
Speeding up R-LWE post-quantum key exchange

Shay Gueron1,2 and Fabian Schlieker3

1 Department of Mathematics, University of Haifa, Israel
2 Intel Corporation, Israel Deveopment Center, Haifa, Israel

3 Horst Görtz Institute for IT-Security, Ruhr University Bochum, Germany

Abstract. Post-quantum cryptography has attracted increased atten-
tion in the last couple of years, due to the threat of quantum computers
breaking current cryptosystems. In particular, the key size and perfor-
mance of post-quantum algorithms became a significant target for opti-
mization. In this spirit, Alkim et al. have recently proposed a significant
optimization for a key exchange scheme that is based on the R-LWE
problem. In this paper, we build on the implementation of Alkim et al.,
and focus on improving the algorithm for generating a uniformly random
polynomial. We optimize three independent directions: efficient pseudo-
random bytes generation, decreasing the rejection rate during sampling,
and vectorizing the sampling step. When measured on the latest Intel
processor Architecture Codename Skylake, our new optimizations im-
prove over Alkim et al. by up to 1.59x on the server side, and by up to
1.54x on the client side.

Keywords: Post-quantum key exchange, Ring-LWE, software optimization, AVX2,
AVX512, AES-NI

1 Introduction

Cryptographic algorithms that are based on number theoretical problems like
factorization and discrete logarithm can be broken if and when quantum comput-
ers are available. Sufficiently large quantum computers do not exist today, but
can be expected to be built in the foreseeable future (e. g., in 10-15 years [1]).
Fortunately, lattice theory offers mathematical problems that seem to not be
vulnerable to such attacks. Therefore, lattice-based cryptosystems emerge as a
viable secure post-quantum alternative.

Lattice-based algorithms have already been proposed for the important cryp-
tographic primitives such as digital signatures, encryption, and key exchange.
Specifically, Ding et al. introduced a lattice-based key exchange scheme, which
was improved by Peikert [4,13]. A concrete instantiation of this algorithm has
been recently proposed by Bos et al. [3]. The work of [3] is quite substantial,
and includes a software implementation that can be directly integrated into the
OpenSSL library. The implementation is optimized at the algorithmic level (e. g.,
uses NTT for polynomial multiplication), but since it relies on generic arithmetic



libraries and sampling from the Gaussian distribution, its performance can be
improved.

Alkim, Ducas, Pöppelmann and Schwabe [2] (ADPS hereafter) addressed the
performance issue of the implementation in [3] by using a more optimal param-
eter choice, and by optimizing the key exchange scheme with hand crafted low
level assembly code. In addition, they showed that for key exchange (in contrast
to digital signature schemes), it suffices to sample secret random values from
a centered binomial distribution rather than from discrete Gaussian distribu-
tions. This reduces the associated computational costs significantly. As a result,
their implementation is an order of magnitude faster than [3]. The source code
was published online. In this paper, we build on the ADPS implementation and
improve its performance further.

Our contribution. The work of ADPS focused on optimizing the polynomial
multiplication arithmetic part of the algorithm. As a result, its relative weight
in the overall computation time was reduced. With that, the pseudorandom
polynomial generation (called “parse” in the paper), which was previously a
small building block in the protocol, becomes ~45% of the computation time
(for both the server and the client sides). We therefore focus our efforts on the
parse function, and present optimizations at three independent levels:

– Reduce the rejection rate of pseudorandom candidates during the sampling
step from 25% to 6%.

– Parallelize the rejection sampling step using AVX2 (and furthermore AVX512)
instructions.

– Replace the SHAKE-128 extendable-output function (XOF) [14], for gener-
ating pseudorandom bytes, by a faster, parallel implementation of SHA-256.
Alternatively, replace the hash based generation with one based on AES256.

We remark that the source code for our optimizations is made available online
at https://github.com/fschlieker/newhope.

Organization of this paper. The paper is organized as follows. In Section 2
we give some background on how ADPS works. In particular, we explain the
parse function in detail. Section 4 details our proposed optimizations, and the
resulting performance is presented in Section 5. We conclude and compare to
the performance of the standardized ECDH key exchange in Section 6.

