
Dynamic Policy Update for Ciphertext-Policy
Attribute-Based Encryption

Wei Yuan ⋆

Abstract. Ciphertext-policy attribute-based encryption (CP-ABE) is
a promising access control technique for cloud storage. However, due to
the absence of the update function, CP-ABE has not been widely accept-
ed as a complete access control tool. In this paper, we add the update
function for CP-ABE such that data access policy can be dynamically
updated after the ciphertext is generated. First, we present a new lin-
ear secret sharing (LSS) matrix update algorithm based on existing LSS
matrix generation algorithm. Then we summarize the common structure
of some typical CP-ABE schemes and abstract a basic CP-ABE scheme
from them. Next, based on the matrix update algorithm, we implement
the policy update algorithm with the encryption algorithm of the ba-
sic CP-ABE scheme. In our scheme, data access policy can be directly
changed without key update. If a user, whose attributes satisfy the old
data access policy, does not decrypt old ciphertext before the policy up-
date, he cannot obtain the data after the ciphertext is updated. As a
result, the long-term problem “user can refuse to the update on his se-
cret key if the policy update reduces his privilege” that hinders CP-ABE
from being a practical network access control tool is overcome. Mean-
while, private channels to transmit update keys for non-revoked users
are eliminated. The communication, computation, and storage costs for
an update no longer depend on the number of users, but are relative to
the number of attributes in the access policy.

Keywords: Access control, attribute based encryption, policy update

1 Introduction

Our Motivation. In cloud storage systems, data files can be stored on different
platforms and geographic locations, and the management and usage for data are
very convenient. This brings numerous advantages for commercial applications
and prompts more and more organizations to migrate their valuable data from
local storage systems to cloud storage systems. As a result, many security equip-
ments to protect dispersive local servers are saved and the costs for organizations
are greatly reduced. Meanwhile, since valuable data are stored on remote cloud
servers, access control should be achieved by network and cloud servers become
high value attacking targets.

⋆ Wei Yuan is with State Key Laboratory of Information Security, Institute of Infor-
mation Engineering, Chinese Academy of Sciences, Beijing 100093, China.

An intuitive solution to control data access privilege in cloud storage systems
is to give full control privilege of data to cloud servers and increase security facil-
ities, such as firewall and intrusion detection system, to protect them. However,
this straightforward approach may incur uncontrollable risks for organizations:
A hacker may intrude into the cloud storage system and bypasses the securi-
ty facilities or the authentication mechanism utilizing system vulnerabilities. In
addition, cloud servers may grant access privilege of organizations’ data to unau-
thorized users or use these data by themselves. This threat cannot be defended
with technique measures in advance. Thus, most organizations do not wish to
grant full control privilege of their data to cloud service providers although data
files are stored on them.

A promising access control technique to solve this problem is cryptograph-
ically enforced access control, CP-ABE [1]. Organizations may encrypt their
data and set access polices for encrypted data with CP-ABE. Only the user-
s with appropriate authorization can decrypt the encrypted data. However, a
complete access control scheme should provide 4 functions: create, read, update,
and delete. In CP-ABE, the encryption algorithm provides the function of create;
the decryption algorithm provides the function of read; removing the ciphertext
equals the function of delete; but no algorithm provides the function of update.
That is to say, CP-ABE can only set an initial access policy for data files. When
a user is dismissed or promoted, his access privileges on existing data files cannot
be changed dynamically. For this reason, CP-ABE has not been regarded as a
complete access control tool to control access policy of massive data. This prob-
lem motivates the studies of dynamic policy update on CP-ABE, which includes
the functions of elevating or reducing the access privileges of certain kinds of
users on certain data files.

Seemingly, run the encryption algorithm again under a new access policy
is able to circumvent the problem of policy update. However, the encryption
algorithm needs the original data as an input. If the re-encryption is executed
by the cloud server, it surely knows the plaintext of the data. That is equivalent
to give full control privilege to cloud servers and thus the cryptographically
enforced access control is meaningless. Otherwise, if the re-encryption is executed
by the data owner, the cloud server that stores the data files should transmit
the encrypted files back to him. Then the data owner should decrypt and re-
encrypt data files. It means that many valuable data will repeatedly appear in
the owners’ devices, and thus data owners also become high value attacking
targets as cloud servers and each data owner should be protected with security
equipments. This violates the original target of cloud storage in security area.
Thus, transmitting data back to data owner is also not reasonable. As a result,
re-encrypting the original data cannot circumvent the problem of policy update.

In local storage systems, access control can be enforced on each user. How-
ever, in cloud storage, there is not an enforcement mechanism to oblige users
to accept operations on their private keys. This is the main difference between
local access control and network access control. In cloud storage, if the policy
update reduces/cancels a user’s access privilege, he can refuse the update on his

secret key and continues to decrypt the encrypted files that he once had ability
to decrypt. Thus, a policy update algorithm on CP-ABE cannot simply update
the secret keys of the revoked users when it modifies data access policy.

To fit for the network environment of cloud storage, existing policy update
methods on CP-ABE have no choice but to produce update keys for all the non-
revoked users. This brings an inexpectant result: To change data access policy
for once, the number of secret keys, which should be updated, depends on the
number of non-revoked users in the cloud system but not the number of changed
attributes of the access policy. We know that modern cloud storage systems
store huge amount of data and serve millions of users at the same time while the
number of attributes to control data access policy is very limited (Usually dozens
of attributes are enough). This inherent problem greatly reduces the efficiency
of existing policy update methods such that organizations are reason to doubt
the feasibility of CP-ABE in practical systems.

In this paper, we propose a dynamic policy update method on CP-ABE to
overcome the long-term problem that CP-ABE cannot dynamically change data
access policy such that cryptographically enforced access control can be accept-
ed as a complete access control tool.

Our Updating Principle. First of all, the principle of our policy update is
different from previous methods. In existing policy update schemes, a CP-ABE
scheme is viewed as a scale. The left tray places a decryption key and the right
tray places a ciphertext. The balance state of the scale represents the decryption
key matches the ciphertext. Suppose the scale is balance before an update. If the
data owner only changes the ciphertext, the balance state is sure to be broken.
To recover the balance state after the update on the old ciphertext, updating
decryption keys is unavoidable. This is the philosophic essence of current pol-
icy update methods. However, in our observation, a CP-ABE scheme also can
be regarded as a steelyard. The left side is a decryption key and the right side
is a ciphertext. The balance state represents the decryption key matches the
ciphertext. Regard the access policy as the tick mark on the weigh beam and
each ciphertext component, which is viewed as a weight, is placed at the right
position according to the access policy. When the data access policy changes,
we may take off, reset, or recombine parts of ciphertext components according
to the differences between new access policy and the original one. Then the s-
teelyard will recover the balance state. This will bring an exciting result that
the decryption key on the left side does not need to change at all. As a result,
the owners of the associated decryption keys do not have the right to refuse the
update and thus other users do not need to update their decryption keys for
unrelated updates.

Our Technique. To implement the policy update on CP-ABE under above
idea, we make following innovations.

First, we propose a matrix update algorithm, which is compatible with the
existing matrix generation algorithm, to transform an old LSS [2] matrix to a

new one. By comparing the two matrices, we can find the attributes, whose
corresponding vectors in the LSS matrix are changed when the access policy
updates. We observe a fact that only the ciphertext components corresponding
to these attributes need to be updated for changing data access policy.

Then, we summarize the common structure of some typical CP-ABE schemes
and abstract a basic CP-ABE scheme from them. We propose a new policy up-
date algorithm based on the matrix update algorithm and implement it with the
encryption algorithm of the basic CP-ABE scheme. The policy update algorithm
does not need original data or old ciphertext as an input. Data owner is able
to execute it independently to output a group of update components in off-line
manner and then cloud server can generate ciphertext corresponding to the new
access policy with the update components and the old ciphertext. The distri-
bution of the new ciphertext is the same as the distribution of the ciphertext
generated by the encryption algorithm under same access policy. Moreover, the
update components can be transmitted from the data owner to the cloud server
publicly.

Eventually, we construct a CP-ABE scheme with the function of dynamic
policy update, called PU-CP-ABE, and prove that PU-CP-ABE is secure if the
basic CP-ABE scheme is secure. Performance analysis on PU-CP-ABE shows:
Given the update components, the ciphertext update time is even less than the
encryption time.

