
Beaver: A Decentralized Anonymous Marketplace with
Secure Reputation

Kyle Soska∗
CMU

ksoska@cmu.edu

Albert Kwon∗
MIT

kwonal@mit.edu

Nicolas Christin
CMU

nicolasc@cmu.edu

Srinivas Devadas
MIT

devadas@mit.edu

ABSTRACT
Reputation systems play a crucial role in establishing trust online,
especially in e-commerce settings. Users in reputation systems pro-
vide feedback for other users, thereby incentivizing good behavior
and disincentivizing bad behavior. With growing concerns of gov-
ernment surveillance and corporate data sharing, it is increasingly
common that users on the web demand tools for preserving their
privacy without placing trust in a third party. Unfortunately, ex-
isting centralized reputation systems need to be trusted for either
privacy, correctness, or both. Existing decentralized approaches,
on the other hand, are either vulnerable to Sybil attacks, present in-
consistent views of the network, or leak critical information about
the actions of its users.

In this paper, we present Beaver, a decentralized anonymous
marketplace that is resistant against Sybil attacks on vendor rep-
utation, while preserving the anonymity of its customers. Beaver
allows its participants to enjoy free open enrollment, and provides
every user with the same global view of the reputation of other users
through public ledger based consensus. Our use of various crypto-
graphic primitives allow Beaver to offer high levels of usability and
practicality, along with strong anonymity guarantees.

1. INTRODUCTION
Reputation systems play a crucial role in establishing trust in on-

line communities and drive many modern online businesses, rang-
ing from auction markets to transportation companies. A typical
reputation system features a collection of actors executing a pro-
tocol that allows users to leave reviews for their interactions with
each other. Reviews, or feedback, usually consist of numeric rat-
ings (e.g., 1–5 stars) and/or a short message. Feedback accumulates
over time, and can be queried by other users in the system.

Many of the best known e-commerce businesses (e.g., eBay, Ama-
zon Marketplace, Uber, AirBnb) operate as centralized marketplaces.
Users need to trust the marketplace operator to maintain the cor-
rectness of the reputation state. In addition, users also need to trust
the marketplace operator to maintain the confidentiality of sensi-
tive information such as payment history (i.e., that it will not leak
it or sell it to third-parties). Stated differently, centralized market-
places provide extremely weak privacy guarantees, which require
the users to place full trust in the marketplace itself. Surveys of
user sentiment suggest users are increasingly reluctant to putting
such blind faith in commercial entities whose privacy policies have
frequently shown to be questionable [35].

An interesting new development in the realm of online reputa-
tion is that of online anonymous marketplaces [11, 34], frequently
referred to as “darknet marketplaces.” These marketplaces are built

∗Joint first authors.

on the idea of anonymous commerce—they attempt to provide strong
anonymity guarantees to buyers, sellers, and even marketplace op-
erators. While online anonymous marketplaces have so far been
primarily used for contraband and illicit items, the more interest-
ing point is that they strive to avail reputation systems with strong
privacy and anonymity guarantees, and have proven to be econom-
ically viable. To achieve the desired anonymity properties, on-
line anonymous marketplaces build on a combination of network-
level anonymity—often running as Tor hidden services [15] or i2p
“eep sites” [1]—and payment-level anonymity, using pseudony-
mous digital payment systems such as Bitcoin [29].

However, similar to “traditional” online marketplaces such as
eBay, an online anonymous marketplace remains a centralized ser-
vice. It thus needs to be trusted for availability as customers can-
not query item listings or reviews if it is not online; it needs to
be trusted for correctness, i.e., not inject fake reviews or suppress
real ones; and it needs to be trusted not to link transaction his-
tory with private identifiers (e.g., shipping addresses communicated
to vendors). Takedowns—e.g., of the Silk Road or Silk Road 2.0
marketplaces—and the associated arrests of some of their patrons
have evidenced that such centralized marketplaces often fail to pro-
vide the level of trust their users expect. Besides takedowns, “exit
scams” frequently occur [34]: in an exit scam, a marketplace un-
expectedly closes, absconds with money left in escrow (collected
from a customer, but not yet paid to a vendor), and destroys all rep-
utation information in the process. These shortcomings motivate
the search for a solution that can provide strong anonymity without
trusting a third party: in other words, a decentralized anonymous
marketplace. The recently proposed OpenBazaar prototype [2] is
one such distributed effort, but it currently does not provide strong
anonymity properties. For instance, OpenBazaar relies on the UDP
protocol and does not readily support network-level anonymization
techniques such as Tor.

More fundamentally, decentralizing reputation systems has proven
to be a challenging task. Early works (e.g., [12, 22]) present peer-
to-peer/sensor network algorithms in which a node queries its peers
to obtain the reputation for another node in the network. These ap-
proaches come with the drawback that each node’s view of the net-
work is biased by that of its peers. Another important challenge in
decentralizing any reputation system, especially a system that pro-
tects users’ anonymity, comes from the threat of Sybil attacks [17].
In a Sybil attack, an adversary creates a large number of identities
in the network (customer accounts, nodes, etc.) and uses them to
either inflate her own reputation or damage the reputation of her
competitors. Intuitively, there seems to be a fundamental tension
between the ability to identify a Sybil attack and the requirement
that customers remain anonymous: How can one be sure feedback
is legitimate without knowing any information about its source?

In this paper, we introduce a formal model for a decentralized
anonymous marketplace (DAM), and design Beaver, a Sybil-resistant
DAM. Beaver is designed with e-commerce in mind, and consists
of three types of participants: customers, vendors, and network
miners. Unlike most existing approaches, participation in Beaver
is free, open, and does not use a trusted third party. From the per-
spective of customers and vendors, Beaver behaves nearly identi-
cally to existing e-commerce systems such as Amazon Marketplace
and eBay. It allows vendors to establish reputation by selling items
to customers while ensuring that vendor reputation has not been
adversely modified either positively or negatively. Beaver simulta-
neously provides strong anonymity to its customers, in that, unless
the customer explicitly provides this information, no adversary can
learn which purchases a customer has made or associate reviews
with particular transactions better than by randomly guessing.

Beaver builds on an anonymous payment system (e.g., Zero-
cash [4]), consensus protocol (e.g., Bitcoin “blockchain”), and var-
ious cryptographic primitives to present a globally consistent view
of the network to all of its users without sacrificing anonymity. Due
to this consensus construction, Beaver is also able to avoid attacks
where a few customers are targeted, and convinced of incorrect
statements about another user’s reputation.

All interactions in Beaver are performed via the consensus pro-
tocol. Concretely, item listings created by vendors as well as pay-
ments made or reviews left by a customer to a vendor are publicly
available as part of the consensus. With this, customers are able
to freely and accurately enumerate all listings and feedback in the
system, while deriving strong guarantees about the credibility of
these reviews. Customers can also purchase products and leave
their own reviews without fearing censorship or retribution. The
major innovation in Beaver is that, although transactions and re-
views are made public, the relationship between the transactions
and reviews are kept private and the customers in Beaver always
remain anonymous.

One of the key properties of Beaver is the mitigation of Sybil
attacks. Traditional defenses against Sybil attacks rely on know-
ing the users’ identities or their interaction history [28]. When the
participants and their interactions are anonymous, as is the case
with DAMs, such defenses cannot be deployed. Instead, we anony-
mously link reviews to transactions, by using non-interactive zero-
knowledge proofs [7] and linkable ring signatures [24], which guar-
antees that there is a valid transaction for every review, and institute
a small cost for each transaction. As a consequence, we can better
understand and compute a notion that we call credibility, the lower
bound on the cost to an adversary for generating feedback, and thus
the trustworthiness of the current state of reputation. While Beaver
is not Sybil-proof, we claim that it is Sybil-resistant under modest
assumptions about the economic rationality of its participants.

Shortly stated, we make the following contributions in this paper:
(1) we formalize the requirements for a decentralized anonymous
marketplace (DAM), (2) we design a Sybil-resistant DAM, Beaver,
which makes use of novel applications of consensus, anonymous
payments, zero knowledge, and linkable ring signatures, (3) we an-
alyze the security properties of Beaver.