2 Preliminaries

We follow the notation of ADPS, so computations are carried out in ℛ𝑞 =
Z𝑞[𝑋]/(𝑋𝑛+1), the ring of integer polynomials modulo the polynomial (𝑋𝑛+1)
and with coefficients reduced modulo q. The implementation of ADPS is instan-
tiated with 𝑛 = 1024 and 𝑞 = 12289 (a 14-bit prime). We denote polynomials in
this ring by boldface characters.

2

https://github.com/fschlieker/newhope


We briefly outline the protocol4 (consider the ADPS paper for details [2]).

Server: The server side creates a random seed (e. g., from /dev/urandom). A hash
function, seeded with this seed, defines a stream of pseudorandom bytes.
Uniformly distributed coefficients for a public polynomial a are then sam-
pled from this stream, using a function called parse. Subsequently, a secret
polynomial s and an error polynomial e (with small coefficients) are sampled
from a centered binomial distribution. The server computes b = as + e and
sends to the client b and the seed.

Client: The client re-generates the same a (from the seed) calling the parse function.
Polynomials s’, e’ and e” are sampled from the binomial distribution. Then,
it computes u = as’ + e’ and r = HelpRec(v), and sends these values to
the server. Additionally, the client calculates v = bs’ + e” = ass’ + es’ + e” .

Server: The server computes v’ = us = ass’ + e’s. Now v and v’ on both sides
are “close” though not identical, due to the different error polynomials. The
small errors can be corrected by a reconciliation mechanism (for which r is
needed). Finally, server and client can compute the shared key as the SHA-3
hash over the reconciled data that is identical on both sides.

3 Considerations in generating the public polynomial

The proposal in [3] uses a fixed polynomial a as a system parameter. In contrast,
[2] recommends to generate a fresh a for every key exchange, giving two reasons:

Fend off possible concerns about a backdoored choice of a. The polynomial a
could be carefully chosen in a way that all the intermediate calculations during
the protocol run would have values that are smaller than q. In such case, no
reduction takes place, and the secret polynomial s can be recovered easily using
calculations in Z. This subtle backdoor could potentially allow key escrow to
e. g., a standardization body that specified a weak a.

Avoid relying only on a single instance of a lattice problem. A fixed a gives a
powerful attacker the possibility to focus on finding a short basis for that par-
ticular lattice (using a lot of computation power). All traffic exchanged under
a key that is generated from a could then be possibly decrypted. Generating a
fresh a for every key exchange mitigates this “all-for-the-price-of-one” attack.

The straightforward approach is to let one party generate a and send it to
the other during the protocol run. This consumes a lot of network bandwidth
because a polynomial is stored in 2 KB of data. A better way is to let both
parties generate the polynomial independently from pseudorandom bytes that
are produced under a shared random seed. With this method, as proposed by
Galbraith [5], only the 256-bit seed needs to be transmitted.

4 A comprehensible overview can also be found in a blog post by A. Langley; https:
//www.imperialviolet.org/2015/12/24/rlwe.html

3

https://www.imperialviolet.org/2015/12/24/rlwe.html
https://www.imperialviolet.org/2015/12/24/rlwe.html


When a fresh a per session is required, fast pseudorandom generation is
obviously needed in order to assure that the generation does not become a per-
formance bottleneck.

Pseudorandom generation methods. The authors of [2] argue that a secu-
rity reduction is (only) possible under the Random Oracle Model (ROM), and
therefore instantiate their scheme with SHAKE-128 XOF ([14]) that provides
128 bits of post-quantum security. When this XOF is seeded with a 256-bit
random seed, it deterministically defines a stream of pseudorandom bytes. The
assumption is that the probability to find a “malicious backdoored” polynomial
a by sampling from this stream, is negligible. In other words, it is infeasible to
try many different seeds until a malicious a is found.

We propose two alternatives to using of SHAKE-128, both of them offer 128
bits of post-quantum security, and achieve better performance.

1. Parallelized SHA-256. Concatenate the seed with a running counter value, to
produce as many hash digests as needed for collecting a sufficient amount of
pseudorandom bytes. This procedure can be parallelized, because the digests
are computed from independent blocks.

2. Using a block cipher (AES256). First, hash the seed (using SHA-3) and
generate a 256-bit value to be used as a key for AES256. Then, produce as
many blocks as are needed, by encrypting and incrementing a counter value.

