
Revocable Hierarchical Identity-Based Encryption
with Shorter Private Keys and Update Keys

Kwangsu Lee∗ Seunghwan Park†

Abstract

Revocable hierarchical identity-based encryption (RHIBE) is an extension of HIBE that supports the
revocation of user’s private keys to manage the dynamic credentials of users in a system. Many different
RHIBE schemes were proposed previously, but they are not efficient in terms of the private key size and
the update key size since the depth of a hierarchical identity is included as a multiplicative factor. In
this paper, we propose efficient RHIBE schemes with shorter private keys and update keys and small
public parameters by removing this multiplicative factor. To achieve our goals, we first present a new
HIBE scheme with the different generation of private keys such that a private key can be simply derived
from a short intermediate private key. Next, we show that two efficient RHIBE schemes can be built
by combining our HIBE scheme, an IBE scheme, and a tree based broadcast encryption scheme in a
modular way.

Keywords: Identity-based encryption, Hierarchical identity-based encryption, Key revocation, Modular
design, Bilinear maps

∗Korea University, Seoul, Korea. Email: kwangsu.lee@korea.ac.kr.
†Korea University, Seoul, Korea. Email: sgusa@korea.ac.kr.

1

1 Introduction

The secure digital communication between different entities through untrusted channel is one of the most
important problems in computer network. Public-key encryption (PKE) was invented to solve this funda-
mental problem [14]. To handle dynamic credentials of each user in PKE, the public-key infrastructure
(PKI) that can issue and revoke the certificates of users was successfully deployed. Although the PKI was
effective in the traditional communication environment, it is not effective in the Internet of Things (IoT)
environment since the certificate management of devices in IoT can be a big burden to the PKI.

Identity-based encryption (IBE), introduced by Shamir [36] and proposed by Boneh and Franklin [8],
can solve this certificate management problem since the (already-known) identity of an entity can be served
as a public key. To reduce the burden of a trusted center in IBE, hierarchical IBE (HIBE) that organizes each
entity in a hierarchy was introduced by Horwitz and Lynn [20]. Similar to PKE, IBE and HIBE also should
incorporate the revocation mechanism to handle the dynamic credential (or private key) of each identity.

1.1 Previous Work

A revocable IBE (RIBE) scheme that can revoke the private key of a user was presented by Boneh and
Franklin [8], but their solution was not scalable since each user should retrieve a new private key from
a trusted center per each time period. A scalable RIBE scheme was proposed by Boldyreva, Goyal, and
Kumar [4]. In this RIBE scheme, a user is assigned to a leaf node in a full binary tree and a trusted center
generates the private key of the user where the private key is associated with the path nodes. After that, the
center periodically broadcasts an update key for non-revoked users per each time period where the update
key is associated with the covering nodes that can cover the set of all non-revoked leaf nodes. If a user is
not revoked in the update key, then he can decrypt a ciphertext by deriving a decryption key from his private
key and the update key. This approach of RIBE was successfully used in the construction of other RIBE
schemes [22, 27, 29, 33].

The design approach of RIBE schemes that use a binary tree also can be applied to build revocable HIBE
(RHIBE) schemes. The previous RHIBE schemes can be divided into two types depending on the generation
of a decryption key from a private key and an update key. The first RHIBE scheme was proposed by Seo
and Emura [32] by combining the HIBE scheme of Boneh and Boyen (BB-HIBE) [5] and the complete
subtree (CS) scheme [28]. This RHIBE scheme is the type of history-preserving updates such that all update
keys of ancestor identities are need to derived a decryption key. In this RHIBE scheme, each identity
keeps his own binary tree to handle the key revocation of child identities by following the design principle
of the BGK-RIBE scheme. The main hurdle of the RHIBE design is to handle random values in each
binary tree independently chosen by each identity. By carefully organizing a private key and an update key,
they correctly derived a decryption key by removing the randomness. However, a private key consists of
O(`2 logN) group elements since a private key contains all private keys of ancestor’s identities and an update
key consists of O(`r log N

r) group elements.
The second RHIBE scheme also proposed by Seo and Emura [34] by combining the HIBE scheme of

Boneh et al. (BBG-HIBE) [7] and the CS scheme. This RHIBE scheme is the type of history-free updates
such that a decryption key is derived from a private key and a parent’s update key only. Compared to the
previous RHIBE scheme via history-preserving updates, this RHIBE scheme via history-free updates can
reduce the size of private keys since a private key does not include all private keys of ancestor’s identities. To
achieve the history-free update method, they observe that if an update key is derived from a decryption key
instead of a parent’s update key, then the random values chosen by ancestor’s identities can be completely
removed. In this RHIBE scheme, a private key consists of O(` logN) group elements and an update key

2

Table 1: Comparison of revocable hierarchical identity-based encryption schemes

Scheme PP Size SK Size UK Size CT Size Model Assumption

SE [32] O(`) O(`2 logN) O(`r log N
r) O(`) SE-IND DBDH

SE (CS) [34] O(`) O(` logN) O(`r log N
r) O(1) SE-IND q-Type

SE (SD) [34] O(`) O(` log2 N) O(`r) O(1) SRL-IND q-Type

RLPL [31] O(1) O(` logN) O(`r log N
r) O(`) SE-IND q-Type

Ours (CS) O(1) O(logN) O(`+ r log N
r) O(`) SE-IND q-Type

Ours (SD) O(1) O(log2 N) O(`+ r) O(`) SRL-IND q-Type

We let N be the number of maximum users in each level, r be the number of revoked users, and ` be the depth of
a hierarchical identity. For security model, we use symbols SE-IND for selective IND-CPA model, SRL-IND for
selective revocation list IND-CPA model.

consists of O(`r log N
r) group elements. They also showed that the subset difference (SD) scheme can be

used to reduced the size of an update key by following the method of Lee et al. [22]. Recently, Ryu et al.
proposed an RHIBE scheme with small public parameters [31].

Although the size of a private key in RHIBE is somewhat reduced by using the history-free update
method, the current RHIBE scheme is still inefficient in terms of the private key size and the update key size
since the depth ` of a hierarchical identity is contained as a multiplicative factor. Thus, it is an important
problem to reduce the size of private keys and update keys in RHIBE.

1.2 Our Results

In this paper, we show that efficient RHIBE schemes with shorter private keys and update keys can be built
by following the modular design approach. That is, we remove the multiplicative factor ` from the size of a
private key and the size of an update key.

We first propose an HIBE scheme by modifying the HIBE scheme of Rouselakis and Waters (RS-HIBE)
[30] that is derived from their key-policy attribute-based encryption (KP-ABE) scheme. The interesting
feature of our HIBE scheme is that it allows the generation of a short intermediate private key. Furthermore,
this intermediate private key can be easily converted into a normal private key by using public parameters.
Note that the size of a private key in HIBE usually depends on the depth of a hierarchical identity [5, 7].
Although this intermediate private key does not play an important role in HIBE, we observe that this short
intermediate private key enable to reduce the size of private key in RHIBE. That is, a private key in RHIBE
can be reduced from O(` logN) group elements to O(logN) group elements if we use an intermediate private
key instead of a normal private key. We also define additional algorithms of HIBE that express the special
properties of our HIBE scheme. By using these additional algorithms, we can design our RHIBE schemes
in a modular way.

Next, we propose an RHIBE-CS scheme by combining our HIBE scheme, the IBE scheme of Boneh
and Boyen (BB-IBE) [5], and the CS scheme of Naor et al. [28]. Basically, we use the underlying HIBE,
IBE, and CS schemes as modules when we design and prove the security of our RHIBE scheme. Although
this modular design is different to the well-known black-box design, this modular approach can simplify
the design and the security analysis of our RHIBE scheme. Because of the modular design, our RHIBE-CS
scheme can provide shorter private keys and shorter update keys by removing the multiplicative factor `

3

where ` is the depth of a hierarchical identity. That is, if we compare our RHIBE-CS scheme to the RHIBE
scheme of Seo and Emura [34]. the size of a private key is reduced from O(` logN) to O(logN) and the size
of an update key is reduced from O(`r log N

r) to O(`+r log N
r). The detailed comparison of RHIBE schemes

is given in Table 1.
Finally, we propose an RHIBE-SD scheme by combining our HIBE scheme, the BB-IBE scheme, and

the subset difference (SD) scheme of Naor et al. [28]. As mentioned before, we can simplify the design and
security analysis of our scheme by following the modular approach. By replacing the CS scheme with the
SD scheme in our RHIBE-SD scheme, the size of an update key is reduced from O(`+ r log N

r) to O(`+ r),
but the size of a private key is increased from O(logN) to O(log2 N). To reduce the size of private keys, we
can use the layered SD (LSD) scheme [19] instead of the SD scheme. In this case, the size of a private key
is reduced to O(log1.5 N), but the size of an update key is slightly increased.

1.3 Our Techniques

To reduce the size of a private key in RHIBE, we first build an HIBE scheme modified from the RS-HIBE
scheme [30] that supports a short intermediate private key ISKHIBE . The size of a private key SKHIBE in
HIBE usually cannot be short since it depends on the depth ` of a hierarchical identity. However, we observe
that a trusted center can generate a short intermediate private key ISKHIBE if an independent random value
ri is used for each level-i and a special identity encoding is used. Let ID = (I1, I2, I3) be a hierarchical
identity. We consider a special identity encoding CID = (CI1,CI2,CI3) = (I1, I1‖I2, I1‖I2‖I3) where ‖ is the
concatenation of two strings. An interesting feature of this encoding is that the last identity values CI3 and
CI′3 are different if CID and CID′ are different. By using this feature, a simulator in the security proof
can generate a short intermediate private key ISKHIBE for CID = (CI1,CI2,CI3) by carefully controlling the
random value r3 only for the last identity CI3 since CI3 is different with CI∗3 in the challenge ciphertext.
Additionally, we can easily convert ISKHIBE to SKHIBE by selecting additional random values r1,r2 for other
levels.

In HIBE, the intermediate private key ISKHIBE with the constant size is not useful since a normal private
key is needed for the key delegation. However, this short intermediate private key of HIBE can be very
useful for the private key of RHIBE. In an RHIBE scheme, each user with a hierarchical identity ID keeps
his own binary tree BT ID to manage the revocation of child users. The private key SK of a child user with
ID′ consists of HIBE private keys {SKHIBE,vi} that are associated with the path nodes {vi} in BT ID. We can
replace the HIBE private key SKHIBE,vi to an HIBE intermediate private key ISKHIBE,vi to reduce the size
of SK since the private key SK is not directly used for the key delegation in RHIBE. Note that the original
HIBE private key SKHIBE can be derived in the derivation process of a decryption key DK by using a private
key SK that contains ISKHIBE,vi and an update key UK. Thus, the size of SK can be reduced since it consists
of ISKHIBE,vi instead of SKHIBE,vi .

Furthermore, we reduce the size of an update key UK in RHIBE by separating a randomized decryption
key RDK and an IBE private key for time in a modular way. In an RHIBE scheme, an update key UK for ID
and time T consists of partial private keys {PSKvi} that are associated with the cover nodes {vi} that cover
all non-revoked leaf nodes. We observe that this partial private key PSKvi can be separated as a (randomized)
decryption key RDKID,T and an IBE private key SKIBE,vi for time T . That is, the update key UK can consist
of just one RDKID,T and multiple {SKIBE,vi} associated with the cover nodes. Therefore, we removed the
multiplicative factor ` in a private key and an update key since ISK and SKIBE consist of the constant number
of group elements.

4

1.4 Related Work

As mentioned before, Horwitz and Lynn introduced the concept of HIBE and they presented a two-level
HIBE scheme in bilinear maps [20]. An HIBE scheme that supports many-levels was proposed by Gentry
and Silverberg [16] and the full model security was also given in the random oracle model. The HIBE
scheme of Gentry and Silverberg also can be converted into a hierarchical identity-based signature (HIBS)
scheme since the private key of HIBE can be a signature by the observation of Naor [8]. An HIBE scheme
without random oracles was presented by Canetti et al. [12] and they showed that a forward-secure encryp-
tion (FSE) can be built from any HIBE scheme. After that, Boneh and Boyen proposed an efficient HIBE
scheme that is secure in the selective model under the standard assumption [5,6]. An HIBE scheme with the
constant size ciphertexts was given by Boneh, Boyen, and Goh [7] by using the power of a q-type assump-
tion. There are many other HIBE schemes with different properties in bilinear maps [9, 10, 35]. Note that
HIBE schemes also can be built from lattices [1, 2, 13].

Many HIBE schemes without random oracles were proven in the selective model where an adversary
should submits the challenge hierarchical identity ID∗ before he receives the public parameters [12]. An
HIBE scheme that is secure in the full model without the security degradation was proposed by Gentry and
Halevi [15] by using a q-type assumption. To achieve a fully secure HIBE scheme, Waters proposed the dual
system framework where private keys and ciphertexts can have two types [38]. By using the dual system
framework, Waters proposed a fully-secure HIBE scheme in the standard assumption. Lewko and Waters
also presented another fully secure HIBE scheme with the constant size ciphertexts by using the dual system
framework [25]. This dual system framework was wildly used in other HIBE schemes [23,24,26]. Recently,
a fully secure HIBE scheme with tight-reduction under the standard assumption was proposed by Blazy et
al. [3].

2 Preliminaries

In this section, we first briefly review bilinear groups and the complexity assumption in bilinear groups.
Next, we define the syntax and the security model of revocable HIBE.

2.1 Notation

Let λ be a security parameter and [n] be the set {1, . . . ,n} for n ∈ Z. Let I be the identity space. A
hierarchical identity ID with a depth k is defined as an identity vector ID = (I1, . . . , Ik) ∈ Ik. We let ID| j
be a vector (I1, . . . , I j) of size j derived from ID. If ID = (I1, . . . , Ik), then we have ID = ID|k. We define
ID|0 = ε for simplicity. We define a useful function for the hierarchical identity. Prefix(ID|k) is a function
that returns a set of prefix vectors {ID| j} where 1 ≤ j ≤ k where ID|k = (I1, . . . , Ik) ∈ Ik for some k. For
two hierarchical identities ID|i and ID| j with i < j, ID|i is an ancestor of ID| j and ID| j is a descendant of
ID|i if ID|i ∈ Prefix(ID| j).

2.2 Bilinear Groups

Let G and GT be multiplicative cyclic groups of prime order p and g be a generator of G. The bilinear map
e : G×G→GT has the following properties:

• Bilinearity: ∀u,v ∈G and ∀a,b ∈ Zp, e(ua,vb) = e(u,v)ab

• Non-degeneracy: ∃g ∈G, such that e(g,g) has order p, that is, e(g,g) is a generator of GT

5

We say that G,GT are bilinear groups if the group operations in G and GT as well as the bilinear map e are
all efficiently computable.

2.3 Complexity Assumptions

We introduce the q-RW2 assumption of Rouselakis and Waters [30] that was used to prove the security of
their attribute-based encryption schemes.