In Section 2 we discuss background into anonymous reputation
systems and Sybil attacks on reputation systems. In Section 3
we formalize a model for decentralized anonymous marketplaces
(DAM). We then introduce, in Section 4, the high level design of
Beaver and some preliminaries for understanding the full system
design. We delve in the details of Beaver in Section 5, perform a
security analysis in Section 6. Finally, we discuss some of our de-
sign choices in Section 7, related work in Section 8, and conclude
in Section 9.

2. BACKGROUND
Reputation systems are used to collect, maintain, and distribute

the performance scores of its users which can then efficiently be
queried by other participants in the system. These performance
scores can be used as a basis for establishing initial trust among
users. Reputation plays an important role in online communities,
especially in the context of e-commerce such as Amazon Market-
place and eBay. In this setting, a customer assumes risk both when
ordering a product for which she cannot verify the quality and when
purchasing directly from a vendor that she has no reason to trust.

2.1 Anonymous reputation system
Customers leaving public reviews that can be traced leads to neg-

ative consequences; based on review history, adversaries can learn
a lot of information. Resnick and Zeckhauser [31] showed that
vendors on eBay discriminate customers based on their review his-
tory. Moreover, if a vendor can associate reviews with transactions
(which are often tied to sensitive information such as shipping ad-
dresses), then the vendor may try to harm the customer in the future.
This type of behavior has been observed on darknet marketplaces
and encourages customers to misreport their experiences as positive
in order to avoid harassment. To establish a fair market and a useful
reviewing system, it is essential that we ensure customers cannot be
coerced into leaving inaccurate reviews. To achieve coercion resis-
tance, we design a system where the reviews provably cannot be
linked to particular transactions, and thus prevent adversaries from
associating reviews with individual customers.

2.2 Decentralized reputation system
Given its importance, there has already been multiple proposals

for anonymous reputation systems in the literature. While these
systems provide anonymous reputation within their threat model,
they rely on either a trusted third party [3, 5, 6, 14, 20], or require a
trusted node among a set of powerful servers, known as the anytrust
model [40]. Unfortunately, having a centralized network of a small
number of nodes, even if only one needs to be honest, is undesirable
as the adversary can perform targeted attacks. Moreover, in these
systems, user enrollment is often expensive, requiring the user or
the trustees to perform an expensive operation to incorporate new
members into the system.

On the contrary, modern cryptocurrencies like Bitcoin [30] sup-
port a fully decentralized model. That is, users are allowed to join
and leave the network at any time, and the security is guaranteed
as long as some fraction of the network (rather than a small set of
trustees) is honest. This makes it significantly harder for adver-
saries, especially those with limited resources, to undermine the
security of the system. While Bitcoin and related cryptocurrencies
do not support reputation or marketplace specific features, we draw
inspiration from the way that they handle decentralization.

2.3 Sybil attacks
In general, a Sybil attack is an attack on distributed systems,

where many nodes controlled by a few real entities cause the system
to misbehave. In reputation systems, this attack concretely means
that an adversary controls a large number of nodes and uses them
to (1) generate positive reviews for himself to boost his reputation,
and (2) leave negative reviews for others (e.g., his competition) to
lower their reputation. Both scenarios are common in systems such
as Yelp where users are free to review buisnesses without proving
that they have ever been a customer. It has been shown by Mayzlin
et al. [25] that allowing users to leave reviews without verifying that
they have purchased the item generally leads to misbehavior. These
attacks are also found in systems like eBay, where malicious ven-

dors purposefully increase their ratings via numerous fake transac-
tions with positive reviews or decrease other vendors’ ratings.

Sybil attacks in practice are mitigated by having (1) a central
authority (e.g., CAs, Amazon, eBay) verify the identities of the
users making it harder to sign up (e.g., require a phone number
for account creation), (2) making sure a review came from a valid
transaction, and (3) analyzing behaviors [38] to identify malicious
users. Unfortunately, monitoring and limiting account creation is
at odds with our goals for free open enrollment without a trusted
third party, and associating reviews with transactions or tracking
behavior is at odds with providing customer anonymity.

A general defense against Sybil attacks that does not require a
central authority is to increase the cost of adversarial actions in the
system, thereby discouraging an economically rational adversary.
This is commonly done via expensive operations such as proof-of-
work [21], CAPTCHAs, or by adding a fee to reputation generating
actions. In this paper, we show that our system can charge fees (in a
way that is particularly natural for marketplaces, and in many cases
cheaper than existing markatplaces) to deter Sybil attacks, without
sacrificing our goals of anonymity and decentralization.

3. DECENTRALIZED ANONYMOUS MAR-
KETPLACE

In this section, we present definitions and goals for decentralized
anonymous marketplace (DAM).

3.1 Definitions and notations
A DAM consists of different components that interact with each

other through transactions, which are described here.

3.1.1 Components of DAM
Customers. Customers in a DAM make purchases from ven-

dors, and leave reviews for their purchases if they choose to do so.
We will let C be the set of honest customers {c}, and C̃ be the set
of malicious customers {c̃}.

Vendors. Vendors sell items, which could be any sort of good of
monetary value. Similar to customers, we will let V be the set of
honest vendors {v}, and Ṽ be the set of malicious vendors {ṽ}.

Items. Items are any goods sold by a vendor in a DAM. We
let I be the set of all available items, and let i ∈ I be an item.
Each vendor v may control several items. Let Iv be the set of item
listings controlled by v.

Reviews. Reviews are left by customers for an item, and we let
R be the set of all reviews in the system.

Ledger. The ledger is a record of all transactions that have hap-
pened in the network, denoted L. In certain DAMs, this maybe an
abstract notion, rather than a concrete record.

3.1.2 Basic transactions
Customers and vendors in a DAM interact with each other via

transactions. At minimum, a DAM needs to support (1) payment
transactions and (2) review transactions, which eventually become
part of the L.

Payment transaction. This transaction moves funds from a cus-
tomer to a vendor. A payment in a DAM is specified for purchase
of a particular item:
• INPUTS:

– Vendor’s payment information
– Item description
– Coin

• OUTPUTS:
– Payment transaction p

Similar to reviews, we let P be the set of all payment transactions,
and P(C,i) be the set of all transactions for item i by customers
C ⊂ C. p ∈ P indicates a particular transaction.

Review transaction. A customer generates this transaction when
she wants to leave a review for an item. Because the reviews are
exclusively generated by review transactions, we use the two terms
interchangeably. Each review must be associated with a valid trans-
action.
• INPUTS:

– Payment transaction
– Reviews (numeric rating, messages, etc.)

• OUTPUTS:
– Review transaction r

We call R the set of all reviews, R(C,i) the set of reviews for i by
customers C ⊂ C, andR(c,·) the set of all reviews left by c for any
item listing. r ∈ R indicates a particular review.

3.2 Properties of DAM
Apart from a decentralized model of trust, a DAM must also

satisfy the following properties for functionality and security.
P1. Correctness: Any customer c who performs a correct pay-

ment transaction p(c,i) for an item listing i can leave a review for
item i with probability 1. This property ensures no customer is
tricked into paying a vendor without the ability to review her ex-
perience. Note that we cannot in general promise fair trade for
physical goods in a digital marketplace; we can only ensure that
there is a way to report such behavior.

P2. Soundness: A customer c cannot leave a review for an item i
without having performed a valid transaction p(c,i), and is only able
to leave exactly 1 review per correctly formatted transaction. This
ensures that customers cannot falsely lower or boost reputation of
vendors beyond the influence of their transaction.

P3. Item listing completeness: Any customer or vendor can
query I efficiently. This implies that it is not possible to hide any
item listings from c and that it is impossible to convince c of the ex-
istence of invalid or fake item listings. This prevents, for instance,
adversaries from leaving out competitor’s item listings to unfairly
attract customers.

P4. Review completeness: Any customer or vendor can effi-
ciently enumerate R(·,i) ∀i. This implies that it is not possible to
hide any reviews from any c and that it is not possible to convince
c of the existence of invalid or fake reviews. This guarantees that
adversaries cannot manipulate existing reviews.