Remark 1. By first hashing the seed before using it directly as a key for a block
cipher (AES256), we make sure that crafting a malicious a would not be possible
by only finding certain AES keys that result in a desired ciphertext (a task, which
is, by itself, computationally infeasible). In this scenario, one also needs to find
a SHA-3 input that produces the desired key. Therefore, the construction can
also be seen as a ROM instantiation.

Remark 2. We show below that the block cipher alternative performs better
than hashing. However, if one wishes to operate directly under the same ROM
assumption as in [2], it is possible to choose SHA-256 and still enjoy performance
improvements.

4 Our optimizations

This section describes our optimizations and their software implementation.

4.1 Decreasing the rejection rate

The function parse, that generates a, receives a seed and generates (using
SHAKE-128 XOF) pseudorandom bytes as “candidates”. These pseudorandom
bytes are post-processed to sample the 𝑛 = 1024 coefficients for a. Every pair
of bytes of the pseudorandom stream is viewed as a 16-bit candidate. In ADPS,

4



the two most significant bits are zeroed to create a 14-bit value. If this value
is smaller than q, it is accepted as a coefficient, and otherwise it is discarded.
On average, this process accepts only 𝑞

214 = 12289
16384 ≈ 3

4 = 75% of the candidates
(see Figure 1 a)). To accumulate 𝑛 = 1024 uniformly distributed (over Z𝑞) coef-
ficients from two-byte words, parse needs to check 1024 · 2 · 4

3 ≈ 2730 bytes on
average.

Ignoring two bits of every sample with a rejection rate of 25% is not optimal
and we propose to use the full 16-bit sample. While we still need to reject some

values from the pseudorandom stream (those that are ≥ 5𝑞 since
⌊︁
216

𝑞

⌋︁
= 5),

the overall acceptance probability is now 5·𝑞
216 = 61445

65536 ≈ 94%. However, we need
to subtract q up to four times from the accepted candidates to retrieve values
in Z𝑞 (which then remain uniformly random). See Figure 1 b) for an illustration
and Listing 1 for the corresponding pieces of source code.

Note that this small change benefits twice: with less values rejected, we need
to generate fewer pseudorandom bytes to begin with. Consequently, less values
need to be conditionally checked. On average, the proposed routine needs only
1024 · 2 · 65536

61445 ≈ 2184 pseudorandom bytes in order to populate the coefficients
of a.

0 𝑞 214

a) Sampling from a 14-bit range as in [2].

0 𝑞 2𝑞 3𝑞 4𝑞 5𝑞 216

b) Sampling from a 16-bit range (our proposal).

Fig. 1. Sampling uniformly random values in Z𝑞 from different input ranges. Candi-
dates that are accepted are indicated by the crossed area and candidates in the dotted
area are rejected. The acceptance rate is significantly higher when sampling from the
16-bit range. In this case, q might have to be subtracted up to four times from an
accepted candidate in order to obtain a coefficient in Z𝑞, but it remains uniformly
random.

Remark 3. Note that since the seed and the generated polynomial a are meant
to be public, the implementation does not need to execute the generation in
constant time.

4.2 Vectorized rejection sampling

The process of filtering pseudorandom 16-bit candidates can be accelerated by
using SIMD instructions. Specifically, it is possible to handle 16 candidates with

5



1 a) Rejection-sampling from 14 bits:
2

3 candidate = (buf[pos] | ((uint16_t) buf[pos+1] << 8)) & 0x3fff; // take only lower 14 bits
4 if(candidate < PARAM_Q) // accept as coefficient if < q
5 a->v[ctr++] = candidate;
6

7 b) Rejection-sampling from 16 bits (our proposal):
8

9 candidate = (buf[pos] | ((uint16_t) buf[pos+1] << 8)); // take full 16 bits
10 r = candidate / PARAM_Q;
11 if (r < 5) // accept as coefficient if < 5q, since floor(2^16/q) = 5
12 a->v[ctr++] = candidate - r * PARAM_Q; // subtract q up to 4 times to end up in Zq

Listing 1. Code snippets for a) Rejection sampling from two a bytes input, when the
two most significant bits are discarded [2]; b) From the full 16-bit range (our proposal).
buf contains the pseudorandom bytes and pos the position in that buffer. a->v points
to the coefficients of a and ctr is incremented until we have 1024 accepted coefficients.