Assumption 2.1 (q-RW2, [30]). Let (p,G,GT ,e) be the description of a bilinear groups of prime order p.
Let g be a random generator of G. The q-RW2 assumption is that if a challenge tuple

D =
(
(p,G,GT ,e),g,gx,gy,gz,g(xz)2

,
{

gbi ,gxzbi ,gxz/bi ,gx2zbi ,gy/b2
i ,gy2/b2

i
}
∀ i∈[q],{

gxzbi/b j ,gybi/b2
j ,gxyzbi/b2

j ,g(xz)2bi/b j
}
∀ i, j∈[q],i6= j

)
and Z

are given, no probabilistic polynomial time (PPT) algorithm A can distinguish Z = Z0 = e(g,g)xyz from
Z = Z1 = e(g,g) f with more than a negligible advantage. The advantage ofA is defined as Advq-RW2

A (1λ) =∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) = 0]
∣∣ where the probability is taken over random choices of x,y,z,{bi}i∈[q],

f ∈ Zp.

2.4 Pseudo-Random Functions

A pseudo-random function (PRF) [17] is an efficiently computable function F :K×X →Y where K is the
key space, X is the domain, and Y is the range. Let F(k, ·) be an oracle for a uniformly chosen k ∈ K and
f (·) be an oracle for a uniformly chosen function f : X →Y . We say that a PRF is secure if for all efficient
adversaries A the advantage AdvPRF,A(1λ) =

∣∣Pr[AF(k,·) = 1]−Pr[A f (·) = 1]
∣∣ is negligible.

2.5 Revocable HIBE

Revocable HIBE (RHIBE) is an extension of HIBE that allows a user to revoke the private key of a next
level user if the private key is revealed or expired when the next level user’s private key is delegated from
his private key [32, 34]. In RHIBE, a user with ID|k−1 can delegate his private key SKID|k−1 to a next level
user with ID|k by generating a private key SKID|k . After that, the user periodically broadcasts an update key
UKT,RID|k−1

for non-revoked users on time period T where RID|k−1 is the set of revoked users. The next level
user who has a private key SKID|k can derive a decryption key DKID|k,T from SKID|k and UKT,RID|k−1

if his
private key is not revoked in the update key (i.e. ID|k 6∈ RID|k−1). Now, the user can decrypt a ciphertext for
ID′|` and T ′ by using the derived DKID|k,T if ID|k = ID′|` and T = T ′.

Currently, there are two approaches that handle update keys in RHIBE. The first one is the history-
preserving update approach where a user simply creates an update key without checking whether his private
key is revoked or not [32]. In this case, a next level user should retrieves all update keys generated by his
ancestors to derive a decryption key. The second one is the history-free update approach where a user can
create an update key only when his private key is not revoked [34]. That is, an update key can be created
if a user can derive a decryption key first. In this case, a next level user only needs to retrieve an update
key generated by his parent to derive a decryption key. Note that the syntax and the security model of one
approach are slightly different from those of another approach. We follow the definition of RHIBE with
history-free updates. The syntax of RHIBE with history-free updates is defined as follows:

6

Definition 2.2 (Revocable HIBE). An RHIBE scheme with history-free updates for the identity space I,
the time space T , and the message space M, consists of seven algorithms Setup, GenKey, UpdateKey,
DeriveKey, Encrypt, Decrypt, and Revoke, which are defined as follows:

Setup(1λ ,Nmax): This algorithm takes as input a security parameter 1λ and the maximum number Nmax

of users in each level. It outputs a master key MK, an (empty) revocation list RLε , a state STε , and
public parameters PP.

GenKey(ID|k,STID|k−1 ,PP): This algorithm takes as input a hierarchical identity ID|k = (I1, . . . , Ik) ∈ Ik,
the state STID|k−1 , and public parameters PP. It outputs a private key SKID|k .

UpdateKey(T,RLID|k−1 ,DKID|k−1,T ,STID|k−1 ,PP): This algorithm takes as input time T ∈T , a revocation list
RLID|k−1 , a decryption key DKID|k−1,T , and public parameters PP. It outputs an update key UKT,RID|k−1

.

DeriveKey(SKID|k ,UKT,RID|k−1
,PP): This algorithm takes as input a private key SKID|k for a hierarchical

identity ID|k, an update key UKT,RID|k−1
for time T and a revoked set RID|k−1 , and the public parameters

PP. It outputs a decryption key DKID|k,T .

Encrypt(ID|`,T,M,PP): This algorithm takes as input a hierarchical identity ID|` = (I1, . . . , I`) ∈ I`, time
T , a message M, and the public parameters PP. It outputs a ciphertext CTID|`,T .

Decrypt(CTID|`,T ,DKID′|k,T ′ ,PP): This algorithm takes as input a ciphertext CTID|`,T , a decryption key
DKID′|k,T ′ and the public parameters PP. It outputs an encrypted message M.

Revoke(ID|k,T,RLID|k−1 ,STID|k−1): This algorithm takes as input a hierarchical identity ID|k, revocation
time T , a revocation list RLID|k−1 , and a state STID|k−1 . It updates the revocation list RLID|k−1 .

The correctness of RHIBE is defined as follows: For all MK and PP generated by Setup(1λ), SKID|k gener-
ated by GenKey(ID|k,ST |k−1,PP) for any ID|k, UKT,RID|k−1

generated by UpdateKey(T,RLID|k−1 ,DKID|k−1,T ,

STID|k−1 ,PP) for any T and RL, CTID|`,T generated by Encrypt(ID|`,T,M,PP) for any ID|`, T , and M, it is
required that

• If ID|k 6∈ RID|k−1 , then DeriveKey(SKID|k ,UKT,RID|k−1
,PP) = DKID|k,T .

• If ID|k ∈ RID|k−1 , then DeriveKey(SKID|k ,UKT,RID|k−1
,PP) =⊥.

• If (ID|` = ID′|k)∧ (T = T ′), then Decrypt(CTID|`,T ,DKID′|k,T ′ ,PP) = M.

• If (ID|` 6= ID′|k)∨ (T 6= T ′), then Decrypt(CTID|`,T ,DKID′|k,T ′ ,PP) =⊥.

The selective security model of RHIBE with history-free updates that considers the decryption key expo-
sure attack and the insider security was defined by Seo and Emura [34]. In this model, an adversary initially
submits a challenge hierarchical identity ID∗|` and challenge time T ∗. After receiving public parameters, the
adversary can request private key, update key, decryption key, and revocation queries with some restrictions
to prevent obvious attacks. In the challenge step, the adversary submits two challenge messages M∗0 ,M

∗
1 and

receives a challenge ciphertext CT ∗ that is an encryption of one challenge message. The adversary wins the
game if he correctly guesses the encrypted message.

By carefully examining the security model of Seo and Emura [34], we found that their definition of the
security model is not complete since they missed one important restriction in update key queries. That is,
an adversary cannot query an update key for ID|k−1 on time T if one ancestor of ID|k−1 is already revoked

7

on time T since the decryption key DKID|k−1,T cannot be created by the syntax of RHIBE with history-free
updates. Recall that an adversary easily distinguishes whether it is a simulation or not by simply querying
the update key if this restriction is not enforced. Note that this restriction in update key queries is not needed
in the security model of RHIBE with history-preserving updates [32]. The corrected security model of
RHIBE with history-free updates is defined as follows:

Definition 2.3 (Selective IND-CPA Security (SE-IND-CPA)). The selective IND-CPA security of RHIBE is
defined in terms of the following experiment between a challenger C and a PPT adversary A:

1. Init: A initially submits a challenge hierarchical identity ID∗|` = (I∗1 , . . . , I
∗
`) and challenge time T ∗.

2. Setup: C obtains a master key MK, a revocation list RLε , a state STε , and public parameters PP by
running Setup(1λ ,Nmax). It keeps MK,RLε ,STε to itself and gives PP to A.

3. Phase 1: A adaptively requests a polynomial number of queries. These queries are processed as
follows:

• Private key. If it is a private key query for a hierarchical identity ID|k, then C gives a private key
SKID|k and a state STID|k by running GenKey(ID|k,STID|k−1 ,PP) with the restriction: If ID|k ∈
Prefix(ID∗|`) where k ≤ `, then ID|k or one of its ancestors must be revoked at some time T
where T ≤ T ∗.

• Update key. If it is an update key query for a hierarchical identity ID|k−1 and time T , then C
gives an update key UKT,RID|k−1

by running UpdateKey(T,RLID|k−1 ,DKID|k−1,T ,STID|k−1 ,PP) with
the restriction: If ID|k−1 or one of its ancestors is revoked on time T , then this update key query
cannot be requested since DKID|k−1,T cannot be derived.

• Decryption key. If it is a decryption key query for a hierarchical identity ID|k and time T , then C
gives a decryption key DKID|k,T by running DeriveKey(SKID|k ,UKT,RID|k−1

,PP) with the restric-
tion: A decryption key query for the challenge identity ID∗|k or its ancestors on the challenge
time T ∗ cannot be requested.

• Revocation. If it is a revocation query for a hierarchical identity ID|k and time T , then C updates
a revocation list RLID|k−1 by running Revoke(ID|k,T,RLID|k−1 ,STID|k−1) with the restriction: A
revocation query for ID|k on time T cannot be requested if an update key query for ID|k on the
time T was requested.

Note that we assume that update key, decryption key, and revocation queries are requested in non-
decreasing order of time.

4. Challenge: A submits two challenge messages M∗0 ,M
∗
1 with the same length. C flips a random coin

µ ∈ {0,1} and gives the challenge ciphertext CT ∗ID∗|`,T ∗ to A by running Encrypt(ID∗|`,T ∗,M∗µ ,PP).

5. Phase 2: A may continue to request a polynomial number of queries subject to the same restrictions
as before.

6. Guess: Finally, A outputs a guess µ ′ ∈ {0,1}, and wins the game if µ = µ ′.

The advantage of A is defined as AdvSE-IND-CPA
RHIBE,A (1λ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over
all the randomness of the experiment. An RHIBE scheme is SE-IND-CPA secure if for all PPT adversaryA,
the advantage of A in the above experiment is negligible in the security parameter λ .

8

Definition 2.4 (Selective Revocation List IND-CPA Security (SRL-IND-CPA)). The selective revocation list
IND-CPA security of RHIBE is weaker than the previous SE-IND-CPA security of RHIBE. In this model, an
adversary initially submits a challenge hierarchical identity ID∗|`, challenge time T ∗, and a revocation list
RL∗ on the time T ∗. An RHIBE scheme is SRL-IND-CPA secure if for all PPT adversary A, the advantage
of A is negligible in the security parameter λ .

3 Hierarchical Identity-Based Encryption

In this section, we first propose an HIBE scheme that supports the generation of short intermediate private
keys. We also present the IBE scheme of Boneh and Boyen [5] with additional algorithms. Note that we
present the KEM version of HIBE and IBE for the modular approach.

3.1 Definitions

HIBE is an extension of IBE that can reduce the workload of a trusted center by delegating the generation
of private keys to other entities [16, 20]. In HIBE, all users are organized in a hierarchy and the hierarchical
identity of a user is represented as an identity vector. A user with a hierarchical identity ID|k = (I1, . . . , Ik)
can receive his private key SKID|k from a trusted center and later he can delegate SKID|k to another user with
a hierarchical identity ID|k+1 = (I1, . . . , Ik, Ik+1) if ID|k is a prefix of ID|k+1. A sender can create a ciphertext
header CHID|` and a session key EK for a user with ID|` by using public parameters. A receiver who has
a private key SKID|k can derive the session key from the ciphertext header if ID|k is a prefix of ID|`. The
syntax of HIBE is defined as follows:

Definition 3.1 (HIBE). An HIBE scheme consists of five algorithms Setup, GenKey, Delegate, Encaps, and
Decaps, which are defined as follows:

Setup(1λ). The setup algorithm takes as input a security parameter 1λ . It outputs a master key MK and
public parameters PP.

GenKey(ID|k,MK,PP). The key generation algorithm takes as input a hierarchical identity ID|k =(I1, . . . , Ik)
∈ Ik, the master key MK, and the public parameters PP. It outputs a private key SKID|k for ID|k.

Delegate(ID|k,SKID|k−1 ,PP). The delegation algorithm takes as input a hierarchical identity ID|k, a private
key SKID|k−1 for ID|k−1, and the public parameters PP. It outputs a delegated private key SKID|k for
ID|k.

Encaps(ID|k,PP). The key encapsulation algorithm takes as input a hierarchical identity ID|k and the
public parameters PP. It outputs a ciphertext header CHID|k for ID|k and a session key EK.

Decaps(CHID|k ,SKID′|` ,PP). The key decapsulation algorithm takes as input a ciphertext header CHID|k
for ID|k, a private key SKID′`

for ID′`, and the public parameters PP. It outputs a session key EK or⊥.

The correctness of HIBE is defined as follows: For all MK,PP generated by Setup(1λ), all ID|k, ID′|`, any
SKID|k generated by GenKey(ID|k,MK,PP), it is required that

• If ID|k ∈ Prefix(ID′|`), then Decaps(Encaps(ID′|`,PP),SKID|k ,PP) = EK.

• If ID|k 6∈ Prefix(ID′|`), then Decaps(Encaps(ID′|`,PP),SKID,PP) =⊥.

9

The security model of HIBE was defined by Gentry and Silverberg [16] and the selective security model
was introduced by Canetti et al. [11]. In this paper, we define the KEM version of the selective security
model. In this model, an adversary initially submits a challenge hierarchical identity ID∗|` before he re-
ceives the public parameters. After that, the adversary can request private key queries for some hierarchical
identities that are not prefixes of ID∗|`. In the challenge step, the adversary receives a ciphertext header CH∗

and a challenge session key EK∗ that is real or random. Finally, the adversary guesses whether the challenge
session key is real or random and outputs his guess. If the adversary correctly guesses the session key, then
he wins the game. The detailed definition of the security model is defined as follows:

Definition 3.2 (Selective IND-CPA Security (SE-IND-CPA)). The selective IND-CPA security of HIBE is
defined in terms of the following experiment between a challenger C and a PPT adversary A:

1. Init: A initially submits a challenge identity ID∗|`.

2. Setup: C generates a master key MK and public parameters PP by running Setup(1λ). It keeps MK
to itself and gives PP to A.

3. Phase 1: A may adaptively request a polynomial number of private key queries. If this is a private
key query for a hierarchical identity ID|k with the restriction ID|k 6∈ Prefix(ID∗|`), then it creates a
private key SKID|k by calling GenKey(ID|k,MK,PP).

4. Challenge: In the challenge step, C creates a ciphertext header CH∗ and a real session key EK∗ by
running Encaps(ID∗|`,PP). Next, it flips a random coin µ ∈ {0,1} and gives CH∗,EK∗ toA if µ = 0.
Otherwise, it gives CH∗ and a random session key to A.

5. Phase 2: A continues to request a polynomial number of private key queries subject to the same
restriction as before.

6. Guess: A outputs a guess µ ′ ∈ {0,1} of µ , and wins the game if µ = µ ′.

The advantage of A is defined as AdvSE-IND-CPA
HIBE,A (1λ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over
all the randomness of the experiment. An HIBE scheme is SE-IND-CPA secure if for all PPT adversary A,
the advantage of A in the above experiment is negligible in the security parameter λ .

