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Abstract

We show how to encrypt a relational database in such a way that it can efficiently support a
large class of SQL queries. Our construction is based solely on structured encryption and does
not make use of any property-preserving encryption (PPE) schemes such as deterministic and
order-preserving encryption. As such, our approach leaks considerably less than PPE-based
solutions which have recently been shown to reveal a lot of information in certain settings (Naveed
et al., CCS ’15 ). Our construction achieves asymptotically optimal query complexity under very
natural conditions on the database and queries.

1 Introduction

The problem of encrypted search has received a lot of attention from Industry, Academia and
Government due to its potential applications to cloud computing and database security. Most of the
progress in this area, however, has been in the setting of keyword search on encrypted documents.
While this has many applications in practice (e.g., email, NoSQL databases, desktop search engines,
cloud document storage), much of the data produced and consumed in practice is stored and
processed in relational databases. A relational database is, roughly speaking, a set of tables with
rows representing entities/items and columns representing their attributes. The relational database
model was proposed by Codd [14] and most relational DBs are queried using the structured query
language (SQL) which is a special-purpose declarative language introduced by Chamberlain and
Boyce [10].

The problem of encrypted relational DBs is the “holy-grail” of database security. As far as we
know, it was first explicitly considered by Hacigümüs, Iyer, Li and Mehrotra [20] who described
a quantization-based approach which leaks the range within which an item falls. In [29], Popa,
Redfield, Zeldovich and Balakrishnan describe a system called CryptDB that can support a non-
trivial subset of SQL on encrypted relational DBs without quantization. CryptDB achieves this
in part by making use of property-preserving encryption (PPE) schemes like deterministic and
order-preserving (OPE) encryption, which reveal equality and order, respectively. The high-level
technique is to replace the plaintext operations needed to execute a SQL query (e.g., equality tests
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and comparisons) by the same operations on PPE-encrypted ciphertexts. This approach was later
adopted by other systems including Cipherbase [2] and SEEED [19]. While this leads to systems
that are efficient and legacy-friendly, it was recently shown by Naveed, Kamara and Wright [26],
that such PPE-based EDB systems can leak a lot of information when used in certain settings like
electronic medical records (EMRs). In light of this result, the major open problem in encrypted
search and, more generally, in database security is whether it is possible to efficiently execute SQL
queries on encrypted DBs with less leakage than the PPE-based solutions.

Our contributions. In this work, we address this problem and propose the first solution for
SQL on encrypted DBs that does not make use of either PPE or general-purpose primitives like
fully-homomorphic encryption (FHE) or oblivious RAM (ORAM). As such, our scheme leaks
considerably less than any of the previously-known practical approaches and is much more practical
than any leakage-free solution. Our approach is efficient and handles a large sub-class of SQL
queries and an even larger class if we allow for a small amount of post-processing at the client.

More precisely, our construction handles the class of conjunctive queries 1 [11] which corresponds
to SQL queries of the form

Select attributes From tables Where
(
a1 = X1 ∧ · · · ∧ a` = X`

)
,

where a1 through an are attributes in the DB schema and X1 through Xn are either attributes
or constants. While the class of conjunctive queries is smaller than the class supported by the
PPE-based solutions, it is one of the most well-studied and useful classes of queries. Furthermore,
as mentioned above, if one allows for a small amount of post-processing at the client, we show how
to extend the expressiveness of our solution to a much wider sub-class.

With respect to efficiency, we show that the query complexity of our scheme is asymptotically
optimal in time and space when t, s1, . . . , st, h� m, where t denotes the number of tables in the
query, si denotes the number of columns in the ith table, h denotes the number of attributes in the
Select term of the query and m is the number of rows in the tables (assuming, for ease of exposition,
that all tables have m rows). Note that this is a very natural condition which is satisfied in practice
by most SQL databases and queries. 2.

1.1 Our Techniques

The PPE-based approach to EDBs essentially replaces the plaintext execution of a SQL query with
an encrypted execution of the query by executing the server’s low-level operations (i.e., comparisons
and equality tests) directly on the encrypted cells. This can be done thanks to the properties of
PPE which guarantee that operations on plaintexts can be done on ciphertexts as well. This “plug-
and-play” approach makes the design of EDBs relatively straightforward since the only requirement
is to replace plaintext cells with PPE-encrypted cells. Given the complexity of relational DBs and
of SQL queries it is not a-priori clear how to solve this problem without PPE or without resorting
to general-purpose solutions like fully-homomorphic encryption (FHE) or oblivious RAM (ORAM).

1We stress that conjunctive queries in the context of relational databases (and as used throughout this work) is
completely unrelated to conjunctive keyword queries as studied in the searchable encryption literature (e.g., in [8]). In
particular, our scheme does not make use of any searchable encryption schemes for conjunctive keyword queries.

2Our approach incurs only a small asymptotic overhead even when these parameters are unrealistically large and
on the order of m
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Conceptual approach. Our first step towards a solution is in isolating some of the conceptual
difficulties of the problem. Relational DBs are relatively simple from a data structure perspective
since they just consist of a set of two-dimensional arrays. The high-level challenge stems from
SQL and, in particular, from its complexity (it can express first-order logic) and the fact that it is
declarative. To overcome this we restrict ourselves to a simpler but widely applicable and well-studied
subset of SQL queries (see above) and we take a more procedural view of SQL. More precisely,
we work with the relational algebra formulation of SQL which is more amenable to cryptographic
techniques. The relational algebra was introduced by Codd [14] as a way to formalize queries on
relational databases. Roughly speaking, it consists of all the queries that can be expressed from a
set of basic operations. It was later shown by Chandra and Merlin [11] that three of these operations
(selection, projection and cross product) capture a large class of useful queries called conjunctive
queries that have particularly nice theoretical properties. Since their introduction, conjunctive
queries have been studied extensively in the database literature.

The subset of the relational algebra expressed by the selection, projection and Cartesian product
operators is also called the SPC algebra. By working in the SPC algebra, we not only get a
procedural representation of SQL queries, but we also reduce the problem to handling just three
basic operations. Conceptually, this is reminiscent of the benefits one gets by working with circuits
in secure multi-party computation and FHE. Another important advantage of working in the SPC
algebra is that it admits a normal form; that is, every SPC query can be written in a standard form.
By working with this normal form, we get another benefit of general-purpose solutions which are
that we can design and analyze a single construction that handles all SPC queries. Note, however,
that like circuit representations the SPC normal form is not always guaranteed to be the most
efficient.

The SPC algebra. As mentioned, the SPC algebra consists of all queries that can be expressed
by a combination of the select, project and cross product operators which, at a high-level, work as
follows. The select operator σΨ takes as input a table T and outputs the rows of T that satisfy the
predicate Ψ. The project operator πa1,...,ah

takes as input a table T and outputs the columns of T
indexed by a1, . . . , ah. Finally, the cross product operator T1 × T2 takes two tables as input and
outputs a third table consisting of rows in the Cartesian product of T1 and T2 when viewed as sets
of rows. An SPC query in normal form over a database DB = (T1, . . . ,Tn) has the form,

πa1,··· ,ah

(
[a1]× · · · [af ]× σΨ(Ti1 × · · · × Tit)

)
,

where Ψ is of the form a1 = X1 ∧ · · · ∧ a` = X` where a1, . . . , a` are attributes in the schema of
DB and X1, . . . , X` are either attributes or constants. So, concretely, our problem reduces to the
problem of encrypting a relational database DB = (T1, . . . ,Tn) in such a way that it can support
SPC queries in normal form.

Structured encryption & constructive queries. The concrete problem stated above is a
structured encryption problem: namely, how can we encrypt a data structure (i.e., DB) such that
it can support a specific type of query (i.e., SPC normal form queries). Structured encryption
(STE) is a generalization of searchable symmetric encryption (SSE) introduced by Chase and
Kamara [12] which allows a client to encrypt a data structure so that it can be privately queried.
As discussed above, relational DBs are relatively simple structures (i.e., two-dimensional arrays)
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but the queries they support are complex. This is in opposition to most STE schemes which
handle relatively complex structures such as dictionaries [12, 7], multi-maps (i.e., inverted indexes)
[15, 23, 8], trees [22], graphs [12, 25] and web graphs [12], but support relatively simple queries.
The main difficulty in the case of relational DBs and, in particular, in handling SPC queries is that
queries are constructive in the sense that they produce new data structures from the original base
structure. Intuitively, handling constructive queries (without interaction) is particularly challenging
because the intermediate and final structures that have to be created by the server to answer
the query are dependent on the query and, therefore, cannot be constructed by the client in the
setup/pre-processing phase.

An important observation about relational DBs that underlies our approach, however, is that
while SPC queries are constructive, they are not arbitrarily so. In other words, the tables needed to
answer an SPC query are not completely arbitrary but are structured in a way that can be predicted
at setup. What is query-dependent is the content of these tables but, crucially, all of that content
is already stored in the original database. So the challenge then is to provide the server with the
means to construct the appropriate intermediate and final tables and to design encrypted structures
that will allow it to efficiently find the (encrypted) content it needs to populate those tables.

Cross products & the location map. By taking a closer look at the SPC normal form, one can
see that the first intermediate table needed to answer a query is the cross product T′ = Ti1 × · · ·Tit .
Ignoring the cross products with [a1], . . . , [af ] for ease of exposition, the remaining intermediate
tables as well as the final table are “sub-tables” of T′ that result from selecting a subset of rows
(according to Ψ) and keeping a subset of columns (according to a1, . . . , ah). As we show in Section
3, it turns out that from only t and the dimensions of Ti1 through Tit , we can derive not only the
dimensions of T′ but also a map Λ that maps any cell in DB to its location in T′. We refer to this
map as the location map and provide it to the server so that it can place the necessary encrypted
content in T′. To help the server find the necessary content in the first place, we create a set of
encrypted structures which, roughly speaking, can be viewed as different representations of the
database. For example, one of the encrypted structures we build provides a row-wise representation
of the database whereas another one provides a column-wise representation. By using these various
representations and by “combining” them in an appropriate manner, we can generate tokens for the
server to recover the (encrypted) database cells that result from applying the select and projection
operators to T′. Once the server can recover those encrypted cells it can place them in T′ using the
location map and prune T′ to produce the final table.

Note that, as described, our solution is not practical as the server needs to generate and operate
on a mt-by-

∑t
j=1 sij table, where sij denotes the number of columns in Tij . Fortunately, this not

necessary (we describe this naive approach in Section 5 only for ease of exposition) and queries
can be processed in optimal time and space using a more complex algorithm which we describe in
Section 5.1.

A note on our techniques. We stress that our approach to handling the SPC algebra is
completely novel and has no resemblance to how these queries are usually handled on plaintext
databases. In other words, our approach does not simply replicate standard data structures and
algorithms from databases. In fact, as far as we know, currently the only way to re-use standard
data structures and algorithms on encrypted data is to use PPE as done, for example, in [29, 2, 19].
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2 Related Work

Searchable & structured encryption. Encrypted search was first considered explicitly by
Song, Wagner and Perrig in [30] which introduced the notion of searchable symmetric encryption
(SSE). Goh provided the first security definition for SSE and a solution based on Bloom filters with
linear search complexity. Chang and Mitzenmacher proposed an alternative security definition and
construction, also with linear search complexity. Curtmola, Garay, Kamara and Ostrovsky introduced
and formulated the notion of adaptive semantic security for SSE [15] together with optimal-time
and optimal-space constructions. Chase and Kamara introduced the notion of structured encryption
which generalizes SSE to arbitrary data structures [12]. Kurosawa and Ohtaki proposed a universally
composable variant of adaptive semantic security [24]. Kamara, Papamanthou and Roeder [23]
gave the first optimal-time dynamic SSE scheme. Cash, Jutla, Jarecki, Krawczyk, Rosu and Steiner
[8] proposed the first optimal-time scheme that handles conjunctive keyword search and Faber,
Krawczyk, Jarecki, Nguyen, Rosu and Steiner show how to extend it to rich queries (e.g., range,
substring and wildcard queries) [16] . Naveed, Prabakharan and Gunther [27] propose an optimal-
time dynamic SSE scheme based on blind storage. Cash, Jaeger, Jarecki, Jutla, Krawczyk, Rosu
and Steiner [7] show how to construct optimal-time SSE schemes with low I/O complexity and Cash
and Tessaro [9] gave lower bounds on the locality of adaptively-secure SSE schemes. SSE has also
been considered in the multi-user setting [15, 21]. Pappas, Krell, Vo, Kolesnikov, Malkin, Choi,
George, Keromytis, Bellovin [28] present another approach for multi-user encrypted search based
on garbled circuits and Bloom filters that can support Boolean formulas, ranges and stemming.
Other approaches for encrypted search include oblivious RAMs (ORAM) [18], secure multi-party
computation [4], functional encryption [6] and fully-homomorphic encryption [17] as well as solutions
based on deterministic encryption [3] and order-preserving encryption (OPE) [5].