Paper Organization. The remainder of our paper is structured as follows. In
Section 2, we discuss some related works. In Section 3, we give the algorithm
model and security model of PU-CP-ABE. In Section 4, the LSS technique and
LSS matrix generation method is introduced and our matrix update method
is proposed. We then describe the details of our construction and and prove
its security in Section 5 and 6. In Section 7, we give an example implemented
on reference [3]. In Section 8, the performance analysis of our scheme is given.
Finally, we make a conclusion in Section 9.

2 Related Works

Controlling user access privileges is considered to be an important application
of public key encryption (PKE) [4], such as PKI [5] and IBE [6]. Traditional
PKE schemes usually restrict user privileges with time or user ID list. ABE [7]
was proposed to extend the function of IBE. In ABE schemes [1, 8], users are
described with a group of attributes instead of ID. Logically, we should control
user privileges with attributes as well. However, earlier ABE schemes also used
time or ID list to control user privileges.

Pirretti, Traynor, Mcdaniel and Waters [9] suggested that each attribute
include an expiry time, and the system should periodically update associated
user secret keys. When certain attribute needs updating, the authority will stop
issuing new key components for that attribute. Bethencourt, Sahai and Water-
s [1] believed that the expiry time should be an independent attribute such that

different expiry time could be given to different users. Since time changes au-
tomatically, the privileges corresponding to specific attributes change as well.
Attrapadung and Imai [10] added user ID list into access policy such that some
users can be manually excluded from authorized set even though their attributes
satisfy the access policy. Lewko, Sahai and Waters [11] further constructed a re-
vocation system with user ID list.

However, both the time based control method and the ID list based control
method have potential problems: If the system controls user privileges with time,
the expiry time should be defined when the user secret key is generated. When
the credentials of a user change before the expiry time, the system cannot make
any reflection on the changes. If the system controls privileges of individual
user by adding ID list, the list should be determined when the ciphertext is
generated. To change the ID list embedded into the ciphertext, a new ciphertext
has to be re-generated. Regard the ID list as parts of access policy, this method
is equivalent to re-generate a new ciphertext with original plaintext.

To fit for dynamic changes of user credentials, some policy update schemes
try to directly change old ciphertext and update associated user secret keys.
Although the detailed methods and techniques of these schemes are different,
their principles are similar.

Sahai, Seyalioglu, and Waters [12] proposed a stateful user revocation scheme
for ABE. This scheme expresses expiry time as an LSS matrix [2] and ensures
that the distribution of updated ciphertext is the same as the distribution of
the original one with the piecewise generation technique. Meanwhile, a revoked
user cannot decrypt updated ciphertexts. Similarly, Yu, Wang, and Ren [13] pro-
posed an attribute revocation scheme for CP-ABE with the proxy re-encryption
technique. This scheme is based on Cheung and Newport’s CP-ABE scheme [14],
and only supports access policies consisting of AND gate. To update an attribute
from the system, the authority changes public parameters and generates proxy
re-keys to redefine involved components of the public key and master key. Then
a proxy server updates ciphertexts and secret keys of non-revoked users utilizing
the proxy re-keys. A common problem of these schemes is updating efficiency.
The system authority should update secret keys for all the non-revoked users for
an update.

Yang et al. [15] proposed an attribute update scheme based on a multi-
authority CP-ABE scheme [16] and further constructed an ABE-based access
control system [17]. Their schemes are able to add new attributes besides re-
moving old attributes. This extends the function of the scheme in [12]. The data
owner generates update keys and then submits the update keys to the cloud
server. The cloud server is able to change data access policy with these keys.
Each time the cloud server updates a ciphertext, a group of new update keys
are needed. A problem of these schemes is that the distribution of the updated
ciphertext is different from the distribution of the original one. After receiving
a ciphertext, data recipients should try different parameters [17] or use differ-
ent decryption algorithms [18] to decrypt the ciphertext. The decryption time
is relative to the number of update times. This restricts policy update times

tremendously. An unfortunate matter for these schemes is that the security of
the reference [15] is not strong enough. Hong, Xue, and Li [19] pointed out that
the scheme in [15] cannot resistant collusion attacks. A revoked user can still
decrypt subsequently encrypted data as well.

Generally speaking, above policy update methods suffer from some inherent
problems: To change decryption privilege of encrypted data, user secret keys have
to be updated. The update keys should be transmitted to cloud server or data
recipients secretly while the channel is public. These contradictions are difficult
to solve in practical applications. Furthermore, the number of secret update keys
depends on the number of users but not the number of attributes. This is contrary
to the original intention of ABE: Describe users with fuzzy attributes instead of
exact user ID. As a result, an efficient policy update method to promote CP-ABE
from theory to practice is an urgent demand for crypto community.

3 Policy Update for CP-ABE

3.1 Algorithms

A PU-CP-ABE scheme consists of 6 polynomial time algorithms: Setup, KeyGen,
Encrypt, Decrypt, PolicyUpdate, and CiphertextUpdate. Setup and KeyGen are
executed by the trusted authority of the system. Encrypt and PolicyUpdate are
executed by data owners. CiphertextUpdate can be executed by a cloud server.
Decrypt is executed by data receivers. These algorithms are defined as follows:
• Setup(1λ)→(PK,MK). Input a security parameter λ, the setup algorithm

outputs a public key PK and a master key MK.
• KeyGen(PK,MK,S)→SK. Input PK, MK, and a set of attributes S, the

key generation algorithm outputs a user private key SK corresponding to S.
• Encrypt(PK,M,SKowner,A)→CT. Input PK, plaintext M, the private key

of the data owner, and an access policy A, the encryption algorithm outputs a
ciphertext CT corresponding to A.
• Decrypt(CT,SK)→M. Input PK, a ciphertext CT that contains an access

policy A, and a private key SK that contains a set of attributes S, the decryption
algorithm outputs a plaintext M if S satisfies A. Otherwise, it outputs a ⊥.
• PolicyUpdate(PK,SKowner,A,A′)→UC. Input PK, the private key of the

data owner, an old access policy A and a new access policy A′, the policy update
algorithm produces a group of update components UC corresponding to A′.
• CiphertextUpdate(CT,UC)→CT′. Input a ciphertext CT correspond-

ing to the old policy, and the update components UC corresponding to a new
access policy A′, the ciphertext update algorithm outputs new ciphertext CT′

corresponding to A′.
Correctness. Suppose the security parameter λ is large enough. For all

(PK,MK)←Setup(1λ), plaintext M, SKowner ←KeyGen(PK,MK,Sowner), and
SKreceiver ←KeyGen(PK,MK,Sreceiver), PU-CP-ABE satisfies the following two
correctness conditions:

1.If CT←Encrypt(PK,M,SKowner,A) and Sreceiver satisfies A, Decrypt(CT,
SKreceiver) outputs M.

2.If CT′ ←CiphertextUpdate(CT,UC) where CT corresponds to A, UC ←
PolicyUpdate(PK, SKowner, A, A′), and Sreceiver satisfies A′, Decrypt(CT′,
SKreceiver) outputs M.

3.2 Selective Security for PU-CP-ABE

The security game for PU-CP-ABE is described between a simulator and an
adversary as follows:
• Init. The adversary declares the challenge access policy A∗ and sends it to

the simulator.
• Setup. The simulator sends the public key PK to the adversary.
• Query phase 1. The adversary adaptively asks for secret keys with at-

tribute set S1, · · · ,Su1 . For each attribute set, the simulator returns correspond-
ing secret key to the adversary. The restriction is that none of the queried sets
satisfy A∗.
• Challenge. The adversary submits two equal-length plaintexts (M0, M1)

and an access policy A0 that is not satisfied by the attribute set queried in
query phase 1 to the simulator. The simulator creates a private key that is not

queried before, flips a random coin b ∈ {0, 1}, generates CT
(b)
0 corresponding

to Mb and A0 with Encrypt, and returns CT
(b)
0 to the adversary. If A0 = A∗,

challenge ciphertext has been returned. Otherwise, the adversary continues to
submit a series of access policies A1, · · · ,An to the simulator that some Aj = A∗.
The restriction is that each access policy cannot be satisfied by the attribute set
queried before. For each access policy Ai, the simulator returns UCi−1 generated

by PolicyUpdate and let the adversary compute CT
(b)
i with CiphertextUpdate

according to UCi−1 and CT
(b)
i−1. Finally, the adversary obtains (CT

(b)
0 , · · · ,CT(b)

n).
•Query phase 2. The adversary asks for more secret keys with attribute set

Su1+1 · · · ,Su. The restriction is that none of the queried sets satisfy the access
policies submitted in challenge phase.
• Guess. The adversary outputs a guess b′ for b.
Definition 1. Selective CPA Security. A PU-CP-ABE scheme is selectively

secure against chosen-plaintext attacks if all polynomial time adversaries have at
most a negligible advantage in the above game. The advantage of an adversary
is defined as Pr[b′ = b]- 12 .