3.2 Concatenated Identity Encoding Function

We define a concatenated identity encoding function that converts a hierarchical identity ID|k to a concate-
nated hierarchical identity CID|k. This encoding was informally introduced by Waters [38] and also used by
Lewko and Waters [26]. Let H be a collision-resistant hash function that takes as input a bit string {0,1}∗
and outputs an element in Zp. EncodeCID(ID|k) is a function that takes as input a hierarchical identity
ID|k = (I1, . . . , Ik) ∈ Ik and returns a concatenated hierarchical identity CID|k = (CI1, . . . ,CIk) ∈ Zk

p where
CI j = H(ID| j) = H(I1‖· · ·‖I j) where ‖ denotes the concatenation of two strings. The following lemma
shows an interesting property of this function.

Lemma 3.3. Let ID|k = (I1, . . . , Ik) ∈ Ik and ID′|` = (I′1, . . . , I`) ∈ I` for some k, ` ∈ Z. We let CID|k =
(CI1, . . . ,CIk) and CID′|` = (CI′1, . . . ,CI′`) that are returned by EncodeCID(ID|k) and EncodeCID(ID′|`)
respectively. The function EncodeCID(·) satisfies the following properties:

• Property 1. If ID|k ∈ Prefix(ID′|`), then CI j =CI′j for all j ∈ [k].

10

• Property 2. If ID|k 6∈ Prefix(ID′|`), then CIk 6=CI′i for all i ∈ [`] except with negligible probability.

Proof. The property 1 is straightforward from the fact that ID| j = ID′| j since ID|k ∈ Prefix(ID′|`). To
show the property 2, we consider two cases: k ≤ ` and ` < k. In case of k ≤ `, there exists j∗ ∈ [k] such
that I j∗ 6= I′j∗ since ID|k 6∈ Prefix(ID′|`). If we suppose that CIk = CI′i for some i ∈ [`], then we have a
collision H(ID|k) = H(ID′|i) since ID|k = (I1, . . . , I j∗ , . . . , Ik) is not equal to ID′|i = (I′1, . . . , I

′
i). However, it

is a contradiction to the collision-resistance of a hash function. In case of ` < k, we also have ID|k 6= ID′|i
since k > `. Thus CIk 6=CI′i is satisfied by the collision resistance of a hash function.

3.3 HIBE Construction

A generic construction of an HIBE scheme from a KP-ABE scheme with the delegation of private keys
was shown by Goyal et el. [18]. That is, a KP-ABE scheme can be converted to an HIBE scheme if an
access structure in a private key is represented as one AND gate and an attribute set in a ciphertext is
specially encoded from a hierarchical identity. For example, we can encode a hierarchical identity ID =
(“com”,“dev”,“ john”) as an attribute set S = (“1 : com”,“2 : dev”,“3 : john”). Rouselakis and Waters also
pointed out that their large-universe KP-ABE scheme with short public parameters can be easily converted
into an HIBE scheme (RS-HIBE) [30].

We slightly modify the RS-HIBE scheme to reduce the size of private keys. The first modification is
to use a simple secret sharing method instead of an LSSS method in a private keys since one AND gate is
enough for HIBE. If we use a simple secret sharing method, then we can compress some group elements in
private keys. The second modification is to use the concatenated identity encoding function in the previous
section. If we can use the concatenated identity encoding function, then it is possible to generate a private
key in a different way. That is, a trusted center first generates an intermediate private key with the constant
number of group elements, and then anyone who has the intermediate private key can derive an original
private key by using public parameters. This new method enables to reduce the size of private keys in
RHIBE.

Our HIBE scheme with the generation of short intermediate private keys is described as follows:

HIBE.Setup(GDS): Let GDS = ((p,G,GT ,e),g) be the description of a bilinear group with a generator
g ∈G. It selects random elements u,h,w ∈G and a random exponent γ ∈ Zp. It outputs a master key
MK = γ and public parameters PP =

(
(p,G,GT ,e),g,u,h,w,Λ = e(g,g)γ

)
.

HIBE.GenKey(ID|k,MK,PP): Let ID|k = (I1, . . . , Ik) ∈ Ik and MK = γ . It obtains CID|k = (CI1, . . . ,CIk)
by calling EncodeCID(ID|k). It chooses random exponents r1, . . . ,rk ∈ Zp and outputs a private key
SKID|k =

(
K0 = gγ

∏
k
i=1 wri ,

{
Ki,1 = (uCIih)−ri ,Ki,2 = gri

}k
i=1

)
. For notational simplicity, we define

SKID|0 = (K0 = gγ).

HIBE.RandKey(SKID|k ,PP): Let SKID|k = (K′0,{K′i,1,K′i,2}k
i=1). It obtains CID|k = (CI1, . . . ,CIk) from

ID|k. It chooses random exponents r1, . . . ,rk ∈ Zp and outputs a randomized private key SKID|k =(
K0 = K′0 ·∏k

i=1 wri ,
{

Ki,1 = K′i,1 · (uCIih)−ri ,Ki,2 = K′i,2 ·gri
}k

i=1

)
.

HIBE.Delegate(ID|k,SKID|k−1 ,PP): Let ID|k = (I1, . . . , Ik) ∈ Ik and SKID|k−1 =
(
K′0,{K′i,1,K′i,2}

k−1
i=1

)
where

ID|k−1 is a prefix of ID|k. It obtains CID|k = (CI1, . . . ,CIk) from ID|k. It chooses a random exponent
rk ∈Zp and creates a temporal private key T SK =

(
K0 = K′0 ·wrk ,

{
Ki,1 = K′i,1,Ki,2 = K′i,2

}k−1
i=1 ,

{
Kk,1 =

(uCIk h)−rk ,Kk,2 = grk
})

. Next, it outputs a delegated private key SKID|k by running HIBE.RandKey
(T SK,PP).

11

HIBE.Encaps(ID|`, t,PP): Let ID|` = (I1, . . . , I`) ∈ I`. It obtains CID|k = (CI1, . . . ,CIk) from ID|k. It
chooses random exponents s1, . . . ,sk ∈ Zp and outputs a ciphertext header CHID|` =

(
C0 = gt ,

{
Ci,1 =

gsi ,Ci,2 = (uCIih)siw−t
}`

i=1

)
and a session key EK = Λt .

HIBE.Decaps(CTID|` ,SKID′|k ,PP): Let CHID|` = (C0,{C1,C2}`i=1) and SKID′|k = (K0,{Ki,1,Ki,2}k
i=1). If

ID′|k ∈ Prefix(ID|`), then it outputs a session key EK by calculating e(C0,K0) ·∏k
i=1

(
e(Ci,1,Ki,1) ·

e(Ci,2,Ki,2)
)
. Otherwise, it outputs ⊥.

We define additional algorithms ChangeKey, MergeKey, GenIKey, RandIKey, ChangeIKey, and
DeriveKey. The ChangeKey algorithm changes the master key part of a private key by performing a
constant addition or a constant multiplication. The MergeKey algorithm derives a new private key where
the new master key part is the additive homomorphism of two master key parts of inputs. The GenIKey
algorithm creates an intermediate private key that consists of just three group elements. The DeriveKey
algorithm derives a private key from the intermediate private key. These algorithms are very helpful to build
our RHIBE schemes in a modular way.

HIBE.ChangeKey(SKID|k ,{(opi,δi)}n
i=1,PP): Let SKID|k = (K′0,{K′i,1,K′i,2}k

i=1) and opi ∈ {+,×}. It sets

T SK(0) = SKID|k . For each (opi,δi), it performs: If opi = +, then it sets T SK(i) = (K(i)
0 = K(i−1)

0 ·
gδi ,{K(i)

j,1 = K(i−1)
j,1 ,K(i)

j,2 = K(i−1)
j,2 }k

j=1). If opi = ×, then it sets T SK(i) = (K(i)
0 = (K(i−1)

0)δi ,{K(i)
j,1 =

(K(i−1)
j,1)δi ,K(i)

j,2 = (K(i−1)
j,2)δi}k

j=1). It outputs a new private key SKID|k by running HIBE.RandKey
(T SK(n),PP).

HIBE.MergeKey(SK(1)
ID|k ,SK(2)

ID|k ,η ,PP): Let SK(1)
ID|k =(K′0,{K′i,1,K′i,2}k

i=1) and SK(2)
ID|k =(K′′0 ,{K′′i,1,K′′i,2}k

i=1)

be two private keys for the same identity ID|k. It computes a temporal merged private key T SK =(
K0 = K′0 ·K′′0 ,

{
Ki,1 = K′i,1 ·K′′i,1,Ki,2 = K′i,2 ·K′′i,1

}k
i=1

)
. Next, it outputs a merged private key SKID|k

by running HIBE.ChangeKey(T SK,(+,η),PP). Note that the master key part is γ1 + γ2 +η if the
master key parts of SK(1)

ID|k and SK(2)
ID|k are γ1 and γ2 respectively.

HIBE.GenIKey(ID|k,MK,PP): Let ID|k = (I1, . . . , Ik) ∈ Ik and MK = γ . It obtains CID|k = (CI1, . . . ,CIk)
from ID|k. It chooses a random exponent rk ∈ Zp and outputs an intermediate private key ISKID|k =(
K0 = gγwrk ,

{
Kk,1 = (uCIk h)−rk ,Kk,2 = grk

})
.

HIBE.RandIKey, HIBE.ChangeIKey These algorithms are very similar to the algorithms HIBE.RandKey
and HIBE.ChangeKey except that they take ISKID|k and return ISKID|k . We omit the description.

HIBE.DeriveKey(ISKID|k ,PP): Let ISKID|k =(K′0,{K′k,1,K′k,2}) for ID|k =(I1, . . . , Ik)∈Ik. It obtains CID|k =
(CI1, . . . ,CIk) from ID|k. It chooses random exponents r1, . . . ,rk ∈ Zp and outputs a private key
SKID|k =

(
K0 = K′0 ·∏k

i=1 wri ,
{

Ki,1 = (uCIih)−ri ,Ki,2 = gri
}k−1

i=1 ,
{

Kk,1 = K′k,1 · (uCIk h)−rk ,Kk,2 = K′k,2 ·
grk

})
. Note that the private key is correctly distributed because of newly chosen random exponents.

The correctness of the above HIBE scheme is relatively straightforward from that of the RS-HIBE
scheme. We omit the description of the correctness.

12

3.4 IBE Construction

The IBE scheme of Boneh and Boyen [5] with additional algorithms is given as follows:

IBE.Setup(GDS): Let GDS = ((p,G,GT ,e),g) be the group description string of a bilinear group with a
generator g ∈ G. It selects random elements uI,hI ∈ G and a random exponent β ∈ Zp. It outputs a
master key MK = β and public parameters PP =

(
(p,G,GT ,e),g,uI,hI,Λ = e(g,g)β

)
.

IBE.GenKey(ID,MK,PP): It chooses a random exponent r ∈ Zp and outputs a private key SKID =
(
K0 =

gβ (uID
I hI)

r,K1 = g−r
)
.

IBE.RandKey(SKID,PP): Let SKID = (K′0,K
′
1). It chooses a random exponent r ∈ Zp and outputs a ran-

domized private key SKID =
(
K0 = K′0 · (uID

I hI)
r,K1 = K′1 ·g−r

)
.

IBE.Encaps(ID, t,PP): Let t be a random exponent in Zp. It outputs a ciphertext header CHID =
(
C0 =

gt ,C1 = (uID
I hI)

t
)

and a session key EK = Λt .

IBE.Decaps(CTID,SKID′ ,PP): Let CHID = (C0,C1) and SKID′ = (K0,K1). If ID = ID′, then it outputs a
session key by computing EK = e(C0,K0) · e(C1,K1). Otherwise, it outputs ⊥.

We additionally define two algorithms ChangeKey and MergeKey. Although these algorithms are not
needed for IBE, those are very helpful to build our RHIBE scheme.

IBE.ChangeKey(SKID,{(opi,δi)}n
i=1,PP): Let SKID = (K′0,K

′
1), opi ∈ {+,×}, and δi be a random ex-

ponent in Zp. It sets T SK(0) = SKID. For each (opi,δi), it performs: If opi = +, then it sets
T SK(i) = (K(i)

0 = K(i−1)
0 ·gδi ,K(i)

1 = K(i−1)
1). If opi =×, then it sets T SK(i) = (K(i)

0 = (K(i−1)
0)δi ,K(i)

1 =

(K(i−1)
1)δi). It outputs a new private key SKID by running IBE.RandKey(T SK(n),PP).

IBE.MergeKey(SK(1)
ID ,SK(2)

ID ,η ,PP): Let SK(1)
ID = (K′0,K

′
1) and SK(2)

ID = (K′′0 ,K
′′
1) be two private keys for the

same identity ID. It computes a temporal merged private key T SKID =
(
K0 = K′0 ·K′′0 ,K1 = K′1 ·K′′1 ,

)
.

Next, it outputs a merged private key SKID by running IBE.ChangeKey(T SKID,(+,η),PP).

Remark 3.4. The above IBE scheme is slightly different with the original BB-IBE scheme. That is, we added
the RandKey algorithm that randomizes a private key, the ChangeKey algorithm that changes the master
key part of a private key, and the MergeKey algorithm that merges two private keys for the same identity.
Additionally, we modified the Encrypt algorithm to takes as input an exponent for a session key. The reason
of this modification is for the modular construction of an RHIBE scheme.

3.5 Security Analysis

Theorem 3.5. The above HIBE scheme is SE-IND-CPA secure if the q-RW2 assumption holds.

Proof. Suppose that there exists an adversary A that attacks the above HIBE scheme with a non-negligible
advantage. A simulator B that solves the q-RW2 assumption using A is given: a challenge tuple D =(
(p,G,GT ,e),g,gx,gy,gz,g(xz)2

,
{

gbi ,gxzbi ,gxz/bi ,gx2zbi ,gy/b2
i ,gy2/b2

i
}
,
{

gxzbi/b j ,gybi/b2
j ,gxyzbi/b2

j ,g(xz)2bi/b j
})

and
Z where Z = Z0 = e(g,g)xyz or Z = Z1 ∈R GT . B that interacts with A is described as follows:

Init: A initially submits a challenge hierarchical identity ID∗|` = (I∗1 , . . . , I
∗
`) where ` ≤ q. It obtains

CID∗|` = (CI∗1 , . . . ,CI∗`) by calling EncodeCID(ID∗|`).

13

Setup: B chooses random exponents u′,h′ ∈ Zp and creates public parameters PP by implicitly setting
α = xy as

g, u = gu′
`

∏
i=1

gy/b2
i , h = gh′

`

∏
i=1

(
gxz/bi(gy/b2

i)−CI∗i
)
, w = gx, Λ = e(gx,gy).

