding Alice’s bits from Eve.
The min-entropy loss per bit is only log(1 + 2

N ) < 2
N ln 2 .

5 Discussion

RRDPS allows for attack B∗, which requires neither quantum memory nor entanglement.
We have investigated RRDPS executed in a random UE basis that is afterward revealed to
Bob. RRDPS itself already resists Attack A, as shown in Theorem 4.7. Fig. 1 shows by how
much the effect of attack B∗ is reduced in our scheme. We conclude that our scheme forces
the attacker to use entanglement. Our scheme does not protect against entanglement-based
attacks, however, and hence does not reduce the amount of privacy amplification needed.
Attack B can be severely hindered by the introduction of test qubits at random positions
inside the encrypted pulse train. Ordinary noise flips a test bit with probability β, whereas
Attack B causes a flip with probability 1

2 . More general entanglement-based attacks can
perhaps be hindered by the introduction of decoy transmissions or additional noise in Alice’s
preprocessing [15]. This is left for future work. Many variations of our protocol can be
thought of.

• If Bob is not able to store |ν(u,w, a)〉 for very long (step 3), then there are at least two
alternatives.
(i) Alice does not wait for Bob’s confirmation of receipt. She sends u,w after a fixed
time interval. This variant requires that Bob knows exactly when to expect incoming
quantum states and classical messages. He must store |ν(u,w, a)〉 for a short time.
(ii) The other alternative is that Bob immediately does the RRDPS measurement, but
in a randomly chosen UE basis (u′, w′). With probability 1/4n he chooses the correct
basis (u,w). All rounds with (u′, w′) 6= (u,w) are discarded. This is very inefficient but
possible. One could consider using a pseudorandomly generated basis sequence instead
of fully random bases, in order to reduce the factor 4n.

• If Bob does have quantum storage, the UE bases could in fact be replaced by qubit
bases chosen uniformly at random from the whole Bloch sphere. Without providing a
proof we mention that this has the effect of replacing the sinα =

√
2/3 ≈ 0.816 in the

min-entropy loss result by 2/3 ≈ 0.667, i.e. the min-entropy loss in case of Attack B

becomes log[1 + (1+2/3)n−1
2n−1 ].

• Mutually Unbiased Bases (MUBs) could yield a similar performance as the UE bases.
Similarly, our choice of RRDPS as a building block may not be optimal; some other
QKD scheme in the DPS class is perhaps better suited. This is left for future work.
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We briefly comment on the physical implementation. The Quantum One Time Padding
operations that we described act on qubits, whereas RRDPS works with a pulse train. The
N -component pulse train can be interpreted as a tensor product of n qubits, in accordance
with the rule we used in Section 3 to decompose the pulse index k ∈ {0, . . . , N−1} into n bits
k0, . . . , kn−1. The value of k0 indicates whether we are addressing the first or second half of
the pulse train. Similarly, for every qubit index j ∈ {0, . . . , n− 1} we can identify a division
of the pulse train into two (equal-size) subsets Pj0 and Pj1: the Pj0 subset consists of all
the pulses k whose decomposition yields kj = 0, and the Pj1 subset has kj = 1. Hence, the
operation σx on the j’th qubit means physically swapping the Pj0 pulses and the Pj1 pulses.
Acting with σz on the j’th qubit means performing a phase rotation on the Pj1 qubits. It
remains to be seen if these operations are practical. It may be more convenient to implement
RRDPS (or a similar scheme) in an entirely different way, e.g. using transversal momentum
modes [24] instead of a pulse train. This is left for future work.

A Proof of Lemma 4.2

Let u,w, k, ` ∈ {0, 1}. From (3) we have 〈0|ψuwk〉 = δwk(−1)ku(
√
i)k cos α2 +δwk(−1)uk(

√
i)k sin α

2

and 〈ψuw`|0〉 = δw`(−1)`u(
√
−i)` cos α2 +δw`(−1)u`(

√
−i)` sin α

2 . The product 〈0|ψuwk〉〈ψuw`|0〉
is given by the following four terms which each represent a different ‘case’ concerning the
(in)equalities between w, k and `,

δwkδw`(−1)(k+`)u(
√
i)k(
√
−i)` cos2 α2 + δwkδw`(−1)ku+u`(

√
i)k(
√
−i)` cos α2 sin α

2

+δwkδw`(−1)uk+`u(
√
i)k(
√
−i)` sin α

2 cos α2 + δwkδw`(−1)u(k+`)(
√
i)k(
√
−i)` sin2 α

2 . (23)