AVX2 instructions (using 256-bit registers) and 32 candidates with AVX512
(using 512-bit registers) [11,12].

Our AVX2 implementation uses a mixture of vector comparisons and per-
mutations in order to compress and align the accepted candidates (< 𝑞). An
illustrative excerpt of the code is given in Appendix A.

Processors with AVX512 support are not available yet, but we verified cor-
rectness of our AVX512-vectorized sampling using the Intel Software Develop-
ment Emulator (SDE) tool.5 We expect additional performance improvements
due to: a) mask operands and VPCOMPRESSD (see Appendix A); b) faster
parallelized SHA-256 (see Sections 3 and 4.3) to be visible when processors that
support this architecture become available in the near future.

4.3 Fast generation of pseudorandom bytes.

After acquiring a 256-bit random seed (from /dev/urandom), the implementation
of [2] uses SHAKE-128 XOF to generate the pseudorandom bytes stream. We
investigate two alternatives for such generation.

Using SHA-256 with modern SIMD architectures. The AVX2 (AVX512) instruc-
tions can be used for computing 8 (16) hashes in parallel [8]. To this end, we
built a highly optimized implementation that produces bytes at the rate of 2.75
cycles per byte (C/B) with AVX2 (and much faster on the coming AVX512
architectures).

Using AES (with AES-NI). We used the pipelined AES implementation of [7,6],
which performs at 0.92 C/B on our test platform (“Skylake”). We run it in
counter mode (CTR), so incrementing counter values are used as plaintexts and
encrypted under a fixed key. This has the advantage that the key schedule only
needs to be computed once and ciphertext generation can be efficiently pipelined.

5 Intel Software Development Emulator (SDE) https://software.intel.com/en-us/
articles/intel-software-development-emulator

6

https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator


5 Results

This section presents the results of our different optimizations. The performance
numbers were obtained by using the test bench included in the implementation
of [2]. The measurements were obtained on a platform with the latest Intel®

Core� Generation processor (Architecture Codename Skylake), with the Intel®

Turbo Boost Technology, Intel® Hyper-Threading Technology, and Enhanced
Intel Speedstep® Technology disabled. The code was compiled with gcc ver-
sion 5.2.0 and full optimizations enabled (“-O3”). For consistent comparison, we
compiled and measured the baseline implementation [2] on the same system.

Remark 4. During our work, we discovered a bug in this test bench, that leads
to somewhat overoptimistic results, presumably due to caching of fixed values
across multiple tests. We reported the bug to the authors, together with the
appropriate fix, and assume that it will be corrected in the final version of [2].
The results we report here were measured with the already fixed version, and
therefore deviate from the numbers reported in [2] in January 2016.

The results are presented in Table 1, showing the contribution of the different
optimizations. We indicate the distinct optimization methods by abbreviations:
reduction of the rejection rate (I), vectorization of rejection sampling (II), pseu-
dorandom bytes generation using SHA-256 (III) and AES256 (IV). Note that
the last two optimizations (III and IV) are mutually exclusive. The other opti-
mizations (I, II) are independent, and are therefore combinable. The difference
between the cycles count of the server and the client can be explained as follows.
The server needs to obtain a seed from a (typically slow) randomness source, but
on the other hand, the client needs to compute one more NTT and polynomial
addition during the computations of its part of the exchange.

Table 1. The performance of the different optimizations, compared to ADPS [2] as
the baseline. The numbers represent the cycles counts, measured using the test bench
(lower is better) and the speedup factor compared to the baseline that is set to 1 (i. e.,
higher is better).

parse Server Client
Method cycles cycles speedup cycles speedup

Baseline ADPS [2] 59,627 127,712 129,349

I 47,044 113,361 1.13x 115,909 1.12x
I, II 38,466 100,343 1.27x 104,120 1.24x
I, II, III 32,080 94,183 1.36x 97,688 1.32x

T
h
is
w
o
rk

I, II, IV 17,053 80,087 1.59x 84,119 1.54x

Figure 2 illustrates our results with all our optimizations enabled, and com-
pares them relatively to the baseline [2] that is set to 1. With the reduced

7



rejection rate method, vectorized rejection sampling and SHA-256 for pseudo-
random generation, the speedup factor is 1.36x for the server and 1.32x for the
client. The best speedup is achieved when AES-NI are used for generating pseu-
dorandomness. This increases performance by a factor of 1.59x and 1.54x, on
the server and the client side, respectively.