Encrypted relational databases. As far as we know the first encrypted relational DB solution
was proposed by Hacigümüs, Iyer, Li and Mehrotra [20] and was based on quantization. Roughly
speaking, the attribute space of each column is partitioned into bins and each element in the column
is replaced with its bin number. Popa, Redfield, Zeldovich and Balakrishnan proposed CryptDB [29].
CryptDB was the first non-quantization-based solution and can handle a large subset of SQL.
Instead of quantization, CryptDB relies on PPE like deterministic [3] and OPE [1, 5]. The CryptDB
design influenced the Cipherbase system from Arasu et al. [2] and the SEEED system from Grofig
et al. [19]. In [26], Naveed, Kamara and Wright study the security of these PPE-based solutions in
the context of medical data.

3 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and the set of all finite
binary strings as {0, 1}∗. [n] is the set of integers {1, . . . , n}. We write x ← χ to represent an
element x being sampled from a distribution χ, and x $← X to represent an element x being sampled
uniformly at random from a set X. The output x of an algorithm A is denoted by x← A. Given a
sequence v of n elements, we refer to its ith element as vi or v[i]. If S is a set then #S refers to its
cardinality. If s is a string then |s| refers to its bit length.
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Basic cryptographic primitives. A private-key encryption scheme is a set of three polynomial-
time algorithms Π = (Gen,Enc,Dec) such that Gen is a probabilistic algorithm that takes a security
parameter k and returns a secret key K; Enc is a probabilistic algorithm that takes a key K and a
message m and returns a ciphertext c; Dec is a deterministic algorithm that takes a key K and a
ciphertext c and returns m if K was the key under which c was produced. Informally, a private-key
encryption scheme is secure against chosen-plaintext attacks (CPA) if the ciphertexts it outputs do
not reveal any partial information about the plaintext even to an adversary that can adaptively
query an encryption oracle.

Data types. An abstract data type is a collection of objects together with a set of operations
defined on those objects. Examples include sets, dictionaries (also known as key-value stores or
associative arrays) and graphs. The operations associated with an abstract data type fall into
one of two categories: query operations, which return information about the objects; and update
operations, which modify the objects. If the abstract data type supports only query operations it is
static, otherwise it is dynamic. In this work we only consider static types with a single operation.

Data structures. A data structure for a given data type is a representation in some computational
model 3 of an object of the given type. Typically, the representation is optimized to support the
type’s query operation as efficiently as possible. For data types that support multiple queries, the
representation is often optimized to efficiently support as many queries as possible. As a concrete
example, the dictionary type can be represented using various data structures depending on which
queries one wants to support efficiently. Hash tables support Get and Put in expected O(1) time
whereas balanced binary search trees support both operations in worst-case log(n) time. For ease of
understanding and to match colloquial usage, we sometimes blur the distinction between data types
and structures. So, for example, when referring to a dictionary structure or a multi-map structure
what we are referring to is an unspecified instantiation of the dictionary or multi-map data type.

We make use of several basic data types including arrays, dictionaries and multi-maps which we
recall here. An array A of capacity n stores n items at locations 1 through n and supports read
and write operations. We write v := A[i] to denote reading the item at location i and A[i] := v
the operation of storing an item at location i. A dictionary DX of capacity n is a collection of n
label/value pairs {(`i, vi)}i≤n and supports get and put operations. We write vi := DX[`i] to denote
getting the value associated with label `i and DX[`i] := vi to denote the operation of associating the
value vi in DX with label `i. A multi-map MM with capacity n is a collection of n label/tuple pairs
{(`i, ti)i}i≤n that supports get and put operations. Similarly to dictionaries, we write ti := MM[`i] to
denote getting the tuple associated with label `i and MM[`i] := ti to denote operation of associating
the tuple ti to label `i. Multi-maps are the abstract data type instantiated by an inverted index.
In the encrypted search literature multi-maps are sometimes referred to as indexes, databases or
tuple-sets (T-sets). We refer to the set of all possible queries a data structure supports as its query
space and to the set of its possible responses as its response space. For some data structure DS we
sometimes write DS : Q→ R to mean that DS has query and response spaces Q and R, respectively.

Relational databases. A relational database DB = (T1, . . . ,Tn) is a set of tables where each
table Ti is a two-dimensional array with rows corresponding to an entity (e.g., a customer or
an employee) and columns corresponding to attributes (e.g., age, height, salary). For any given

3In this work, the underlying model will always be the word RAM.
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attribute, we refer to the set of all possible values that it can take as its space (e.g., integers,
booleans, strings). We define the schema of a table T to be its set of attributes and denote it S(T).
The schema of a database DB = (T1, . . . ,Tn) is then the set S(DB) =

⋃
i S(Ti). We assume the

attributes in S(DB) are unique and represented as positive integers. We denote a table T’s number
of rows as ‖T‖r and its number of columns as ‖T‖c.

We sometimes view tables as a tuple of rows and write r ∈ T and sometimes as a tuple of
columns and write c ∈ Tᵀ. Similarly, we write r ∈ DB and c ∈ DBᵀ for r ∈

⋃
i Ti and c ∈

⋃
i Tᵀi ,

respectively. For a row r ∈ Ti, its table identifier tbl(r) is i and its row rank rrk(r) is its position in
Ti when viewed as a tuple of rows. Similarly, for a column c ∈ Tᵀi , its table identifier tbl(c) is i
and its column rank crk(c) is its position in Ti when viewed as a tuple of columns. For any row
r ∈ DB and column c ∈ DBᵀ, we refer to the pairs (tbl(r), rrk(r)) and (tbl(c), crk(c)), respectively,
as their coordinates in DB. We write r[i] and c[i] to refer to the ith element of a row r and column
c. The coordinate of the jth cell in row r ∈ Ti is the triple (i, rrk(r), j). Given a column c ∈ DBᵀ,
we denote its corresponding attribute by att(c). For any pair of attributes a1, a2 ∈ S(DB) such that
dom(a1) = dom(a2), DBa1=a2 denotes the set of row pairs

{
(r1, r2) ∈ DB2 : r1[a1] = r2[a2]

}
. For any

attribute a ∈ S(DB) and constant a ∈
⋃

a∈S(DB) dom(a), DBa=a is the set of rows
{
r ∈ DB : r[a] = a

}
.

SQL. In practice, relational databases are queried using the special-purpose language SQL,
introduced by Chamberlain and Boyce [10]. SQL is a declarative language and can be used to
modify and query a relational DB. In this work, we only focus on its query operations. Informally,
SQL queries typically have the form

Select attributes From tables Where condition,

where attributes is a set of attributes/columns, tables is a set of tables and condition is a predicate
over the rows of tables and can itself contain a nested SQL query. More complex queries can be
obtained using Group-by, Order-by and aggregate operators (i.e., max, min, average etc.) but the
simple form above already captures a large subset of SQL. The most common class of queries on
relational DBs are conjunctive queries [11] which have the above form with the restriction that
condition is a conjunction of equalities over attributes and constants. In particular, this means there
are no nested queries in condition. More precisely, conjunctive queries have the form

Select attributes From tables Where
(
a1 = X1 ∧ · · · ∧ a` = X`

)
,

where ai is an attribute in S(DB) and Xi can be either an attribute or a constant.

The SPC algebra. It was shown by Chandra and Merlin [11] that conjunctive queries could be
expressed as a subset of Codd’s relational algebra which is an imperative query language based on
a set of basic operators. In particular, they showed that three operators select, project and cross
product were enough. The select operator σΨ is parameterized with a predicate Ψ and takes as
input a table T and outputs a new table T′ that includes the rows of T that satisfy the predicate Ψ.
The projection operator πa1,...,ah

is parameterized by a set of attributes a1, . . . , ah and takes as input
a table T and outputs a table T′ that consists of the columns of T indexed by a1 through an. The
cross product operator × takes as input two tables T1 and T2 and outputs a new table T′ = T1×T2
such that each row of T′ is an element of the Cartesian product between the set of rows of T1 and
the set of rows of T2. The query language that results from any combination of select, project and
cross product is referred to as the SPC algebra. We formalize this in Definition 3.1 below.
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Definition 3.1 (SPC algebra). Let DB = (T1, . . . ,Tn) be a relational database. The SPC algebra
consists of any query that results from the combination of the following operators:

• T′ ← σΨ(T): the select operator is parameterized with a predicate Ψ of form a1 = X1 ∧
· · · ∧ a` = X`, where ai ∈ S(DB) and Xi is either a constant a in the domain of ai (type-1)
or an attribute xj ∈ S(DB) (type-2). It takes as input a table T ∈ DB and outputs a table
T′ = {r ∈ T : Ψ(r) = 1}, where terms of the form ai = xj are satisfied if r(ai) = r(xj) and
terms of the form ai = a are satisfied if r(ai) = a.

• T′ ← πa1,...,ah
(T): the project operator is parameterized by a set of attributes a1, . . . , ah ∈

S(DB). It takes as input a table T ∈ DB and outputs a table T′ = {〈r(a1), . . . , r(ah)〉 : r ∈ T}.

• T3 ← T1 × T2: the cross product operator takes as input two tables T1 and T2 and outputs a
table T3 =

{〈
r,v

〉
: r ∈ T1 and v ∈ T2

}
, where 〈r,v〉 is the concatenation of rows r and v.

Intuitively, the connection between conjunctive SQL queries and the SPC algebra can be seen as
follows: Select corresponds to the projection operator, From to the cross product and Where to the
(SPC) select operator.

SPC normal form. Any query in the SPC algebra can be reduced to a normal form using a
certain set of well-known identities. The normal form of an SPC query over a relational database
DB = (T1, . . . ,Tn) has the form:

πa1,··· ,ah

(
[a1]× · · · [af ]× σΨ(Ti1 × · · · × Ti`

)
)
,

where a1, . . . , af ∈
⋃

a∈S(DB) dom(a) and [aj ] is the 1× 1 table that holds aj . Here, the attributes
a1, . . . , ah in the projection are either in S(DB) or refer to the columns generated by [a1] through
[ah]. In the latter case, we say that they are virtual attributes and are in S(VDB), where VDB is the
virtual database defined as VDB =

(
[a1], . . . , [af ]

)
.

We note that converting SQL queries of the above form to SPC queries is a well-studied problem
with highly-optimized solutions. In particular, the SPC queries that result from such a translation
are “compact” in the sense that the number of projects, selects and cross products in the resulting
SPC query is the same as the number of attributes, tables and conditions, respectively, in the
original SQL query (for an overview of SQL-to-SPC translation we refer the reader to [31]). In
addition, the transformation of SPC queries into their normal form can also be done efficiently based
on a standard set of identities and also results in “compact” normal form queries in the sense above.

The location map. An important notion for our purposes is what we refer to as the location
map which, intuitively, maps the cell coordinates in DB to their location in the cross product
Ti1 × · · · × Tit . Here, we assume the tables Ti1 , . . . ,Tit all have the same number of rows m. More
precisely, let M be a mt ×

∑
i si two-dimensional array. The location map Λt,m,s is parameterized

by the number of tables in the cross product t ≥ 1, the size of the tables m ≥ 1 and a vector
s = (s1, . . . , st) such that si = ‖Ti‖c. It takes as input the coordinates of any cell in DB and outputs
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a set of locations (α, β) ∈ [mt]× [
∑

i si] in M. Concretely, the location map is defined as

Λt,m,s(z, i, j) =
{(

(i− 1) ·mt−z + h ·mt−z+1, j +
z−1∑
`=1
‖T`‖c

)
, . . . ,

(
i ·mt−z + h ·mt−z+1, j +

z−1∑
`=1
‖T`‖c

)}
h∈{1,··· ,mz−1}

,

where z ∈ {i1, . . . , it}, i ∈ [m] and j ∈ ‖Tz‖c.
Note that given a position (α, β) ∈ [mt]× [

∑
i si], and a specific order of tables Ti1 , · · · ,Tiz , the

original coordinates of the cell in the tables can be computed efficiently such that

(z, i, j) = Λ−1
t,m,s(α, β),

where i = α mod mt−z and j = β mod
∑z

`=1 ‖Tz‖c.