Phase 1: A adaptively requests a polynomial number of private key queries. If this is a private key query
for a hierarchical identity ID|k, then B proceeds as follows:

1. It first obtains CID|k = (CI1, . . . ,CIk) by calling EncodeCID(ID|k). If ID|k /∈ Prefix(ID∗|`) by the
restriction of the security model, then we have CIk 6=CI∗i for all i ∈ [`] from Lemma 3.3.

2. It chooses a random exponent r′k ∈ Zp and implicitly sets rk = −y+Σ`
i=1

xzbi
CIk−CI∗i

+ r′k. It creates an
intermediate private key ISKID|k

K0 = gαwrk = gxy ·
(
gx)−y+Σ`

i=1
xzbi

CIk−CI∗i
+r′k = gxy ·g−xy ·

`

∏
i=1

(
gx2zbi

) 1
CIk−CI∗i ·wr′k

=
`

∏
i=1

(
gx2zbi

) 1
CIk−CI∗i ·wr′k ,

Kk,1 =
(
uCIk h

)−rk =
(
uCIk h

)y−Σ`
i=1

xzbi
CIk−CI∗i

−r′k

=
(

gu′CIk+h′ ·
`

∏
i=1

(gy/b2
i)CIk−CI∗i ·

`

∏
i=1

gxz/bi
)y−Σ`

i=1
xzbi

CIk−CI∗i ·
(
uCIk h

)−r′k

=
(
gy)u′CIk+h′ ·

`

∏
i=1

(
gxzbi

)− u′CIk+h′
CIk−CI∗i ·

`

∏
i=1

(
gy2/b2

i
)CIk−CI∗i ·

`

∏
i=1

`

∏
j=1, j 6=i

(
gxyzb j/b2

i
)−CIk−CI∗i

CIk−CI∗j ·

`

∏
i=1

`

∏
j=1

(
g(xz)2b j/bi

)− 1
CIk−CI∗j ·

(
uCIk h

)−r′k ,

Kk,2 = grk = g
−y+Σ`

i=1
xzbi

CIk−CI∗i
+r′k =

(
gy)−1 ·

`

∏
i=1

(
gxzbi

) 1
CIk−CI∗i ·gr′k .

Note that it cannot create a private key for ID|k ∈ Prefix(ID∗|`) since CIk =CI′k from Lemma 3.3.

3. It derives SKID|k by running HIBE.DeriveKey(ISKID|k ,PP) and gives SKID|k to A.

Challenge: For all i ∈ [`], B computes the following ciphertext components by implicitly setting t = z and
{si = bi} as

Ci,1 = gbi ,

Ci,2 =
(
uCI∗i h

)bi ·w−z =
(

gu′CI∗i +h′ ·
`

∏
j=1

((
gy/b2

j
)CI∗i −CI∗j ·gxz/b j

))bi
·g−xz

=
(
gbi

)u′CI∗i +h′ ·
`

∏
j=1, j 6=i

((
gybi/b2

j
)CI∗i −CI∗j ·gxzbi/b j

)
.

It gives the challenge ciphertext header CHID∗|` =
(
C0 = gz,{Ci,1,Ci,2}`i=1

)
and the challenge session key

EK∗ = Z to A.

14

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B also outputs µ ′.

Remark 3.6. In the security proof, the simulator first creates an intermediate private key ISKID|k and then
derives a private key SKID|k by simply running the DeriveKey algorithm instead of directly creating the
private key. As mentioned before, this different key generation is possible because of the second property of
the EncodeCID function. This feature of the simulator plays an important role in the proof of our RHIBE
schemes.

Theorem 3.7 ([5]). The above IBE scheme is SE-IND-CPA secure if the DBDH assumption holds.

3.6 Discussions

Delegation History Dependence. The security models of HIBE are divided into two types depending on the
process of delegation. In a security model with delegation history independence [5,6,16], the distribution of
private keys is independent of the history of private key queries from an adversary. That is, the distribution
of private keys generated from the root is the same as that of private keys delegated by a parent. In a
security model with delegation history dependence [37, 38], the distribution of private keys in dependent of
the history of adversary’s private key queries. In this model, an adversary can queries create, delegate, and
reveal queries. If we use the security model with delegation history dependence, then we can reduce the size
of private keys and simplify the process of re-randomization. That is, a challenger can use the GenIKey
algorithm instead of the GenKey algorithm for the create query without using the DeriveKey algorithm.

Different Constructions. We observe that some of previous HIBE schemes can be modified to have addi-
tional algorithms and to support the generation of short intermediate private keys. We first consider the HIBE
scheme of Boneh and Boyen (BB-HIBE) [5,6]. This scheme can be easily modified to have the ChangeKey
and MergeKey algorithms since it belongs to the commutative blinding method [9], and it also can have
the GenIKey and DeriveKey algorithms if the concatenated identity encoding function is used since the
private key of the scheme uses different random values for each level. Next, we consider the HIBE scheme
of Boneh, Boyen, and Goh (BBG-HIBE) [7]. This scheme also supports the ChangeKey and MergeKey
algorithms, but it cannot have the GenIKey and DeriveKey algorithms since only one random value is used
in a private key.

4 Revocable HIBE from Complete Subtree

In this section, we propose an RHIBE scheme with shorter keys by combining our HIBE scheme, the IBE
scheme, and the complete subtree scheme.

4.1 The CS Scheme

The complete subtree (CS) scheme is one instance of the subset cover framework of Naor et al. [28]. We
follow the definition of Lee et al. [21]. The CS scheme is given as follows:

CS.Setup(Nmax): Let Nmax = 2n for simplicity. It first sets a full binary tree BT of depth n. Each user is
assigned to a different leaf node in BT . The collection S is defined as {Si} where Si is the set of all
leaves in a subtree Ti with a subroot vi ∈ BT . It outputs the full binary tree BT .

15

CS.Assign(BT , ID): Let vID be a leaf node of BT that is assigned to the user ID. Let (vk0 ,vk1 , . . . ,vkn) be
the path from the root node vk0 = v0 to the leaf node vkn = vID. For all j ∈ {k0, . . . ,kn}, it adds S j into
PVID. It outputs the private set PVID = {S j}.

CS.Cover(BT ,R): It first computes the Steiner tree ST (R). Let Tk1 , . . .Tkm be all the subtrees of BT that
hang off ST (R), that is all subtrees whose roots vk1 , . . .vkm are not in ST (R) but adjacent to nodes of
outdegree 1 in ST (R). For all i∈ {k1, . . . ,km}, it adds Si into CVR. It outputs a covering set CVR = {Si}.

CS.Match(CVR,PVID): It finds a subset Sk with Sk ∈CVR and Sk ∈ PVID. If there is such a subset, it outputs
(Sk,Sk). Otherwise, it outputs ⊥.

We define Label(Si) as a function that uniquely maps a subset Si ∈ S to a label string Li.

4.2 Construction

The design approach of RHIBE schemes can be divided into the history-preserving update method and the
history-free update method depending on the generation of update keys [32, 34]. In the history-preserving
update method [32], an update key should include all update keys generated by his ancestor identities and a
private key also includes all private keys of his ancestor identities because of the update key. In the history-
free update method [34], an update key is generated from a decryption key that can be derived from a private
key and a parent’s update key if the private key is not revoked in the parent’s update key. One nice property
of the history-free update method is that a private key does not need to include all private keys of ancestor’s
identities. Thus, we follow the history-free update approach of Seo and Emura [34]. Note that a private
key and an update key of the RHIBE scheme of Seo and Emura consists of O(` logN) group elements and
O(`r log N

r) group elements respectively.
In contrast to the previous ad-hoc design approach that builds an RHIBE scheme by combining an

HIBE scheme and a CS scheme, we propose a modular design approach that builds an RHIBE scheme by
combining an HIBE scheme, an IBE scheme, and a CS scheme. That is, we define each interface of HIBE,
IBE, and CS schemes and we build an RHIBE scheme by just calling the interfaces of each underlying
schemes. The main advantages of this modular approach is the simplicity and the reusability. In particular,
we show that a private key of RHIBE can use an intermediate private key of HIBE instead of using a
private key of HIBE. Recall that the intermediate private key of HIBE is shorter than the private key of
HIBE. Thus, we can reduce the size of an RHIBE private key from O(` logN) group elements to O(logN)
group elements. Furthermore, we reduce the size of an update key from O(`r log N

r) to O(`+ r log N
r) group

elements by taking advantage of the modular design approach.
Let HIBE be the scheme in Section 3.3 and IBE be the scheme in Section 3.4. Our RHIBE scheme

from CS is described as follows:

RHIBE.Setup(1λ ,Nmax): This algorithm takes as input a security parameter 1λ and the maximum number
of users Nmax for each level.

1. It first generates bilinear groups G,GT of prime order p. Let g be a generator of G. It sets
GDS = ((p,G,GT ,e),g). It obtains MKHIBE and PPHIBE by running HIBE.Setup(GDS). It
also obtains MKIBE and PPIBE by running IBE.Setup(GDS).

2. It selects a random exponent α ∈ Zp and outputs a master key MK = α and public parameters
PP =

(
PPHIBE ,PPIBE ,Ω = e(g,g)α ,Nmax

)
. For notational simplicity, we define SKID|0 = MK.

16

RHIBE.GenKey(ID|k,STID|k−1 ,PP): This algorithm takes as input a hierarchical identity ID|k =(I1, . . . , Ik)∈
Ik with k ≥ 1, the state STID|k−1 , and public parameters PP.

1. If STID|k−1 is empty (since it is first called), then it obtains BT ID|k−1 by running CS.Setup(Nmax)
and generates a false master key βID|k−1 and a PRF key zID|k−1 . Next, it sets STID|k−1 = (BT ID|k−1 ,
βID|k−1 ,zID|k−1).

2. It assigns ID|k to a random leaf node v ∈ BT ID|k−1 and obtains a private set PVID|k = {S j} by
running CS.Assign(BT ID|k−1 , ID|k).

3. For each S j ∈ PVID|k , it computes γ j = PRF(zID|k−1 ,L j) where L j = Label(S j) and obtains
ISKHIBE,S j by running HIBE.GenIKey(ID|k,γ j,PPHIBE).

4. Finally, it outputs a private key SKID|k =
(
PVID|k ,{ISKHIBE,S j}S j∈PVID|k

)
. Note that the master

key part of ISKHIBE,S j is γ j.

RHIBE.UpdateKey(T,RLID|k−1 ,DKID|k−1,T ,STID|k−1 ,PP): This algorithm takes as input time T ∈ T , the re-
vocation list RLID|k−1 , the decryption key DKID|k−1,T = (RSKHIBE,ID|k−1 ,RSKIBE,T), the state STID|k−1 =
(BT ID|k−1 ,βID|k−1 ,zID|k−1) with k ≥ 1, and public parameters PP.

1. It obtains RDKID|k−1,T = (RSKHIBE ,RSKIBE) by running RHIBE.RandDK(DKID|k−1,T ,−βID|k−1 ,
PP).

2. It derives the set RID|k−1 of revoked identities at time T from RLID|k−1 . Next, it obtains a covering
set CVRID|k−1

= {Si} by running CS.Cover(BT ID|k−1 ,RID|k−1).

3. For each Si ∈ CVRID|k−1
, it computes γi = PRF(zID|k−1 ,Li) where Li = Label(Si) and obtains

SKIBE,Si by running IBE.GenKey(T,βID|k−1− γi,PPIBE).
4. Finally, it outputs an update key UKT,RID|k−1

=
(
RDKID|k−1,T ,CVRID|k−1

,{SKIBE,Si}Si∈CVRID|k−1

)
.

Note that the master key parts of RSKHIBE ,RSKIBE , and SKIBE,Si are η ′, α −η ′−βID|k−1 , and
βID|k−1− γi for some random η ′ respectively.

RHIBE.DeriveKey(ID|k,T,SKID|k ,UKT,RID|k−1
,PP): This algorithm takes as input a hierarchical identity

ID|k with k≥ 0, time T , a private key SKID|k =(PVID|k ,{ISKHIBE,S j}S j∈PVID|k
), an update key UKT,RID|k−1

=

(RDKID|k−1,T ,CVRID|k−1
,{SKIBE,Si}Si∈CVRID|k−1

) where RDKID|k−1,T = (RSK′HIBE ,RSK′IBE), and the pub-
lic parameters PP.

If k = 0, then SKID|0 = MK = α and UK is empty. It proceeds as follows:

1. It selects a random exponent η ∈ Zp. It then obtains RSKHIBE,ID|0 and RSKIBE,T by running
HIBE.GenKey(ID|0,η ,PPHIBE) and IBE.GenKey(T,α−η ,PPIBE) respectively.

2. It outputs a decryption key DKID|0,T = (RSKHIBE,ID|0 ,RSKIBE,T).

If k ≥ 1, then it proceeds as follows:

1. If ID|k 6∈ RID|k−1 , then it obtains (Si,Si) by running CS.Match(CVRID|k−1
,PVID|k). Otherwise, it

outputs ⊥. Next, it retrieves ISKHIBE,Si from SKID|k and SKIBE,Si from UKT,RID|k−1
. It derives

SKHIBE,Si by running HIBE.DeriveKey(ISKHIBE,Si ,PPHIBE).
2. It obtains RSK′′HIBE by running HIBE.Delegate(ID|k,RSK′HIBE ,PPHIBE) since RSK′HIBE is for

ID|k−1. It selects a random exponent η ∈Zp. Next, it obtains RSKHIBE,ID|k and RSKIBE,T by run-
ning HIBE.MergeKey(RSK′′HIBE ,SKHIBE,Si ,η ,PPHIBE) and IBE.MergeKey(RSK′IBE ,SKIBE,Si ,
−η ,PPIBE) respectively.

17

3. Finally, it outputs a decryption key DKID|k,T =
(
RSKHIBE,ID|k ,RSKIBE,T

)
.

Note that the master key parts of RSKHIBE,ID|k and RSKIBE,T are η ′ and α −η ′ for some random η ′

respectively.

RHIBE.RandDK(DKID|k,T ,β ,PP): This algorithm takes as input a decryption key DKID|k,T =
(
RSK′HIBE,ID|k ,

RSK′IBE,T
)
, an exponent β ∈ Zp, and the public parameters PP. It first selects a random exponent

η ∈ Zp. Next, it obtains RSKHIBE,ID|k and RSKIBE,T by running HIBE.ChangeKey(RSK′HIBE,ID|k ,

(+,η),PPHIBE) and IBE.ChangeKey(RSK′IBE,T ,(+,−η +β),PPIBE) respectively. It outputs a ran-
domized decryption key DKID|k,T =

(
RSKHIBE,ID|k ,RSKIBE,T

)
. Note that the master key parts of

RSKHIBE,ID|k and RSKIBE,T are η ′ and α−η ′+β respectively.

RHIBE.Encrypt(ID|`,T,M,PP): This algorithm takes as input a hierarchical identity ID|` = (I1, . . . , I`) ∈
I` with `≥ 1, time T , a message M, and the public parameters PP. It first chooses a random exponent
t ∈ Zp. Next, it obtains CHHIBE,ID|` and EKHIBE by running HIBE.Encaps(ID|`, t,PPHIBE). It also
obtains CHIBE,T and EKIBE by running IBE.Encaps(T, t,PPIBE). It outputs a ciphertext CTID|k,T =(
CHHIBE,ID|` ,CHIBE,T ,C = Ωt ·M

)
.