4 Matrix Update from Linear Secret Sharing

In this section, we recall the properties of LSS and how to generate an LSS
matrix from an access policy. Moreover, our new matrix update algorithm is
proposed.

4.1 Linear Secret Sharing

Definition 2. Linear Secret Sharing. A linear secret sharing scheme Π over a
set of parties P is linear over Zp if

1. The shares for each party form a vector over Zp.

2. There exists a share-generating matrix W with l rows and n columns.
A function ρ labels each row Wi of W to a party. Considering a vector −→v =
(s, y2, y3, · · · , yn), where s ∈ Zp is the secret to be shared and y2, y3, · · · , yn
∈ Zp are chosen randomly, then −→v W is the vector of l shares of the secret s
according to Π. Here, (−→v W)i belongs to party ρ(i).

It has been shown in [2] that an LSS scheme defined as above has the linear
reconstruction property: Suppose that Π is a linear secret sharing scheme for an
access structure A. Let S be an authorized set, and I ⊆ {1, 2, · · · , l} be defined
as I = {i : ρ(i) ∈ S}. Then, there exist constants {ωi ∈ Zp}i∈I such that, if

{λi =
−→v −→W i}i∈I are valid shares of any secret s according to W ,

∑
i∈I ωiλi = s.

Furthermore, these constants can be found in polynomial time in the size of the
matrix W .

4.2 Matrix Generation

An access policy can be expressed in the form of access structure [12] in a direct
way, e.g. (A or B) and C. This form of access policy also can be phased as
a binary tree. The leaf nodes are attributes and non-leaf nodes are connectors
“and” and “or”.

Based on the definition of linear secret sharing, if S is an authorized set, and
I ⊆ {1, 2, · · · , l} is defined as I = {i : ρ(i) ∈ S}, we can find a group of constants

{ωi}i∈I in polynomial time such that
∑

i∈I ωi
−→
W i = (1, 0, · · · , 0). Then we have∑

i∈I ωiλi = s since {λi = −→v
−→
W i}i∈I . As a result, (1, 0, · · · , 0) should be the

sharing vector corresponding to the root of the binary tree. An LSS matrix is
generated from the binary tree with the following algorithm [12,16]:

The algorithm begins by labeling the root node of the tree with the vector
−→v =(1). The vectors of the other nodes are determined by their parent nodes.
Go down the levels of the tree.

Suppose the current node is labeled with a vector −→v . If the node is “or”,
we label its two children with −→v . If the node is “and”, we label its left child
with −→v |1 and its right child with (0,· · · , 0|-1) such that the two vectors sum to
−→v |0. | denotes concatenation. Once all the leaf nodes are labeled with vectors,
the algorithm terminates. The vectors corresponding to the leaf nodes consist of
an LSS matrix. The length of the matrix is determined by the longest vector.
Meanwhile, other shorter vectors are padded with 0s.

Let (Wl×n, ρ) be an LSS matrix generated by above algorithm and {ωi}i∈I

are a group of constants for an authorized set S that I is defined as above.
Obviously, {Wi,j}i∈[1,l],j∈[1,n] ∈ {1, 0,−1} and ωi ∈ {0, 1}. ωi = 0 represents
attribute ρ(i) ∈ S is unused while ωi = 1 represents attribute ρ(i) ∈ S is used
for satisfying the LSS matrix.

For example, a policy A=((A or B) and C) can be described in the form of
the binary tree as shown in Fig.1(a). The LSS matrix W associated with the
attributes A, B, and C can be obtained as follows:

W =

1 1
1 1
0 −1

 · · ·A· · ·B
· · ·C

Since an attribute set S ⊇ {A,C} (or S ⊇ {B,C}) satisfies A, we can find

a vector −→ω = (1, 0, 1) (or −→ω = (0, 1, 1)) such that
∑

i∈I
−→ω
−→
W i =(1,0,0), where

I = {i : ρ(i) ∈ S}.

(a) A=(A or B)
and C

(b) A2=A and
C

(c) A3=A or B (d) A4 = ((A
and B) and C)
or D

(e) A5 = ((A
and B) and C)
and D

Fig. 1. Access Policies and Corresponding Binary Trees

A fact should be noticed: The vectors corresponding to the non-leaf nodes
“and” and “or” are not included in the LSS matrix. However, these vectors can
be recovered by the vectors of the leaf nodes. The recursive recovery process is
as follows:

If the connector is “and”, the vector associated with it equals the sum of its
two children. If the connector is “or”, the vector associated with it equals one
of its child.

4.3 Matrix Update

In this section, we present a matrix update method to directly change an LSS
matrix to a new one. The goal of the update is that the LSS matrix outputted
by the matrix update method also shares the vector (1,· · · ,0) as the matrix
outputted by the matrix generation method. There are 4 possible operations for
updating a policy:

1. Delete an attribute connected by “or”, e.g.(A or B)→ A.
2. Delete an attribute connected by “and”, e.g.(A and B)→ A.
3. Add an attribute connected by “or”, e.g.A → (A or B).
4. Add an attribute connected by “and”, e.g.A → (A and B).

Since a binary tree is generated from top to bottom in the matrix generation
algorithm, none of the vectors associated with the higher level nodes will be
affected when we change an attribute from a policy. Only the vectors associated
with the sibling and the children of the sibling of the changed attribute may be
affected. Thus, our matrix update only needs to deal with the vectors associated
with these nodes.

As the first step, we update the vector associated with the sibling of the
changed attribute.

For case 1), since “or” grants the same vectors to its two children in the
matrix generation algorithm, deleting an attribute connected by “or” does not
affect the other one. We are able to directly remove the vector associated with
that attribute when it is connected by “or”.

For case 2), when we delete an attribute connected by “and”, the vector
associated with that attribute should be added to that of its sibling besides
removing the vector associated with the deleted attribute.

For case 3), to add an attribute connected by “or”, the vector associated
with its sibling is added to the vector associated with the new attribute. The
sibling of the new attribute may be a connector. Its associated vector can be
recovered with the vectors of its children as in Section 4.2.

For case 4), to add an attribute connected by “and”, the vector associated
with the new attribute is set to (0,· · · ,0|-1). Then (0,· · · ,0|1) is added to its
sibling. The length of 0s equals the longest vector.

As the second step, we continue to update the vectors associated with the
children of the sibling of the changed attribute. The operations of this step are
relevant to the operations on the vector associated with the sibling of the changed
attribute. If the vector associated with the sibling is not changed, the vectors
associated with the children of the sibling do not change as well. Otherwise, if a
vector −→v is added on the vector associated with the sibling, we recursively deal
with the vectors associated with the children of the sibling as follows:

Set the sibling as the current node at the beginning. If the current node is
“and”, adding −→v to one of its child. If the current node is “or”, adding −→v to its
two children. If the current node is an attribute, adding −→v to it.

Finally, the new LSS matrix associated with the new policy is generated. We
can see clearly from the matrix: Which vectors are changed when we add/delete
an attribute to/from the current policy. The attributes corresponding to these
vectors can be recorded.

Let (A = Wl×n, ρ) be an LSS matrix generated by the matrix generation
algorithm and (A′ = Wl′×n′ , ρ′) be the LSS matrix outputted by the matrix
update algorithm. Fig.1(b)-(e) show the new binary trees corresponding to the 4
cases of changing from A, and the following LSS matrices show the relationship
between the new policies and A.

A2 =

 W ′
A = WA

W ′
B removed

W ′
C = WC

A3 =

W ′
A = WA +WC

W ′
B = WB +WC

W ′
C removed

A4 =

W ′

A = WA

W ′
B = WB

W ′
C = WC

W ′
D = Wand

A5 =

W ′

A = WA −WD

W ′
B = WB −WD

W ′
C = WC

W ′
D = WD

Let a set N(A, C) denote the attributes, whose corresponding vectors are

changed when deleting an attribute C from A and let a set N(A, D) denote the

attributes, whose corresponding vectors are changed when adding an attribute
D to A. Viewing from A3 and A5, N(A, C) = (A,B) and N(A, D) = (A,B).

5 Constructions of PU-CP-ABE

In this section, we first introduce a basic CP-ABE scheme abstracted from some
existing schemes and then construct PU-CP-ABE based on the basic CP-ABE
scheme.

5.1 Basic CP-ABE Scheme

When we update the access policy of a ciphertext, we should generate a cipher-
text at first. Thus, the policy update algorithm should base on an encryption
scheme. Logically, we should propose a new CP-ABE scheme or use an existing
CP-ABE scheme as the base of our policy update.