P5. Review-payment unlinkability: Given a review r from an
honest customer and any k payment transactions for an item listing
i that includes the payment associated with r, γ of which are from
malicious customers, the probability that adversary A learns p for
which the review was generated from is negligibly close to guessing
at random from the k − γ payments from honest customers. A
similar result must hold true for linking a payment to reviews as
well. In other words,

Pr


A
(
{pj}j∈[k], rc,
I,P,R,

C, C̃,V, Ṽ
)
= c

pj ∈ p(C,i)
∀j ∈ [1, k − γ],

rc ∈ R(C,i),
pc ∈ {pj}j∈[k]

 ≤ 1

k − γ+neg(λ),

and

Pr


A
(
{rj}j∈[k], pc,

I,P,R,

C, C̃,V, Ṽ
)
= c

rj ∈ R(C,i)
∀j ∈ [1, k − γ],

pc ∈ p(C,i),
rc ∈ {rj}j∈[k]

 ≤ 1

k − γ+neg(λ)

for implicit security parameter λ.

This property is the most important anonymity property. Pay-
ments (i.e., purchases) may entail sensitive information, such as
the address of the customer. The adversary learning the identity of
the reviewer and the content of the reviews, in particular negative
reviews, may have bad consequences for the customer. A DAM
should protect the customers by ensuring unlinkability.

P6. Payment (review) unlinkability: An adversary A given
two payment transactions pc and pc′ generated by honest customers
should be not able to tell if they were left by the same customer or
different customers negligibly better than random guessing. A sim-
ilar property should hold for any two reviews as well. That is,

Pr


A
(
pc, pc′ , I,P,R,

C, C̃,V, Ṽ
)
= b

∧ b = (c
?
= c′)

pj ∈ p(C,i)

∀j ∈ {c, c′}

 ≤ 1

2
+ neg(λ),

and

Pr


A
(
rc, rc′ , I,P,R,

C, C̃,V, Ṽ
)
= b

∧ b = (c
?
= c′)

rj ∈ r(C,i)
∀j ∈ {c, c′}

 ≤ 1

2
+ neg(λ),

where c ?
= c′ evaluates to 1 if c = c′, 0 otherwise. This protects

customers’ identities, in case collection of payments or reviews re-
veal information about the customer.

Finally, we have a few optional properties that, while not cru-
cial to functionality or security, benefit the customer and improve
usability.

O1. Open enrollment: Anyone can efficiently join or leave the
marketplace as a customer or a vendor at any time. This is a re-
quirement for a truly decentralized marketplace, as there will not
be a trusted third party monitoring membership. This does not im-
ply that the vendor can create an item listing i at no cost.

O2. Selective review linkability: A customer c leaving a review
r should have the option to link r to a set of reviews she has left for
other items PRc for any PRc ⊂ R(c,·) in an efficient publicly
verifiable way. This allows the customers to build reputation as
well, by showing good reviews she has left previously.

O3. Review exculpability: Related to the previous property, a
customer c leaving a review r should not be able to link r to any
r′ /∈ PRc. This means that a customer c should not be able to
link their review with other reviews which are not theirs in order
to benefit from others’ good reviews or purposefully link another
customer to set of bad reviews.

4. Beaver PRELIMINARIES
Beaver uses existing block chains and anonymous payment schemes,

such as Zerocash [4], to instantiate a DAM. In this section, we
present the high-level design (§4.1), and threat model of Beaver
(§4.2). We then discuss the idea of consensus (§4.3), and crypto-
graphic primitives used in Beaver (§4.4).

4.1 High-level design
There are three types of participants in Beaver: customers, ven-

dors, and a distributed network of miners, all of whom enjoy open
enrollment (i.e., no trusted third party verifying identities). The
distributed network of miners and the public ledger ensure the cus-
tomers’ ability to leave reviews for their interactions with vendors,
and allow anyone to enumerate the feedback. In Beaver, the cus-
tomers and vendors could be miners as well and vice-versa.

Ledger

Vendors Customers

Miners

......

Anonymous
communication

Figure 1: Beaver Architecture

At a high-level, Beaver works as follows. The vendors first reg-
ister themselves to the network (i.e., the ledger) by publishing their
pseudonyms. The customers are then able to enumerate the list of
vendors, and purchase a product by making an anonymous transac-
tion to the vendor. To leave a review, the customer privately ties the
review to the transaction she made earlier, and submits the review
to the network. Beaver, by using cryptography, guarantees that the
clients cannot use the same transaction twice to sign a review. Fi-
nally, anyone can check the block chain to enumerate the reviews.
Figure 1 shows the system architecture.

One key insight of Beaver is that with a public ledger, there is
irrefutable public evidence that a valid transaction has taken place,
and only the customer knows the secret information regarding the
origin the transaction (i.e., private key used to sign a transaction).
Using this, we can prevent (1) situations where a customer could
be tricked into sending money but be unable to leave a review, and
(2) anyone other than the real customer from leaving the review.

4.2 Threat model and assumptions
Beaver relies on reaching global consensus on the ledger, which

contains important information such as financial transactions and
reviews. We therefore require the underlying consensus protocol to
be secure. In the case of a block chain based ledger, similar to that
used by Bitcoin [30], we require at least that the adversary does
not control a majority of the computational resources in the net-
work, and that the majority of the computational resource behave
rationally. A recent work on selfish mining, however, has shown
that a simple majority may not be sufficient, and one may need as
much as 75% of the network to be honest [18]. In any case, our
security assumption will be identical to the security assumption for
the underlying public ledger scheme. Beaver also assumes that the
customers and vendors are rational, and do not behave maliciously
if the cost of doing so is significant. Apart from these two assump-
tions, we do not limit the adversary’s power. The adversary could,
for instance, control many vendors and customers that collude with
each other, and try to boost its own ratings or lower competitors’
reputations.

We also assume existence of an ideal anonymous payment sys-
tem, which allows anonymous transactions and anonymous trans-
fers of coins back and forth from a regular cryptocurrency like Bit-
coin. Zerocash [4], for instance, is a candidate for such currency.
Finally, we assume that any communication, especially that of the
customers, is done via a truly anonymous communication to en-
sure anonymity. In practice, the customers may use Tor [16] or
other stronger anonymous communication systems [23, 39]. These
systems may not behave as an ideal anonymous communication in
reality, but addressing this issue is outside the scope of this paper.

4.3 Consensus
Beaver makes use of a consensus protocol for establishing network-

wide agreement about the state of the marketplace such as item list-
ings, reviews, and any other actions of its members. In particular,
we make extensive use of a public ledger like that of Bitcoin [30],
which uses proofs of work to arrive at a global consensus. While
there are several other consensus protocols in the literature, the
public ledgers in Bitcoin make relatively small assumptions about
the network, making it a prime candidate for a decentralized appli-
cation like Beaver.

At the core of Bitcoin-style public ledger is a hash chain that is
constructed by a distributed set of miners. For a period of time,
miners listen to messages being broadcast in the network by users,
such as a transaction to transfer money from one account to another.
Miners then aggregate these messages into a block along with the
hash of the previous block and enter it into the public ledger by per-
forming a proof-of-work. In Bitcoin, this proof-of-work is finding
a nonce, such that the hash H(BLOCK||NONCE) < α where α is a
parameter that determines the difficulty of the proof-of-work.

Miners in such systems are assumed to be economically rational
actors, and so they need to be incentivized to spend their compu-
tational resources on mining blocks for the network. To do this,
Bitcoin has (1) a reward for mining a block, and (2) a transaction
fee. Beaver will rely on similar incentives to encourage miners to
behave honestly and maintain a healthy ledger.

4.4 Cryptographic primitives
Beaver employs two cryptographic primitives, NIZK and LRSig,

which are described in this section.

4.4.1 NIZK
A non-interactive zero-knowledge proof, or a NIZK, of a state-

ment is a zero-knowledge proof of the statement that could be ver-
ified easily by anyone without interaction with the party who gen-
erated the proof. In Beaver, we use a subcategory of NIZK called
non-interactive zero-knowledge proof-of-knowledge (NIZKPoK),
which is a NIZK for proving knowledge of a secret value. NIZKPoKs
are commonly used to show that, given a blinded version of a se-
cret value (e.g., a commitment), the person who generated the proof
knows the secret value underlying the commitment. An example
of NIZKPoK is a zero-knowledge proof of possession of discrete
logs: given gx for a generator g of a group G in which discrete log
is hard, NIZKPoK can be used to prove knowledge of x without
revealing any informatino on x. This can be done by applying the
Fiat-Shamir heuristic [19] to a standard zero-knowledge proof of
discrete log as shown in [9].