Server Client
0

0.5

1

1.5

1 1

1.36 1.32

1.59 1.54

R
el
a
ti
v
e
sp
ee
d
u
p
(h
ig
h
er

is
b
et
te
r)

Baseline ADPS [2]

This work (Optimizations I,II,III)

This work (Optimizations I,II,IV)

Fig. 2. The highest relative speedup factors on the server and the client sides, achieved
by the proposed optimizations (the baseline implementation [2] is set to 1).

6 Conclusion

This paper demonstrated several optimizations that can be used for speeding
up R-LWE-based key exchange. Our results show that the server and the client
sides can profit from a speedup factor of up to 1.59x and 1.54x, respectively.

For comparison, we also measured the performance of the best available im-
plementation of the standardized ECDH over P-256 key exchange ([9] and its
improved version [10]), and found that the key exchange computations consume
roughly 223,000 cycles on both sides. With all our optimizations, the R-LWE
key exchange takes 80,087 cycles (server) and 84,119 cycles (client) (see Table 1).
We point out that the amount of transferred data during the key exchange with
R-LWE (4096 bytes) is higher than with ECDH (64 bytes). Note that the pa-
rameters in [2] were chosen quite conservatively. An appropriate level of security
would be probably achieved with e. g., 𝑛 = 512, which would halve the amount

8



of transferred data, and speed up computations. The authors justify the choice
of 𝑛 = 1024 by being able to thwart possible future advances in cryptanaly-
sis. In any case we can see that, even with the discussed choice of parameters,
post-quantum key exchange is already practical on current platforms.

Acknowledgments

This research was supported by the PQCRYPTO project, which was partially
funded by the European Commission Horizon 2020 research Programme, Grant
#645622.

References

1. IBM’s stunning breakthrough: Quantum computing finally ’within reach’.
http://www.foxnews.com/tech/2012/02/28/ibm-quantum-computing-as-

little-as-10-years-off.html (Feb 2012)
2. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange -

a new hope. IACR Cryptology ePrint Archive 2015, 1092 (2015), http://eprint.
iacr.org/2015/1092

3. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Sym-
posium on Security and Privacy. pp. 553–570. IEEE Computer Society (May 2015)

4. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based
on the learning with errors problem. IACR Cryptology ePrint Archive 2012, 688
(2012), http://eprint.iacr.org/2012/688

5. Galbraith, S.D.: Space-efficient variants of cryptosystems based on learning with
errors (2013), https://www.math.auckland.ac.nz/~sgal018/compact-LWE.pdf

6. Gueron, S.: Intel ® Advanced Encryption Standard (AES) New Instructions
Set. https://software.intel.com/sites/default/files/article/165683/aes-
wp-2012-09-22-v01.pdf (Sept 2012)

7. Gueron, S.: Intel’s new AES instructions for enhanced performance and security.
In: Dunkelman, O. (ed.) Fast Software Encryption – FSE 2009. Lecture Notes in
Computer Science, vol. 5665, pp. 51–66. Springer (Feb 2009)

8. Gueron, S., Krasnov, V.: Simultaneous hashing of multiple messages. J. Informa-
tion Security 3(4), 319–325 (2012)

9. Gueron, S., Krasnov, V.: Fast prime field elliptic-curve cryptography with 256-bit
primes. J. Cryptographic Engineering 5(2), 141–151 (2015)

10. Gueron, S., Krasnov, V.: Improved P256 ECC performance by means of a dedi-
cated function for modular inversion modulo the P256 group order. https://mta.
openssl.org/pipermail/openssl-dev/2015-April/001197.html (Apr 2015)