In each term the Kronecker deltas conspire to make the powers of
√
i and

√
−i equal, which

yields a power of
√
−i2 = 1. Thus all the i’s disappear and we are left with a real-valued

expression. Furthermore, in the cos2 and sin2 terms the power of (−1) is even, which makes
the sign equal to +1. In the cos · sin term we can write ku + u` = w, and in the sin · cos
term we write uk + `u = w. Next we reorganise the Kronecker deltas as δwkδw` = δwkδ`k
etc. The cos · sin and sin · cos terms can then be combined using δwk + δwk = 1. Finally, for

u,w ∈ {0, 1}n, k ∈ {0, . . . , 2n − 1} we use the factorisations |u,w, k〉 =
⊗n−1

j=0 |ψujwjkj 〉 and

|0〉 = |0〉⊗n.

B Proof of Theorem 4.3

We have 〈0|u,w, k〉〈u,w, `|0〉 = 〈0|u,w, `〉〈u,w, k|0〉. The addition in (10) yields a factor 2.
Next, taking the absolute value of (11) is equivalent to taking the absolute value of each term
individually, since the three terms correspond to mutually exclusive cases. Hence we have

|〈0|u,w, k〉〈u,w, `|0〉| =
n−1∏

j=0

[
δwjkjδ`jkj cos2 α2 + δ`jkj sin α

2 cos α2 + δwjkj
δ`jkj sin2 α

2

]
. (24)

Now we take the expectation Ew and use Ewjδwjkj = 1
2 and Ewjδwjkj

= 1
2 . This yields

Ew|〈0|u,w, k〉〈u,w, `|0〉| = 2−n
n∏

j=0

[δ`jkj + δ`jkj sinα]. (25)
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We put ` = k+r modN with r 6= 0. The operation Er
∑

k(· · · ) is equivalent to 1
2n−1

∑
k

∑2n−1
r=1 (· · · )

= 1
2n−1 [

∑2n−1
k,`=0(· · · )−

∑2n−1
k,`=0 δk`(· · · )]. Applying this operation to (25) gives

Erw
∑

k

|〈0|u,w, k〉〈u,w, `|0〉| = 2−n

2n − 1



n−1∏

j=0

(2 + 2 sinα)−
n−1∏

j=0

2


 =

(1 + sinα)n − 1

2n − 1
. (26)

C Proof of Lemma 4.4

We start from (10) without the expectation Eϕ. Using |z1 + z2| ≤ |z1|+ |z2| we get

Hmin(S)− Hmin(S|UWRK) ≤ log

(
1 + Euwr

N−1∑

k=0

∣∣∣∣〈ϕ|u,w, k〉〈u,w, k + r|ϕ〉
∣∣∣∣

)
. (27)

We write Er
∑

k f(k, k + r) = 1
N−1

∑
k

∑N−1
r=1 f(k, k + r) = 1

N−1
∑

k

∑k+N−1
`=k+1 f(k, `)

= 1
N−1 [

∑N−1
k,`=0 f(k, `) −∑k f(k, k)], where the arguments of f are always taken modulo N .

In the
∑

k f(k, k) part we use
∑

k |〈ϕ|u,w, k〉|2 = 1. The right-hand side of (27) can now be
written as

log(1− 1

N − 1
+

1

N − 1

n−1∏

j=0

Euj ,wj

∑

kj ,`j∈{0,1}

∣∣∣∣〈ϕj |ψujwjkj 〉〈ψujwj`j |ϕj〉
∣∣∣∣)

= log(1− 1

N − 1
+

1

N − 1

n−1∏

j=0


1 + Euj ,wj

∑

kj∈{0,1}

∣∣∣∣〈ϕj |ψujwjkj 〉〈ψujwjkj
|ϕj〉

∣∣∣∣


). (28)

It is readily verified numerically that the expression Euj ,wj

∑
kj
| · · · | does not exceed sinα for

any single-qubit state |ϕj〉. (The maximum value sinα occurs when |ϕj〉 is an eigenvector of
σx, σy, or σz.)

D Proof of Lemma 4.5

From the definition of |µ(a)〉 we get

ρ
(k,r)
0 = (12)N−1

1

N

N−1∑

t,z=0

|t〉〈z|
∑

a∈{0,1}N :
ak⊕ak+r=0

(−1)at+az

= (12)N−1
1

N

N−1∑

t,z=0

|t〉〈z|
[
δtz2

N−1 + (δtkδz,k+r + δt,k+rδzk)2
N−1] (29)

=
1

N

N−1∑

t=0

|t〉〈t|+ |k〉〈k + r|+ |k + r〉〈k|
N

. (30)

The derivation for ρ1 is completely analogous.
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