4.4.2 Linkable ring signatures
Ring signatures (RSig), first proposed by Rivest et al. [32], are

cryptographic signatures that guarantee anonymity of the signers.
Specifically, a RSig algorithm takes as input the private key of the
signer, a set of public keys, and a message, and generates a sig-
nature that can be verified against the set of public keys without
revealing which key was used to sign the message.

Ring signatures unfortunately do not offer any form of account-
ability, and there is no way to stop the signer from signing multiple
times even when it is not desirable. Linkable ring signatures [24]
(LRSig), on the other hand, are accountable variants of ring signa-
tures: All signatures generated by the same signer can be linked to
each other, though the identity of the signer is still hidden. LRSigs
can be used to prevent signers from signing multiple times, while
preserving anonymity.

5. Beaver DESIGN
In this section, we describe the available operations in Beaver.

We describe registration transactions (§5.1), special vendor trans-
actions (§5.2), payment transactions, (§5.3), and review transac-
tions (§5.4). In each section, we present the details of the trans-
actions and how the miners could verify them. All transactions
are signed with an unforgeable signature scheme by the party gen-
erating the transaction, unless otherwise noted. Figure 2 shows a
typical workflow of Beaver.

5.1 Registration
Similar to Bitcoin [30] and other cryptocurrencies, Beaver does

not require explicit registration for miners. This is also true for
customers in Beaver, who by the asymmetry of DAMs, do not need
any publicity. A vendor, on the other hand, needs a public identity
(pseudonym) that others could refer to for purchases and reviews.

In Beaver, a vendor registers a product that he wants to sell by
generating a new public key pv in the underlying payment system
that will be used to receive payments. The vendor then covers the
registration fee ρ by moving money into pv and forms a registration
transaction

rt = (REGISTRATION, TXID, ITEMINFO, pv) .

REGISTRATION is the type of transaction, and TXID is a unique
identifier for the transaction which in practice could the hash of
all the other values in rt. ITEMINFO is the description of the item
being sold, the price, and any other information needed to generate
a payment, and pv is the public key associated with this item.

Once the miners receive this transaction, they run Algorithm 1 to
verify the transaction before adding it to the ledger. The miner that
successfully adds rt toL claims the fee ρ from pv . Once added, any
customer can find the list of all items sold in Beaver by enumerating
all REGISTRATION transactions. The customer can then purchase
the product by sending money to the public key in the registration
transaction. Moreover, the customers can check all available re-
views for this key (item) as shown in §5.4.

Algorithm 1 Registration verification
INPUTS:

1. rt = (REGISTRATION, TXID, ITEMINFO, pv)
2. L

OUTPUT: Miners add rt to L only if all of the steps are satisfied.
1. Check pv has enough funds to cover the registration fee ρ.
2. Check TXID 6∈ LTX ∧ pv 6∈ Lrt.
3. Check ITEMINFO specifies the price of the item x, and that

the price is within minimum and maximum denominations
of underlying currency.

5.2 Special vendor transactions
Vendors in Beaver may also perform two special transactions:

(1) bootstrapping reputation and (2) updating item listings.

Bootstrapping reputation.
When the item is first listed, there are no reviews for the item,

meaning the reputation is null. The vendor, however, may have
other products with positive reviews and may want to bootstrap the
reputation for this item by linking it to these other items with pos-
itive reviews. These reviews, while not directly useful for express-
ing the quality of the particular item, could help establish trust with
the vendor. In this case, the vendor can submit a special transaction
that includes a NIZKPoK of the private keys of other items he sells.

Items Reputation
eP0+skI

6hf2Aks

prEXw1j

...

 {revieweP0+skI}

...
 {review6hf2Aks}

 {reviewprEXw1j}

zJ6gDl4

zJ6gDl4 {}

(a) Vendor registers the public key of item to
the ledger.

Items Reputation
eP0+skI

6hf2Aks

prEXw1j

...

 {revieweP0+skI}

...
 {review6hf2Aks}

 {reviewprEXw1j}

zJ6gDl4 {}

zJ6gDl4, {}

payment
for zJ6gDl4

payment
for zJ6gDl4

(b) Customer retrieves item listings and their re-
views, and makes a payment transaction for an
item.

Items Reputation
eP0+skI

6hf2Aks

prEXw1j

...

 {revieweP0+skI}

...
 {review6hf2Aks}

 {reviewprEXw1j}

zJ6gDl4 {r}

Review r
for zJ6gDl4

(c) Customer leaves a review for the item pur-
chased (optional).

Figure 2: Beaver workflow

The customers can then check the reviews of the other items, and
be convinced that these items come from the same vendor. Note
that this transaction may be submitted at any time, and the vendor
may choose when to link the items together.

br =
(

BOOTSTRAP, TXID, pv, (
−−−−→pj , πsj)

)
Here pv is the public key associated with the item listing that the
vendor is interested in bootstrapping and (−−−−→pj , πsj), is a vector of
public keys associated with other item listings, and NIZKPoK for
the secret keys to each. and miners use Algorithm 2 to verify this
transaction. The miner that successfully adds br to L claims the
fee β from pv .

Algorithm 2 Vendor bootstrap verification
INPUTS:

1. br =
(

BOOTSTRAP, TXID, pv, (
−−−−→pj , πsj)

)
2. L

OUTPUT: Miners add br to L only if all steps are satisfied.
1. Check pv has enough funds to cover the fee β.
2. Check TXID 6∈ L.
3. From L, verify that pv and ~pj are valid public keys for items.
4. For each ` ∈

[
1, |(−−−−→pj , πsj)|

]
, verify πs` is a valid NIZKPoK

for the secret key of p`. ~πsj is generated using public ran-
domness as a nonce to avoid replay attacks.

Updating listings.
A vendor may want to update an item listing after creating it. For

example, the item may be sold out, discontinued, need a description
change, or the vendor may wish to hold a promotion or sale. The
vendor can issue an update by submitting a special transaction:

ut = (UPDATE, TXID, pv, πsv , ITEMINFO)

Here pv is the public key of the item listing that a vendor wishes
to update, πsv is a NIZKPoK for the corresponding secret key, and
ITEMINFO is the new information for the item listing. Miners use
Algorithm 3 to verify this transaction, and the miner that success-
fully adds ut to L claims the fee τ from pv .

5.3 Payments
When a user decides to purchase an item, she begins by generat-

ing a fresh public key (a pseudonym) pc. She then transfers funds
anonymously (e.g., via Zerocash [4]) to pc. She finally transfers
funds from pc to the public key associated with the item to make
the purchase. She may use the transaction to supply other rele-
vant information such as a shipping address or any special requests
for the order, or she may send that information out of band (e.g.,

Algorithm 3 Item listing update verification
INPUTS:

1. ut = (UPDATE, TXID, pv, πsv , ITEMINFO)
2. L

OUTPUT: Miners add ut to L only if all steps are satisfied.
1. Check pv has enough funds to cover the fee τ .
2. Check TXID 6∈ L.
3. From L, verify that pv is a valid public key for an item.
4. Verify that πsv is a valid NIZKPoK of secret key for pv . πsv

is generated using a public randomness as a nonce to avoid
replay attacks.

through a vendor’s website) along with the proof of the purchase
via anonymous communication.

In Beaver, we do not provide transaction privacy for the vendor;
i.e., the recipient of the payment transaction is not hidden, unlike
Zerocash. This is done so that the users can understand the explicit
anonymity set when leaving a review (described in §5.4), and the
implications of this design choice are discussed in §7.