To maximize the application range of our policy update, we first recall some
typical CP-ABE schemes [1, 3, 20] and then abstract a basic encryption scheme
from them. As a result, the policy update on the basic scheme can be applied on
such existing schemes. In addition, many other CP-ABE schemes [10,16,21–24]
have same structure. That is to say, our policy update is suitable for all these
schemes.

The CP-ABE schemes of RW13 [3], Waters11 [20].scheme1, and BSW07 [1]
are list as follows. We describe them with unified symbols. All these schemes
include 4 algorithms: Setup, KeyGen, Encrypt, and Decrypt.

RW13 [3]:

Setup(1λ) →Generate PK=(G,GT , e : G × G → GT , g, u, , w, v, e(g, g)α) and

MK=(α).

Encrypt(PK,M,A = (Wl×n, ρ))→Select l random numbers t1, · · · , tl∈Zp and a

random vector −→v = (s, y2, y3, · · · , yn) ∈ Zn
p , compute λi = −→v

−→
W i, and embeds

it into C1,i for i∈[1, l]. Finally, CT=(A,C = Me(g, g)αs,C0 = gs,i∈[1, l],{C1,i =

wλivti , C2,i = (uρ(i)h)−ti , C3,i = gti}).
KeyGen(PK,MK,S)→Select a random number r ∈ Zp and random number rj ∈
Zp for each attribute j∈S and compute Key=(S,K0 = gαwr,K1 = gr,j∈S,{K2,j =

grj ,K3,j = (ujh)rjv−r}).
Decrypt(CT,SK): Define I ⊆ {1, 2, · · · , l} and I = {i : ρ(i) ∈ S}.
There exists constants {ωi}i∈I such that

∑
i∈I ωi

−→
W i = (1, 0, · · · , 0). Compute

Bi = e(C1,i,K1)e(C2,i,K2,ρ(i))e(C3,i,K3,ρ(i)) = e(g, w)rλi , B =
∏

i∈I(Bi)
ωi =

e(g, r)rs, M = BC/e(C0,K0).

Water11 [20].scheme1:

Setup(1λ) →Generate PK=(G,GT , e : G × G → GT , g, g
a, e(g, g)α, h1, · · · , hU)

and MK=(gα).

Encrypt(PK,M,A = (Wl×n, ρ))→Select Select l random numbers t1, · · · , tl∈Zp

and a random vector −→v = (s, y2, y3, · · · , yn), compute λi = −→v
−→
W i, and embed-

s it into C1,i for i∈[1, l]. Finally, CT=(A, C = Me(g, g)αs, C0 = gs, i∈[1, l],
{C1,i = gaλih−ti

ρ(i), C2,i = gti}).
KeyGen(PK,MK,S)→Select a random number r∈Zp and compute Key=(S,
K0 = gαgar, K1 = gr, j∈S, {K2,j = hr

j}).
Decrypt(CT,SK): Define I ⊆ {1, 2, · · · , l} and I = {i : ρ(i) ∈ S}.
There exists constants {ωi}i∈I such that

∑
i∈I ωi

−→
W i = (1, 0, · · · , 0). Compute

Bi = e(C1,i,K1)e(C2,i,K2,ρ(i)) = e(g, g)arλi , B =
∏

i∈I(Bi)
ωi = e(g, g)ars, M =

BC/e(C0,K0).

BSW07 [1](The parameter β associated to key delegation is ignored):

Setup(1λ) →Generate PK=(G,GT , e : G× G → GT , g, e(g, g)
α, H : {0, 1}∗ → G)

and MK=(gα).

Encrypt(PK,M,A = (Wl×n, ρ))→Select a random vector −→v = (s, y2, y3, · · · , yn),
compute λi = −→v −→

W i, and embeds it into C1,i for i∈[1, l]. Finally,CT=(A, C =

Me(g, g)αs, C0 = gs, i∈[1, l], {C1,i = gλi , C2,i = H(i)λi}).
Key(PK,MK,S)→Select a random number r ∈ Zp and random number rj ∈ Zp for

each attribute j∈S and compute Key=(S, K0 = g(α+r), j∈S, {K1,i = grH(j)−rj ,

K2,j = grj}).
Decrypt(CT,SK): Define I ⊆ {1, 2, · · · , l} and I = {i : ρ(i) ∈ S}.
There exists constants {ωi}i∈I such that

∑
i∈I ωi

−→
W i = (1, 0, · · · , 0). Compute

Bi = e(C1,i,K1,ρ(i))e(C2,i,K2,ρ(i)) = e(g, g)rλi ,B =
∏

i∈I(Bi)
ωi = e(g, g)rs,M =

BC/e(C0,K0).

Summarized from above schemes, in the encryption algorithms, the compo-
nents of a ciphertext can be divided into two kinds:

1. Common ciphertext components, C and C0, corresponding to the plaintext.

2. Ciphertext components, C1,i, · · · , Cm,i, corresponding to an attribute ρ(i).
m=3 in [3] and m=2 in [1] and [20].scheme1.

The common ciphertext components mask the plaintext with a secret s, and

s is divided into a series of shares λi =
−→v −→W i. Then given the share λi associated

to the attribute ρ(i), a group of ciphertext components, C1,i, · · · , Cm,i, can be
computed.

In the decryption algorithms,Bi is defined as e(C1,i,K1,ρ(i))· · · · ·e(Cm,i,Km,ρ(i))
and B is defined as

∏
i∈I(Bi)

ωi . Ignoring imperceptible distinctions1 of these

schemes, we have Bi = Aλi and then B = A
−→v

∑
i∈I

−→
W iωi = As. As a result,

M = BC/e(C0,K0) can be obtained. Finally, we can abstract the basic CP-
ABE scheme from [1,3, 20] as below.

1 A equals e(g, g)r, e(g, w)r or e(g, g)ar respectively in [1, 3, 20].

Our basic CP-ABE from [1,3, 20]:

Setup(1λ) →Generate PK and MK.

Encrypt(PK, M, A = (Wl×n, ρ)) → Select a random vector −→v =

(s, y2, y3, · · · , yn), compute λi = −→v −→
W i, and embeds it into C1,i for i∈[1, l]. Fi-

nally, CT=(A, C, C0, i∈[1, l], {C1,i, · · · , Cm,i}).
Key(PK,MK,S) → Select random numbers and compute Key=(S, K0, j∈S,
{K1,j , · · · ,Km,j}).
Decrypt(CT,SK): Define I ⊆ {1, 2, · · · , l} and I = {i : ρ(i) ∈ S}.
There exists constants {ωi}i∈I such that

∑
i∈I ωi

−→
W i = (1, 0, · · · , 0). Compute

Bi = e(C1,i,K1,ρ(i))· · ·e(Cm,i,Km,ρ(i)) = Aλi , B =
∏

i∈I(Bi)
ωi = As, M =

BC/e(C0,K0).

5.2 Construction of PU-CP-ABE

We call the basic CP-ABE scheme BASE (Setup, KeyGen, Encrypt, Decrypt),
and the PU-CP-ABE scheme is constructed as follows.

Setup. First run BASE.Setup to generate PK and MK. Then add a pseudo-
random function (PRF) generator G into PK.

KeyGen. Given PK, MK, and an attribute set S, first run BASE.KeyGen
to generate K0 and {K1,j , · · · ,Km,j} for attribute j∈S. Then randomly select
a pseudorandom function f from G. SK=(S, f , K0, j∈S, {K1,j , · · · ,Km,j}).

Encrypt. Given PK, M, SKowner, and an access policy A = (Wl×n, ρ), run
BASE.Encrypt and output CT. The difference is that s, y2, y3, · · · , yn are not
disorderly generated by pseudorandom generator but orderly selected from f(x).
x is a special attribute, e.g. ID, in Sowner and can be connected by a message
index for multiply plaintexts of a user.

Decrypt. Given CT and SK, run BASE.Decrypt to recover M.
PolicyUpdate. Given PK, SKowner, an old access policy A, and a new access

policy A′, this algorithm produces update components UC corresponding to A′.
First, compute −→v = (s, y2, y3, · · · , yn) with fowner and Sowner, and then

recover λi = −→v
−→
W i for i∈[1, l] with −→v . Next, decompose the process of trans-

forming A to A′ to a series of atomic updates. Each atomic update only changes
one attribute. The operations for an atomic update are as follows:

Case 1): If A=(A′ or A), to delete A from A, ciphertext components (C1,A,
· · · , Cm,A) are removed. Correspondingly, an operation label “delete” is attached
to the attribute A and λA is set to null.