4 Definitions

In this Section, we define the syntax and security of STE schemes. A STE scheme encrypts data
structures in such a way that they can be privately queried. There are several natural forms
of structured encryption. The original definition of [12] considered schemes that encrypt both a
structure and a set of associated data items (e.g., documents, emails, user profiles etc.). In [13], the
authors also describe structure-only schemes which only encrypt structures. Another distinction can
be made between interactive and non-interactive schemes. Interactive schemes produce encrypted
structures that are queried through an interactive two-party protocol, whereas non-interactive
schemes produce structures that can be queried by sending a single message, i.e, the token. One
can also distinguish between response-hiding and response-revealing schemes: the latter reveal the
query response to the server whereas the former do not.

In this work, we focus on non-interactive structure-only schemes. Our main construction, SPX,
is response-hiding but makes use of response-revealing schemes as building blocks. As such, we
define both forms below. At a high-level, non-interactive STE works as follows. During a setup
phase, the client constructs an encrypted structure EDS under a key K from a plaintext structure
DS. The client then sends EDS to the server. During the query phase, the client constructs and
sends a token tk generated from its query q and secret key K. The server then uses the token tk
to query EDS and recover either a response r or an encryption ct of r depending on whether the
scheme is response-revealing or response-hiding.

Definition 4.1 (Response-revealing structured encryption [12]). A response-revealing structured
encryption scheme Σ = (Setup,Token,Query) consists of three polynomial-time algorithms that work
as follows:

• (K,EDS)← Setup(1k,DS): is a probabilistic algorithm that takes as input a security parameter
1k and a structure DS and outputs a secret key K and an encrypted structure EDS.

• tk ← Token(K, q): is a (possibly) probabilistic algorithm that takes as input a secret key K
and a query q and returns a token tk.
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•
{
⊥, r

}
← Query(EDS, tk): is a deterministic algorithm that takes as input an encrypted

structure EDS and a token tk and outputs either ⊥ or a response.

We say that a response-revealing structured encryption scheme Σ is correct if for all k ∈ N, for all
poly(k)-size structures DS : Q→ R, for all (K,EDS) output by Setup(1k,DS) and all sequences of
m = poly(k) queries q1, . . . , qm, for all tokens tki output by Token(K, qi), Query(EDS, tki) returns
DS(qi) with all but negligible probability.

Definition 4.2 (Response-hiding structured encryption [12]). A response-hiding structured encryp-
tion scheme Σ = (Setup,Token,Query,Dec) consists of four polynomial-time algorithms such that
Setup and Token are as in Definition 4.1 and Query and Dec are defined as follows:

• {⊥, ct} ← Query(EDS, tk): is a deterministic algorithm that takes as input an encrypted
structured EDS and a token tk and outputs either ⊥ or a ciphertext ct.

• r ← Dec(K, ct): is a deterministic algorithm that takes as input a secret key K and a ciphertext
ct and outputs a response r.

We say that a response-hiding structured encryption scheme Σ is correct if for all k ∈ N, for all
poly(k)-size structures DS : Q→ R, for all (K,EDS) output by Setup(1k,DS) and all sequences of

m = poly(k) queries q1, . . . , qm, for all tokens tki output by Token(K, qi), DecK

(
Query

(
EDS, tki

))
returns DS(qi) with all but negligible probability.

Security. The standard notion of security for structured encryption guarantees that an encrypted
structure reveals no information about its underlying structure beyond the setup leakage LS and
that the query algorithm reveals no information about the structure and the queries beyond the
query leakage LQ. If this holds for non-adaptively chosen operations then this is referred to as
non-adaptive semantic security. If, on the other hand, the operations are chosen adaptively, this
leads to the stronger notion of adaptive semantic security. This notion of security was introduced
by Curtmola et al. in the context of SSE [15] and later generalized to structured encryption in [12].

Definition 4.3 (Adaptive semantic security [15, 12]). Let Σ = (Setup,Token,Query) be a response-
revealing structured encryption scheme and consider the following probabilistic experiments where A
is a stateful adversary, S is a stateful simulator, LS and LQ are leakage profiles and z ∈ {0, 1}∗:

RealΣ,A(k): given z the adversary A outputs a structure DS. It receives EDS from the challenger,
where (K,EDS)← Setup(1k,DS). The adversary then adaptively chooses a polynomial number
of queries q1, . . . , qm. For all i ∈ [m], the adversary receives tk ← Token(K, qi). Finally, A
outputs a bit b that is output by the experiment.

IdealΣ,A,S(k): given z the adversary A generates a structure DS which it sends to the challenger.
Given z and leakage LS(DS) from the challenger, the simulator S returns an encrypted data
structure EDS to A. The adversary then adaptively chooses a polynomial number of operations
q1, . . . , qm. For all i ∈ [m], the simulator receives a tuple

(
DS(qi),LQ(DS, qi)

)
and returns a

token tki to A. Finally, A outputs a bit b that is output by the experiment.

We say that Σ is adaptively (LS,LQ)-semantically secure if for all ppt adversaries A, there exists a
ppt simulator S such that for all z ∈ {0, 1}∗, the following expression is negligible in k:

|Pr [ RealΣ,A(k) = 1 ]− Pr [ IdealΣ,A,S(k) = 1 ]|
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The security definition for response-hiding schemes can be derived from Definition 4.3 by giving
the simulator

(
⊥,LQ(DS, qi)

)
instead of

(
DS(qi),LQ(DS, qi)

)
.

5 Our Construction

We describe SPX, our structured encryption scheme for SPC queries on relational DBs. More
precisely, the scheme encrypts relational database structures DB which we define as tuples of
two-dimensional arrays (T1, . . . ,Tn) which support SPC queries in normal form. The scheme makes
black-box use of a response-revealing multi-map encryption scheme ΣMM = (Setup,Token,Get), of a
response-revealing dictionary encryption scheme ΣDX = (Setup,Token,Get) and of a symmetric-key
encryption scheme SKE = (Gen,Enc,Dec). Note that encrypted multi-maps and dictionaries can be
instantiated using a variety of schemes [15, 12, 23, 8, 7, 27].

We first describe the intuition behind our construction—which itself is detailed in Figs. 1, 2 and
3—and then provide high-level overviews of its setup, token generation and query algorithms. We
stress that, here, we only describe a naive query algorithm that is not efficient but that is relatively
easy to understand. In Section 5.1 below, we describe our optimized query algorithm which is
optimal under natural conditions.

Setup. The Setup algorithm takes as input a relational database DB = (T1, . . . ,Tn) and starts by
creating three multi-maps MMR, MMC and MMV , each of which stores a different representation
of the database. MMR stores its row-wise representation, by which we mean that it maps row
coordinates (i.e., the row table and rank) to encrypted rows. Analogously, MMC stores a column-wise
representation of DB and maps column coordinates (i.e., the column table and rank) to encrypted
columns. Setup then encrypts MMR and MMC with ΣMM, resulting in EMMR and EMMC . It then
uses MMV to store a value-wise representation of the database in the sense that the latter maps the
value of a cell to tokens for the rows in DB that store that same value (where the tokens are for
EMMR). Again, it uses ΣMM to encrypt MMV , resulting in EMMV . Now, recall the SPC normal
form:

πa1,··· ,ah

(
[a1]× · · · [af ]× σΨ(Ti1 × · · · × Tit)

)
.

At a high-level, EMMC will enable projection operations and EMMV combined with EMMR will
enable type-1 select operations (i.e., of the form ai = ai). To support type-2 select operations,
however, we need additional structures.

For this, Setup will create, for all columns c ∈ DBᵀ, a multi-map MMc that maps pairs of the
form 〈〈

tbl(c), crk(c)
〉
,
〈
tbl(c′), crk(c′)

〉〉
to tokens for the rows (r1, r2) ∈ DBatt(c)=att(c′), where c′ ∈ DBᵀ is a column with the same domain
as c. It then encrypts each of these multi-maps with ΣMM, resulting in a set {EMMc}c∈DBᵀ , and
creates a dictionary DX that maps the attributes of each column att(c), for all c ∈ DBᵀ, to EMMc.
Finally, it encrypts DX with ΣDX, resulting in an encrypted dictionary EDX.

Setup outputs the key K = (KR,KC ,KV ,KD, {Kc}c∈DBᵀ ,K1), where KR, KC , KV , KD and
{Kc}c∈DBᵀ are the keys for EMMR, EMMC , EMMV , EDX and {EMMc}c∈DBᵀ , respectively and K1
is a key for SKE. The encrypted database is

EDB = (EMMR,EMMC ,EMMV ,EDX).
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Token. The Token algorithm takes as input a secret key K and an SPC query q in normal
form. The algorithm first generates tokens for the projections. Recall that in the SPC normal
form, projections can occur either on virtual or real attributes. So, for all i ∈ [h], if ai ∈
S(VDB), Token sets ytki = (1, ai); otherwise, if ai ∈ S(DB), it creates a projection token ptki ←

ΣMM.TokenKC

(〈
tbl(ai), crk(ai)

〉)
and sets ytki = (0, ptki).

For every constant a1 through af it computes ea1 ← EncK1(a1) through eaf
← EncK1(af ). Then,

for each term ai = Xi of Ψ it does the following. If the term is a type-1 query of the form ai = ai, it
computes an EMMV token vtki for the pair that consists of the constant ai and the coordinates of
ai and sets stki = vtki. Throughout, we refer to s-tokens of this form as type-1 tokens. On the other
hand, if the term is a type-2 query of the form ai = xi, then it computes two tokens dtki and jtki.
The first, dtki is an EDX token for the coordinates of ai and the second, jtki, is an EMMai token for
the pair that consists of the coordinates of ai and xi. It then sets stki = (dtki, jtki). We refer to
s-tokens of this form as type-2 tokens. Token then creates a vector s that holds the (column) size of
Ti1 , . . . ,Tit and outputs the token

tk =
(
t, s,

(
eai

)
i∈[f ],

(
ytki

)
i∈[h],

(
stki

)
i∈[`]

)
.

We first present an inefficient but algorithmic clear description of Query in 3. We then provide
a realistic efficient instantiation of Query in 4 and 5.

Naive Query. We begin by describing naive version of the Query algorithm. While this version is
not efficient, it is easier to understand and will serve as an introduction to the more efficient but
more complex variant we describe in below. The naive version uses the basic location map defined
in Section 3, whereas the efficient variant below uses the extended version.

The Query algorithm takes as input the encrypted database EDB and a token tk. Given the
arity of the cross product t, the size of the columns m and the column-sizes s of the tables in the
product, it instantiates an empty mt ×

∑
i si matrix M.

It then processes the s-tokens stk1 through stk`. If stki is type-1, it uses it to query EMMV . This
results in a tuple t of row tokens which it then uses to query the EMMR structure. More precisely,
for all rtk ∈ t, it computes〈

ct1, . . . , ctd, tb, rrk
〉
← ΣMM.Get(EMMR, rtk),

where 〈ct1, . . . , ctd〉 is an encrypted row and (tb, rrk) are its coordinates. Note that these will be
encryptions of the rows in DB that hold the constant ai at column ai, where ai and ai are the
attribute/constant pair in the type-1 select query that underlies vtki. For each ciphertext cti of
every encrypted row above, it then computes (α, β)← Λt,m,s(tb, rrk, i) and sets M[α, β] := cti. On
the other hand, if stki is type-2, the algorithm uses dtki to query EDX, resulting in an encrypted
multi-map EMMc which it then queries with jtki. This last operation results in a tuple t of pairs of
row tokens for EMMR. For each pair of tokens, it queries EMMR, resulting in a pair of encrypted
rows with their coordinates. It uses the location map on each pair of coordinates to recover locations
(α, β) and (α′, β′). If α = α′, it further uses the location map to place each ciphertext in the
encrypted rows in M.
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After processing the s-tokens, it processes the y-tokens (ytk1, . . . , ytkh) as follows. It starts by
initializing a 1-by-1 matrix VA. If ytki has the form (1, a), for some attribute a, it sets VA = VA× ea.
On the other hand, if ytki = (0, ptki), it computes

〈ct1, . . . , ctm, tb, crk〉 ← ΣMM.Get(EMMC , ptki),

and for all j ∈ [m] it sets M[αj , βj ] := ctj , where (αj , βj) ← Λt,m,s(tb, crk, j). It then sets
ET := VA×M and outputs ET after eliminating all columns that contain at least one empty cell.