11. Intel Corporation: Intel ® 64 and IA-32 Architectures Software Developer’s
Manual. http://www.intel.com/content/dam/www/public/us/en/documents/

manuals/64-ia-32-architectures-software-developer-manual-325462.pdf

(Sept 2015)
12. Intel Corporation: Intel ® Architecture Instruction Set Extensions Program-

ming Reference. https://software.intel.com/sites/default/files/managed/
07/b7/319433-023.pdf (Aug 2015)

9

http://www.foxnews.com/tech/2012/02/28/ibm-quantum-computing-as-little-as-10-years-off.html
http://www.foxnews.com/tech/2012/02/28/ibm-quantum-computing-as-little-as-10-years-off.html
http://eprint.iacr.org/2015/1092
http://eprint.iacr.org/2015/1092
http://eprint.iacr.org/2012/688
https://www.math.auckland.ac.nz/~sgal018/compact-LWE.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://mta.openssl.org/pipermail/openssl-dev/2015-April/001197.html
https://mta.openssl.org/pipermail/openssl-dev/2015-April/001197.html
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://software.intel.com/sites/default/files/managed/07/b7/319433-023.pdf
https://software.intel.com/sites/default/files/managed/07/b7/319433-023.pdf


13. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) Post-
Quantum Cryptography – PQCrypto 2014. Lecture Notes in Computer Science,
vol. 8772, pp. 197–219. Springer (Oct 2014)

14. National Institute of Standards, Technology: FIPS PUB 202 – SHA-3 standard:
Permutation-based hash and extendable-output functions. http://nvlpubs.nist.
gov/nistpubs/FIPS/NIST.FIPS.202.pdf (2015)

A Vectorized rejection sampling - code snippets

The relevant part of our AVX2 optimizations in the source code is shown in
Listing 2. Listing 3 shows the relevant part of our AVX512 optimizations. Note
that the AVX512 sampling gets much easier thanks to the new masks feature
that gives more targeted data-control in almost all instructions. In particular,
the VPCOMPRESSD instruction allows us to write back only specific values
instead of a whole vector.

In both these approaches, we incorporate our proposal to reduce the rejection
rate as explained in Section 4.1. Since we are working on vectors of integers, we
do not have a division function in the AVX integer instructions (like in Listing 1)
and implement this by repeatedly comparing and subtracting.

10

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf


1 const __m256i zero = _mm256_setzero_si256();
2 const __m256i modulus8 = _mm256_set1_epi32(PARAM_Q);
3 const __m256i modulus16 = _mm256_set1_epi16(PARAM_Q);
4

5 uint32_t good = 0;
6 uint32_t offset = 0;
7 while(ctr < PARAM_N-16)
8 {
9 __m256i tmp0, tmp1, tmp2;

10

11 tmp0 = _mm256_loadu_si256((__m256i *)&buf[pos]);
12

13 // normalize the values in range
14 tmp1 = _mm256_min_epu16(tmp0,modulus16);
15 tmp1 = _mm256_cmpeq_epi16(tmp1,modulus16);
16 tmp2 = _mm256_and_si256(tmp1, modulus16);
17 tmp0 = _mm256_sub_epi16(tmp0, tmp2);
18 tmp1 = _mm256_min_epu16(tmp0,modulus16);
19 tmp1 = _mm256_cmpeq_epi16(tmp1,modulus16);
20 tmp2 = _mm256_and_si256(tmp1, modulus16);
21 tmp0 = _mm256_sub_epi16(tmp0, tmp2);
22 tmp1 = _mm256_min_epu16(tmp0,modulus16);
23 tmp1 = _mm256_cmpeq_epi16(tmp1,modulus16);
24 tmp2 = _mm256_and_si256(tmp1, modulus16);
25 tmp0 = _mm256_sub_epi16(tmp0, tmp2);
26 tmp1 = _mm256_min_epu16(tmp0,modulus16);
27 tmp1 = _mm256_cmpeq_epi16(tmp1,modulus16);
28 tmp2 = _mm256_and_si256(tmp1, modulus16);
29 tmp0 = _mm256_sub_epi16(tmp0, tmp2);
30