Case 2): If A=(A′ and A), to delete A from A, ciphertext components
(C1,A, · · · , Cm,A) are removed.

Let N(A, A) denote the attributes, whose associated vectors need to be
changed when deleting attribute A from A. N(A, A) can be obtained by the
matrix update method in Section 4.3. For each attribute i∈N(A, A), λi is set to
λi + λA and corresponding ciphertext components (C1,i, · · · , Cm,i) are updated
as below:

1. Call BASE.Encrypt to generate new (C ′
1,i, · · · , C ′

m,i). The difference is
that λi is replaced by λA.

2. For j ∈ [1,m], compute Cj,i = C ′
j,i×Cj,i.

Correspondingly, an operation label “multiply” is attached to each attribute
i. At last, an operation label “delete” is attached to A and λA is set to null.

Case 3): If A′=(A or A), to add A to A, λA can be computed with the
children of A. The computing method is in the bottom of Section.4.2. Define
λA = λA. New ciphertext components (C1,A, · · · , Cm,A) are generated with
BASE.Encrypt. Correspondingly, an operation label “add” is attached to the
attribute A.

Case 4): If A′=(A and A), to add A to A, a random number yA∈Zp is
obtained orderly with fowner and Sowner. Set λA = −yA. New ciphertext com-
ponents (C1,A, · · · , Cm,A) are generated with BASE.Encrypt according to λA.
Correspondingly, an operation label “add” is attached to the attribute A.

Let N(A, A) denote the attributes, whose associated vectors need to be
changed when adding attribute A to A. N(A, A) can be obtained by the matrix
update method in Section 4.3. For each attribute i∈N(A, A), λi is set to λi+yA
and corresponding ciphertext components (C1,i, · · · , Cm,i) are updated as below:

1. Call BASE.Encrypt to generate new (C ′
1,i, · · · , C ′

m,i). The difference is
that λi is replaced by yA.

2. For j ∈ [1,m], compute Cj,i = C ′
j,i×Cj,i.

Correspondingly, an operation label “multiply” is attached to each attribute
i.

Since a group of ciphertext components may be changed continually in mul-
tiply atomic updates, we define a state transition diagram to deal with corre-
sponding labels of the atomic updates:

First, we already have 3 operation labels: “delete”, “add”, and “multiply”.
Then we define 7 states: Start, Delete, Add, Multiply, Add′, Multiply′, and
Replace. The state transition diagram is shown in Fig.2.

The attributes corresponding to all the groups of ciphertext components are
in the Start state at the beginning. If an attribute is attached to an operation
“delete”, “multiply”, or “add”, its state is transferred to corresponding state.
For following atomic updates, the state of that attribute transfers along the
diagram. If the final state of that attribute is Add′ or Multiply′ after all the
atomic updates are executed, its state transfers to Replace automatically.

After all the atomic updates are handled, the update components should
be re-randomized such that the shared secret is fresh. The re-randomization
processes are as follows:

Run BASE.Encrypt to generate a new ciphertext corresponding to new ac-
cess policy A′ . The input plaintext is the identity element instead of M. Then
multiply each ciphertext component of UC by corresponding component of the
new ciphertext.

CiphertextUpdate. Given the ciphertext CT corresponding to the old ac-
cess policy A, and the update components UC corresponding to the new access
policy A′, the ciphertext update algorithm outputs new ciphertext CT′ corre-
sponding to A′.

Fig. 2. State Transition Diagram

First, for the common ciphertext components, such as C and C0, the cipher-
text update algorithm multiplies them by corresponding common components
of UC.

Second, for the ciphertext components (C1,i, · · · , Cm,i), which are associated
to an attribute i, the ciphertext update algorithm deals with them as follows:

1. If the state of the attribute i in UC isMultiply, new ciphertext components
equal that Cj,i multiplies the corresponding element of the old ciphertext, where
j = 1, · · · ,m.

2. If the state of the attribute i in UC is Replace, replacing the corresponding
components of the old ciphertex with (C1,i, · · · , Cm,i).

3. If the state of the attribute i in UC isDelete, deleting all the corresponding
components of the old ciphertext.

4. If the state of the attribute i in UC is Add, adding (C1,i, · · · , Cm,i) to
corresponding position.

At last, the new ciphertext is generated.
Correctness.
1.Given CT that includes A = (W,ρ), which is generated by the encryption

algorithm, and SK that includes S, if S does not satisfy A, the decryption fails.
Otherwise, if S satisfies A, Let I ⊆ {1, · · · , l} be defined as I = {i : ρ(i) ∈ S}.
Find a set of constants {ωi}i∈I , such that

∑
i∈I ωi

−→
W i = (1, 0, · · · , 0). Compute

Bi = e(C1,i,K1,ρ(i))· · ·e(Cm,i,Km,ρ(i)) = Aλi , B =
∏

i∈I(Bi)
ωi = A

∑
i∈I λiωi =

A
−→v

∑
i∈I

−→
W iωi = As, and M = BC/e(C0,K0).

2.Given CT′ according to A′ = (W ′, ρ), which is generated by the policy
update algorithm, and SK according to S, if S does not satisfy A′, the de-
cryption fails. Otherwise, if S satisfies A′, Let I ′ ⊆ {1, · · · , l′} be defined as
I ′ = {i : ρ(i) ∈ S}. Based on the update times of the ciphertext components, I ′

can be regarded as the union of subsets (I0, I1, · · · , Imax). A subset Iq includes
the attributes, whose associated ciphertext components are updated for q times
and Imax is the maximum one of all these subset in I ′. Note, Imax is determined

after CT′ is generated. For each attribute iq∈Iq, (C(q)
1,iq

, · · · , C(q)
m,iq

) are the corre-

sponding ciphertext components, and λ
(q)
iq

and
−→
W

(q)
iq

are the corresponding share
and vector. We have

B′ =
∏
i0∈I0

(Bi0)
ωi0 ·

∏
i1∈I1

(B
(1)
i1

)ωi1 · · · · ·
∏

imax∈Imax

(B
(max)
imax

)ωimax

=
∏
i0∈I0

(e(C1,i0 ,K1,ρ(i0))· · ·e(Cm,i0 ,Km,ρ(i0)))
ωi0 ·

∏
i1∈I1

(e(C
(1)
1,i1

,K1,ρ(i1))· · ·e(C
(1)
m,i1

,

Km,ρ(i1)))
ωi1 ·· · ··

∏
imax∈Imax

(e(C
(max)
1,imax

,K1,ρ(imax))· · ·e(C
(max)
m,imax

,Km,ρ(imax)))
ωimax

= A
∑

i0∈I0
λi0ωi0+

∑
i1∈I1

λ
(1)
i1

ωi1+···+
∑

imax∈Imax
λ
(max)
imax

ωimax

= A
−→v (

∑
i0∈I0

−→
W i0ωi0+

∑
i1∈I1

−→
W

(1)
i1

ωi1+···+
∑

imax∈Imax

−→
W

(max)
imax

ωimax)

For each attribute iq∈Iq, we may assume its associated ciphertext com-
ponents are updated for max times. For the latter max − q updates, poli-
cy update does not change any ciphertext components. Then we have B′ =

A
−→v

∑
imax∈Imax

−→
W

(max)
imax

ωimax , where Imax = I ′.

Based on the goal of the matrix update algorithm, the new matrix also shares
the vector (1, · · · , 0). Thus, we have B′ = As as well.

If we do not consider the influence of re-randomization, the intermediate
result B, which is recovered from the new ciphertext outputted by the policy
update algorithm, is always the same as the initial one, which is recovered from
the old ciphertext outputted by the encryption algorithm. In re-randomization
phase, C0 will be updated synchronously with C. Thus, BC/e(C0,K0) also out-
puts correct M .

6 Security Analysis

In this section, we prove that a PU-CP-ABE scheme is secure if the basic CP-
ABE scheme is secure.

Theorem 1. If the security of the basic CP-ABE scheme holds, all polynomial
time adversaries have at most a negligible advantage in breaking the PU-CP-
ABE scheme.

Proof. To prove the theorem, we will show that if an adversary A win the
security game again PU-CP-ABE with a non-negligible advantage, a simulator
B is able to break the security of the basic CP-ABE scheme.

Init. B receives the challenge access policy A∗ = (Wl∗×n∗ , ρ∗).

Setup. B selects parameters and constructs the public key PK and the master
secret key MK. Then it computes its private key SKB. PK is sent to A.