Decryption. The Dec algorithm takes as input a secret key K and the encrypted table ET
returned by the server and simply decrypts each cell of ET. Note that we omit the formal description
of Dec from Figs. 1, 2, 3, 4 and 5.

5.1 An Optimal Query Algorithm

The naive Query algorithm above makes use of a mt-by-
∑t

i=1 si array which can be very large.
Fortunately, we do not need to process queries in this manner and we now describe a more efficient
approach that builds the result table directly without needing to generate the cross product of the
tables. Our optimized Query algorithm is relatively complex compared to the naive algorithm but
considerably more efficient. An important component in this variant of the query algorithm is an
additional map we refer to as the row location map.

The row location map. The row location map takes as input a tuple of b table-identifier/row-
rank pairs

(
(tb1, rrk1), . . . , (tbb, rrkb)

)
, where b ≤ t, and outputs a set of locations for these rows in

the cross product M = Ti1 × · · · × Tit . Here, we assume the input to the row location map has the
form

(
(i1, rrk1), . . . , (ib, rrkb)

)
; that is, the rows belong to tables Ti1 to Tib

(all our inputs to the row
location map will have this form). It outputs a row location α ∈ [mt] in M . More precisely, the row
location map is defined as

Γt,m,b

(
(z1, l1), · · · , (zb, lb)

)
=
{

(γ − 1) ·mt−b + 1, . . . , γ ·mt−b
}
,

where γ = l1 ·mb−1 + l2 ·mb−2 + · · ·+ lb, zi (l1, · · · , lb) ∈ [m]b. Note that if b = t, Γt,m,b outputs a
single location γ in M .

Overview. Our optimized query algorithm is described in detail in Figs. (4) and (5). At a
high-level, there are four steps: (1) a recovery step where we process all the s-tokens and recover sets
of rows for each token; (2) an intersection step, where we take per-table intersections of these sets
(i.e., we take intersections of all sets that hold rows belonging to the same table); (3) an augmented
cross-product step where we combine the remaining rows across sets; and (4) a placement step,
where we use the location map to place the merged rows in the results table.

We first process the s-tokens. If a token is type-1, we recover a set of encrypted rows together
with their coordinates (i.e., their table identifiers and row ranks). If, on the other hand, it is
type-2 then we recover pairs of coordinates. We denote by Ri the ith result set; that is, the set of
coordinates (or pair of coordinates) recovered from processing stki. If stki is type-1 we say that Ri

is type-1 and if stki is type-2 then we say that Ri is type-2. Note that if stki is type-1 then all the
coordinates we recover from processing it have the same table identifier. If stki is type-2, then the
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Let ΣDX = (Setup,Token,Get) be a response-revealing dictionary encryption scheme, ΣMM =
(Setup,Token,Get) be a response-revealing multi-map encryption scheme and SKE = (Gen,Enc,Dec) be a
symmetric-key encryption scheme. Consider the DB encryption scheme SPX = (Setup,Token,Query,Dec)
defined as follows a:

• Setup(1k,DB):

1. initialize a dictionary DX;
2. initialize multi-maps MMR, MMC and MMV ;
3. initialize multi-maps (MMa)a∈S(DB);
4. for all r ∈ DB set

MMR

[〈
tbl
(
r
)
, rrk

(
r
)〉]

:=
(

EncK1(r1), . . .EncK1(r#r), tbl
(
r
)
, rrk

(
r
))

;

5. compute (KR,EMMR)← ΣMM.Setup
(
1k,MMR

)
;

6. for all c ∈ DBᵀ, set

MMC

[〈
tbl
(
c
)
, crk

(
c
)〉]

:=
(

EncK1(c1), . . .EncK1(c#c), tbl
(
c
)
, crk

(
c
))

;

7. compute (KC ,EMMC)← ΣMM.Setup
(
1k,MMC

)
;

8. for all c ∈ DBᵀ,
(a) for all v ∈ c and r ∈ DBc=v,

i. compute rtkr ← ΣMM.TokenKR
(〈

tbl(r), rrk(r)
〉)

,

(b) set

MMV

[〈
v,

〈
tbl(att(c)), crk(att(c))

〉〉]
:=
(

rtkr

)
r∈DBc=v

;

9. compute (KV ,EMMV )← ΣMM.Setup
(
1k,MMV

)
;

10. for all c ∈ DBᵀ,
(a) for all c′ ∈ DBᵀ such that dom(att(c′)) = dom(att(c)),

i. initialize an empty tuple t;
ii. for all i, j ∈ [m] such that c[i] = c′[j],

A. compute rtki ← ΣMM.TokenKR
(〈

tbl(c), i
〉)

;

B. compute rtkj ← ΣMM.TokenKR
(〈

tbl(c′), j
〉)

;

C. add (rtki, rtkj) to t;
iii. set

MMc

[〈〈
tbl(c), crk(c)

〉
,
〈
tbl(c′), crk(c′)

〉〉]
:= t;

(b) compute (Kc,EMMc)← ΣMM.Setup
(
1k,MMc

)
;

(c) set DX
[〈

tbl(c), crk(c)
〉]

= EMMc;
11. compute (KD,EDX)← ΣDX.Setup(1k,DX);
12. output K =

(
KR,KC ,KV ,KD, {Kc}c∈DBᵀ

)
and EDB =

(
EMMR,EMMC ,EMMV ,EDX

)
;

aNote that we omit the description of Dec since it simply decrypts every cell of ET.

Figure 1: SPX: a relational DB encryption scheme (Part 1).
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• Token(K, q):

1. parse q as πa1,··· ,ah

(
[a1]× · · · × [af ]× σΨ(Ti1 × · · · × Tit)

)
;

2. for all i ∈ [h],
(a) if ai ∈ S(DB), compute

ptki ← ΣMM.TokenKC
(〈

tbl(ai), crk(ai)
〉)

;

and set ytki := (0, ptki);
(b) if ai ∈ S(VDB), set ytki := (1, ai);

3. parse Ψ as a1 = X1 ∧ · · · ∧ a` = X`;
4. for all i ∈ [`],

(a) if ai = Xi is type-1, compute

vtki ← ΣMM.TokenKV
(〈

Xi,

〈
tbl(ai), crk(ai)

〉〉)
,

and set stki = vtki;
(b) if ai = Xi is type-2, compute

jtki ← ΣMM.TokenKai

(〈〈
tbl(ai), crk(ai)

〉
,
〈
tbl(Xi), crk(Xi)

〉〉)
and

dtki ← ΣDX.TokenKD
(〈

tbl(ai), crk(ai)
〉)

and set stki = (dtki, jtki)
5. for all i ∈ [f ], compute ei ← EncK1(ai);
6. let s = (‖Ti1‖c, · · · , ‖Tit‖c);
7. output tk = (t, s, (ei)i∈[f ], (ytk)i∈[h], (stki)i∈[`]);

Figure 2: SPX: a relational DB encryption scheme (Part 2).
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• Query(EDB, tk):

1. parse EDB as
(
EMMR,EMMC ,EMMV ,EDX

)
;

2. parse tk = (t, s, (ei)i∈[f ], (ytk)i∈[h], (stki)i∈[`]);

3. initialize an mt-by-
∑t
i=1 si matrix M and a 1-by-1 matrix VA;

4. for all i ∈ [`],
(a) if stki is type-1, parse it as stki = vtki and,

i. compute t← ΣMM.Get(vtki,EMMV );
ii. for all rtk ∈ t,

A. 〈ct1, . . . , ctd, tb, rrk〉 ← ΣMM.Get(EMMR, rtk);
B. set M[α, β] := ctj for all j ∈ [d] and all (α, β) ∈ Λt,m,s(tb, rrk, j);

(b) if stki is type-2, parse it as stki = (dtki, jtki) and,
i. compute EMMc ← ΣDX.Get(EDX, dtki);
ii. compute t← ΣMM.Get(EMMc, jtki);
iii. for all (rtk, rtk′) ∈ t,

A. compute 〈ct1, . . . , ctd, tb, rrk〉 ← ΣMM.Get(EMMR, rtk);
B. compute 〈ct′1, . . . , ct′d′ , tb′, rrk′〉 ← ΣMM.Get(EMMR, rtk′);
C. for all (α, β) ∈ Λt,m,s(tb, rrk, 1) and (α′, β′) ∈ Λt,m,s(tb′, rrk′, 1) s.t. α = α′,

– set M[α, β] := ctj for all j ∈ [d] and all (α, β) ∈ Λt,m,s(tb, rrk, j);
– set M[α′, β′] := ct′z for all z ∈ [d′] and all (α′, β′) ∈ Λt,m,s(tb′, rrk′, z);

5. for all i ∈ [h],
(a) if ytki = (1, a), compute VA := VA× [ea];
(b) if ytki = (0, ptki),

i. compute 〈c, 〈tb, crk〉〉 ← ΣMM.Get(EMMC , ptki);
ii. for all γ ∈ [m] and all (α, β) ∈ Λt,m,s(tb, γ, crk), set M[α, β] := c[γ];

6. compute ET := VA×M;
7. delete all columns with a least one empty row in ET;
8. output ET

Figure 3: SPX: a relational DB encryption scheme (Part 3).
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first coordinates of the all the coordinate pairs in Ri have the same table identifier and, similarly,
the second coordinates of all the coordinate pairs have the same table identifiers. As such, we can
assign a unique table identifier to each type-1 set and two table identifiers to each type-2 set. To
make this explicit, we write type-1 sets as Rtb and type-2 sets as Rtb1,tb2 . In the following, when
referring to the table identifier of a type-2 set, we mean the table identifier of its first elements.

Our next step is to take per-table intersections. More precisely, let T ⊆ [n] be the set of table
identifiers of the recovered sets. Now, for all identifiers tb ∈ T , we generate the set Itb as the
intersection between all the result sets with table identifier tb (this could include type-1 and type-2
sets). Note that we could be taking intersections of type-1 sets, which hold coordinates, and type-2
sets, which hold pairs of coordinates. This is, of course, undefined so in such a case the intersection
is defined to be the set of coordinate pairs in the type-2 set whose first coordinate is in the type-1
set. This results in one set Itb per table, which holds either coordinates (if it results from the
intersection of type-1 sets) or pairs of coordinates (if it results from the intersection of two type-2
sets or the intersection of one type-1 set and one type-2 set).

The next step is to take a cross product between the sets {Itb}tb∈T . Note that when doing this,
there could be instances where we need to create a new tuple from two pairs of coordinates. In
such a case, we only create the new tuple if the first elements of the pairs are equal. If they are not,
we discard the two pairs. We refer to this process as an augmented cross-product and denote its
result as C, which is a set of tuples of coordinates. Now, for every coordinate tuple in C, we do the
following. We recover the encrypted rows associated with the coordinates in the tuple. We then
query the location map on the coordinates in the tuple to get a location i in M. We then store
this information in a multi-map TR3; that is, we set TR3 to map the location i to the encrypted
rows associated with the coordinates in the tuple. For correctness, we add dummy elements to
the encrypted rows. This is necessary in case the project operation is on an attribute that is not
included in the select operation.

The final step consists of retrieving the desired columns based on the y-tokens. More precisely,
we use the y-token to query EMMC which returns an encrypted column together with its table
identifier tb and column rank crk. Then, for every row i in the column, we lookup TR3[i] to recover
an encrypted row. If the element at location crk in the encrypted row is not a dummy, we add it to
our result table. On the other hand, if it is a dummy, we use i and the column rank crk to generate
a location in M on which we apply the inverse of the location map. This returns a cell coordinate
which we use to fetch an encrypted cell from the results of the EMMC query. Finally, we replace the
dummy element with this cell.

5.2 Efficiency

We now turn to analyzing the search and storage efficiency of our construction with the optimized
Query algorithm.

