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Abstract

Statistical analysis of attacks on block ciphers have mostly used normal approxima-
tions. A few recent works have proposed doing away with normal approximations and
instead use Chernoff and Hoeffding bounds to obtain rigorous bounds on data complexi-
ties of several attacks. This opens up the question of whether even better general bounds
can be obtained using the statistical theory of large deviations. In this note we examine
this question. Our conclusion is that while in theory this is indeed possible, in general
obtaining meaningful expressions for data complexity presents several difficulties. This
leaves open the question of whether this can be done for specific attacks.

1 Introduction

A key recovery attack on a block cipher aims to recover the correct value of a sub-key,
i.e., a portion of the secret key. It has two phases. In the first phase, a list of possible
candidate values of the sub-key is returned and the second phase performs a (brute
force) checking of all the candidate keys.

Statistical analysis of attacks on block ciphers allows estimating the number of
plaintext-ciphertext pairs required for an attack. The number of such plaintext-ciphertext
pairs is called the data complexity of an attack. The data complexity depends on two
parameters, namely the success probability and the advantage (which measures the size
of the candidate list returned by the first phase). The goal of a statistical analysis is to
be able to obtain an explicit expression for the data complexity in terms of the success
probability and the advantage.

While some form of statistical analysis has always accompanied attacks on block
ciphers, a systematic approach to such analysis was given in [9]. This approach is based
on the earlier idea [4] of ranking of keys by the value of a test statistic associated with
each key. A result on the normal approximation of order statistics was used to formalise
the idea of ranking. It was used to analyse linear and differential cryptanalysis and was
later used in several works [3, 1] to analyse more advanced attacks. A recent paper [5]
has studied in details the order statistics based approach including the error in normal
approximation. This shows several shortcomings of the approach and calls into question
its widespread use in analysing attacks on block ciphers.
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An alternative statistical approach is to use the standard theory of hypothesis test-
ing. In the past, this approach has been used for distinguishing attacks, but, in the
context of key recovery attack, hypothesis testing has not received much attention ex-
cept for a passing mention in [2]. It is only recently [5] that hypothesis testing has
been systematically used to re-derive expressions for data complexities obtained earlier
in [9, 3, 1].

To perform a statistical analysis, it is required to identify a test statistic irrespective
of whether the order statistics or the hypothesis testing based approach is used. This test
statistic depends on a value of the sub-key and has two different distributions according
as whether the sub-key is correct or incorrect1 Most of the works in the literature have
used the normal approximation to estimate the two distributions. The errors in such
approximations have not been analysed. The work [5] takes a careful look at the errors
in the normal approximations used in several works in the literature and concludes that
such approximations restrict the applicability of the analyses.

Using the hypothesis testing based approach requires bounding the Type-I and Type-
II error probabilites. This turns out to be essentially the task of bounding the tail
probabilities of certain distributions. The Type-I error probability is the tail probability
of the test statistic under the condition that the null hypothesis holds (i.e., the choice of
the sub-key is correct) while the Type-II error probability is the tail probability of the
test statistic under the condition that the alternate hypothesis holds (i.e., the choice of
the sub-key is incorrect).

In almost all cases, the test statistic turns out to be the sum of some independent
and identically distributed random variables taking values from a finite set. So, the
requirement is to bound the tail probabilities of a sum of independent random variables
(under both the null and the alternate hypotheses). There are known general bounds
for doing this. When the individual random variables are Bernoulli distributed, the
Chernoff bound can be used. If the set from which the random variables take values
has more than two elements, then applying the Chernoff bound becomes difficult. In
this case, the more general Hoeffding bound can be applied2.

Both the Chernoff and Hoeffding bounds do not require any approximations and
can be considered to provide rigorous bounds on the data complexity. Recently, several
works [6, 8, 7] have followed this approach to obtain expressions for bounds on data
complexities of several attacks on block ciphers. This opens up the question of whether
these bounds can be improved in general.

Theory of large deviations. The branch of probability/statistics dealing with
probability of rare events is known as the theory of large deviations. The tail probability
can also be tackled using standard tools from this theory. So, the question arises as to
whether it is possible to obtain better bounds for data complexities using tools from
the theory of large deviations.

In this note, we take a look at some of the basic results from the theory of large
deviations to determine whether these can be used for analysing data complexity. In
theory, this can certainly be done. Our conclusion, however, is that in general there are
several difficulties in obtaining bounds which can be actually be computed in practice to
estimate the data complexity of an attack. We discuss these difficulties in some details.

1More recently, there has been work on considering different distributions for different incorrect keys.
Here we will not consider this issue.

2A roundabout way of doing this is to go through the theory of martingales and applying the Azuma-
Hoeffding bound. The obtained bound is (almost) the same

2



The question of whether these difficulties can be overcome for specific attacks is left
open.