Query phase 1. For each secret key query from A, B responds corresponding
key to A.
Challenge. After receiving two plaintexts (M0, M1) and an access policy A0 =

(Wl0×n0 , ρ), B flips a random coin b ∈ {0, 1} and simulates the ciphertext CT
(b)
0

= (A0, C, C0, ∀i∈[1, l0], {C1,i, · · · , Cm,i}) with BASE.Encrypt(PK, Mb, SKB,
A0). C, C0 represent the common ciphertext components. C1,i, · · · , Cm,i are
associated with row i∈[1, l0]. To simulate these ciphertext components, B selects
the vector −→v = (s, y2, y3, · · · , yn) with PRF f and a special attribute x ∈ SB at

first, and then computes λi =
−→v
−→
W i.

If A0 = A∗, the challenge ciphertext has been simulated. Otherwise, B con-
tinues to accept policy update queries Ai. The simulation for PolicyUpdate can
be decomposed to a series of atomic updates and a re-randomization. For an
atomic update that an attribute A is added into or deleted from the current
policy, B simulates the 4 kinds of update components as follows.

For Case 1), {C1,A, · · · , Cm,A} are removed.
For Case 2), {C1,A, · · · , Cm,A} are removed. Find the set of attributeN(Ai−1,

A) at first. Then, for each attribute ρ(i)∈N(Ai−1, A), simulate associated cipher-
text components {C1,i, · · · , Cm,i} with BASE.Encrypt. The difference is that λA

instead of λi is embedded into C1,i.
For case 3), First, compute λAi−1 and let λA = λAi−1 . Then, simulate associ-

ated ciphertext components {C1,A, · · · , Cm,A} with BASE.Encrypt.
For case 4), First, select yA with PRF f and a special attribute x ∈ SB and set

λA = −yA. Then, {C1,A, · · · , Cm,A} can be simulated with BASE.Encrypt. Next,
find the set of attribute N(Ai−1, A). For each attribute ρ(i)∈N(Ai−1, A), call
BASE.Encrypt to simulate associated ciphertext components {C1,i, · · · , Cm,i}
with yA instead of λi.

For the re-randomization, call BASE.Encrypt(PK, 1, SKB, Ai) to simulate a
new ciphertext. Then multiply each ciphertext component by the corresponding
component of the new ciphertext. UCi−1 is generated. Finally, A is able to obtain

CT
(b)
i with CipertextUpdate(UCi−1, CT

(b)
i−1).

Query phase 2. B proceeds as in query phase 1.
Guess. Finally, A outputs its guess b′A. If b

′ = 0, B output b′B. Otherwise, B
output 1-b′B. The distribution for A is perfect.

The responses that B returns to A are distributed identically as in the game
defined in Section 3.2. If A wins this security game with a non-negligible advan-
tage, B has same advantage in breaking the security assumption of the based
CP-ABE scheme.

7 An Example of PU-CP-ABE

In this section, we give a detailed example to update access policy on a typical
large attribute universe CP-ABE scheme [3]. The example shows how to use
PU-CP-ABE intuitively. The details are as follows.

A system administer first publishes PK=(G,GT , e : G×G→ GT , g, u, h, w, v,
e(g, g)α,G) with Setup, and keeps MK=(α) as a secret.

For two sets of attributes S1 = (A, C), S2 = (A, B, D), the system administer
calls KeyGen to generate private keys for them. For S1, it selects a group of
random numbers r, rA, rC and a PRF f1, and then computes SK1 as follows:

S1, f1,K0 = gαwr,K1 = gr,K2,A = grA ,K3,A = (uAh)rAv−r,

K2,C = grC ,K3,C = (uCh)rCv−r

For S2, it selects another group of random numbers r, rA, rB , rD and a PRF f2,
and then computes SK2 as follows:

S2, f2,K0 = gαwr,K1 = gr,K2,A = grA ,K3,A = (uAh)rAv−r,

K2,B = grB ,K3,B = (uBh)rBv−r,

K2,D = grD ,K3,D = (uDh)rDv−r

Define policy A = ((A or B) and C). A data owner encrypts a document M
under A with his private key. The ciphertext is generated as follows:

Phase A to matrix (W2×3, ρ) = (
−→
W 1 = (1, 1),

−→
W 2 = (1, 1),

−→
W 3 = (0,−1), ρ(1) =

A, ρ(2) = B, ρ(3) = C). Select a vector −→v = (s, y2) from fowner(IDowner), and

3 random numbers t1, t2, and t3, compute λ1 = −→v
−→
W 1 = s + y2, λ2 = −→v

−→
W 2 =

s+ y2, λ3 = −→v
−→
W 3 = −y2.

CT = (A = ((A or B) and C), C = Me(g, g)αs, C0 = gs,

C1,1 = w(λ1=s+y2)vt1 , C2,1 = (uρ(1)h)−t1 , C3,1 = gt1 ,

C1,2 = w(λ2=s+y2)vt2 , C2,2 = (uρ(2)h)−t2 , C3,2 = gt2 ,

C1,3 = w(λ3=−y2)vt3 , C2,3 = (uρ(3)h)−t3 , C3,3 = gt3)

CT is uploaded on a cloud server.
At the moment, the users holding SK1 are able to download and decrypt CT.

The decryption process is as follows.
Given CT, for users with SK1, Let I = {A,C}, and ω = (1, 0, 1, 0)

B1 = e(C1,1,K1)e(C2,1,K2,ρ(1))e(C3,1,K3,ρ(1))

= e(wλ1vt1 , gr)e((uρ(1)h)−t1 , grρ(1))e(gt1 , (uρ(1)h)rρ(1)v−r)

= e(w, g)rλ1

B3 = e(C1,3,K1)e(C2,3,K2,ρ(3))e(C3,3,K3,ρ(3))

= e(wλ3vt3 , gr)e((uρ(3)h)−t3 , grρ(3))e(gt3 , (uρ(3)h)rρ(3)v−r)

= e(w, g)rλ3

B = (B1B3) = e(w, g)r(λ1+λ3) = e(w, g)rs

C·B
e(C0,K0)

=
Me(g, g)αse(w, g)rs

e(gs, gαwr)
⇒M

Next, the data owner changes the access policy to A′= ((A and B) or D)
that deletes an old attribute C and adds a newly issued attribute D comparing

with A. Obviously, he is able to directly call the encryption algorithm with A′

and the plaintext M. The ciphertext is as follows:

CT ′ = (A = ((A and B) or D), C = Me(g, g)αs, C0 = gs,

C1,1 = w(λ1=s+y2)vt1 , C2,1 = (uρ(1)h)−t1 , C3,1 = gt1 ,

C1,2 = w(λ2=−y2)vt2 , C2,2 = (uρ(2)h)−t2 , C3,2 = gt2 ,

C1,4 = w(λ4=s)vt4 , C2,4 = (uρ(4)h)−t4 , C3,4 = gt4)

On the other hand, he is able to generate update components UC for A′

as well. First, select −→v = (s, y2) from fowner(IDowner), and then recover λ1,
λ2, and λ3. The processes of the policy update are decomposed to following 4
successive atomic updates:

1.((A or B) and C)→(A or B)
2.(A or B)→A
3. A→(A and B)
4.(A and B)→((A and B) or D)
The associated operations are as follows:
1. Atomic update 1 satisfies Case 2). (C1,3, C2,3, C3,3) are removed and delete

is attached to attribute C. Both A and B are affected when deleting C. We
have N(((A or B) and C), C) =(A,B). Correspondingly, λ1 = λ1 + λ3 = s,
λ2 = λ2 + λ3 = s, and λ3 is set to null. For attributes A, B, select random

numbers t
(C)
1 and t

(C)
2 from Zp, and compute associated ciphertext components.

We have

UC1 = (A1 = (A or B),

Multiply, C1,1 = w(λ3=−y2)vt
(C)
1 , C2,1 = (uρ(1)h)−t

(C)
1 , C3,1 = gt

(C)
1 ,

Multiply, C1,2 = w(λ3=−y2)vt
(C)
2 , C2,2 = (uρ(2)h)−t

(C)
2 , C3,2 = gt

(C)
2 ,

Delete)

2. Atomic update 2 satisfies Case 1). (C1,2, C2,2, C3,2) are removed and delete
is attached to attribute B. Correspondingly, λ2 is set to null. We have

UC2 = (A2 = (A),

Multiply, C1,1 = w(λ3=−y2)vt
(C)
1 , C2,1 = (uρ(1)h)−t

(C)
1 , C3,1 = gt

(C)
1 ,

Delete

Delete)

3. Atomic update 3 satisfies Case 4). Select y′2 from fowner(IDowner) and
set λ2 = −y′2. Attribute A is affected when adding B. We have N((A), B)=(A).