A payment transaction p looks nearly identical to that of Bitcoin:

p = (PAYMENT, TXID, pc, pv, vv, CUSTOMERINFO)

where PAYMENT is the type of transaction, TXID is the unique
transaction ID, pc is the customer’s fresh nym that holds enough
funds to pay amount vv to the vendor’s account pv as well as any
additional fees. If the underlying cryptocurrency supports adding
supplementary information to transactions, then CUSTOMERINFO
is passed along as information specific to the order such as a ship-
ping address or special requests encrypted under pv . One key dif-
ference between payment transactions in Beaver and payment trans-
actions in Bitcoin is that the transaction fee of the payment is bro-
ken into two fees: tax ft and reviewing fee fr . ft is paid to the
miner who adds the payment transaction to the block chain, similar
to traditional cryptocurrencies. fr is paid later to the miner who
adds the review associated with this payment to the block chain
(§5.4). Upon submission, miners use Algorithm 4 to verify that
payment satisfies all the requirements, and the miner that success-
fully adds p to L claims ft from pc. Any future transfer from pc
to another place will be considered invalid, except to claim the re-
viewing fee, for reasons described in §5.4.

5.4 Reviews
After the payment transaction p is added to the block chain, the

customer has the option to form a review for the item. The review
will contain a message from the customer (e.g., a detailed product
review) as well as a numeric rating a ∈ Y where Y is a small set
of integers. Once she writes the review, the customer can then sign

Algorithm 4 Payment verification
INPUTS:

1. p = (PAYMENT, TXID, pc, pv, vv, CUSTOMERINFO)
2. L

OUTPUT: Miners add p to L only if all of the steps are satisfied.
1. Check that the available funds in pc is larger than vv+ft+fr .
2. Check TXID 6∈ L.
3. From L, verify that pv is a valid public key for an item.
4. Find ITEMINFO for pv in L, and the price x for pv .
5. Check vv ≥ x.

the review with the private key used to make the transaction, and
send it to the network to be added.

A naive signature will reaveal the transaction associated with the
the private signing key, and therefore ties the transaction to the re-
view. Unfortunately, the transaction may contain sensitive informa-
tion about the customer, and concern of having the transaction tied
to the review limit the customer’s ability to leave truthful feedback.
Though we wish to hide the exact relationship between reviews and
transactions, we must also ensure that there exists a valid payment
associated with each review. To achieve this, we use linkable ring
signatures. The list of all transactions left for pv is first broken into
groups of size k where k is a public system parameter. The cus-
tomer pc who wishes to leave a review for pv figures out the group
that her payment transaction p belongs to, takes all public keys of
customers within that group, and uses them to sign the review with
LRSig instead of a regular signature. With LRSig, no one is able
to learn which one of the k payments is linked to the review, while
guaranteeing that any attempt to submit more than one review per
payment will be caught via the linkability of signatures.

With this change, we have to modify the reviewing fee slightly,
as the miner who adds the review to the chain cannot figure out
which transaction should pay the reviewing fee. Instead, the min-
ers can take from any transaction in the same group that has not yet
been claimed, as all valid transactions have been specified to pay
the reviewing fee. Furthermore, as previously before, the miners
will reject any attempt to transfer the reviewing fee to another ac-
count before the fee is legitimately claimed by a miner, ensuring
there is enough funds in the account to pay the miner. We note that
although there could be a delay in waiting for k transactions to ap-
pear on the chain, once there are sufficiently many transactions, the
reviews could be submitted at any time (i.e., asynchronously) and
still guarantee the anonymity among the set of k transactions.

Customer reputation.
In existing e-commerce systems like Amazon and eBay, it is pos-

sible for a customer to build up her reputation as a “good” reviewer
or an “expert” of a category of products, by linking all the reviews
she leaves to her account. For instance, if one person has left re-
views for many different headphones and speakers, then that per-
son’s reviews for another headphone may be more important to po-
tential customers. However, a cusomer may also desire the property
that reviews for certain products do not link back to other products
she has reviewed for sake of privacy.

In Beaver, we allow the customer to choose which reviews to tie
together: When leaving a review, the customer also generates a ran-
dom value rc that she keeps secret and its commitment Comm(rc),
that she includes in the review. When the same customer wishes to
link reviews together, she may refer to a previous review contain-
ing Comm(rc) and include NIZKPoK of rc in the new review. This
also enables the customer to create potentially several groups of re-
views (e.g., one for headphones, one for books, etc.), and convince

others of her expertise in a category of products without revealing
the reviewer’s purchases in other categories.

Review enumeration and aggregation.
In the case where a customer wishes to enumerate all reviews for

a product along with their contents, she can go through the public
ledger. However, it is also common for a customer to want to see
an aggregated reputation (e.g., average of all ratings) to get a quick
summary of the quality of the product, without sifting through all
the reviews. To allow quick summary, after a customer submits
a review, the miners compute the total number of ratings for the
product thus far denoted N , and the sum of all the ratings denoted
s from L. The miners then update these values according to the
newly submitted review, adds them to the ledger. Note that N and
s are not signed by the reviewer, as there may be reviews for the
same product not yet in the ledger, and only the miners who pick
the ordering and the reviews to add the ledger can determine N
and s accurately. However,N and s cannot be faked, since they are
publicly computable from L.

With this, the customer only needs to find the latest review to
get an aggregate value which can be done by traversing the block
chain backwards. This procedure may take O(t) time where t is
the length of the ledger in the worst case, but for vendors with rea-
sonably frequent transactions, it will be much faster.

Review revocation.
The reviewers may want to update their reviews of a product af-

ter some time. Often, for example, a product works well in the first
few days, and the customer leaves a positive review. Soon after,
the product breaks, and the customer wants to change the review to
be something negative. In these scenarios, the reviewer simply re-
signs the review, using Algorithm 5 with the same private key and
public keys, and sends the new review to the miners. When enu-
merating the reviews, if anyone finds reviews that are linked (via
LRSig), then he or she simply takes the latest review and ignores
older ones. This review, however, must be submitted with a sepa-
rate reviewing fee to incentivize the additional work needed from
the miners.

In summary, a review transaction is the tuple

r =
(

REVIEW, TXID, a,M, p′c, σs′c , pv,Comm(rc), ~pj , ~z`, ~r`
)

where REVIEW and TXID are the type and ID of the transaction, a
is the numerical rating, M is the detailed review, p′c is a fresh nym
to draw the review fee from if this review is an update, σs′c is a
signature on all other values in r with the secret key corresponding
to p′c, note that if this review is not an update than p′c, σs′c may both
be null. pv is the public key of the item of the review, Comm(rc)
is the commitment of a random value used to link reviews if de-
sired later on, ~pj the set of public keys of size k that includes the
customer’s public key, and ~zk are NIZKPoKs of the private keys
of the other reviews from the same customer to this review while
~r` are the reviews to be linked. ~z` and ~r` may be empty which is
denoted by null if the customer does not wish to link any reviews.
Customers use Algorithm 5 to generate reviews, and the miners run
Algorithm 6 to verify the reviews before adding them to the ledger.

6. ANALYSIS
We first argue that Beaver satisfies all the properties of DAM

(§3.2). We then analyze the impact of different parameters.

6.1 Properties of Beaver
P1. Correctness: A payment is completed when the payment

transaction p ends up in the ledger L, which we assume is publicly

Algorithm 5 Review generation
INPUTS:

1. (sc, pc): private-public key of the customer
2. p′c: public key of nym to pay reviewing fee (update only)
3. σs′c : signature of all other fields with private key correspond-

ing to p′c
4. pv: public key for the item listing
5. a: rating for this item
6. M : short message for this review
7. ~r`: set of reviews to link to
8. ~r`: secret random values in reviews to be linked
9. L: public ledger

OUTPUT: A review transaction and a linkable ring signature σ of
the review for item pv .

1. From L, verify that pv is a valid public key for an item.
2. Divide payment transactions for pv ∈ L, into groups of k.
3. Find the group that pc belongs to, and extract the k public

keys to yield ~pjj∈[k].

4. Compute signature σ = LRSig
(

r, sc, ~pjj∈[k]
)

.

5. Generate a random value rc and its commitment Comm(rc).
6. Let ~Comm(r`) be the commitments to random values in other

reviews to be linked. UseL as public randomness to compute
NIZKPoKs ~z` for ~r`. Note that if the customer does not wish
to link reviews, then ~z` = null, ~r` = null.