2 Basic Results from Theory of Large Deviations

Let X1, . . . , XN be independent identically distributed random variables with mean µ
and SN = X1 + · · ·+XN . The following short computation establishes a general bound
called the Chernoff bound. For any x > µ and θ > 0,

Pr[SN > xN ] ≤ Pr
[
eθSN > eθNx

]
= E[exp(θSN )]

exp(θxN) (Markov Inequality)

=
E
[
exp
(
θ
∑N

i=1
Xi

)]
exp(θxN)

=
E
[∏N

i=1
exp(θXi)

]
exp(θxN)

=

∏N

i=1
E[exp(θXi)]

exp(θxN) (independence)

=
(
E[exp(θX1)]

exp(θx)

)N
(identically distributed)

= exp (−N (xθ − lnMX1
(θ))) .

Here MX1
(θ) = E[exp(θX1)] is the moment generating function of the random variable

X1.
To obtain a good bound, the goal is to minimise the right hand side over all possible

θ. To this end, a function I(x) called the rate function is defined as follows:

I(x) = sup
θ

(xθ − lnMX1
(θ)) . (1)

The function I(x) is the Legendre transform of MX1(θ) (or the random variable X1).
Using I(x), we obtain

Pr[SN > xN ] ≤ exp(−NI(x)). (2)

Similarly, one can show that if x < µ, then

Pr[SN < xN ] ≤ exp(−NI(x)). (3)

Consider now the setting of hypothesis testing. There are two hypothesis H0 and
H1 and assume that under Hi, the means of the Xi’s are µi, i = 0, 1. The distribution
of the random variables Xi are different under H0 and H1 and so the rate function will
also change. Denote by Ii(x), i = 0, 1, the rate function corresponding to the hypothesis
Hi.

For the sake of convenience, assume that µ1 < µ0, the other case being similar. Let
the test statistics be Sn and suppose that the test take the following form:

“Reject H0 if SN ≤ Nt for some t ∈ (µ1, µ0).”

In the context of applying hypothesis testing to block cipher cryptanalysis, the test
takes the above form.

The bounds on the Type-I and Type-II error probabilities are as follows:

Pr[Type-I error] = Pr[SN ≤ tN | H0 holds] ≤ e−NI0(t);
Pr[Type-II error] = Pr[SN > tN | H1 holds] ≤ e−NI1(t).
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Denote the upper bound on Type-I error probability by α and the upper bound on the
Type-II error probability by β. Then we get

NI0(t) = ln(1/α);
NI1(t) = ln(1/β).

(4)

To obtain an expression for N , it is required to eliminate t from these two equations.

3 Difficulties

We identify three difficulties in applying the above scenario to the context of block
cipher cryptanalysis.

3.1 Difficulty 1: Limited Information on the Distribution of X1

Note that computing MX1
(θ) requires knowing the distribution of the random variable

X. In the context of cryptanalysis, this is mostly not known. Analysis of the block
cipher only provides an estimate of the expectation of X. So, computing MX1

(θ) is in
general not possible.

3.2 Difficulty 2: Computing the Rate Function

Suppose that it were possible to somehow obtain MX1
(θ). The rate function requires

taking a supremum over all possible values of θ. In general this is difficult to do. One
way would be to use the standard approach of differentiating, setting to 0 and then
solving for θ.

In the context of cryptanalysis, one encounters random variables which take values
from a finite set. For a random variable X taking ρ values v1, . . . , vρ with corresponding
probabilities p1, . . . , pρ,

MX1
(θ) = E

[
eXθ

]
=

ρ∑
i=1

pie
θvi .

For a general value of ρ, differentiating xθ−MX1(θ) with respect to θ and solving for θ
does not seem to be possible. When ρ = 2 and each Xi follows the Ber(p) distribution
it can be shown that

I(x) = x ln(x/p) + (1− x) ln((1− x)/(1− p)). (5)

3.3 Difficulty 3: Inverting the Rate Function

Suppose it is possible to obtain an expression for the rate function. Even then it would
be required to invert it so as to be able to eliminate t from (4). Even in the simplest
case of Bernoulli trials, from the form of I(x) given by (5), there does not appear to be
any simple way of eliminating t from (4).

4 Conclusion

We have considered the possibility of applying the theory of large deviations for esti-
mating data complexity of attacks on block ciphers. While in theory this can be done,
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obtaining meaningful expressions is in general difficult in practice. These difficulties are
summarised below.

1. Sufficient information about a random variable may not be available so as to be
able to compute the moment generating function.

2. Even if the moment generating function is known, it may not be possible to com-
pute the expression for the rate function.

3. Even if the expression for the rate function is known, using it to obtain an expres-
sion for the data complexity may not be possible.

We conclude by noting that while there seems to be general difficulty in obtaining
expressions for data complexity from the theory of large deviations, there remains the
possibility of obtaining estimates of data complexity in specific cases.
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