Correspondingly, λ1 is set to λ1 + y′2. Select a random number t
(B)
1 ∈ Zp for

attribute A, and compute

C1,1 = w(λ3=−y2)vt
(C)
1 wy′

2vt
(B)
1 , C2,1 = (uρ(1)h)−t

(C)
1 (uρ(1)h)−t

(B)
1 , C3,1 = gt

(C)
1 gt

(B)
1

Next, compute new ciphertext components

C1,2 = w(λ2=−y′
2)vt

(B)
2 , C2,2 = (uρ(2)h)−t

(B)
2 , C3,2 = gt

(B)
2

We have

UC3 = (A3 = (A and B),

Multiply, C1,1 = w(λ3=−y2)vt
(C)
1 wy′

2vt
(B)
1 , C2,1 = (uρ(1)h)−t

(C)
1 (uρ(1)h)−t

(B)
1 ,

C3,1 = gt
(C)
1 gt

(B)
1 ,

Add′, C1,2 = w(λ2=−y′
2)vt

(B)
2 , C2,2 = (uρ(2)h)−t

(B)
2 , C3,2 = gt

(B)
2

Delete)

4. Atomic update 4 satisfies Case 3). First compute λ(A and B) = λ1+λ2 = s,

set λ4 = λ(A and B) = s. Then, select a random number t
(D)
4 ∈ Zp and compute

new ciphertext components

C1,4 = w(λ4=s)vt
(D)
4 , C2,4 = (uρ(4)h)−t

(D)
4 , C3,4 = gt

(D)
4

We have

UC4 = (A4 = ((A and B) or D),

Multiply, C1,1 = w(λ3=−y2)vt
(C)
1 wy′

2vt
(B)
1 , C2,1 = (uρ(1)h)−t

(C)
1 (uρ(1)h)−t

(B)
1 ,

C3,1 = gt
(C)
1 gt

(B)
1 ,

Add′, C1,2 = w(λ2=−y′
2)vt

(B)
2 , C2,2 = (uρ(2)h)−t

(B)
2 , C3,2 = gt

(B)
2 ,

Delete

Add, C1,4 = w(λ4=s)vt
(D)
4 , C2,4 = (uρ(4)h)−t

(D)
4 , C3,4 = gt

(D)
4)

After these atomic updates, the update components should be re-randomized.
First, generate a new ciphertext CT∗ under A′ with identity element.

CT ∗ = (A′ = ((A and B) or D), C∗ = e(g, g)αs
∗
, C∗

0 = gs
∗
,

C∗
1,1 = w(λ1=s∗+y∗

2)vt
∗
1 , C∗

2,1 = (uρ(1)h)−t∗1 , C∗
3,1 = gt

∗
1 ,

C∗
1,2 = w(λ2=−y∗

2)vt
∗
2 , C∗

2,2 = (uρ(2)h)−t∗2 , C∗
3,2 = gt

∗
2 ,

C∗
1,4 = w(λ4=s∗)vt

∗
4 , C2,4∗ = (uρ(4)h)−t∗4 , C∗

3,4 = gt
∗
4)

Then, multiply each component of UC4 by corresponding component of CT∗.
UC is as follows.

UC = (A′ = ((A and B) or D), C ′ = e(g, g)αs
∗
, C ′

0 = gs
∗
,

Multiply, C1,1 = w(s∗−y2+y′
2+y∗

2)v(t
(B)
1 +t

(C)
1 +t∗1), C2,1 = (uρ(1)h)−(t

(B)
1 +t

(C)
1 +t∗1),

C3,1 = g(t
(B)
1 +t

(C)
1 +t∗1),

Replace, C1,2 = w−(y′
2+y∗

2)v(t
(B)
2 +t∗2), C2,2 = (uρ(2)h)−(t

(B)
2 +t∗2), C3,2 = g(t

(B)
2 +t∗2),

Delete

Add, C1,4 = w(s+s∗)v(t
(D)
4 +t∗4), C2,4 = (uρ(4)h)−(t

(D)
4 +t∗4), C3,4 = g(t

(D)
4 +t∗4))

After receiving UC, the cloud server generates CT′ with CT and UC with
CiphertextUpdate as follows.

CT ′ = (A = ((A and B) or D), C = Me(g, g)α(s+s∗), C0 = g(s+s∗),

C1,1 = w(s+s∗+y′
2+y∗

2)v(t1+t
(B)
1 +t

(C)
1 +t∗1), C2,1 = (uρ(1)h)−(t1+t

(B)
1 +t

(C)
1 +t∗1),

C3,1 = g(t1+t
(B)
1 +t

(C)
1 +t∗1),

C1,2 = w−(y′
2+y∗

2)v(t
(B)
2 +t∗2), C2,2 = (uρ(2)h)−(t

(B)
2 +t∗2), C3,2 = g(t

(B)
2 +t∗2),

C1,4 = w(s+s∗)v(t
(D)
4 +t∗4), C2,4 = (uρ(4)h)−(t

(D)
4 +t∗4), C3,4 = g(t

(D)
4 +t∗4))

We can see that the distribution of CT′ outputted by the ciphertext update
algorithm is the same as the distribution of CT′ outputted by the encryption
algorithm.

As a result, the new ciphertext CT′ cannot be decrypted by the users hold-
ing SK1. In addition, these users cannot obtain new data encrypted under A′.
Meanwhile, the users holding SK2 are able to obtain M since S2 = (A, B, D)
satisfies A′= ((A and B) or D). The decryption process is as follows.

Given CT′, for users with SK2, Let I = {A,B,D}, and ω = (1, 1, 0, 0).

B1 = e(C1,1,K1)e(C2,1,K2,ρ(1))e(C3,1,K3,ρ(1))

= e(w(s+s∗+y′
2+y∗

2)v(t1+t
(B)
1 +t

(C)
1 +t∗1), gr)e((uρ(1)h)−(t1+t

(B)
1 +t

(C)
1 +t∗1), grρ(1))

× e(g(t1+t
(B)
1 +t

(C)
1 +t∗1), (uρ(1)h)rρ(1)v−r)

= e(w, g)r(s+s∗+y′
2+y∗

2)

B2 = e(C1,2,K1)e(C2,2,K2,ρ(2))e(C3,2,K3,ρ(2))

= e(w−(y′
2+y∗

2)v(t
(B)
2 +t∗2), gr)e((uρ(2)h)−(t

(B)
2 +t∗2), grρ(2))e(g(t

(B)
2 +t∗2), (uBh)rρ(2)v−r)

= e(w, g)−r(y′
2+y∗

2)

B = (B1B2) = e(w, g)r(s+s∗+y′
2+y∗

2−y′
2−y∗

2) = e(w, g)r(s+s∗)

C·B
e(C0,K0)

=
Me(g, g)α(s+s∗)e(w, g)r(s+s∗)

e(g(s+s∗), gαwr)
⇒M

Eventually, the access policy of the document is flexibly changed by the
data owner. Readers is able to apply our policy update on the other CP-ABE
schemes [1, 10,16,20–24].

8 Performance Analysis

In this section, we compare the efficiency of a typical policy update scheme [12]
and PU-CP-ABE, and test executing time of PU-CP-ABE.

Let u denote the number of users and a denote the number of attributes in
an access policy or an attribute set. Define that generating or transmitting a
group of ciphertext/key components is a basic operation. We omit the opera-
tions of generating the common components. Then generating or transmitting a
ciphertext/key needs a operations and storing space for a ciphertext/key is a.

In scheme of [12], data owner sends a ciphertext. After receiving the cipher-
text, a key update server sends an update key for each user. The communication
operations and the computation operations of the server are au. The new storage
space to store the state information is a.

In PU-CP-ABE, data owner generates and sends the ciphertext update com-
ponents. The communication operations are a. To estimate the computation
operations of PU-CP-ABE, we should count out the 4 cases of atomic updates
respectively.

For case 1), 0 attribute will be affected. For case 2), if all the other connectors
are “or”, a-1 attributes will be affected. Otherwise, if all the other connectors are
“and”, 1 attribute will be affected. Averagely, the expected number of affected
attributes are a

2 . For case 3), only the new attribute is added. No other attributes
will be affected. For case 4), the new attribute is added. The number of affected
attributes is the same as in the case 2).

Suppose the ratio of the 4 cases are equal. The expected computation costs of
an atomic update are a+2

4 . If a policy update only contains 1 atomic update, the
minimum computation costs are a+2

4 . Otherwise, if a policy update contains a

atomic updates, the maximum computation costs are a2+2a
4 . Thus, the expected

computation costs of a policy update is a2+3a+2
8 .