RHIBE.Decrypt(CTID|`,T ,DKID′|k,T ′ ,PP): This algorithm takes as input a ciphertext CTID|`,T =(CHHIBE,ID|` ,
CHIBE,T ,C) with ` ≥ 1, a decryption key DKID|k,T ′ = (RSKHIBE,ID|k ,RSKIBE,T ′) with k ≥ 1, and the
public parameters PP. If ID|k ∈ Prefix(ID|`) and T = T ′, then it obtains EKHIBE and EKIBE by run-
ning HIBE.Decaps(CHHIBE,ID|` ,RSKHIBE,ID|k ,PPHIBE) and IBE.Decaps(CHIBE,T ,RSKIBE,T ′ ,PPIBE)
respectively. Otherwise, it outputs ⊥. It outputs an encrypted message M =C · (EKHIBE ·EKIBE)

−1.

RHIBE.Revoke(ID|k,T,RLID|k−1 ,STID|k−1): This algorithm takes as input a hierarchical identity ID|k with
k ≥ 1, revocation time T , a revocation list RLID|k−1 , and a state STID|k−1 = (BT ID|k−1 ,z). If ID|k is not
assigned in BT ID|k−1 , then it outputs⊥. Otherwise, it updates RLID|k−1 by adding (ID|k,T) to RLID|k−1 .

4.3 Correctness

To show the correctness of the above RHIBE scheme, we first show that a decryption key DKID|k,T is cor-
rectly derived from a private key SKID|k and an update key UKT,RID|k−1

. Let SKID|k =(PVID|k ,{ISKHIBE,S j}S j∈PV)

and UKT,RID|k−1
= (RDKID|k−1,T ,CVR,{SKIBE,Si}Si∈CV) where RDKID|k−1,T = (RSK′HIBE ,RSK′IBE). From the

GenKey and UpdateKey algorithms, the master key parts of ISKHIBE,S j and SKIBE,Si are associated with γ j

and βID|k−1− γi respectively. Additionally, the master key parts of RSK′HIBE and RSK′IBE are associated with
η ′ and α−η ′−βID|k−1 respectively.

If ID|k 6∈ RID|k−1 , then the master key parts of ISKHIBE,Si and SKIBE,Si are associated with γi and βID|k−1−
γi since there keys are related to the same tree node because of the correctness of the CS scheme. The
master key part of SK′HIBE,Si

derived from HIBE.DeriveKey still associated with γi. Thus, the master key
part of RSK′′HIBE and RSK′IBE that are returned by HIBE.MergeKey and IBE.MergeKey are associated with
η ′′ = (η ′)+ γi +η and (α −η ′− βID|k−1)+ βID|k−1 − γi−η = α −η ′′ respectively. Thus the DeriveKey
algorithm is correct since we have α if we add two master key parts of the decryption key.

Next, we show that the message is correctly decrypted by the decryption algorithm. The correctness of
the Decrypt algorithm can be shown by the correctness of the HIBE.Decrypt and IBE.Decrypt. That is,
we have e(g,g)η ′·t from the correctness of HIBE and e(g,g)(α−η ′)t from the correctness of IBE. By adding
two partial session keys, we have e(g,g)αt . The message M can be easily obtained by using this session key.

18

4.4 Security Analysis

Theorem 4.1. The above RHIBE scheme from CS is SE-IND-CPA secure if the PRF scheme is secure and
the q-RW2 assumption holds.

Proof. Let ID∗|` = (I∗1 , . . . , I
∗
`) be the challenge hierarchical identity submitted by an adversary. To prove

the selective IND-CPA security of our RHIBE scheme, we classify the type of adversaries into `+1 types.
The type of an adversary A is τ ∈ {1, . . . , `, `+ 1} if A does not queries the private key of ID∗| j for all
j ∈ {1, . . . ,τ−1}, but A should query the private key of ID∗|τ . That is, the oldest ancestor of ID∗|` which
is queried by A is ID∗|τ . If the type of an adversary is `+1, then A does not query the private key of ID∗| j
for all j ∈ {1, . . . , `}.

Suppose that an adversary is τ-type. The security proof for the τ-type adversary Aτ consists of the
sequence of hybrid games. We define the games as follows:

Game G0. This game is the original security game. That is, a simulator B uses a pseudo-random function
for each hierarchical identity ID|k−1 when it generates private keys for child identities and update keys
for time periods.

Game G1. This game G1 is similar to the game G0 except that B uses a truly random function for the
hierarchical identity ID∗|k−1 for all k ∈ {1, . . . ,τ} when it generates private keys and update keys.
That is, B selects a random element γi ∈ Zp instead of computing γi = PRF(zID∗|τ−1 ,Label(S j)) for
each Si in BT ID∗|k−1 .

Game G2. This final game G2 is almost the same with the previous game G1 except that a random session
key is used to create the challenge ciphertext. Note that the advantage ofAτ in this game is zero since
the challenge ciphertext is not related to µ .

Let AdvGi
A be the advantage of A in a game Gi. Let Eτ be the event that the adversary behaves like

τ-type. From the Lemmas 4.2 and 4.3, we obtain the following equation

∣∣AdvG0
A −AdvG2

A
∣∣≤ `+1

∑
τ=1

Pr[Eτ] ·
∣∣AdvG0

Aτ
−AdvG2

Aτ

∣∣≤ `AdvPRF
B (1λ)+Advq-RW2

B (1λ).

This completes our proof.

Lemma 4.2. If the PRF scheme is secure, then no PPT τ-type adversary can distinguish between G0 and
G1 with a non-negligible advantage.

Proof. The proof of this lemma is relatively straightforward by using additional hybrid arguments if a sim-
ulator that distinguishes whether an oracle is PRF or not selects the master key of RHIBE by himself and
uses the given oracle for the hierarchical identity ID∗|k−1 when it generates private keys for child identities
and update keys for time periods. We omit the details of this proof.

Lemma 4.3. If the q-RW2 assumption holds, then no PPT τ-type adversary can distinguish between G1 and
G2 with a non-negligible advantage.

Proof. Suppose there exists a τ-type adversaryAτ that attacks the above RHIBE scheme with non-negligible
advantage. A meta-simulator B that solves the q-RW2 assumption using Aτ is given: a challenge tuple D =(
(p,G,GT ,e),g,gx,gy,gz,g(xz)2

,
{

gbi ,gxzbi ,gxz/bi ,gx2zbi ,gy/b2
i ,gy2/b2

i
}
,
{

gxzbi/b j ,gybi/b2
j ,gxyzbi/b2

j ,g(xz)2bi/b j
})

and
Z where Z =Z0 = e(g,g)xyz or Z =Z1 ∈R GT . Note that a challenge tuple DDBDH =((p,G,GT ,e),g,gx,gy,gz)

19

for the DBDH assumption can be derived from the challenge tuple D of the q-RW2 assumption. Let BHIBE

be the simulator of Theorem 3.5 and BIBE be the simulator of Theorem 3.7. Then B that interacts with Aτ

is described as follows:

Init: Aτ initially submits a challenge hierarchical identity ID∗|` = (I∗1 , . . . , I
∗
`) and challenge time T ∗. B

runs BHIBE by giving D and Z, and it also runs BIBE by giving DDBDH and Z.
Setup: B submits ID∗|` to BHIBE and receives PPHIBE . It also submits T ∗ to BIBE and receives PPIBE . It
fixes a random leaf node v∗ ∈ BT ID∗|τ−1 that will be assigned to the hierarchical identity ID∗|τ . It implicitly
sets α = xy and gives the public parameters PP =

(
PPHIBE ,PPIBE ,Ω = e(gx,gy),Nmax

)
to Aτ .

Phase 1: Aτ adaptively requests a polynomial number of private key, update key, decryption key, and
revocation queries. B handles these queries as follows:
If this is a private key query for ID|k = (I1, . . . , Ik−1, Ik) with k ≥ 1, then B proceeds as follows:

• Case ID|k−1 6∈ Prefix(ID∗|`): In this case, it normally generates a private key by using a normally
generated STID|k−1 since it can obtains DKID|k−1,T for any T .

1. If the state STID|k−1 was not generated before, then it normally generates STID|k−1 . Otherwise, it
retrieves STID|k−1 that was previously generated.

2. It obtains SKID|k by running RHIBE.GenKey(ID|k,STID|k−1 ,PP). Additionally, it normally gen-
erates STID|k by himself. Finally, it gives SKID|k and STID|k to Aτ .

• Case ID|k−1 ∈ Prefix(ID∗|`) with k < τ: In this case, we have ID|k 6= ID∗|k since Aτ is τ-type.

1. It queries an HIBE intermediate private key for ID|k to BHIBE and receives ISK′HIBE .

2. It assigns ID|k to a random leaf node v ∈ BT ID∗|k−1 and obtains PVID|k = {S j} by running
CS.Assign(BT ID∗|k−1 , ID|k).

3. For each S j ∈ PVID|k , it retrieves random γ j associated to the node v j and obtains ISKHIBE,S j by
running HIBE.ChangeIKey(ISK′HIBE ,(+,γ j),PPHIBE).

4. It sets SKID|k =
(
PVID|k ,{ISKHIBE,S j}S j∈PVID|k

)
and gives SKID|k to Aτ . Note that the master key

part of ISKHIBE,S j is α + γ j.

• Case ID|k−1 ∈ Prefix(ID∗|`) with k = τ: In this case, it carefully divides the subsets in BT ID∗|τ−1 into
two partitions. For one partition (S j ∈ Path(ID∗|τ)), it sets γ j as the master key part. For another
partition (S j 6∈ Path(ID∗|τ)), it sets α + γ j as the master key part by using BHIBE .

1. If ID|k 6= ID∗|τ , it queries an HIBE intermediate private key for ID|k to BHIBE and receives
ISK′HIBE .

2. If ID|k 6= ID∗|τ , it assigns ID|k to a random leaf node v ∈ BT ID∗|τ−1(v 6= v∗). Otherwise (ID|k =
ID∗|τ), it assigns ID∗|τ to the pre-fixed node v∗. Next, it obtains PVID|k = {S j} by running
CS.Assign(BT ID∗|τ−1 , ID|k).

3. For each S j ∈ PVID|k , it retrieves random γ j that is associated to v j and proceeds as follows:

– Case S j ∈Path(ID∗|τ): It obtains ISKHIBE,S j by running HIBE.GenIKey(ID|k,γ j,PPHIBE).
– Case S j 6∈ Path(ID∗|τ): It obtains ISKHIBE,S j by running HIBE.ChangeIKey(ISK′HIBE ,

(+,γ j),PPHIBE).

4. It sets SKID|k =
(
PVID|k ,{ISKHIBE,S j}S j∈PVID|k

)
and gives SKID|k to Aτ . Note that the master key

part of ISKHIBE,S j is γ j if S j ∈ Path(ID∗|τ) or it is α + γ j otherwise.

20

• Case ID|k−1 ∈Prefix(ID∗|`) with k > τ: In this case, it is the same as the case ID|k−1 6∈Prefix(ID∗|`).
That is, it follows the normal key generation algorithm. We omit the description of this case.

If this is an update key query for ID|k−1 = (I1, . . . , Ik−1) with k ≥ 1 and T , then B proceeds as follows:

• Case ID|k−1 6∈ Prefix(ID∗|`): In this case, it can generate UKT,RID|k−1
by following the normal algo-

rithm since it can obtain DKID|k−1,T from the condition ID|k−1 6∈ Prefix(ID∗|`).

1. If the state STID|k−1 was generated before, then it retrieves STID|k−1 . Otherwise, it normally gen-
erates STID|k−1 by himself. Next, it requests a decryption key query for ID|k−1 and T to himself
and receives DKID|k−1,T since ID|k−1 6∈ Prefix(ID∗|`).

2. It obtains UKT,RID|k−1
by running RHIBE.UpdateKey(T,RLID|k−1 ,DKIDk−1,T ,STID|k−1 ,PP) and

gives UKT,RID|k−1
to Aτ .

• Case ID|k−1 ∈ Prefix(ID∗|`) with k < τ: In this case, it can use the fact that Aτ is τ-type.

1. It selects a random exponent η ∈ Zp. Next, it obtains RSKHIBE,ID|k−1 and RSKIBE,T by running
HIBE.GenKey(ID|k−1,η ,PPHIBE) and IBE.GenKey(T,−η − βID|k−1 ,PPIBE) respectively. It
sets RDKID|k−1,T = (RSKHIBE,ID|k−1 ,RSKIBE,T).

2. It derives the set RID|k−1 of revoked identities at time T from RLID|k−1 and obtains CVRID|k−1
= {Si}

by running CS.Cover(BT ID|k−1 ,RID|k−1).

3. For each Si ∈ CVRID|k−1
, it retrieves random γi associated to vi and obtains SKIBE,Si by running

IBE.GenKey(ID|k−1,βID|k−1− γi,PPIBE).

4. It sets UKT,RID|k−1
=
(
RDKID|k−1,T ,CVRID|k−1

,{SKHIBE,Si}Si∈CVRID|k−1

)
and gives UKT,RID|k−1

toAτ .

Note that the master key part of SKIBE,Si is βID|k−1− γi.

• Case ID|k−1 ∈ Prefix(ID∗|`) with k = τ: In this case, Aτ requested the private key of ID∗|τ , but the
private key should be revoked in BT ID∗|τ−1 on the time T ∗.

1. It selects random exponents η ∈ Zp. Next it obtains RSKHIBE,ID|k−1 and RSKIBE,T by running
HIBE.GenKey(ID|k−1,η ,PPHIBE) and IBE.GenKey(T,−η − βID|k−1 ,PPIBE) respectively. It
sets RDKID|k−1,T = (RSKHIBE,ID|k−1 ,RSKIBE,T). If T 6= T ∗, it additionally queries an IBE private
key for T to BIBE and receives SK′IBE,T .

2. It derives the set RID|k−1 of revoked identities at time T from RLID|k−1 and obtains CVRID|k−1
= {Si}

by running CS.Cover(BT ID|k−1 ,RID|k−1).

3. For each Si ∈CVRID|k−1
, it retrieves γi associated to vi and proceeds as follows:

– Case Si ∈Path(ID∗|τ): It obtains SKIBE,Si by running IBE.ChangeKey(SK′IBE,T ,(+,βID|k−1−
γi),PPIBE) since T 6= T ∗.

– Case Si 6∈ Path(ID∗|τ): It obtains SKIBE,Si by running IBE.GenKey(T,βID|k−1− γi,PPIBE).

4. It sets UKT,RID|k−1
=

(
RDKID|k−1,T ,CVRID|k−1

,{SKIBE,Si}Si∈CVRID|k−1

)
and gives UKT,RID|k−1

to Aτ .

Note that the master key part of SKIBE,Si is α +βID|k−1−γi if Si ∈ Path(ID∗|k) or it is βID|k−1−γi

otherwise.