Search complexity. Given an SPC query

πa1,··· ,ah

(
[a1]× · · · [af ]× σΨ(Ti1 × · · · × Ti`

)
)
,

the size of the result is linear in
Q = h ·

(
mh ·Π`

i=1#Ri
)
,
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• Query(EDB, tk):

1. parse EDB as
(
EMMR,EMMC ,EMMV ,EDX

)
;

2. parse tk = (t, s, (ei)i∈[f ], (ytk)i∈[h], (stki)i∈[`]);
3. initialize six multi-maps TR1, TR2, TR3, CT1, CT2, and Result;
4. initialize two non-duplicate sets TB1, and TB2;
5. for all i ∈ [`],

(a) initialize an empty set Ri;
(b) if stki is type-1, parse it as stki = vtki and,

i. compute t← ΣMM.Get(EMMV , vtki);
ii. for all rtk ∈ t,

A. 〈ct1, . . . , ctd, tb, rrk〉 ← ΣMM.Get(EMMR, rtk);
B. set Ri = Ri

⋃
{rrk};

C. set CT1[(tb, rrk)] := 〈ct1, . . . , ctd〉 ;
D. add tb to TB1, and set TR1[tb] := i;

(c) if stki is type-2, parse it as stki = (dtki, jtki) and,
i. compute EMMc ← ΣDX.Get(EDX, dtki);
ii. compute t← ΣMM.Get(EMMc, jtki);
iii. for all (rtk, rtk′) ∈ t,

A. compute 〈ct1, . . . , ctd, tb, rrk〉 ← ΣMM.Get(EMMR, rtk);
B. compute 〈ct′1, . . . , ct′d′ , tb′, rrk′〉 ← ΣMM.Get(EMMR, rtk′);
C. set Ri = Ri

⋃
{(rrk, rrk′)};

D. set CT2[(tb, rrk)] := 〈ct1, . . . , ctd〉;
E. set CT2[(tb′, rrk′)] := 〈ct′1, . . . , ct′d′〉;
F. add (tb, tb′) to TB2, and set TR2[(tb, tb′)] := i;

6. for all tb ∈ TB1, set Rtb =
⋂
i∈g Rg, where g := TR1[tb];

7. for all (tb1, tb2) ∈ TB2, set R(tb1,tb2) =
⋂
i∈g Rg, where g := TR2[(tb1, tb2)];

8. for all (tb1, tb2) in TB2,
(a) for all tb in TB1, if tb = tbi, for i = 1 or 2,

– set S(tb1,tb2) = {(rrk1, rrk2) | (rrk1, rrk2) ∈ R(tb1,tb2) ∧ rrk1 ∈ Rtb}, and delete
Rtb;

(b) for all (tb′1, tb′2) in TB2 such that tb1 = tb′1 and tb2 6= tb′2,
– set P = {rrk1 | (rrk1, rrk2) ∈ R(tb1,tb2)};
– set S(tb′

1,tb′
2) = {(rrk1, rrk2) | (rrk1, rrk2) ∈ R(tb′

1,tb′
2) ∧ rrk1 ∈ P};

Figure 4: An optimized Query algorithm (Part 1).
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• Continuation of Query(EDB, tk):

9. initialize counter µ = 0;
10. for all (tb1, tb2) ∈ TB2,

(a) initialize two sets Tµ and Cµ;
(b) set Cµ = S(tb1,tb2);
(c) add tb1, and tb2 to Tµ;
(d) for all (tb′1, tb′2) ∈ TB2 ,

i. if (tb′1, tb′2) 6= (tb1, tb2) and tb′i = tbi for i = 1 or 2,
A. set P = {rrki | (rrk1, rrk2) ∈ R(tb′

1,tb′
2)};

B. set Ci =
{

(rrk1, · · · , rrke, rrk) | (rrk1, · · · , rrke) ∈ Ci ∧
(
∃j ∈ [e] s.t. rrk =

rrkj
∧

rrk ∈ P
)}

;
C. remove (tb′1, tb′2) from TB2 and set µ = µ+ 1;
D. add tb′i to Tµ;

11. set w = κ+ h1 + · · ·+ hµ, where hi = #Ci;
12. for all rrk1, · · · , rrkκ ∈ Rtb1 , · · · , Rtbκ and for all (rrk1

1, · · · , rrk1
h1

), · · · , (rrkµ1 , · · · , rrk
µ
hµ

) ∈
C1, · · · , Cµ
(a) for all i in

Γt,m,w
((

tb1, rrk1
)
, · · · ,

(
tbκ, rrkκ

)
,
(
T1[1], rrk1

1
)
, · · · ,

(
T1[h1], rrk1

h1

)
, · · ·

(
Tµ[1], rrkµ1

)
· · ·
(
Tµ[hµ], rrkµhµ

)
, 1
)
,

set,

TR3[i] :=
〈

CT1
[
(tb1, rrk1)

]
, · · · ,CT1

[
(tbh, rrkh)

]
,

CT2
[
(T1[1], rrk1

1)
]
, · · · ,CT2[(T1[h1], rrk1

h1
)
]
,

· · · ,

CT2
[
(Tµ[1], rrkµ1 )

]
, · · · ,CT2

[
(Tµ[hµ], rrkµhµ)

]
, dummy, · · · , dummy︸ ︷︷ ︸∑t

i=w+1
si time

〉

13. for all i ∈ [h],
(a) if ytki = (0, ptki),

i. compute 〈c, 〈tb, crk〉〉 ← ΣMM.Get(EMMC , ptki);
ii. set Θ be the range of TR3;
iii. set crk = crk +

∑tb
i=1 si;

iv. if crk ≤
∑w
i=1 si, set

Result[crk] := 〈TR3[Θ1]crk, · · · ,TR3[Θ|Θ|]crk〉;

v. if crk >
∑w
i=1 si, set

Result[crk] := 〈c[Λ−1
t,m,s(Θ1, crk)2], · · · , c[Λ−1

t,m,s(Θ|Θ|, crk)2]〉;

(b) if ytki = (1, a), set Result[a] := 〈ea, · · · , ea︸ ︷︷ ︸
|Θ|

〉;

14. output ET such that every row equals an entry of a label in Result;

Figure 5: An optimized Query algorithm (Part 2).19



where Ri is the set of rows that match the ith term in the select (i.e., the ith result set). Here, we
assume that the projections are on attributes that do not appear in the select operation, which is
the worst case. This represents a lower bound on both the running time and the space complexity of
an SPC query. We now show that the optimized Query algorithm presented in Section 5.1, requires
O(Q) time and space when t, s1, . . . , sn, h, `� m which is common in practice.

Consider a token
tk =

(
t, s,

(
eai

)
i∈[f ],

(
ytki

)
i∈[h],

(
stki

)
i∈[`]

)
,

and an encrypted database EDB = (EMMR,EMMC ,EMMV ,EDX). For ease of exposition, all tables
have the same number of rows m.

When processing the s-tokens we use four multi-maps TR1, TR2, CT1, CT2, and two sets TB1
and TB2 that store the table identifiers in the result sets. Recall that TR1, TR2 both have size O(`)
since there are at most ` s-tokens in tk. TB1 and TB2 have respectively size O(t), O(max(t, `)) since
there are at most t tables involved in the query, and ` possible type-2 pairs. The multi-maps CT1
and CT2 store the encrypted rows that are recovered by processing the s-tokens. That is, they are
of size O(

∑`
i=1 #Ri · si), where si is the number of cells in the ith table. Note that the size of CT1

and CT2 dominates the other data structures. Also, note that the running time is O(
∑`

i=1 #Ri · si).
Computing intersections is performed in O(τ2 ·maxi∈[`] #Ri) steps, where τ = max(t, `). The

intersection goes over all possible tables identifiers in TB1 and TB2. Note that the worst case running
time occurs when the terms of the select operation are all type-2 and have the same attributes,
e.g., a1 = a1

∧
· · ·
∧

a1 = a1. On the other hand, the worst case space complexity occurs when there
are no common attributes between terms in the select operation and this requires O(

∑`
i=1 #Ri · si)

space.
When computing the augmented cross product, the worst case with respect to space occurs

when the result sets have no elements in common so we need to keep all pairs. The cost in space of
this cross product will be

O

(
mh · (Π`

i=1#Ri) ·
t∑

i=1
si

)
= O

(Q
h
·

t∑
i=1

si

)
.

On the other hand, the worst-case with respect to time occurs when all terms in the select operation
share an attribute in common. In such a case the running time is,

O

(
mh · (Π`

i=1#Ri) ·
t∑

i=1
si + τ2 ·max

i∈[`]
#Ri

)
= O

(Q
h
·

t∑
i=1

si

)
.

The generation of the final encrypted table ET requires us to move items from TR3 to Result
and then into ET. The space and time complexity of this operation is dominated by the size of TR3
which is O(Q ·

∑t
i=1 si).

In summary, Query requires O(h−1 · Q ·
∑t

i=1 si) space and time. If we view h−1 ·
∑t

i=1 si as a
constant since, in practice t, s1, . . . , st, h� m, both the running time and the space complexity are
O(Q).

Storage complexity. For a database DB = (T1, . . . ,Tn), SPX produces four encrypted multi-
maps EMMR, EMMC , EMMV and EDX. Let s =

∑
i ‖Ti‖c. For ease of exposition, we again assume

each table has m rows. Finally, note that standard multi-map encryption schemes [15, 23, 8, 7]
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produce encrypted structures with storage overhead that is linear in sum of the tuple sizes. Using
such a scheme as the underlying multi-map encryption scheme, we have that EMMR and EMMC

will be O(
∑

r∈DB #r) and O
(∑

c∈DBᵀ #c
)
, respectively, since the former maps the coordinates of

each row in DB to their (encrypted) row and the latter maps the coordinates of very column to
their (encrypted) columns. Since EMMV maps each cell in DB to tokens for the rows that contain
the same value, it requires O

(∑
c∈DBᵀ

∑
v∈c #DBc=v

)
storage. EDX maps the coordinates of each

column c ∈ DBᵀ to an encrypted multi-map EMMc which in turn maps each pair of form (c, c′)
such that dom(c) = dom(c′) to a tuple of tokens for rows in DBc=c′ . As such, EDX will have size

O

( ∑
c∈DBᵀ

∑
c′:dom(c′)=dom(c)

#DBc=c′

)
.

Note that the expression will vary greatly depending on the number of columns in DB with the
same domain. In the worst case, all columns will have a common domain and the expression will be
a sum of s(s− 1) terms of the form #DBc=c′ . In the best case, none of the columns will share a
domain and EDX will be empty. In practice, however, we expect there to be some relatively small
number of columns with common domains.

6 Security and Leakage

We now show that our construction is adaptively-semantically secure with respect to a well-specified
leakage profile. Part of the subtlety in our security analysis is that some of the leakage is “black-box”
in the sense that it comes from the underlying schemes and part of it “non-black-box” in the
sense that it comes directly from the SPX construction itself. Throughout our discussion of SPX’s
leakage, we consider both its black-box leakage (i.e., when the underlying schemes are left abstract)
and its concrete leakage (i.e., when the underlying schemes are instantiated). To instantiate the
underlying schemes, we consider any of a standard set of SSE constructions from the literature
[15, 23, 12, 8, 7, 27] which all have the same leakage profile, i.e., the search pattern which reveals if
and when a query is repeated. 4 In particular, these SSE schemes can be used to instantiate both
ΣMM and ΣDX since the former is a generalization of the latter.

Setup leakage. The setup leakage of SPX captures what an adversary can learn before performing
any query operation. The setup leakage of SPX is

Lspx
S
(
DB
)

=
(
Ldx

S (DX),Lmm
S (MMR) ,Lmm

S (MMC) ,Lmm
S (MMV )

)
,

where Ldx
S and Lmm

S are the setup leakages of ΣDX and ΣMM, respectively. If the latter are instantiated
with standard encrypted multi-map constructions, the setup leakage of SPX will consist of the
number of rows and columns in DB and the. Note that standard encrypted dictionary constructions
leak only the maximum size of the values they store so the size of the EMMc’s will be hidden (up to
the maximum size).

4Since the schemes are response-revealing, we do not consider the “access pattern leakage” of SSE schemes (which
is defined as the search response) to be leakage in our context.