7. Output
r =

(
REVIEW, TXID, a,M, p′c, σs′c , pv,Comm(rc), ~pj , ~z`, ~r`

)
and σ.

visible. Upon k completed transactions for an item, customers may
generate a review using Algorithm 5, and the signatures will verify
as long as a valid payment is in L.

P2. Soundness: Soundess is derived directly from the forgery
resistance of linkable ring signatures. Without a payment transac-
tion in L an adversary would not have a secret key for any of the
public keys associated with the k transactions. The forgery resis-
tance of linkable ring signatures implies that this adversary cannot
generate a valid signature that will verify. Similarly, if a customer
signs two reviews using the same secret key, then the two signatures
will be linked, and anyone can detect this misbehavior.

P3. Item listing completeness: Assuming consensus and avail-
ability of L, any item listing is publicly visible to everyone since L
holds item listings.

P4. Review completeness: Similar to item listing, assuming
consensus and availability of L, any review is publicly visible.

P5. Review-payment unlinkability: As with §3.2, assume that
out of the k payment transactions used to sign the review by an hon-
est customer, γ of them were generated by malicious clients. The
adversary then knows the honest customer’s payment is not part of
the γ malicious transactions, so the anonymity set size is effectively
k−γ. The security property of linkable ring signatures ensures that
the adversary cannot do non-negligibly better than guessing from
k − γ. Moreover, the optional NIZKPoKs used to link reviews
only link reviews together without revealing any information about
the payments or the public keys used. We discuss how γ may be
determined in §6.2.

P6. Payment (review) unlinkability: For every purchase, cus-
tomers generate a fresh nym which is unlinked from any other nyms
previously used (via security of the underlying payment scheme),
therefore no purchases can be linked to other purchases. Similarly,
reviews are also signed with the fresh nyms, so the reviews cannot
be linked to each other, unless explicitly linked via NIZKPoKs.

Algorithm 6 Review verification
INPUTS:

1. r =
(

REVIEW, TXID, a,M, p′c, σs′c , pv,Comm(rc), ~pj , ~z`, ~r`
)

2. σ, the linkable ring signature of r
3. s, total numerical rating of pv thus far
4. N , the number of reviews left for pv thus far
5. L

OUTPUT: Miners add r to L only if all steps are satisfied.
1. Check TXID 6∈ L.
2. From L, verify ~pj is a valid set of public keys of k transac-

tions to pv .
3. Find the last review left for pv in L, and verify that s and N

correctly computed given this rating a.
4. Verify σ on r.
5. If σ links, then this is an update, and verify p′c has at least fr

funds to cover the review fee and σs′c is a valid signature.
6. If ~z` is not null, then verify the NIZK.

O1. Open enrollment: As long as the underlying payment sys-
tem and consensus protocol allows for open enrollment, customers,
vendors, and miners can all join freely.

O2. Selective review linkability: A customer who previously
generated a review should know the random value in the commit-
ment used for that review. The customer can then use NIZKPoK to
prove possession of the random value in a new review to link two
reviews together.

O3. Review exculpability: If the commitment scheme is hiding,
then the adversary cannot learn the secret value from the commit-
ment. Since only the honest customer knows the secret value, no
other person can generate a correct NIZKPoK to link the reviews.

6.2 Parameters
There are many parameters that impact the performance and se-

curity of Beaver. In this section, we describe the impact of each
parameter, and provide our recommendations.

Registration fee ρ. ρ is the cost that a vendor must pay to regis-
ter a new product. This cost mitigates with the problem of vendors
with negative reviews simply creating a new listing for the item to
reset the reputation. It also mitigates attacks where an adversary at-
tempts to flood the network with item listings to make enumeration
and identification of legitimate item listings tedious. It is however
important that ρ is not set too high as to discourage new vendors
from joining the network.

Transaction tax ft. ft is money that is paid to miners when
a customer purchases an item from a vendor and directly impacts
the credibility of reviews in our system. Since ft is paid to the
network of miners and is lost to both the customer and the ven-
dor, high values of ft would deter adversaries from leaving fake
reviews for sake of influencing someone’s reputation thereby miti-
gating Sybil attacks. For example, this would discourage a vendor
from acting as a customer and making a lot of payments to him-
self in order to leave positive reviews. On the other hand, if ft is
too high, customers may be discouraged from using Beaver and in-
stead seek out cheaper alternatives with less overhead. We believe
that ft should be proportional to the value of the transaction being
made, perhaps around 10% of the item price similar to vendor fee
charged by Amazon Marketplace. This insight forms basis for the
credibility of a review, the lower bound on the cost to an adversary
of creating for creating it. Finally, ft also incentivizes the miners
to add the payment transaction to the ledger L.

Reviewing fee fr . fr is a cost that is paid to the miners for leav-
ing a review, and fr also helps to establish the lower bound on the

cost of leaving a review in conjunction with ft. It is important to
note that in Beaver, reviews are separate transactions from the pay-
ment transactions although practically, a customer needs to supply
funds for them both at the same time. We recommend either an
absolute fixed fee for fr , or a fee that is proportional to the size of
the review (i.e., length of the message), similar to transaction fees
in Bitcoin [30].

Anonymity set size k. k impacts the anonymity of a customer.
k should be set in such a way that k − γ is sufficiently large with
respect to the percieved adversary, and the customer is provided
with large enough anonymity set. For an adversary that controls
m fraction of all network’s resources (m < .5), we know that it
costs the adversary about (1−m)ftγ on average to create γ trans-
actions.1 With this fact and an assumption about adversary’s finan-
cial resources, we could estimate γ, and pick k that will satisfy the
customers.

Big values of k, while providing larger anonymity sets, trade-off
the latency of reviews. Since customers cannot review an item until
it has been purchased k times, depending on the popularity of the
item, customers may have to wait a while, and so this parameter
also needs to be balanced for usability.

Reputation bootstrap fee β. Since vendors can only link the
items that it knows the secret keys for (i.e., owned by the vendor),
bootstrapping reputation should not be a costly operation. β should
be set to be the minimal value that would incentivize the miners to
add this transaction to the ledger.

Item update fee τ . A vendor should be able to update their
items, so τ should be set to be the minimal value that would in-
centivize the miners sufficiently to add this transaction to L. Note
that a vendor may change the price very frequently in an attempt to
differentiate prices for different customers, but this is visible to the
public, and the price at a given time is same for every customer.

6.2.1 Review credibility
Customers who are interested in purchasing an item will first

want to look at the reviews have been left by previous customers.
In addition to observing the score and message of a previous review,
a customer may be interested in evaluating a review’s credibility, or
what it would have costed an adversary to create the review himself.

While it might be tempting to assume that cost to an adversary
for generating a review is the cost to purchase the item plus the
associated tax ft and reviewing fee fr , it may be the case that an
adversary is purchasing the item from himself, and is therefore re-
covering the price of the item. The cost to an adversary for generat-
ing a review is therefore lower bounded by ft + (`+ 1) fr , where
ft is the tax paid on the payment transaction, ` is the number of
times the review has been updated. As discussed in 6.2 later, fr is
recommended to be set to a constant value, and ft will likely scale
with the price of an item. With the ability to change the price of an
item (§5.2), ft may be different for different transactions. More-
over, it is not possible to link a review to any particular transaction.
However, customers do know the lowest possible tax for a review
since the k transactions that form anonymity set is public. There-
fore, customers should be conservative, and assume the lowest ft
out of the k transactions to estimated the credibility of a review.

Though ft + (`+ 1) fr forms the baseline credibility, this may
be augmented by other reviews that were linked. A naive augmen-
tation of the credibility would be to add up the credibility of all
linked reviews. However, this enables an adversary to pay (out-of-
band) a good reviewer to generate NIZK, and all of sudden get a

1Adversary is expected to win the transaction fee with probability
m if everyone follows the Bitcoin protocol. This statement is not
true, for instance, under selfish-mining attacks [18].

review of very high credibility for potentially much less cost than
estimated. There may be other out-of-band attacks that Beaver may
not protect against, so customers should be careful when augment-
ing credibility of a review using linked reviews.