21

• Case ID|k−1 ∈ Prefix(ID∗|`) with k > τ: In this case, it is almost the same as the first case ID|k−1 6∈
Prefix(ID∗|`) except that it uses a decryption key by using the condition T 6= T ∗. Note thatAτ cannot
query an update key on time T ∗ since ID∗|τ was already revoked by the restriction of the security
model. We omit the description of this case.

If this is a decryption key query for ID|k = (I1, . . . , Ik) with k ≥ 1 and T , then B proceeds as follows:

• Case ID|k 6∈ Prefix(ID∗|`): In this case, it can use BHIBE to generate gα since ID|k 6∈ Prefix(ID∗|`).

1. It first queries an HIBE private key for ID|k to BHIBE and receives SK′HIBE,ID|k .

2. It selects a random exponent η ∈ Zp. Next, it obtains RSKHIBE,ID|k and RSKIBE,T by running
HIBE.ChangeKey(SK′HIBE,ID|k ,(+,η),PPHIBE) and IBE.GenKey(T,−η ,PPIBE) respectively.

3. It gives DKID|k,T =
(
RSKHIBE,ID|k ,RSKIBE,T

)
toAτ . Note that the master key part of RSKHIBE,ID|k

and RSKIBE,T are α +η and −η respectively.

• Case ID|k ∈ Prefix(ID∗|`) and T 6= T ∗: In this case, it can use BIBE to generates gα since T 6= T ∗.

1. It first queries an IBE private key for T to BIBE and receives SK′IBE,T .

2. It selects a random exponent η ∈ Zp. Next, it obtains RSKHIBE,ID|k and RSKIBE,T by running
HIBE.GenKey(ID|k,η ,PPHIBE) and IBE.ChangeKey(SK′IBE,T ,(+,−η),PPIBE) respectively.

3. It gives DKID|k,T =
(
RSKHIBE,ID|k ,RSKIBE,T

)
toAτ . Note that the master key part of RSKHIBE,ID|k

and RSKIBE,T are η and α−η respectively.

If this is a revocation query for ID|k and T , then B obtains an updated RLID|k−1 by running RHIBE.Revoke
(ID|k,T,RLID|k−1 ,STID|k−1). Note that Aτ cannot query to revoke ID|k on time T if he already requested an
update key query for ID|k on time T .
Challenge: Aτ submits two challenge messages M∗0 ,M

∗
1 . B flips a coin µ ∈ {0,1}. Next, it requests the chal-

lenge ciphertext to BHIBE and receives CHHIBE,ID∗|k and EKHIBE . It also requests the challenge ciphertext to
BIBE and receives CHIBE,T ∗ and EKIBE . It sets the challenge ciphertext CTID∗|`,T ∗ =

(
CHHIBE,ID∗|` ,CHIBT,T ∗ ,Z ·

M∗µ
)

and gives it to Aτ .
Phase 2: Same as Phase 1.
Guess: Aτ outputs a guess µ ′ ∈ {0,1}. If µ = µ ′, then B outputs 0. Otherwise, B outputs 1.

To finish the proof, we should check that the public parameters, private keys, update keys, decryption
keys, and the challenge ciphertext are all generated correctly. Recall that two sub-simulators BHIBE and
BIBE correctly generate the public parameters, private keys, update keys, and challenge ciphertexts of HIBE
and IBE respectively. The public parameters PP of RHIBE is correctly generated since two sub-simulators
use the same g in the assumption to generate PPHIBE and PPIBE respectively. Note that BHIBE implicitly sets
γ = α = xy and BIBE also implicitly sets β = α = xy. It is also easy to show that decryption keys and the
challenge ciphertext are correctly generated since BHIBE and BIBE correctly generate the private keys and
the challenge ciphertexts of HIBE and IBE respectively.

We can check the generations of private keys and update keys by examining the consistency of the master
key parts in private keys and update keys since the simulator uses HIBE and IBE schemes as modules. In
cases of ID|k−1 6∈ Prefix(ID∗|`) and ID|k−1 ∈ Prefix(ID∗|`) with k > τ , private keys and update keys are
correctly generated since they are normally generated. Next, we consider the case ID|k−1 ∈ Prefix(ID∗|`)
with k < τ . The master key part of ISKHIBE,S j in a private key is α + γ j and the master key part of SKIBE,S j

in an update key is βID|k−1− γ j. Additionally, the master key parts of RSKHIBE ,RSKIBE in an update key are

22

η and −η−βID|k−1 respectively. If we implicitly sets γ ′j = α + γ j and β ′ID|k−1
= α +βID|k−1 , then the master

key parts of RSKHIBE ,RSKIBE are η and α−η −β ′ respectively. The case of ID|k−1 ∈ Prefix(ID∗|`) with
k = τ is similar to the previous case except that the master key parts of ISKHIBE,S j and SKIBE,S j associated
to a subset S j ∈ Path(ID∗|τ) are differently set. That is, if S j ∈ Path(ID∗|τ), then the master key parts of
ISKHIBE,S j and SKIBE,S j are γ j and α +βID|k−1−γ j respectively. The problem of this setting is that an update
key on the time T ∗ cannot be generated if CV ∩Path(ID∗|τ) 6= /0. Fortunately, we have CV ∩Path(ID∗|τ)= /0
since the private key of ID∗|τ should be revoked on the time T ∗ by the restriction of the security model. Thus
the master key parts of private keys and update keys are consistent. This completes our proof.

4.5 Discussions

Different Constructions. We can build different RHIBE schemes if we replace our HIBE scheme with
other HIBE schemes if they can have the same interfaces of our HIBE scheme. At first, we can try to build
an RHIBE scheme by using the BB-HIBE scheme [5]. As mentioned before, the BB-HIBE scheme can
have the intermediate private keys. In this RHIBE scheme, the size of public parameters, a private key, an
update key, and a ciphertext is O(`), O(logN), O(`+r log N

r), and O(`) respectively. We can also try to build
another RHIBE scheme by using the BBG-HIBE scheme [7]. Note that the BBG-HIBE scheme cannot have
the intermediate private key. In this RHIBE scheme, the size of public parameters, a private key, an update
key, and a ciphertext is O(`), O(` logN), O(`+ r log N

r), and O(1) respectively.

5 Revocable HIBE from Subset Difference

In this section, we propose another RHIBE scheme with shorter keys by combining our HIBE scheme, the
IBE scheme, and the subset difference scheme.

5.1 The SD Scheme

The subset difference (SD) scheme is also another instance of the subset cover framework of Naor et al. [28].
We use the description of the SD scheme of Lee et al. [22]. The SD scheme is given as follows:

SD.Setup(Nmax): Let Nmax = 2n for simplicity. It first sets a full binary tree BT of depth n. Each user is
assigned to a different leaf node in BT . The collection S of SD is the set of all subsets {Si, j} where
vi,v j ∈ BT and v j is a descendant of vi. It outputs the full binary tree BT .

SD.Assign(BT , ID): Let vID be the leaf node of BT that is assigned to the user ID. Let (vk0 ,vk1 , . . . ,vkn) be
the path from the root node vk0 to the leaf node vkn = vID. For all i, j ∈ {k0, . . . ,kn} such that v j is a
descendant of vi, it adds the subset Si, j defined by two nodes vi and v j in the path into PVID. It outputs
the private set PVID = {Si, j}.

SD.Cover(BT ,R): It first sets a subtree T as ST (R), and then it builds a covering set CVR iteratively by
removing nodes from T until T consists of just a single node as follows:

1. It finds two leaf nodes vi and v j in T such that the least-common-ancestor v of vi and v j does not
contain any other leaf nodes of T in its subtree. Let vl and vk be the two child nodes of v such
that vi is a descendant of vl and v j is a descendant of vk. If there is only one leaf node left, it
makes vi = v j to the leaf node, v to be the root of T and vl = vk = v.

2. If vl 6= vi, then it adds the subset Sl,i to CVR; likewise, if vk 6= v j, it adds the subset Sk, j to CVR.

23

3. It removes from T all the descendants of v and makes v a leaf node.

It outputs the covering set CVR = {Si, j}.

SD.Match(CVR,PVID): It finds two subsets Si, j and S′i′, j′ such that Si, j ∈CVR, S′i′, j′ ∈ PVID, i = i′, d j = d j′ ,
and j 6= j′ where d j is the depth of v j. If it found two subsets, then it outputs (Si, j,S′i′, j′). Otherwise,
it outputs ⊥.

We define Label(Si, j) as a function that uniquely maps a subset Si, j ∈ S to label strings (Li,L j). We also
define Depth(S j) as a function that returns the depth d j of the node v j associated to S j.

5.2 Construction

The construction of revocable IBE that uses the SD scheme instead of using the CS scheme was shown
by Lee et al. [22]. By following the design principle of Lee et al., Seo and Emura proposed an RHIBE
scheme [34]. First, we briefly review the design idea of Lee et al. In the SD scheme, a subset Si, j is defined
as a set of leaf nodes in a subtree Ti associated with a subroot vi by excluding a set of leaf nodes in another
subtree T j associated with a subroot v j. Lee et al. interpreted the subset Si, j as a group with single member
revocation. To implement a method for single member revocation that can be integrated with an IBE scheme,
they applied a degree-one polynomial in exponents since a single point can be revoked in this polynomial
and the Lagrange interpolation method works well in exponents.

We build an RHIBE-SD scheme by following the design principle of the RIBE-SD scheme of Lee et
al. [22]. Similar to our RHIBE-CS scheme in the previous section, we construct an RHIBE-SD scheme
by using the underlying HIBE and IBE schemes as modules. As mentioned before, we can simplify the
construction and the security analysis of our RHIBE-SD scheme if we build it as a modular way. If our
RHIBE-SD scheme is compared to our RHIBE-CS scheme, the number of group elements in an update key
is reduced from O(`+ r log N

r) to O(`+ r) but the number of group elements in a private key is increased
from O(logN) to O(log2 N). Note that we can reduce the number of group elements in a private key to
O(log1.5 N) if the layered SD scheme is used.

Our RHIBE scheme from SD is described as follows:

RHIBE.Setup(1λ ,Nmax): This algorithm takes as input a security parameter 1λ and the maximum number
of users Nmax for each level.

1. It first generates bilinear groups G,GT of prime order p. Let g be a generator of G. It sets
GDS = ((p,G,GT ,e),g). It obtains MKHIBE and PPHIBE by running HIBE.Setup(GDS). It
also obtains MKIBE and PPIBE by running IBE.Setup(GDS).

2. It selects a random exponent α ∈ Zp and outputs a master key MK = α and public parameters
PP =

(
PPHIBE ,PPIBE ,Ω = e(g,g)α ,Nmax

)
. For notational simplicity, we define SKID|0 = MK.

RHIBE.GenKey(ID|k,STID|k−1 ,PP): This algorithm takes as input a hierarchical identity ID|k =(I1, . . . , Ik)∈
Ik with k ≥ 1, the state STID|k−1 , and public parameters PP.

1. If STID|k−1 is empty (since it is first called), then it obtains BT ID|k−1 by running SD.Setup(Nmax)
and generates a false master key βID|k−1 ∈ Zp and a PRF key zID|k−1 . Next, it sets STID|k−1 =
(BT ID|k−1 ,βID|k−1 ,zID|k−1).

2. It assigns ID|k to a random leaf node v ∈ BT ID|k−1 and obtains a private set PVID|k = {Si, j} by
running SD.Assign(BT ID|k−1 , ID|k).

24

3. For each Si, j ∈ PVID|k , it defines fGL(x) = aGLx+βID|k−1 by computing aGL = PRF(zID|k−1 ,GL)
where (Li,L j) = Label(Si, j), d j = Depth(S j), and GL = Li‖d j, and then it obtains ISKHIBE,S j

by running HIBE.GenIKey(ID|k, fGL(L j),PPHIBE).

4. Finally, it outputs a private key SKID|k =
(
PVID|k ,{ISKHIBE,Si, j}Si, j∈PVID|k

)
. Note that the master

key part of SKHIBE,Si, j is fGL(L j).

RHIBE.UpdateKey(T,RLID|k−1 ,DKID|k−1,T ,STID|k−1 ,PP): This algorithm takes as input time T ∈ T , the re-
vocation list RLID|k−1 , the decryption key DKID|k−1,T = (RSKHIBE,ID|k−1 ,RSKIBE,T), the state STID|k−1 =
(BT ID|k−1 ,βID|k−1 ,zID|k−1) with k ≥ 1, and public parameters PP.

1. It obtains RDKID|k−1,T = (RSKHIBE ,RSKIBE) by running RHIBE.RandDK(DKID|k−1,T ,−βID|k−1 ,
PP).

2. It derives the set RID|k−1 of revoked identities at time T from RLID|k−1 . Next, it obtains a covering
set CVRID|k−1

= {Si, j} by running SD.Cover(BT ID|k−1 ,RID|k−1).

3. For each Si, j ∈CVRID|k−1
, it defines fGL(x)= aGLx+βID|k−1 by computing aGL =PRF(zID|k−1 ,GL)

where (Li,L j) = Label(Si, j), d j = Depth(S j), and GL = Li‖d j, and then it obtains SKIBE,Si, j by
running IBE.GenKey(T, fGL(L j),PPIBE).

4. Finally, it outputs an update key UKT,RID|k−1
=

(
RDKID|k−1,T ,CVRID|k−1

,{SKIBE,Si, j}Si, j∈CVRID|k−1

)
.

Note that the master key parts of RSKHIBE ,RSKIBE , and SKIBE,Si are η ′, α −η ′−βID|k−1 , and
fGL(L j) for some random η ′ respectively.

RHIBE.DeriveKey(ID|k,T,SKID|k ,UKT,RID|k−1
,PP): This algorithm takes as input an identity ID|k with

k ≥ 0, time T , a private key SKID|k = (PVID|k ,{ISKHIBE,Si, j}Si, j∈PVID|k
), an update key UKT,RID|k−1

=

(RDKID|k−1,T ,CVRID|k−1
,{SKIBE,Si, j}Si, j∈CVRID|k−1

) where RDKID|k−1,T =(RSK′HIBE ,RSK′IBE), and the pub-
lic parameters PP.

If k = 0, then SKID|0 = MK and UK is empty. It proceeds as follows:

1. It selects a random exponent η ∈ Zp. It then obtains RSKHIBE,ID|0 and RSKIBE,T by running
HIBE.GenKey(ID|0,η ,PPHIBE) and IBE.GenKey(T,MK−η ,PPIBE) respectively.

2. It outputs a decryption key DKID|0,T = (RSKHIBE,ID|0 ,RSKIBE,T).

If k ≥ 1, then it proceeds as follows:

1. If ID|k 6∈ RID|k−1 , then it obtains (Si, j,Si′, j′) by running SD.Match(CVRID|k−1
,PVID|k). Otherwise,

it outputs ⊥. Next, it retrieves ISKHIBE,Si′, j′ from SKID|k and SKIBE,Si, j from UKT,RID|k−1
.