21



Query leakage. The query leakage is more complex and is defined as follows,

Lspx
Q
(
DB, q

)
=
(

XPP(DB, q),PrP(DB, q),SelP(DB, q)
)
,

where each individual pattern is described next.

Cross product. The first leakage pattern is the cross product pattern which is defined as

XPP(DB, q) =
{
t, ‖Ti1‖c, . . . , ‖Ti`

‖c,
(
|ai|
)

i∈[f ]

}
,

and includes the number and size of the tables needed in the query as well as the size of the virtual
attributes.

Projection. The second leakage pattern is the projection pattern which is defined as

PrP(DB, q) =
(
P(a1), . . . ,P(ah)

)
,

where

P(ai) =


(

real,Lmm
Q

(
MMC ,

〈
tbl(ai), crk(ai)

〉)
,
(
|cj |
)

j∈[#ci]
,AccP(ci)

)
if ai ∈ S(DB);(

virtual, ai

)
if ai ∈ S(VDB),

where ci ∈ DBᵀ is the column with attribute ai and AccP(ci) indicates if and when the column ci

has been accessed before. PrP captures the leakage produced when the server queries MMC and for
every attribute ai reveals whether the attribute is real or virtual. If it is real, it also reveals the
size of the items in the projected column and if and when this column has been accessed before.
Notice that it also reveals the ΣMM query leakage on the coordinates of the projected attribute. If
the latter is instantiated with any of the standard multi-map encryption schemes then this leakage
will reveal whether the attribute ai has appeared in a previous query. If the attribute is virtual, it
just reveals the attribute.

Selection. The third leakage pattern is the selection pattern which is defined as

SelP(DB, q) =
(
Z(a1, X1), . . . ,Z(a`, X`)

)
.

If ai = Xi is type-1, then Z(ai, Xi) is defined as

Z(ai, Xi) =
(

type-1,Lmm
Q

(
MMV ,

〈
Xi,

〈
tbl(ai), crk(ai)

〉〉)
,{

Lmm
Q

(
MMR,

〈
tbl(r), rrk(r)

〉)
,AccP(r)

}
r∈DBai=Xi

)
.

where AccP(r) indicates whether the row r has been accessed before. Z(ai, Xi) captures the leakage
produced when the server queries MMV and uses the resulting row tokens to then query MMR.
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It reveals whether the selection term is of type-1 and the ΣMM query leakage on the constant Xi

and the coordinates of the attribute ai. In addition, it also leaks the ΣMM query leakage on the
coordinates of the rows in DBai=Xi as well as if and when they have been accessed before. If the
encrypted multi-maps are instantiated with standard constructions, Z(ai, Xi) amounts to: if and
when the pair (Xi, ai) has been queried before and if and when any of the rows in DBai=Xi have
been accessed in the past.

If, on the other hand, ai = Xi is type-2, then Z(ai, Xi) is defined as

Z(ai, Xi) =
(

type-2,Ldx
Q

(
DX,

〈
tbl(ai), crk(ai)

〉)
,Lmm

S (MMai),AccP(EMMai),

Lmm
Q

(
MMai ,

〈
〈tbl(ai), crk(ai)〉, 〈tbl(Xi), crk(Xi)〉

〉)
,{

Lmm
Q

(
MMR, 〈tbl(r1), rrk(r1)〉

)
,AccP(r1),

Lmm
Q

(
MMR, 〈tbl(r2), rrk(r2)〉

)
,AccP(r2)

}
(r1,r2)∈DBai=Xi

)
,

where AccP(r), AccP(r1), AccP(r2) and AccP(EMMai) indicate if and when r, r1, r2 and EMMai

have been accessed before. In this case, Z(ai, Xi) captures the leakage produced when the server
queries EDX to retrieve some EMMa which it in turn queries to retrieve row tokens with which
to query EMMR. It reveals whether the selection term is type-2, the ΣDX query leakage on the
coordinates of ai, the ΣMM setup leakage on MMai and if and when EMMai has been accessed in
the past. In addition, it reveals the query leakage of ΣMM on the coordinates of ai and Xi and, for
every pair of rows (r1, r2) in DBai=Xi , their ΣMM query leakage and if and when they were accessed
in the past. Again, if instantiated with standard encrypted multi-maps, this would amount to the
type of the selection, if and when ai had been queried in the past, the number of columns in DB
that share a domain with ai, if and when the pair (ai, Xi) has appeared in previous queries and, for
every pair of rows in DBai=Xi , if and when these rows have been accessed in the past.

Comparison to PPE-based solutions. As mentioned in Section 1, PPE-based solutions can
handle a large class of SQL queries which includes conjunctive queries. To support conjunctive
queries, however, these solutions have to rely on deterministic encryption. For example, to handle a
type-1 select on a column c, they will reveal a deterministic encryptions of c (i.e., every element
of the column is encrypted under the same key). To handle a type-2 select between two columns
c1 and c2, they will reveal deterministic encryptions of both columns (under the same key). In
turn, this will provide the frequency information on entire columns to the server. Depending on the
setting, frequency patterns can be particularly dangerous, as shown in [26].

We note that, in comparison, SPX leaks considerably less. First, it does not leak any frequency
information on entire columns or rows. For type-1 selects, it only leaks information about the
attribute in the select and the rows that match the term. For type-2 selects, it only leaks information
about the pair of attributes (ai, Xi) in the select and the rows that match the term. Note that this
leakage is only a function of the attributes in the query and of the rows that match it, whereas the
leakage in PPE-based solutions is a function of entire columns. Moreover, in the case of SPX, if
the underlying multi-map and dictionary schemes are instantiated with standard constructions, the
information leaked about the attributes and matching rows is “repetition” type of information, i.e.,
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if and when they have appeared in the past. Analogously, the project operations in SPX only leak
information about the attributes in the project and the columns that match it and the information
being leaked “repetition” type of information.

6.1 Security of Our Construction

We now prove that SPX is adaptively semantically-secure with respect to the leakage profile described
in the previous sub-section.

Theorem 6.1. If ΣDX is adaptively
(
Ldx

S ,Ldx
Q
)
-semantically secure and ΣMM is adaptively

(
Lmm

S ,Lmm
Q
)
-

secure, then SPX is (Lspx
S ,Lspx

Q )-semantically secure.

The proof of Theorem 6.1 in Appendix A.

7 Handling Extended Queries

In addition to the basic Select-From-Where structure, SQL queries can also include additional clauses
to post-process the results of a query. The most common examples are the Group-by, Order-by and
various aggregate functions which include Sum, Average, Median, Count, Mode, Max and Min. Here,
we refer to SQL queries with such additional clauses as extended queries. Though SPX cannot
handle extended queries explicitly we note that the additional clauses can be executed at the client.
In cases where the result table R is such that ‖R‖r �

∑n
i=1 ‖Ti‖r, outsourcing a database with SPX

will still be less computationally-expensive than executing the queries locally.

Order-by. The Order-by clause orders the rows in the result table R according to a specified
attribute in either ascending or descending order. These queries have the form:

Select attributes From tables Where conditions Order-by attribute.

Ordering R at the client can be done in O(m logm) time where m = ‖R‖r. Note that the client has
to perform O(m) work just to decrypt the result table so, asymptotically-speaking, ordering R does
not add a lot. In practice, however, Order-by operations are often performed on integer or string
columns and in the latter case this can be expensive if the strings are long. A simple optimization
is for the client to compute the order of the rows during the setup phase and to add a column that
includes a CPA-secure encryption of each row’s order. When the client retrieves the result-table R
it can then decrypt the column and order the rows using a numerical sorting algorithm (as opposed
to lexicographic).

Group by. Another common SQL clause is Group-by which is used to partition the rows in the
result table by a specified attribute. Group-by is typically used with aggregate functions (i.e., Sum,
Max etc.). Such queries have the form:

Select attributes attributes From tables Where conditions Group-byattributes.

Group-by clauses can be handled at the client in O(m) time, where m = ‖R‖r.
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Aggregates. Often, one needs to compute a function on the rows of the result table (e.g.,
computing a sum of salaries from employee table). In SQL, this is handled with an aggregate
function. For example, a query with the Sum function has the form:

Select Sum(attribute) From tables Where conditions.

Some of the aggregates can be handled by the server by extending SPX in the natural way. For
example, to handle Count the server can simply return the number of rows in the encrypted result
table ET. To handle Sum on a given attribute a, it suffices to encrypt the cells of that column with
an additively-homomorphic encryption scheme and have the server return the sum of the resulting
column. The remaining functions like Max, Min, Median, Mode, have to be handled at the client.
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A Proof of Theorem 6.1

Theorem 6.1. If ΣDX is adaptively
(
Ldx

S ,Ldx
Q
)
-semantically secure and ΣMM is adaptively(

Lmm
S ,Lmm

Q
)
-secure, then SPX is (Lspx

S ,Lspx
Q )-semantically secure.

Proof. Let SDX and SMM be the simulators guaranteed to exist by the adaptive security of ΣDX and
ΣMM and consider the SPX simulator S that works as follows. Given Lspx

S (DB), S simulates EDB by
computing EDX← SDX

(
Ldx

S (DX)
)
, EMMR ← SMM

(
Lmm

S (MMR)
)
, EMMC ← SMM

(
Lmm

S (MMC)
)

and
EMMV ← SMM

(
Lmm

S (MMV )
)

and outputting

EDB = (EMMR,EMMC ,EMMV ,EDX).

Recall that SPX is response-hiding so S receives
(
⊥,Lspx

Q (DB, q)
)

as input in the RealSPX,S(k)
experiment. Given this input, S simulates a token

tk =
(
t, s, (ei)i∈[f ], (ytki)i∈[h], (stki)i∈[`]

)
as follows. It retrieves t and s directly from XPP(DB, q). It then samples K1

$← {0, 1}k and, for all
i ∈ [f ], computes ei ← EncK1(0|ai|), where |ai| is also from XPP(DB, q).

For all i ∈ [h], if

P(ai) =
(

real,Lmm
Q

(
MMC ,

〈
tbl(ai), crk(ai)

〉)
, (|cj |)j∈[#c],AccP(c)

)
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it sets
ytki := ptki ← SMM

((
ctj
)

j∈[#c],L
mm
Q

(
MMC ,

〈
tbl(ai), crk(ai)

〉))
,

where ctj ← EncK1(0|cj |) if the column has never been accessed before and where ctj is the previously
used ciphertext otherwise. If, on the other hand, P(ai) = (virtual, ai) it sets ytki := ai.

Then, for all i ∈ [`], it simulates stki as follows. If Z(ai) is type-1, it first computes for all
r ∈ DBai=Xi ,

rtkr ← SMM

((
ctj
)

j∈[#r],L
mm
Q

(
MMR,

〈
tbl(r), rrk(r)

〉)
where ctj ← EncK1(0|rj |) if r has never been accessed and ctj is the previously used ciphertext
otherwise. It then computes the token

stki := vtki ← SMM

((
rtkr

)
r∈DBai=Xi

,Lmm
Q

(
MMV ,

〈
tbl(ai), crk(ai)

〉))
.

If, on the other hand, Z(ai) is type-2, S starts by computing

dtki ← SDX

(
EMMai ,Ldx

Q

(
〈tbl(ai), crk(ai)〉

))
where EMMai ← SMM

(
Lmm

S (MMai)
)

if it has never been accessed before and where EMMai is the
previously-used structure otherwise. It then computes, for all (r1, r2) ∈ DBai=Xi ,

rtk1 ← SMM

((
ctj
)

j∈[#r1],L
MM
Q

(
MMR, 〈tbl(r1), rrk(r1)〉

))
and

rtk2 ← SMM

((
ct′j
)

j∈[#r2],L
MM
Q

(
MMR, 〈tbl(r2), rrk(r2)〉

))
,

where ctj ← EncK1(0|r1[j]|) and ct′j ← EncK1(0|r2[j]|) if they have never been accessed and ctj and
ct′j are the previously-used ciphertexts otherwise. Finally, it computes

jtki ← SMM

({
rtkr1 , rtkr2

}
(r1,r2)∈DBai=Xi

,Lmm
Q

(
MMai ,

〈
tbl(ai), tbl(Xi)

〉))
,

and sets stki = (dtki, jtki).
It remains to show that for all probabilistic polynomial-time adversaries A, the probability that

RealSPX,A(k) outputs 1 is negligibly-close to the probability that IdealSPX,A,S(k) outputs 1. We
do this using the following sequence of games:

Game0 : is the same as a RealSPX,A(k) experiment. For ease of exposition, we define LocΨ as the
tuple of left-hand-side attributes in the type-2 terms of Ψ; i.e., the ai’s in the terms of form
ai = xi.