Theoretically, when the number of different attributes between the two access
policies is less than 5, the expected computation costs of the policy update
algorithm is less than those of the encryption algorithm. However, we also need
to consider the costs of re-randomization. Its computation costs are the same as

encryption. Thus, the expected computation costs of a policy update is a2+11a+2
8 .

This number is more than that of the encryption algorithm.

A fact should be notice that since the policy update does not need ciphertexts
as input, the update components can be pre-computed in off-line manner. The
comparison result is list in Table.1.

Table 1. Efficiency and Conditions Comparison

Communication Computation Storage Periodic Private
Server Owner Server Owner Server Owner Update Channel

Scheme of [12] au a au a 0 a Y Y

PU-CP-ABE a a a a2+11a+2
8

0 0 N N

Comparing with the scheme of [12], PU-CP-ABE does not need private chan-
nel to transmit secret keys and ciphertexts do not need periodically updating.
Most importantly, the communication and computation costs no longer depend
on the number of users.

Next, we implement PU-CP-ABE based on a well known CP-ABE scheme,
Scheme1 of [20]. The codes are programmed with the C language on Microsoft
VS 2005. The bilinear pairing is based on PBC library v0.5.14 [25]. The pairing
groups are implemented on an asymmetric elliptic curve, MNT, over 224-bit
finite field. Namely, there are three groups G1, G2, and GT . The pairing e is a
map from G1×G2 to GT . The test machine is a ThinkPad X1 laptop with Intel
Core i5-3337U 1.8GHz and 64-bit Microsoft Windows 7 operating system.

 0

 1

 2

 3

 4

 15 11 7 3

T
im

e
(s

)

Attributes in Policy/Attribute Set

Encryption
Key Generation

Policy Update
Decryption

Ciphertext Update

(a) Scheme1 of [20] with Policy Update

 0

 2

 4

 6

 8

5005050.5

T
im

e
(s

)

File Size (MB)

Set Access Policy
Change Access Policy

(b) Hybird Encryption with AES 256

Fig. 3. Executing Time of PU-CP-ABE

We execute the encryption algorithm, the key generation algorithm, the pol-
icy update algorithm, the decryption algorithm and the ciphertext update al-
gorithm under the scenarios that 3, 7, 11, 15 attributes are in the input access
policy/attribute set, respectively. Fig.3(a) shows the result. The number of at-
tributes in the policy update algorithm and the ciphertext update algorithm are
the different attributes between the old access policy and the new one. In prac-
tical applications, this number will far less than the total number of attributes
in the access policy of the encryption algorithm, because updating 1 attribute is
able to change the decryption privilege of a ciphertext.

Moreover, we test the time of generating encrypted files by hybrid encryption
and the time to change access policy of the files by PU-CP-ABE. We encrypt 4
files of different sizes (a 0.607MB .txt file, a 7.45MB .pdf file, a 55.1MB .mpg
file, and a 428MB .rmvb file) with AES 256. The 256-bit encryption key is
extracted from a group element in GT with the base64 coding. Then the element
is encrypted by PU-CP-ABE. 15 attributes are in the input access policy of the
encryption algorithm and 3 of them are changed in the policy update algorithm
to modify access policy of the encrypted files. Eventually, the test result is shown
in Fig.3(b).

Viewing from the Fig.3(a), the policy update time is more than the encryp-
tion time and the ciphertext update time is less than the encryption time. Since
policy update can be executed by a data owner in off-line manner, the ciphertext
update even needs less time than generate a new ciphertext for cloud server.

Viewing from the Fig.3(b), the time of changing access policy of a file is less
than the time of setting initial access policy for a new file. Moreover, with the
increase of file size, the setting access policy time is increased linearly while the
changing access policy time is nearly not increased. It is a practical function to
manage data access policy in secure cloud storage systems.

9 Conclusions

In this paper, we propose a policy update method for ciphertext-policy attribute-
based encryption. Our method allows data owners to dynamically change data
access policy after the ciphertext has been generated. The new method adds the
update function for CP-ABE such that cryptographically enforced access control
becomes a complete access control tool.

References

1. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-Policy Attribute-Based Encryp-
tion, IEEE S&P 2007, pp.321-334, 2007.

2. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution, PhD thesis,
Israel Institute of Technology, Technion, Haifa, Israel, 1996.

3. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption, ACM CCS 2013, pp.463-474, 2013.

4. Diffie, W., Hellman, M.: New directions in cryptography, IEEE Transactions on
Information Theory, vol.22, no.6, pp.644-654, 1976.

5. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signa-tures
and public-key cryptosystems, Communications of ACM vol.21, no.2, pp.120-126,
1978.

6. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based Encryption with Efficient
Revocation, ACM CCS 2008, pp.417-426, 2008.

7. Sahai, A., Waters, B.: Fuzzy identity based encryption, EUROCRYPT 2005, LNCS
3494, pp.457-473, Springer, Heidelberg, 2005.

8. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-Based encryption for Fine-
Grained Access Control of Encrypted Data, ACM CCS 2006, pp.89-98, Virginia,
2006.

9. Pirretti, M., Traynor, P., Mcdaniel, P., Waters, B.: Secure attribute-based systems,
ACM CCS 2006, pp.99-112, 2006.

10. Attrapadung, N., Imai, H.: Conjunctive Broadcast and Attribute-Based Encryp-
tion, Pairing 2009, LNCS 5671, pp.248-265, Springer, Heidelberg, 2009.

11. Lewko, A., Sahai, A., Waters, B.: Revocation Systems with Very Small Private
Keys, IEEE S&P 2010, pp.273-285, 2010.

12. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic Credentials and Ciphertext Dele-
gation for Attribute-based Encryption, CRYPTO 2012, LNCS 7417, pp.199-217,
2012.

13. Yu, S., Wang, C., Ren, K.: Attribute Based Data Sharing with Attribute Revoca-
tion, ACM ASIACCS 2010,pp.261-270, 2010.

14. Cheung, L., Newport, C.: Provably Secure Ciphertext Policy ABE, ACM CCS
2007, pp.456-465, 2007.

15. Yang, K., Jia, X.H., Ren, K., Zhang, B., Xie, R.T.: Dac-macs: Effective data access
control for Multiauthority cloud storage systems, IEEE Transactions on Informa-
tion Forensics and Security, vol.8, no.11, pp.1790-1801, 2013.

16. Lewko A., Waters, B.: Decentralizing Attribute-Based Encryption, EUROCRYPT
2011, LNCS 6632, pp.568-588, Springer, Heidelberg, 2011.

17. Yang, K., Jia, X.H., Ren, K., Xie, R.T., Huang, L.S.: Enabling Efficient Access
Control with Dynamic Policy Updating for Big Data in the Cloud, INFOCOM
2014, pp.2013-2021, 2014.

18. Liang, K.T., Au, H. M., Liu, K. J., et al.: A secure and efficient Ciphertext-Policy
Attribute-Based Proxy Re-Encryption for cloud data sharing, Future Generation
Computer Systems, vol.52, pp.95-108, 2016.

19. Hong, J., Xue, K.P, Li, W.: Comments on DAC-MACS: Effective Data Access Con-
trol for Multiauthority Cloud Storage Systems, IEEE Transactions on Information
Forensics and Security, vol.10, no.6, pp.1315-1317, 2015.

20. Waters, B.: Ciphertext-Policy Attribute-Based Encryption: An Expressive, Effi-
cient, and Provably Secure Realization, PKC 2011, LNCS 6571, Springer, Heidel-
berg, pp.53-70, 2011.

21. Lewko, A., Waters, B.: New proof methods for attribute based encryption: Achiev-
ing full security through selective techniques, CRYPTO 2012, pp.180-198, 2012.

22. Hohenberger, S., Waters, B.: Online/Offline Attribute-Based Encryption, PKC
2014, LNCS 8383, Springer, Heidelberg, pp.293-310, 2014.

23. Hohenberger, S., Waters, B.: Attribute-Based Encryption with Fast Decryption,
PKC 2013, LNCS 7778, Springer, Heidelberg, pp.162-179, 2013.

24. Ibraimi, L., Tang, Q., Hartel, P., Jonker, W.: Efficient and Provable Secure
Ciphertext-Policy Attribute-Based Encryption Schemes, ISPEC 2009, LNCS 5451,
pp.1-12, 2009.

25. Lynn, B.: The Stanford pairing based crypto library, http:// crypto. stanford.
edu/pbc.