2. It sets I = {L j,L j′} and calculates two Lagrange coefficients ∆L j,I(0) and ∆L j′ ,I(0) by using the
fact L j 6= L j′ . It obtains T SKHIBE and T SKIBE by running HIBE.ChangeIKey(ISKHIBE,Si′, j′ ,
(×,∆L j′ ,I(0)),PPHIBE) and IBE.ChangeKey(SKIBE,Si, j ,(×,∆L j,I(0)),PPIBE) respectively.

3. It obtains RSK′′HIBE by running HIBE.Delegate(ID|k,RSK′HIBE ,PPHIBE) since RSK′HIBE is for
ID|k−1. It selects a random exponent η ∈Zp. Next, it obtains RSKHIBE,ID|k and RSKIBE,T by run-
ning HIBE.MergeKey(RSK′′HIBE ,T SKHIBE ,η ,PPHIBE) and IBE.MergeKey(RSK′IBE ,T SKIBE ,
−η ,PPIBE) respectively.

4. Finally, it outputs a decryption key DKID|k,T =
(
RSKHIBE,ID|k ,RSKIBE,T

)
.

25

Note that the master key parts of RSKHIBE,ID|k and RSKIBE,T are η ′ and α −η ′ for some random η ′

respectively.

RHIBE.RandDK(DKID|k,T ,β ,PP): It is the same as the randomization algorithm in Section 4.2.

RHIBE.Encrypt(ID|`,T,M,PP): It is the same as the encryption algorithm in Section 4.2.

RHIBE.Decrypt(CTID|`,T ,DKID′|k,T ′ ,PP): It is the same as the decryption algorithm in Section 4.2.

RHIBE.Revoke(ID|k,T,RLID|k−1 ,STID|k−1): It is the same as the revocation algorithm in Section 4.2.

5.3 Correctness

To show the correctness of the above RHIBE-SD scheme, we only show that a decryption key DKID|k,T
is correctly derived from a private key SKID|k and an update key UKT,RID|k−1

since other parts are almost
the same as those of the RHIBE-CS scheme. Let SKID|k = (PVID|k ,{ISKHIBE,Si, j}Si, j∈PV) and UKT,RID|k−1

=

(RDKID|k−1,T ,CVR,{SKIBE,Si, j}Si, j∈CV) where RDKID|k−1,T = (RSK′HIBE ,RSK′IBE). If ID|k 6∈ RID|k−1 , then the
master key parts of ISKHIBE,Si′, j′ and SKIBE,Si, j are associated with fGL(L j′) and fGL(L j) where fGL(x) =
aGLx+βID|k−1 and GL = Li‖di. From the correctness of the SD scheme, we have that the master key parts
of T SKHIBE and T SKIBE are η̃ and fGL(0)− η̃ = βID|k−1 − η̃ respectively for some η̃ . Thus, the master
key parts of RSKHIBE and RSKIBE that are returned by HIBE.MergeKey and IBE.MergeKey are associated
with η ′′ = (η ′)+ η̃ +η and (α−η ′−βID|k−1)+βID|k−1− η̃−η = α−η ′′ respectively. Thus the DeriveKey
algorithm is correct since we have α if we add two master key parts of the decryption key.

5.4 Security Analysis

Theorem 5.1. The above RHIBE scheme from SD is SRL-IND-CPA secure if the PRF scheme is secure and
the q-RW2 assumption holds.

Proof. Let ID∗|` = (I∗1 , . . . , I
∗
`) be the challenge hierarchical identity submitted by an adversary. To prove

the selective IND-CPA security of our RHIBE scheme, we also classify the type of adversaries into `+ 1
types as the same as in Theorem 4.1. That is, the type of an adversary A is τ ∈ {1, . . . , `, `+ 1} if A does
not queries the private key of ID∗| j for all j ∈ {1, . . . ,τ−1}, but A should query the private key of ID∗|τ .

Suppose that an adversary is τ-type. The security proof for the τ-type adversary Aτ consists of the
sequence of hybrid games. We define the games as follows:

Game G0. This game is the original security game. That is, a simulator B uses a pseudo-random function
for each hierarchical identity ID|k−1 when it generates private keys for child identities and update keys
for time periods.

Game G1. This game G1 is similar to the game G0 except that B uses a truly random function for the
hierarchical identity ID∗|k−1 for all k ∈ {1, . . . ,τ} when it generates private keys and update keys.
That is, B sets fGL(x) as a degree-one polynomial that passes two points (0,βID|k−1) and (x̂, ŷ) where
ŷ is a random value in Zp instead of setting fGL(x) = aGLx+βID|k−1 where aGL = PRF(zID∗|k−1 ,GL)
for each Si, j in BT ID∗|k−1 .

Game G2. This final game G2 is almost the same with the previous game G1 except that a random session
key is used to create the challenge ciphertext. Note that the advantage ofAτ in this game is zero since
the challenge ciphertext is not related to µ .

26

Let AdvGi
A be the advantage of A in a game Gi. Let Eτ be the event that the adversary behaves like

τ-type. From the Lemmas 5.2 and 5.3, we obtain the following equation

∣∣AdvG0
A −AdvG2

A
∣∣≤ `+1

∑
τ=1

Pr[Eτ] ·
∣∣AdvG0

Aτ
−AdvG2

Aτ

∣∣≤ `AdvPRF
B (1λ)+Advq-RW2

B (1λ).

This completes our proof.

Lemma 5.2. If the PRF scheme is secure, then no PPT τ-type adversary can distinguish between G0 and
G1 with a non-negligible advantage.

We omit the proof of this lemma since it is the same as that of Lemma 4.2.

Lemma 5.3. If the q-RW2 assumption holds, then no PPT τ-type adversary can distinguish between G1 and
G2 with a non-negligible advantage.

Proof. Suppose there exists a τ-type adversaryAτ that attacks the above RHIBE scheme with non-negligible
advantage. A meta-simulator B that solves the q-RW2 assumption using Aτ is given: a challenge tuple D =(
(p,G,GT ,e),g,gx,gy,gz,g(xz)2

,
{

gbi ,gxzbi ,gxz/bi ,gx2zbi ,gy/b2
i ,gy2/b2

i
}
,
{

gxzbi/b j ,gybi/b2
j ,gxyzbi/b2

j ,g(xz)2bi/b j
})

and
Z where Z =Z0 = e(g,g)xyz or Z =Z1 ∈R GT . Note that a challenge tuple DDBDH =((p,G,GT ,e),g,gx,gy,gz)
for the DBDH assumption can be derived from the challenge tuple D of the q-RW2 assumption. Let BHIBE

be the simulator of Theorem 3.5 and BIBE be the simulator of Theorem 3.7. Then B that interacts with Aτ

is described as follows:

Init: Aτ initially submits a challenge hierarchical identity ID∗|` = (I∗1 , . . . , I
∗
`), challenge time T ∗, and

revocation list RL∗ on the time T ∗. B runs BHIBE by giving D and Z, and it also runs BIBE by giving DDBDH

and Z.
Setup: B submits ID∗|` to BHIBE and receives PPHIBE . It also submits T ∗ to BIBE and receives PPIBE . For
each level k ∈ {1, . . . ,τ}, it performs the following steps:

1. It initializes a function list FLID∗|k−1 as an empty one. It derives R∗ID∗|k−1
from RL∗ where R∗ID∗|k−1

is
the set of revoked identities in BT ID∗|k−1 on the time T ∗.

2. For each IDi ∈ R∗ID∗|k−1
, it assigns IDi to a random (unique) leaf node vi ∈ BT ID∗|k−1 . If k = τ but

τ 6= `+ 1, then it also assigns ID∗|τ to a random leaf node v∗ ∈ BT ID∗|k−1 . Recall that if τ = `+ 1,
then Aτ does not request the private key of ID∗|τ .

3. Next, it obtains CVID∗|k−1 by running SD.Cover(BT ID∗|k−1 ,R
∗
ID∗|k−1

). It also obtains PVID∗|τ by run-
ning SD.Assign(BT ID∗|k−1 , ID∗|τ) if k = τ but τ 6= `+ 1. If k = τ but τ 6= `+ 1, then it defines
FixedSubsetID∗|k−1 = PVID∗|τ ∪CVID∗|k−1 . Otherwise, it defines FixedSubsetID∗|k−1 =CVID∗|k−1 .

4. Let S be the collection of all subsets Si, j in BT ID∗|k−1 . For each Si, j ∈ S, it first sets GL = Li‖d j where
(Li,L j) = Label(Si, j) and d j = Depth(S j) and then it updates the function list as follows:

• If Si, j ∈FixedSubsetID∗|k−1 , then it selects random ŷ∈Zp and saves (GL,(x̂=L j, ŷ)) to FLID∗|k−1 .

• Otherwise, it selects random x̂, ŷ ∈ Zp and saves (GL,(x̂, ŷ)) to FLID∗|k−1 if (GL,∗) 6∈ FLID∗|k−1 .

Note that it implicitly defines fGL(x) as a degree-one polynomial defined by two points (0,βID∗|k−1)
and (x̂, ŷ) by using the Lagrange interpolation method.

27

It implicitly sets α = xy and gives the public parameters PP =
(
PPHIBE ,PPIBE ,Ω = e(gx,gy),Nmax

)
to Aτ .

Phase 1: Aτ adaptively requests a polynomial number of private key, update key, decryption key, and
revocation queries. B handles these queries as follows:
If this is a private key query for ID|k = (I1, . . . , Ik−1, Ik) with k ≥ 1, then B proceeds as follows:

• Case ID|k−1 6∈ Prefix(ID∗|`): In this case, it normally generates a private key by using a normally
generated STID|k−1 since it can obtains DKID|k−1,T for any T .

1. If the state STID|k−1 was not generated before, then it normally generates STID|k−1 . Otherwise, it
retrieves STID|k−1 that was previously generated.

2. It obtains SKID|k by running RHIBE.GenKey(ID|k,STID|k−1 ,PP) with a false master key βID|k−1 ∈
Zp. Finally, it gives SKID|k and STID|k to Aτ by normally generating STID|k . .

• Case ID|k−1 ∈ Prefix(ID∗|`) with k ≤ τ and ID|k 6= ID∗|k: In this case, it can generate a private key
by applying the Lagrange interpolation method since it can derive ISK′ of HIBE that contains α from
the condition ID|k 6= ID∗|k.

1. It queries an HIBE intermediate private key for ID|k to BHIBE and receives ISK′HIBE . Note that
the master key part of ISK′HIBE is α .

2. It assigns ID|k to a unique leaf node v ∈ BT ID∗|k−1 and obtains PVID|k = {Si, j} by running
SD.Assign(BT ID∗|k−1 , ID|k).

3. For each Si, j ∈ PVID|k , it retrieves (GL = Li‖d j,(x̂, ŷ)) from FLID∗|k−1 and proceeds as follows:

– It sets I = {0, x̂} and calculates two Lagrange coefficients ∆0,I(L j) and ∆x̂,I(L j). Next, it
obtains ISKHIBE,Si, j by running HIBE.ChangeIKey(ISK′HIBE ,{(+,βID∗|k−1),(×,∆0,I(L j)),
(+, ŷ∆x̂,I(L j))},PPHIBE) where fGL(x) = (α +βID∗|k−1)∆0,I(x)+(ŷ)∆x̂,I(x).

4. It sets SKID|k =
(
PVID|k ,{ISKHIBE,Si, j}Si, j∈PVID|k

)
and gives SKID|k to Aτ .

• Case ID|k−1 ∈ Prefix(ID∗|`) with k ≤ τ and ID|k = ID∗|k: In this case, it can generate a private key
by simply using the pre-fixed points {(x̂, ŷ)} in the function list since k = τ but τ 6= `+1.

1. It assigns ID∗|τ to the pre-fixed node v∗ and obtains PVID∗|τ = {Si, j} by running SD.Assign
(BT ID∗|τ−1 , ID∗|τ).

2. For each Si, j ∈ PVID∗|τ , it retrieves (GL = Li‖d j,(x̂, ŷ)) from FLID∗|τ−1 and proceeds as follows:

– It obtains ISKHIBE,Si, j by running HIBE.GenIKey(ID∗|τ , ŷ,PPHIBE).

3. It sets SKID∗|τ =
(
PVID∗|τ ,{ISKHIBE,Si, j}Si, j∈PVID∗|τ

)
and gives SKID∗|τ to Aτ .

• Case ID|k−1 ∈Prefix(ID∗|`) with k > τ: In this case, it is the same as the case ID|k−1 6∈Prefix(ID∗|`).
That is, it follows the normal key generation algorithm. We omit the description of this case.

If this is an update key query for ID|k−1 = (I1, . . . , Ik−1) with k ≥ 1 and T , then B proceeds as follows:

• Case ID|k−1 6∈ Prefix(ID∗|`): In this case, it can generate UKT,RID|k−1
by following the normal algo-

rithm since it can obtain DKID|k−1,T from the condition ID|k−1 6∈ Prefix(ID∗|`).

1. If the state STID|k−1 was generated before, then it retrieves STID|k−1 . Otherwise, it normally gen-
erates STID|k−1 by himself. Next, it requests a decryption key query for ID|k−1 and T to himself
and receives DKID|k−1,T since ID|k−1 6∈ Prefix(ID∗|`).

28

2. It obtains UKT,RID|k−1
by running RHIBE.UpdateKey(T,RLID|k−1 ,DKIDk−1,T ,STID|k−1 ,PP) with

a false master key βID|k−1 ∈ Zp and gives UKT,RID|k−1
to Aτ .

• Case ID|k−1 ∈ Prefix(ID∗|`) with k ≤ τ and T 6= T ∗: In this case, it can generate an update key by
applying the Lagrange interpolation method since it can derive SK′ of IBE that contains α from the
condition T 6= T ∗.

1. It selects random exponents η ∈ Zp. Next, it obtains RSKHIBE,ID|k−1 and RSKIBE,T by running
HIBE.GenKey(ID|k−1,η ,PPHIBE) and IBE.GenKey(T,−η − βID|k−1 ,PPIBE) respectively. It
sets RDKID|k−1,T = (RSKHIBE,ID|k−1 ,RSKIBE,T).

2. It queries an IBE private key for T to BIBE and receives SK′IBE,T since T 6= T ∗.

3. It derives the set RID|k−1 of revoked identities at time T from RLID|k−1 and obtains CVRID|k−1
=

{Si, j} by running SD.Cover(BT ID∗|k−1 ,RID|k−1).

4. For each Si, j ∈CVRID|k−1
, it retrieves (GL = Li‖d j,(x̂, ŷ)) from FLID∗|k−1 and proceeds as follows:

– It sets I = {0, x̂} and calculates two Lagrange coefficients ∆0,I(L j) and ∆x̂,I(L j). Next,
it obtains SKIBE,Si, j by running IBE.ChangeKey(SK′IBE,T ,{(+,βID∗|τ−1),(×,∆0,I(L j)),(+,
ŷ∆x̂,I(L j))},PPIBE).

5. It sets UKT,RID|k−1
=
(
RDKID|k−1,T ,CVRID|k−1

,{SKHIBE,Si}Si∈CVRID|k−1

)
and gives UKT,RID|k−1

toAτ .