Game1 : is the same as Game0, except that EMMC is replaced with the output of SMM
(
Lmm

S (MMC)
)

and, for every normal form query q, each real y-token ytki is replaced with the output of

SMM

((
ctj
)

j∈[#c],AccP(c),Lmm
Q

(
MMC ,

〈
tbl(ai), crk(ai)

〉))
.
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Game2 : is the same as Game1, except that EMMV is replaced with the output of SMM
(
Lmm

S (MMV )
)

and, for every normal form query q, every type-1 s-token stki is replaced with the output of

SMM

((
rtkr

)
r∈DBai=Xi

,Lmm
Q

(
MMV ,

〈
tbl(ai), crk(ai)

〉))
.

Game3 : is the same as Game2, except that EDX is replaced with the output of SDX
(
Ldx

S (DX)
)

and,
for every normal form query q, every dictionary token dtki in type-2 s-tokens stki = (dtki, jtki)
are replaced with the output of

SDX

(
EMMai ,AccP(EMMai),Ldx

Q

(
〈tbl(ai), crk(ai)〉

))
.

Game3+l for l ∈ [#LocΨ]: is the same as Game2+l, except that EMMLocΨ[l] is replaced with the
output of SMM

(
Lmm

S (MMLocΨ[l])
)

and for all type-2 terms ai = xi in Ψ such that ai = LocΨ[l],
the join tokens jtki in the type-2 s-token stki = (dtki, jtki) is replaced with the output of

SMM

({
rtkr1 , rtkr2

}
(r1,r2)∈DBLocΨ[l]=xi

,

Lmm
Q

(
MMLocΨ[l],

〈
tbl(LocΨ[l]), crk(LocΨ[l])

〉
,〈

tbl(xi), crk(xi)
〉))

.

Game4+#LocΨ : is the same as Game3+#LocΨ , except that EMMR is replaced with the output of
SMM

(
Lmm

S (MMR)
)

and every row token rtkr for a row r is replaced with the output of of

SMM

({
ctj
}

j∈[#r],AccP(r),Lmm
Q

(
MMR,

〈
tbl(r), rrk(r)

〉))
where ctj ← EncK1(rj).

Game5+#LocΨ : is the same as Game4+#LocΨ , except that every SKE encryption ct of a message m
is replaced with ct← EncK1(0|m|). Note that message size information is always available to
the simulator S through its leakage.

Game6+#LocΨ : is the same as Game5+#Loc, except that for every token tk for a normal form query
q, t and s are replaced with t and s from XPP(DB, q). Note that Game6+#LocΨ is identical to
IdealSPX,A,S(k).

Claim 1. For all ppt adversaries A,∣∣∣∣Pr [ Game0 = 1 ]− Pr [ Game1 = 1 ]
∣∣∣∣ ≤ negl(k).

We show that if there exists a ppt adversary A that contradicts the claim, then there exists a
ppt adversary B that breaks the adaptive semantic security of ΣMM with respect to an arbitrary ppt
simulator S ′. B starts by running A. When A outputs DB =

(
T1, · · · ,Tn

)
, B creates a dictionary
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DX, a column multi-map MMC , a row multi-map MMR, a value multi-map MMV and a set of
multi-maps {MMc}c∈DBᵀ , from DB. Note that this can be done by executing Steps 1 through 10 of
SPX.Setup. B then outputs MMC . Upon receiving EMM?

C—from either a RealΣMM,B(k) experiment
or an IdealΣMM,B,S′(k) experiment—B sends ERD to A, where

EDB = (EMMR,EMM?
C ,EMMV ,EDX),

with (KD,EDX)← ΣDX.Setup
(
1k,DX

)
such that for all c ∈ DBᵀ, DX[c] = EMMc where (Kc,EMMc)←

ΣMM.Setup
(
1k,MMc

)
, (KR,EMMR)← ΣMM.Setup

(
1k,MMR

)
and (KV ,EMMV )← ΣMM.Setup

(
1k,MMV

)
).

Whenever A outputs a normal form query

q = πa1,··· ,ah

(
[a1]× · · · × [af ]× σΨ(Ti1 × · · · × Tit)

)
,

where Ψ = a1 = X1∧· · ·∧a` = X`, B does the following. For all i ∈ [h], B outputs
〈

tbl
(
ai
)
, crk

(
ai
)〉

as its own query to EMM?
C and receives ytk?

i . It then sends to A the token

tk = (t, s, (ei)i∈[f ], (ytk)?
i∈[h], (stki)i∈[`]);

where t is the number of queried tables, s =
∑t

j=1 ‖Tij‖c and for all i ∈ [f ], ei ← EncK1(ai). For

all i ∈ [`], if ai = Xi is type-1, then stki = vtki such that vtki ← ΣMM.TokenKV

(〈
Xi,

〈
tbl(ai), crk(ai)

〉〉)
.

Otherwise if ai = Xi is type-2, then stki = (dtki, jtki) such that dtki ← ΣDX.TokenKD

(〈
tbl(ai), crk(ai)

〉)
and jtki ← ΣMM.TokenKai

(〈〈
tbl(ai), crk(ai)

〉
,
〈
tbl(Xi), crk(Xi)

〉〉)
.

After answering all of A’s queries, A outputs a bit which B returns as its own output. Note
that if B is executed in a RealΣMM,B(k) experiment then, by construction, A’s view is exactly its
view in Game0. On the other hand, if B is executed in an IdealΣMM,B,S′(k) experiment, then A’s
view is, by construction, exactly its view in Game1. It follows by our initial assumption that∣∣∣∣Pr [ RealΣMM,B(k) = 1 ]− Pr

[
IdealΣMM,B,S′(k) = 1

]∣∣∣∣
is non-negligible, which is a contradiction.

�

Claim 2. For all ppt adversaries A,∣∣∣∣Pr [ Game1 = 1 ]− Pr [ Game2 = 1 ]
∣∣∣∣ ≤ negl(k).

We show that if there exists a ppt adversary A that contradicts the claim, then there exists a
ppt adversary B that breaks the adaptive semantic security of ΣMM with respect to an arbitrary ppt
simulator S ′. B starts by running A. When A outputs DB =

(
T1, · · · ,Tn

)
, B creates a dictionary

DX, a column multi-map MMC , a row multi-map MMR, a value multi-map MMV and a set of
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multi-maps {MMc}c∈DBᵀ , from DB. B then outputs MMV . Upon receiving EMM?
V —from either a

RealΣMM,B(k) experiment or an IdealΣMM,B,S′(k) experiment—B sends ERD to A, where

EDB = (EMMR,EMMC ,EMM?
V ,EDX),

with EMMC ← SMM
(
Lmm

S (MMC)
)
, (KD,EDX) ← ΣDX.Setup

(
1k,DX

)
such that for all c ∈ DBᵀ,

DX[c] = EMMc where (Kc,EMMc)← ΣMM.Setup
(
1k,MMc

)
and (KR,EMMR)← ΣMM.Setup

(
1k,MMR

)
.

Whenever A outputs a normal form query q. B does the following. For all i ∈ [`] such that
ai = Xi is type-2, B outputs 〈

Xi,

〈
tbl(ai), crk(ai)

〉〉
as its own query to EMM?

V and receives vtk?
i . It then sends to A the token

tk = (t, s, (ei)i∈[f ], (ytk)i∈[h], (stki)?
i∈[`]);

where t is the number of queried tables, s =
∑t

j=1 ‖Tij‖c and for all i ∈ [f ], ei ← EncK1(ai). If
ai ∈ S(DB),

ytki := ptki ← SMM

((
ctj
)

j∈[#c],AccP(ai),Lmm
Q

(
MMC ,

〈
tbl(ai), crk(ai)

〉))
.

Given AccP(ai), ctj is either equal to EncK1(cj) if the column has never been accessed before,
or the previously used ciphertext otherwise. If, on the other hand, ai ∈ S(VDB) , ytki := ai. For all

i ∈ [`], if ai = Xi is type-2, then stki = (dtki, jtki) such that dtki ← ΣDX.TokenKD

(〈
tbl(ai), crk(ai)

〉)
and jtki ← ΣMM.TokenKai

(〈〈
tbl(ai), crk(ai)

〉
,
〈
tbl(Xi), crk(Xi)

〉〉)
.

After answering all of A’s queries, A outputs a bit which B returns as its own output. Note
that if B is executed in a RealΣMM,B(k) experiment then, by construction, A’s view is exactly its
view in Game1. On the other hand, if B is executed in an IdealΣMM,B,S′(k) experiment, then A’s
view is, by construction, exactly its view in Game2. It follows by our initial assumption that∣∣∣∣Pr [ RealΣMM,B(k) = 1 ]− Pr

[
IdealΣMM,B,S′(k) = 1

]∣∣∣∣
is non-negligible, which is a contradiction.

�

Claim 3. For all ppt adversaries A,∣∣∣∣Pr [ Game2 = 1 ]− Pr [ Game3 = 1 ]
∣∣∣∣ ≤ negl(k).

We show that if there exists a ppt adversary A that contradicts the claim, then there exists a
ppt adversary B that breaks the adaptive semantic security of ΣDX with respect to an arbitrary ppt
simulator S ′. B starts by running A. When A outputs DB =

(
T1, · · · ,Tn

)
, B creates a dictionary

DX, a column multi-map MMC , a row multi-map MMR, a value multi-map MMV and a set of
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multi-maps {MMc}c∈DBᵀ , from DB. B then outputs DX. Upon receiving EDX?—from either a
RealΣDX,B(k) experiment or an IdealΣDX,B,S′(k) experiment—B sends ERD to A, where

EDB = (EMMR,EMMC ,EMMV ,EDX?),

with EMMC ← SMM
(
Lmm

S (MMC)
)
, EMMV ← SMM

(
Lmm

S (MMV )
)

and (KR,EMMR)← ΣMM.Setup
(
1k,MMR

)
.

Whenever A outputs a normal form query q, B does the following. For all i ∈ [`] such that

ai = Xi is type-2, B outputs
〈

tbl(ai), crk(ai)
〉

as its own query to EDX? and receives dtk?
i . It then

sends to A the token
tk = (t, s, (ei)i∈[f ], (ytk)i∈[h], (stki)?

i∈[`]);

where t is the number of queried tables, s =
∑t

j=1 ‖Tij‖c and for all i ∈ [f ], ei ← EncK1(ai). If
ai ∈ S(DB),

ytki := ptki ← SMM

((
ctj
)

j∈[#c],AccP(ai),Lmm
Q

(
MMC ,

〈
tbl(ai), crk(ai)

〉))
.

Given AccP(ai), ctj is either equal to EncK1(cj) if the column has never been accessed before, or
the previously used ciphertext otherwise. If, on the other hand, ai ∈ S(VDB) , ytki := ai. For all i ∈

[`], if ai = Xi is type-1, stki := vtki ← SMM

((
rtkr

)
r∈DBai=Xi

,Lmm
Q

(
MMV ,

〈
tbl(ai), crk(ai)

〉))
, with

rtkr ← ΣMM.TokenKR

(〈
tbl(r), rrk(r)

〉)
for r ∈ DBai=Xi . If ai = Xi is type-2, then stki = (dtk?

i , jtki)

such that jtki ← ΣMM.TokenKai

(〈〈
tbl(ai), crk(ai)

〉
,
〈
tbl(Xi), crk(Xi)

〉〉)
.

After answering all of A’s queries, A outputs a bit which B returns as its own output. Note
that if B is executed in a RealΣDX,B(k) experiment then, by construction, A’s view is exactly its
view in Game2. On the other hand, if B is executed in an IdealΣDX,B,S′(k) experiment, then A’s
view is, by construction, exactly its view in Game3. It follows by our initial assumption that∣∣∣∣Pr [ RealΣDX,B(k) = 1 ]− Pr

[
IdealΣDX,B,S′(k) = 1

]∣∣∣∣
is non-negligible, which is a contradiction.