7. DISCUSSION
We next discuss some additional aspects of Beaver that our cur-

rent system design does not fully address, or that present room for
improvement.
Vendor privacy. Though our system offers high level of privacy
and anonymity for buyers, it only offers limited protection for ven-
dors. Beaver provides the ability to hide which items a vendor sells,
since it generates a fresh pseudonym for each item; however, the
sales number (i.e., the number of transactions) is made public via
the ledger. This is necessary in Beaver, as customers need explicit
information about their anonymity set before leaving a review. One
could argue that such transparency and auditability of the vendors
may be good for the market as a whole, but this may not be desir-
able for vendors who want to conceal their transaction volume. We
hope to address this concern in the future.
Query efficiency. By default, to query the reputation score of an
item listing, a user needs to go through the whole ledger, which has
an O(n) worst-case complexity, where n is the size of the ledger.
If each user keeps her own copy of the ledger, she can form an
indexed database of the values to do efficient lookups. However,
this requires O(n) space from each user, which may be too costly.

Alternatively, customers could let an untrusted service manage
an efficient-to-query database that is supposed to be a replica of the
ledger, and periodically check the consistency of the ledger and the
database. In practice, we imagine that many such services would
exist, and that a user may query several of them at the same time
and check the consistency of their results to ensure that they are cor-
rect. Only one of these services needs to be honest to enable tam-
pering detection. In this way, customers may choose to increase
usability at the cost of security. Ideally, we would like such un-
trusted services to generate a proof that the database is simply an
alternate representation of the ledger and that the returned queries
are correct so that customers need not trust the database service
at all, but we defer such constructions, along with other efficiency
improvements, to future work.
Unclaimed reviewing fees. When a payment transaction is ap-
proved, a value of at least fr is left in the customer’s account to
cover the cost of a review in the future. It may however be the case
that a customer forgets to leave a review, has no interest in leav-
ing a review, or loses control of the secret information needed to
do so, causing the funds to be effectively orphaned. To deal with
this problem, it might make sense for the network to agree on a
common policy: for instance, that review fees unused for a long
time (e.g., 2 years) can be claimed by miners; that they can be dis-
tributed among the customers in the anonymity set; or that they be
locked forever and offset by printing new currency.
Tuning the parameter k. The value of k presents a trade-off be-
tween anonymity of the customer’s review and the latency or delay
from the time of purchase before a review can be posted. For ex-
ample, for k = 1000, a popular item that has 1,000 sales per day
on average would support reviews with a latency of one day. A less
popular item with only 10 sales per day, however, would require
100 days between purchase and review for the same value of k.

The latency may not be a significant issue for customers who are
leaving a review because (1) the customer may wish to wait a few
days to try out the product before leaving a review anyway, and
(2) in practice, a user may interface with the system through an
application that can record the user’s review immediately and then

send it out as soon as the anonymity set is ready. Unfortunately,
high latency is a problem for potential customers that would like
to observe reviews, and the vendors who sell these items. Thus,
it might make sense for either vendors to select the value of k for
their item listing at the time of listing creation, or for the system
to support a range of values to accommodate different trade-offs of
anonymity and usability. In either of these cases, customers will be
responsible for ensuring that k is a sufficiently large number.
Custom algorithms for sybil detection and reputation calcula-
tion. Beaver provides users with a large corpus of raw information
in the form of the public ledger L. Beaver makes no effort beyond
the details of its specification to identify reviews that have been
generated as the result of a Sybil attack. Other research [13,37,38]
attempts to do just this by using a variety of heuristics and machine
learning techniques. Customers in Beaver can run some of these
algorithms themselves over the ledger to make their own decisions.
In a similar fashion, while Beaver provides users with an average
review rating, customers may in practice run their own algorithms
for distilling the richness of review messages and values down to a
concise number that can be easilly compared across items.
Customers who reveal themselves. In the message field of a re-
view, a customer might link her transaction or reveal her true iden-
tity. This will have the consequence of reducing the anonymity set
of all other customers who bought the item. Beaver cannot guaran-
tee anonymity of honest customers when users behave in this way.
We recommend that the applications that customers use to interface
with the system make it clear that they should not reveal this sort
of information, but ultimately customers revealing themselves falls
outside the scope of Beaver.
Economically irrational adversaries. Beaver aims to protect its
users against adversaries who are economically rational. Our no-
tion of credibility, for instance, is derived from the lower bound of
the cost to an adversary for generating reviews. This unfortunately
is less useful against adversaries that are not economically rational.
An adversary that is not economically rational for example may
spend $1,000 generating fake reviews in order to setup a honey-
pot item listing, or deanonymize or scam a customer buying a $20
product. Such adversaries are outside the threat model of Beaver.

Despite not being able to provide strong guarantees against eco-
nomically irrational adversaries, we are less concerned with large
scale attacks on customers’ anonymity. To deanonymize customers,
an adversary would need to make many payment transactions so
that the customers’ true anonymity sets are very small. Deanonymiz-
ing every customer, for instance, would require that the adversary
owns at least γ = k − 1 transactions for every k anonymity set,
though in practice, the adversary may need to purchase an item
more than k − 1 times per honest user transaction due network ef-
fects. For unpopular item listings, this change in popularity would
be easily detectable on the public ledger. For popular listings, this
attack would require a tremendous amount of financial resources,
which even economically irrational adversaries may not have.

8. RELATED WORK
We now bring attention to notable related efforts for establishing

reputation in distributed or anonymous settings as well as anony-
mous payment schemes that can be used for supporting e-commerce.

8.1 Distributed and anonymous review systems
Dingledine et al. [14] explored the idea of using centralized servers

to maintain reputation scores for a node’s reliability in a decentral-
ized network. Similarly, Gupta et al. [20] used a third party that
they called a reputation computation agent to facilitate reputation
in a peer-to-peer network. Androulaki et al. [3] proposed using dig-

ital cash schemes where peers mint and send reputation coins using
a centralized bank. In this setting, demonstrating possession of rep-
utation coins is sufficient for proving reputation. This paradigm en-
ables tying reputation to users and as opposed to pseudonyms, and
in that respect has overlap with Beaver where users can demon-
strate possession of reputation across pseudonyms. Unlike Beaver,
these proposals all require a centralized agent that must be trusted.

Damiani et al. [12] proposed a system where a user queries the
reputation of another node in a peer-to-peer network by polling her
peers. The EigenTrust [22] algorithm goes a step further and lever-
ages the transitivity of trust, computing a normalized reputation
score based off of a network of trust. While the approach of polling
peers in the network does not require a trusted third party, each
node’s view of the network is biased by its peers which stores rep-
utation information in a public ledger using global consensus.

Signatures of Reputation [5] uses a third party, trusted for both
privacy and correctness to provide users with monotonic reputation
(bad actions cannot be punished). Blömer et al. [6] have suggested
using primitives such as zero knowledge proofs and ring signatures
with the assistance of a third party to enable users to leave feedback
for each other and query reputation in a privacy preserving way.
Both of these approaches suffer from the limitation of requiring
trust in a third party unlike Beaver.

AnonRep [40] uses linkable ring signatures, verifiable shuffles,
and homomorphic encryption to build a reputation system where
peers can anonymous rate each other, at least one server in a set of
powerful servers is honest. This system, however, does not protect
again Sybil attacks.

8.2 Anonymous payments
Early on Chaum [10] understood that payment schemes would

be a privacy bottleneck for digital commerce. Practical pseudony-
mous payment schemes such as Bitcoin [30] have paved the way for
adoption of anonymous marketplaces. Since then there have been
several additional proposals such as Zerocoin [27], Zerocash [4],
Mixcoin [8], and Blindcoin [36] that attempt to either fix weak-
nesses in Bitcoin or replace it altogether with varying security and
usability trade-offs.

The anonymity of a customer in a marketplace can only be as
strong as the anonymity provided by the underlying payment scheme.
While Bitcoin has become a leading choice anonymous transac-
tions, several attacks against its anonymity have been demonstrated
such as the work of Meiklejohn et al. [26] and the work of Ron and
Shamir [33] which demonstrate that in practice it is possible to clus-
ter the aggregate behavior of users. For this reason we advocate the
use of payment schemes with strong provable security guarantees
such as Zerocash [4].