• Case ID|k−1 ∈ Prefix(ID∗|`) with k ≤ τ and T = T ∗: In this case, it can generate an update key by
using the fixed points {(x̂, ŷ)} in the function list since RID|k−1 = R∗ID∗|k−1

on the challenge time T ∗.

1. It selects random exponents η ∈ Zp. Next it obtains RSKHIBE,ID|k−1 and RSKIBE,T by running
HIBE.GenKey(ID|k−1,η ,PPHIBE) and IBE.GenKey(T,−η − βID|k−1 ,PPIBE) respectively. It
sets RDKID|k−1,T = (RSKHIBE,ID|k−1 ,RSKIBE,T).

2. It derives the set RID|k−1 of revoked identities at time T from RLID|k−1 and obtains CVRID|k−1
=

{Si, j} by running SD.Cover(BT ID|k−1 ,RID|k−1).

3. For each Si, j ∈CVRID|k−1
, it retrieves (GL = Li‖d j,(x̂, ŷ)) from FLID∗|τ−1 and proceeds as follows:

– It obtains SKIBE,Si, j by running IBE.GenKey(T, ŷ,PPIBE).

4. It sets UKT,RID|k−1
=
(
RDKID|k−1,T ,CVRID|k−1

,{SKIBE,Si, j}Si, j∈CVRID|k−1

)
and gives UKT,RID|k−1

toAτ .

• Case ID|k−1 ∈ Prefix(ID∗|`) with k > τ: In this case, it is almost the same as the first case ID|k−1 6∈
Prefix(ID∗|`) except that it uses a decryption key by using the condition T 6= T ∗. We omit the de-
scription of this case.

If this is a decryption key query for ID|k = (I1, . . . , Ik) with k ≥ 1 and T , then B proceeds as follows:

• Case ID|k 6∈ Prefix(ID∗|`): In this case, it can use BHIBE to generate gα since ID|k 6∈ Prefix(ID∗|`).

1. It first queries an HIBE private key for ID|k to BHIBE and receives SK′HIBE,ID|k .

2. It selects a random exponent η ∈ Zp. Next, it obtains RSKHIBE,ID|k and RSKIBE,T by running
HIBE.ChangeKey(SK′HIBE,ID|k ,(+,η),PPHIBE) and IBE.GenKey(T,−η ,PPIBE) respectively.

3. It gives DKID|k,T =
(
RSKHIBE,ID|k ,RSKIBE,T

)
toAτ . Note that the master key part of RSKHIBE,ID|k

and RSKIBE,T are α +η and −η respectively.

29

• Case ID|k ∈ Prefix(ID∗|`) and T 6= T ∗: In this case, it can use BIBE to generates gα since T 6= T ∗.

1. It first queries an IBE private key for T to BIBE and receives SK′IBE,T .

2. It selects a random exponent η ∈ Zp. Next, it obtains RSKHIBE,ID|k and RSKIBE,T by running
HIBE.GenKey(ID|k,η ,PPHIBE) and IBE.ChangeKey(SK′IBE,T ,(+,−η),PPIBE) respectively.

3. It gives DKID|k,T =
(
RSKHIBE,ID|k ,RSKIBE,T

)
toAτ . Note that the master key part of RSKHIBE,ID|k

and RSKIBE,T are η and α−η respectively.

If this is a revocation query for ID|k and T , then B obtains an updated RLID|k−1 by running RHIBE.Revoke
(ID|k,T,RLID|k−1 ,STID|k−1). Note that Aτ cannot query to revoke ID|k on time T if he already requested an
update key query for ID|k on time T .
Challenge: Aτ submits two challenge messages M∗0 ,M

∗
1 . B flips a coin µ ∈ {0,1}. Next, it requests the chal-

lenge ciphertext to BHIBE and receives CHHIBE,ID∗|k and EKHIBE . It also requests the challenge ciphertext to
BIBE and receives CHIBE,T ∗ and EKIBE . It sets the challenge ciphertext CTID∗|`,T ∗ =

(
CHHIBE,ID∗|` ,CHIBT,T ∗ ,Z ·

M∗µ
)

and gives it to Aτ .
Phase 2: Same as Phase 1.
Guess: Aτ outputs a guess µ ′ ∈ {0,1}. If µ = µ ′, then B outputs 0. Otherwise, B outputs 1.

To finish the proof, we should show that the public parameters, private keys, update keys, decryption
keys, and the challenge ciphertext are all generated correctly. We omit the checking of the public parameters,
decryption keys, and the challenge ciphertext since it is almost similar to that in Theorem 4.1.

Now, we should show that the master key parts of private keys and update keys are consistently gen-
erated in the cases of ID|k−1 ∈ Prefix(ID∗|`) with k ≤ τ . As mentioned in the construction, a degree-one
polynomial fGL(x) is associated to the master key parts of ISKHIBE in a private key and SKIBE in an update
key. If ID|k−1 ∈ Prefix(ID∗|`), the simulator cannot create RDK that has α as a master key part. Thus, the
simulator should set fGL(x) to have α for consistency. That is, fGL(x) is defined as a degree-one polynomial
that passes two points (0,α+βID|k−1) and (x̂, ŷ). A private key for ID|k 6= ID∗|k and an update key for T 6= T ∗

are consistently generated by the simulator since it can use the Lagrange interpolation method. To generate
a private key for ID|τ = ID∗|τ and and update key for T = T ∗, the simulator simply use the fixed point (x̂, ŷ)
in the setup phase. Recall that the private key and the update key share the same fixed point since the private
key of ID∗|τ should be revoked on the time T ∗ by the restriction of the security model. This completes our
proof.

6 Conclusion

In this paper, we showed that RHIBE schemes with shorter private keys and update keys and small public
parameters can be built by following the modular approach. To build our RHIBE schemes, we first proposed
an HIBE scheme derived from the RS-HIBE scheme that supports the generation of short intermediate
private keys. Next, we propose efficient RHIBE schemes by combining our HIBE scheme, the BB-IBE
scheme, and the CS (or SD) scheme in a modular way. We also proved the security of our RHIBE scheme
in the selective model (or the selective revocation list model).

We mentioned that another RHIBE scheme also can be built by using another HIBE scheme (the BB-
HIBE scheme [5] or the BBG-HIBE scheme [7]) instead of using our HIBE scheme. If the BBG-HIBE
scheme is used, then the resulting RHIBE scheme cannot have shorter private keys since the BBG-HIBE
scheme cannot provide shorter intermediate private keys. Thus, it is an interesting problem to build an

30

RHIBE scheme with shorter private keys and update keys and constant size ciphertexts. Another interesting
problem is to prove the security of our RHIBE schemes in the full model. One possible approach is to use
the dual system framework of Waters [38].

References

[1] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h)ibe in the standard model. In
Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, volume 6110 of Lecture Notes in
Computer Science, pages 553–572. Springer, 2010.

[2] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical ibe. In Tal Rabin, editor, Advances in Cryptology - CRYPTO 2010,
volume 6223 of Lecture Notes in Computer Science, pages 98–115. Springer, 2010.

[3] Olivier Blazy, Eike Kiltz, and Jiaxin Pan. (hierarchical) identity-based encryption from affine message
authentication. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology - CRYPTO
2014, volume 8616 of Lecture Notes in Computer Science, pages 408–425. Springer, 2014.

[4] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-based encryption with efficient
revocation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM Conference on Computer
and Communications Security, pages 417–426. ACM, 2008.

[5] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without random
oracles. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology - EUROCRYPT
2004, volume 3027 of Lecture Notes in Computer Science, pages 223–238. Springer, 2004.

[6] Dan Boneh and Xavier Boyen. Efficient selective identity-based encryption without random oracles.
J. Cryptology, 24(4):659–693, 2011.

[7] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant size
ciphertext. In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, volume 3494 of
Lecture Notes in Computer Science, pages 440–456. Springer, 2005.

[8] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In Joe Kilian,
editor, Advances in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science,
pages 213–229. Springer, 2001.

[9] Xavier Boyen. General Ad Hoc encryption from exponent inversion IBE. In Moni Naor, editor,
Advances in Cryptology - EUROCRYPT 2007, volume 4515 of Lecture Notes in Computer Science,
pages 394–411. Springer, 2007.

[10] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without random
oracles). In Cynthia Dwork, editor, Advances in Cryptology - CRYPTO 2006, volume 4117 of Lecture
Notes in Computer Science, pages 290–307. Springer, 2006.

[11] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. In
Eli Biham, editor, Advances in Cryptology - EUROCRYPT 2003, volume 2656 of Lecture Notes in
Computer Science, pages 255–271. Springer, 2003.

31

[12] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryp-
tion. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004,
volume 3027 of Lecture Notes in Computer Science, pages 207–222. Springer, 2004.

[13] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate a lattice
basis. In Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, volume 6110 of Lecture
Notes in Computer Science, pages 523–552. Springer, 2010.

[14] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans. Inf. Theory,
22(6):644–654, 1976.

[15] Craig Gentry and Shai Halevi. Hierarchical identity based encryption with polynomially many levels.
In Omer Reingold, editor, Theory of Cryptography - TCC 2009, volume 5444 of Lecture Notes in
Computer Science, pages 437–456. Springer, 2009.

[16] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In Yuliang Zheng, editor,
Advances in Cryptology - ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science,
pages 548–566. Springer, 2002.

[17] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J. ACM,
33(4):792–807, 1986.

[18] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani
di Vimercati, editors, ACM Conference on Computer and Communications Security, pages 89–98.
ACM, 2006.

[19] Dani Halevy and Adi Shamir. The lsd broadcast encryption scheme. In Moti Yung, editor, Advances
in Cryptology - CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 47–60.
Springer, 2002.

[20] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In Lars R. Knudsen,
editor, Advances in Cryptology - EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer
Science, pages 466–481. Springer, 2002.

[21] Kwangsu Lee, Seung Geol Choi, Dong Hoon Lee, Jong Hwan Park, and Moti Yung. Self-updatable
encryption: Time constrained access control with hidden attributes and better efficiency. In Kazue
Sako and Palash Sarkar, editors, Advances in Cryptology - ASIACRYPT 2013, volume 8269 of Lecture
Notes in Computer Science, pages 235–254. Springer, 2013.

[22] Kwangsu Lee, Dong Hoon Lee, and Jong Hwan Park. Efficient revocable identity-based encryption via
subset difference methods. Cryptology ePrint Archive, Report 2014/132, 2014. http://eprint.
iacr.org/2014/132.

[23] Kwangsu Lee, Jong Hwan Park, and Dong Hoon Lee. Anonymous hibe with short ciphertexts: full
security in prime order groups. Designs Codes Cryptogr., 74(2):395–425, 2015.

[24] Allison B. Lewko. Tools for simulating features of composite order bilinear groups in the prime order
setting. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology - EUROCRYPT
2012, volume 7237 of Lecture Notes in Computer Science, pages 318–335. Springer, 2012.

32

http://eprint.iacr.org/2014/132
http://eprint.iacr.org/2014/132

[25] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully secure hibe
with short ciphertexts. In Daniele Micciancio, editor, Theory of Cryptography - TCC 2010, volume
5978 of Lecture Notes in Computer Science, pages 455–479. Springer, 2010.

[26] Allison B. Lewko and Brent Waters. Unbounded hibe and attribute-based encryption. In Kenneth G.
Paterson, editor, Advances in Cryptology - EUROCRYPT 2011, volume 6632 of Lecture Notes in Com-
puter Science, pages 547–567. Springer, 2011.

[27] Benoı̂t Libert and Damien Vergnaud. Adaptive-id secure revocable identity-based encryption. In Marc
Fischlin, editor, Topics in Cryptology - CT-RSA 2009, volume 5473 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2009.

[28] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for stateless receivers.
In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 41–62. Springer, 2001.

[29] Seunghwan Park, Kwangsu Lee, and Dong Hoon Lee. New constructions of revocable identity-based
encryption from multilinear maps. IEEE Trans. Inf. Forensic Secur., 10(8):1564–1577, 2015.

[30] Yannis Rouselakis and Brent Waters. Practical constructions and new proof methods for large universe
attribute-based encryption. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM
Conference on Computer and Communications Security - CCS 2013, pages 463–474. ACM, 2013.

[31] Geumsook Ryu, Kwangsu Lee, Seunghwan Park, and Dong Hoon Lee. Unbounded hierarchical
identity-based encryption with efficient revocation. In Howon Kim and Dooho Choi, editors, Informa-
tion Security Applications - WISA 2015, volume 9503 of Lecture Notes in Computer Science, pages
122–133. Springer, 2016.

[32] Jae Hong Seo and Keita Emura. Efficient delegation of key generation and revocation functionalities
in identity-based encryption. In Ed Dawson, editor, Topics in Cryptology - CT-RSA 2013, volume 7779
of Lecture Notes in Computer Science, pages 343–358. Springer, 2013.

[33] Jae Hong Seo and Keita Emura. Revocable identity-based encryption revisited: Security model and
construction. In Kaoru Kurosawa and Goichiro Hanaoka, editors, Public-Key Cryptography - PKC
2013, volume 7778 of Lecture Notes in Computer Science, pages 216–234. Springer, 2013.

[34] Jae Hong Seo and Keita Emura. Revocable hierarchical identity-based encryption: History-free update,
security against insiders, and short ciphertexts. In Kaisa Nyberg, editor, Topics in Cryptology - CT-RSA
2015, volume 9048 of Lecture Notes in Computer Science, pages 106–123. Springer, 2015.

[35] Jae Hong Seo, Tetsutaro Kobayashi, Miyako Ohkubo, and Koutarou Suzuki. Anonymous hierarchical
identity-based encryption with constant size ciphertexts. In Stanislaw Jarecki and Gene Tsudik, editors,
Public-Key Cryptography - PKC 2009, volume 5443 of Lecture Notes in Computer Science, pages
215–234. Springer, 2009.

[36] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and David Chaum,
editors, Advances in Cryptology - CRYPTO ’84, volume 196 of Lecture Notes in Computer Science,
pages 47–53. Springer, 1984.

33

[37] Elaine Shi and Brent Waters. Delegating capabilities in predicate encryption systems. In Luca
Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, ICALP 2008, volume 5126 of Lecture Notes in Computer Science, pages 560–
578. Springer, 2008.

[38] Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions.
In Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009, volume 5677 of Lecture Notes in
Computer Science, pages 619–636. Springer, 2009.

34

	Introduction
	Previous Work
	Our Results
	Our Techniques
	Related Work

	Preliminaries
	Notation
	Bilinear Groups
	Complexity Assumptions
	Pseudo-Random Functions
	Revocable HIBE

	Hierarchical Identity-Based Encryption
	Definitions
	Concatenated Identity Encoding Function
	HIBE Construction
	IBE Construction
	Security Analysis
	Discussions

	Revocable HIBE from Complete Subtree
	The CS Scheme
	Construction
	Correctness
	Security Analysis
	Discussions

	Revocable HIBE from Subset Difference
	The SD Scheme
	Construction
	Correctness
	Security Analysis

	Conclusion