�

Claim 4. For all l ∈ [#LocΨ], all ppt adversaries A,∣∣∣∣Pr [ Game2+l = 1 ]− Pr [ Game3+l = 1 ]
∣∣∣∣ ≤ negl(k).

We show that if there exists a ppt adversary A that contradicts the claim, then there exists a
ppt adversary B that breaks the adaptive semantic security of ΣMM with respect to an arbitrary ppt
simulator S ′. B starts by running A. When A outputs DB =

(
T1, · · · ,Tn

)
, B creates a dictionary

DX, a column multi-map MMC , a row multi-map MMR, a value multi-map MMV and a set of
multi-maps {MMc}c∈DBᵀ , from DB. B then outputs MMLocΨ[l]. Upon receiving EMM?

LocΨ[l]—from
either a RealΣMM,B(k) experiment or an IdealΣMM,B,S′(k) experiment—B sends ERD to A, where

EDB = (EMMR,EMMC ,EMMV ,EDX),
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with EMMC ← SMM
(
Lmm

S (MMC)
)
, EMMV ← SMM

(
Lmm

S (MMV )
)
, EDX ← SDX

(
Ldx

S (DX)
)

and
(KR,EMMR)← ΣMM.Setup

(
1k,MMR

)
.

Whenever A outputs a normal form query q, B does the following. For all i ∈ [`] such that
ai = Xi with ai = LocΨ[l], B outputs〈〈

tbl(LocΨ[l]), crk(LocΨ[l])
〉
,
〈
tbl(Xi), crk(Xi)

〉〉
as its own query to EMM?

LocΨ[l] and receives jtk?
i . It then sends to A the token

tk = (t, s, (ei)i∈[f ], (ytk)i∈[h], (stki)?
i∈[`]);

where t is the number of queried tables, s =
∑t

j=1 ‖Tij‖c and for all i ∈ [f ], ei ← EncK1(ai). If
ai ∈ S(DB),

ytki := ptki ← SMM

((
ctj
)

j∈[#c],AccP(ai),Lmm
Q

(
MMC ,

〈
tbl(ai), crk(ai)

〉))
.

Given AccP(ai), ctj is either equal to EncK1(cj) if the column has never been accessed before, or
the previously used ciphertext otherwise. If, on the other hand, ai ∈ S(VDB) , ytki := ai. For all i ∈

[`], if ai = Xi is type-1, stki := vtki ← SMM

((
rtkr

)
r∈DBai=Xi

,Lmm
Q

(
MMV ,

〈
tbl(ai), crk(ai)

〉))
, with

rtkr ← ΣMM.TokenKR

(〈
tbl(r), rrk(r)

〉)
for r ∈ DBai=Xi . If ai = Xi is type-2, then stki = (dtki, jtk?

i )

equals:

• if z = l, dtki ← SDX

(
EMM?

LocΨ[l],Ldx
Q

(
〈tbl(LocΨ[l]), crk(LocΨ[l])〉

))
and jtki = jtk?

i

• for all z < l, dtki ← SDX

(
EMMLocΨ[z],AccP(EMMLocΨ[z]),Ldx

Q

(
〈tbl(LocΨ[z]), crk(LocΨ[z])〉

))
with AccP(EMMLocΨ[z]) is a leakage that captures when and where EMMLocΨ[z] was gener-
ated. Thus, it can be either equal to EMMLocΨ[z] ← SMM(Lmm

S (MMLocΨ[z])), or, a previously
simulated one, and

jtki ← SMM

({
rtkr1 , rtkr2

}
(r1,r2)∈DBLocΨ[z]=Xi

,Lmm
Q

(
MMLocΨ[z],

〈
tbl(LocΨ[z]), tbl(Xi)

〉))
,

with rtkr1 ← ΣMM.TokenKR

(
〈tbl(r1), rrk(r1)〉

)
and rtkr2 ← ΣMM.TokenKR

(
〈tbl(r2), rrk(r2)〉

)
.

• for all z > l, dtki ← SDX

(
EMMLocΨ[z],AccP(EMMLocΨ[z]),Ldx

Q

(
〈tbl(LocΨ[z]), crk(LocΨ[z])〉

))
with either EMMLocΨ[z] ← ΣMM.Setup(1k,MMLocΨ[z], or a previously generated one, and

jtki ← ΣMM.TokenKai

(〈〈
tbl(LocΨ[z]), crk(LocΨ[z])

〉
,
〈
tbl(Xi), crk(Xi)

〉〉)
.
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After answering all of A’s queries, A outputs a bit which B returns as its own output. Note
that if B is executed in a RealΣMM,B(k) experiment then, by construction, A’s view is exactly its
view in Game2+l. On the other hand, if B is executed in an IdealΣMM,B,S′(k) experiment, then A’s
view is, by construction, exactly its view in Game3+l. It follows by our initial assumption that∣∣∣∣Pr [ RealΣMM,B(k) = 1 ]− Pr

[
IdealΣMM,B,S′(k) = 1

]∣∣∣∣
is non-negligible, which is a contradiction.

�

Claim 5. For all ppt adversaries A,∣∣∣∣Pr [ Game3+#LocΨ = 1 ]− Pr [ Game4+#LocΨ = 1 ]
∣∣∣∣ ≤ negl(k).

We show that if there exists a ppt adversary A that contradicts the claim, then there exists a
ppt adversary B that breaks the adaptive semantic security of ΣMM with respect to an arbitrary ppt
simulator S ′. B starts by running A. When A outputs DB =

(
T1, · · · ,Tn

)
, B creates a dictionary

DX, a column multi-map MMC , a row multi-map MMR, a value multi-map MMV and a set of
multi-maps {MMc}c∈DBᵀ , from DB. B then outputs MMR. Upon receiving EMM?

R—from either a
RealΣMM,B(k) experiment or an IdealΣMM,B,S′(k) experiment—B sends ERD to A, where

EDB = (EMM?
R,EMMC ,EMMV ,EDX),

with EMMC ← SMM
(
Lmm

S (MMC)
)
, EMMV ← SMM

(
Lmm

S (MMV )
)

and EDX← SDX
(
Ldx

S (DX)
)
.

Whenever A outputs a normal form query q, B does the following. B outputs
〈

tbl(r), rrk(r)
〉

as

its own query to EMM?
R and receives rtk?

r. It then sends to A the token

tk = (t, s, (ei)i∈[f ], (ytk)i∈[h], (stki)i∈[`]);

where t is the number of queried tables, s =
∑t

j=1 ‖Tij‖c and for all i ∈ [f ], ei ← EncK1(ai). If
ai ∈ S(DB),

ytki := ptki ← SMM

((
ctj
)

j∈[#c],AccP(ai),Lmm
Q

(
MMC ,

〈
tbl(ai), crk(ai)

〉))
.

Given AccP(ai), ctj is either equal to EncK1(cj) if the column has never been accessed before,
or the previously used ciphertext otherwise. If, on the other hand, ai ∈ S(VDB) , ytki := ai. For all

i ∈ [`], if ai = Xi is type-1, stki := vtki ← SMM

((
rtk?

r
)

r∈DBai=Xi

,Lmm
Q

(
MMV ,

〈
tbl(ai), crk(ai)

〉))
. If

ai = Xi is type-2, then stki = (dtki, jtki) such that dtki ← SDX

(
EMMai ,AccP(EMMai),Ldx

Q

(
〈tbl(ai), crk(ai)〉

))
with AccP(EMMai) is a leakage that captures when and where EMMai was generated. Thus, it can
be either equal to EMMai ← SMM(Lmm

S (MMai)), or, a previously simulated one, and

jtki ← SMM

({
rtk?

r1 , rtk
?
r2

}
(r1,r2)∈DBai=Xi

,Lmm
Q

(
MMai ,

〈
tbl(ai), tbl(Xi)

〉))
.
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After answering all of A’s queries, A outputs a bit which B returns as its own output. Note that
if B is executed in a RealΣMM,B(k) experiment then, by construction, A’s view is exactly its view
in Game3+#LocΨ . On the other hand, if B is executed in an IdealΣMM,B,S′(k) experiment, then A’s
view is, by construction, exactly its view in Game4+#LocΨ . It follows by our initial assumption that∣∣∣∣Pr [ RealΣMM,B(k) = 1 ]− Pr

[
IdealΣMM,B,S′(k) = 1

]∣∣∣∣
is non-negligible, which is a contradiction.

�

Claim 6. For all ppt adversaries A,∣∣∣∣Pr [ Game4+#LocΨ = 1 ]− Pr [ Game5+#LocΨ = 1 ]
∣∣∣∣ ≤ negl(k).

We show that if there exists a ppt adversary A that contradicts the claim, then there exists a
ppt adversary B that breaks the adaptive semantic security of SKE = (Gen,Enc,Dec) with respect
to an arbitrary ppt simulator S ′. B starts by running A. When A outputs DB =

(
T1, · · · ,Tn

)
, B

creates a dictionary DX, a column multi-map MMC , a row multi-map MMR, a value multi-map
MMV and a set of multi-maps {MMc}c∈DBᵀ , from DB. B then outputs all message m for all cells.
Upon receiving ct? for all cells in DB—from either a RealSKE,B(k) experiment or an IdealSKE,B,S′(k)
experiment—. B sends ERD to A, where

EDB = (EMMR,EMMC ,EMMV ,EDX),

with EMMC ← SMM
(
Lmm

S (MMC)
)
, EMMV ← SMM

(
Lmm

S (MMV )
)
, EDX ← SDX

(
Ldx

S (DX)
)

and
EMMR ← SMM

(
Lmm

S (MMR)
)
.

Whenever A outputs a query χ, B does the following. For all i ∈ [f ], B outputs ai and receives
e?

i . It then sends to A the token

tk = (t, s, (ei)?
i∈[f ], (ytk)i∈[h], (stki)i∈[`]);

where t is the number of queried tables and s =
∑t

j=1 ‖Tij‖c. If ai ∈ S(DB),

ytki := ptki ← SMM

((
ct?

j

)
j∈[#c],AccP(ai),Lmm

Q

(
MMC ,

〈
tbl(ai), crk(ai)

〉))
.

Given AccP(ai), ctj? is either equal to a simulated ciphertext if the column has never been ac-
cessed before, or the previously used ciphertext otherwise. If, on the other hand, ai ∈ S(VDB) , ytki :=

ai. For all i ∈ [`], if ai = Xi is type-1, stki := vtki ← SMM

((
rtkr

)
r∈DBai=Xi

,Lmm
Q

(
MMV ,

〈
tbl(ai), crk(ai)

〉))
.

If ai = Xi is type-2, then stki = (dtki, jtki) dtki ← SDX

(
EMMai ,AccP(EMMai),Ldx

Q

(
〈tbl(ai), crk(ai)〉

))
with AccP(EMMai) is a leakage that captures when and where EMMai was generated. Thus, it can
be either equal to EMMai ← SMM(Lmm

S (MMai)), or, a previously simulated one, and

jtki ← SMM

({
rtkr1 , rtkr2

}
(r1,r2)∈DBai=Xi

,Lmm
Q

(
MMai ,

〈
tbl(ai), tbl(Xi)

〉))
,
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with rtkr in both cases above equals

rtkr ← SMM

({
ct?

j

}
j∈[#r],AccP(r),Lmm

Q

(
MMR,

〈
tbl(r), rrk(r)

〉))
,

where AccP(r) captures when and where r has been queried. Thus, ct?
j can be either freshly

generated, or, re-used from a previously generated one.
After answering all of A’s queries, A outputs a bit which B returns as its own output. Note that

if B is executed in a RealSKE,B(k) experiment then, by construction, A’s view is exactly its view
in Game4+#LocΨ . On the other hand, if B is executed in an IdealSKE,B,S′(k) experiment, then A’s
view is, by construction, exactly its view in Game5+#LocΨ . It follows by our initial assumption that∣∣∣∣Pr [ RealSKE,B(k) = 1 ]− Pr

[
IdealSKE,B,S′(k) = 1

]∣∣∣∣
is non-negligible, which is a contradiction.

�

Claim 7. For all ppt adversaries A,∣∣∣∣Pr [ Game5+#LocΨ = 1 ] = Pr [ Game6+#LocΨ = 1 ]
∣∣∣∣.

It is clear that the view of both games is the same.
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