9. CONCLUSION
We have presented Beaver, a decentralized anonymous market-

place (DAM). Beaver uses anonymous payments, a consensus pro-
tocol, zero-knowledge proofs, and linkable ring signatures to in-
stantiate a secure DAM. We showed that our system preserves the
anonymity of customers, and incorporates an incentive structure
inspired by existing cryptocurrencies, thereby motivating a healthy
network while lower bounding the cost of Sybil attacks at the same
time.

10. REFERENCES
[1] I2P: The internet invisible project. http://www.geti2p.net.
[2] Openbazaar docs, 2016. https://docs.openbazaar.org/.
[3] E. Androulaki and S. Choi. Reputation systems for

anonymous networks. In PETS, 2008.

http://www.geti2p.net
https://docs.openbazaar.org/

[4] E. Ben-sasson, A. Chiesa, C. Garman, M. Green, I. Miers,
and E. Tromer. Zerocash : Decentralized Anonymous
Payments from Bitcoin (extended version). In IEEE
Symposium on Security and Privacy, pages 1–56, 2014.

[5] J. Bethencourt, E. Shi, and D. Song. Signatures of
Reputation : Towards Trust Without Identity. pages 1–41.

[6] J. Blömer, J. Juhnke, and C. Kolb. Anonymous and publicly
linkable reputation systems. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume
8975, pages 478–488, 2015.

[7] M. Blum, P. Feldman, and S. Micali. Non-interactive
zero-knowledge and its applications. In Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing,
STOC ’88, pages 103–112, New York, NY, USA, 1988.
ACM.

[8] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll,
and E. W. Felten. Mixcoin Anonymity for Bitcoin with
accountable mixes. pages 1–25.

[9] J. Camenisch and M. Stadler. Proof systems for general
statements about discrete logarithms. Technical report, 1997.

[10] D. Chaum. Security without identification: Transaction
systems to make big brother obsolete. Communications of
the ACM, 28(70), 1985.

[11] N. Christin. Traveling the Silk Road: A measurement
analysis of a large anonymous online marketplace. In
Proceedings of the 22nd World Wide Web Conference
(WWW’13), pages 213–224, Rio de Janeiro, Brazil, May
2013.

[12] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and
P. Samarati. Managing and sharing servents’ reputations in
P2P systems. IEEE Transactions on Knowledge and Data
Engineering, 15(4):840–854, 2003.

[13] G. Danezis. SybilInfer : Detecting Sybil Nodes using Social
Networks. Network & Distributed System Security
Symposium(NDSS), 2009.

[14] R. Dingledine, N. Mathewson, and P. Syverson. Reputation
in p2p anonymity systems. 2003.

[15] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. In Proceedings of the 13th
USENIX Security Symposium, San Diego, CA, Aug. 2004.

[16] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
Second-Generation Onion Router. In Proceedings of the 13th
USENIX Security Symposium, pages 303–320, August 2004.

[17] J. R. Douceur. The Sybil attack. In Peer-to-peer Systems,
pages 251–260. Springer, 2004.

[18] I. Eyal and E. G. Sirer. Majority Is Not Enough: Bitcoin
Mining Is Vulnerable. Financial Cryptography and Data
Security, Fc 2014, 8437:436–454, 2014.

[19] A. Fiat and A. Shamir. How to prove yourself: Practical
solutions to identification and signature problems. In
Proceedings on Advances in cryptology—CRYPTO ’86,
pages 186–194, London, UK, UK, 1987. Springer-Verlag.

[20] M. Gupta, P. Judge, and M. Ammar. A reputation system for
peer-to-peer networks. NOSSDAV, page 144, 2003.

[21] M. Jakobsson and A. Juels. Secure Information Networks:
Communications and Multimedia Security IFIP TC6/TC11
Joint Working Conference on Communications and
Multimedia Security (CMS’99) September 20–21, 1999,
Leuven, Belgium, chapter Proofs of Work and Bread Pudding
Protocols(Extended Abstract), pages 258–272. Springer US,

Boston, MA, 1999.
[22] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The

Eigentrust algorithm for reputation management in P2P
networks. 12th International Conference on World Wide Web
(WWW), page 640, 2003.

[23] A. Kwon, D. Lazar, S. Devadas, and B. Ford. Riffle.
Proceedings on Privacy Enhancing Technologies,
2016(2):1–20, 2016.

[24] J. K. Liu, V. Wei, and D. Wong. Linkable spontaneous
anonymous group signature for ad hoc groups. Information
Security and Privacy, 2108:325–335, 2004.

[25] D. Mayzlin, Y. Dover, and J. Chevalier. Promotional reviews:
An empirical investigation of online review manipulation.
American Economic Review, 104(8):2421–55, August 2014.

[26] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko,
D. Mccoy, G. M. Voelker, and S. Savage. A Fistful of
Bitcoins : Characterizing Payments Among Men with No
Names. 2013.

[27] I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin:
Anonymous Distributed E-Cash from Bitcoin. 2013 IEEE
Symposium on Security and Privacy, pages 397–411, may
2013.

[28] A. Molavi Kakhki, C. Kliman-Silver, and A. Mislove. Iolaus:
securing online content rating systems. Proceedings of the
Twenty-Second International World Wide Web Conference,
pages 919–930, 2013.

[29] S. Nakamoto. Bitcoin: a peer-to-peer electronic cash system,
Oct. 2008. Available from http://bitcoin.org/bitcoin.pdf.

[30] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. Consulted, pages 1–9, 2008.

[31] P. Resnick and R. Zeckhauser. Trust among strangers in
Internet transactions: Empirical analysis of eBay’s reputation
system. Advances in applied . . . , (11):127–157, 2002.

[32] R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a
secret. In Proceedings of ASIACRYPT, pages 552–565,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[33] D. Ron and A. Shamir. Quantitative analysis of the full
Bitcoin transaction graph. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 7859
LNCS:6–24, 2013.

[34] K. Soska and N. Christin. Measuring the longitudinal
evolution of the online anonymous marketplace ecosystem.
In Proceedings of the 24th USENIX Security Symposium
(USENIX Security’15), pages 33–48, Washington, DC, Aug.
2015.

[35] J. Tsai, S. Egelman, L. Cranor, and A. Acquisti. The effect of
online privacy information on purchasing behavior: An
experimental study. Information Systems Research,
22(2):254–268, 2011.

[36] L. Valenta and B. Rowan. Blindcoin: Blinded, accountable
mixes for bitcoin. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 8976:112–126, 2015.

[37] G. Wang, S. Barbara, T. Wang, H. Zheng, and B. Y. Zhao.
Man vs . Machine : Practical Adversarial Detection of
Malicious Crowdsourcing Workers. the 23rd USENIX
Security Symposium, pages 239–254, 2014.

[38] G. Wang, M. Mohanlal, C. Wilson, X. Wang, M. Metzger,
H. Zheng, and B. Y. Zhao. Social Turing Tests:
Crowdsourcing Sybil Detection. NDSS 2013 (20th Network

http://bitcoin.org/bitcoin.pdf

and Distributed System Security Symposium), pages 1–14,
2013.

[39] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson.
Dissent in numbers: Making strong anonymity scale. In
Presented as part of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 12),
pages 179–182, Hollywood, CA, 2012. USENIX.

[40] E. Zhai, D. I. Wolinsky, R. Chen, E. Syta, C. Teng, and
B. Ford. Anonrep: Towards tracking-resistant anonymous
reputation. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages
583–596, Santa Clara, CA, Mar. 2016. USENIX Association.

	Introduction
	Background
	Anonymous reputation system
	Decentralized reputation system
	Sybil attacks

	Decentralized Anonymous Marketplace
	Definitions and notations
	Components of DAM
	Basic transactions

	Properties of DAM

	Beaver Preliminaries
	High-level design
	Threat model and assumptions
	Consensus
	Cryptographic primitives
	NIZK
	Linkable ring signatures

	Beaver Design
	Registration
	Special vendor transactions
	Payments
	Reviews

	Analysis
	Properties of Beaver
	Parameters
	Review credibility

	Discussion
	Related Work
	Distributed and anonymous review systems
	Anonymous payments

	Conclusion
	References