31 tmp1 = _mm256_unpacklo_epi16(tmp0, zero); // transition to epi32
32 tmp2 = _mm256_cmpgt_epi32(modulus8, tmp1); // compare to modulus
33 good = _mm256_movemask_ps((__m256)tmp2);
34 tmp2 = _mm256_permutevar8x32_epi32(tmp1, perm_lut[good]);
35 // ctr includes offset, possible bad values are overwritten
36 _mm256_storeu_si256((__m256i *)&a->v[ctr], tmp2);
37

38 offset = __builtin_popcount(good); // we get this many good (< modulus) values
39 ctr += offset;
40

41 // the very same thing as above, only with unpackhi
42 tmp1 = _mm256_unpackhi_epi16(tmp0, zero); // transition to epi32
43 tmp2 = _mm256_cmpgt_epi32(modulus8, tmp1); // compare to modulus
44 good = _mm256_movemask_ps((__m256)tmp2);
45 tmp2 = _mm256_permutevar8x32_epi32(tmp1, perm_lut[good]);
46 // ctr includes offset, possible bad values are overwritten
47 _mm256_storeu_si256((__m256i *)&a->v[ctr], tmp2);
48

49 offset = __builtin_popcount(good); // we get this many good (< modulus) values
50 ctr += offset;
51

52 pos += 32; // proceed in the pseudorandom buffer
53

54 [...]

Listing 2. Vectorized rejection-sampling using AVX2 instructions. First, the candidate
values are repeatedly compared to q and q is subtracted up to four times (ll. 14-29).
This is the vectorized reduced rejection rate. It is folinesowed by the rejection step, in
which the vector is permuted such that the values to be rejected are aggregated in one
side of the vector (ll. 31-34, 42-45). A precomputed 8 KB lookup table is needed, in
order to hold the 256 possible masks for this permutation. The pointer to the memory
destination is increased such that the rejected values are overwritten (ll. 36-39,47-50).

11



1 const __m512i zero = _mm512_setzero_si512();
2 const __m512i modulus16 = _mm512_set1_epi32(PARAM_Q);
3 const __m512i modulus32 = _mm512_set1_epi16(PARAM_Q);
4

5 uint32_t offset = 0;
6 __mmask16 good = 0;
7

8 while(ctr < PARAM_N-32)
9 {

10 __m512i tmp0, tmp1;
11 __mmask32 mask;
12

13 tmp0 = _mm512_loadu_si512((__m512i *)&buf[pos]);
14

15 // normalize the values in range
16 mask = _mm512_cmple_epu16_mask(modulus32, tmp0);
17 tmp0 = _mm512_mask_sub_epi16(tmp0, mask, tmp0, modulus32);
18 mask = _mm512_cmple_epu16_mask(modulus32, tmp0);
19 tmp0 = _mm512_mask_sub_epi16(tmp0, mask, tmp0, modulus32);
20 mask = _mm512_cmple_epu16_mask(modulus32, tmp0);
21 tmp0 = _mm512_mask_sub_epi16(tmp0, mask, tmp0, modulus32);
22 mask = _mm512_cmple_epu16_mask(modulus32, tmp0);
23 tmp0 = _mm512_mask_sub_epi16(tmp0, mask, tmp0, modulus32);
24

25 tmp1 = _mm512_unpacklo_epi16(tmp0, zero);
26 good = _mm512_cmplt_epi32_mask(tmp1, modulus16);
27 _mm512_mask_compressstoreu_epi32((__m512i *)&a->v[ctr], good, tmp1);
28 offset = __builtin_popcount(good); // we get this many good (< modulus) values
29 ctr += offset;
30

31 tmp1 = _mm512_unpackhi_epi16(tmp0, zero);
32 good = _mm512_cmplt_epi32_mask(tmp1, modulus16);
33 _mm512_mask_compressstoreu_epi32((__m512i *)&a->v[ctr], good, tmp1);
34 offset = __builtin_popcount(good); // we get this many good (< modulus) values
35 ctr += offset;
36

37 pos += 64; // proceed in the pseudorandom buffer
38

39 [...]

Listing 3. Vectorized rejection-sampling using AVX512 instructions. The preparation
step is much shorter, due to mask operands providing more control over the data in
vector registers (ll. 16-23). With the VPCOMPRESSD, we can selectively write only
specific values to memory and save the expensive permutation from our AVX2 approach
(ll. 25-35).

12


