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Abstract

In EUROCRYPT 2012, Libert, Peters and Yung (LPY) proposed the first scalable revocable group
signature (R-GS) scheme in the standard model which achieves constant signing/verification costs
and other costs regarding signers are at most logarithmic in N , where N is the maximum number
of group members. However, although the LPY R-GS scheme is asymptotically quite efficient, this
scheme is not sufficiently efficient in practice. For example, the signature size of the LPY scheme
is roughly 10 times larger than that of the RSA signature (in 160-bit security). In this paper, we
propose a compact R-GS scheme secure in the random oracle model that is efficient not only in the
asymptotic sense but also in practical parameter settings. We achieve the same efficiency as the LPY
scheme in an asymptotic sense, and the signature size is nearly equal to that of the RSA signature
(in 160-bit security). It is particularly worth noting that our R-GS scheme has the smallest signature
size compared to those of previous R-GS schemes which enable constant signing/verification costs.
Our technique, which we call parallel Boneh–Boyen–Shacham group signature technique, helps to
construct a R-GS scheme without following the technique used in LPY, i.e., we directly apply the
Naor–Naor–Lotspiech framework without using any identity-based encryption.
keywords: group signature, revocation, scalability.

1 Introduction

Background: Group signature is a kind of digital signatures, proposed by Chaum and van Heyst [21].
In a group signature scheme, a group manager issues a membership certificate to each group user.
Then, a signer, who has a membership certificate, can produce a group signature, and a verifier can
verify whether a group signature was created by a group member or not, without identifying who the
actual signer is. In order to capture a certain case, only the authority called “opener” can identify the
corresponding signer of group signatures.

In many real situations, it is conceivable that signing keys will be leaked, or group members will quit.
So, the revocation functionality is really desirable in practice. Currently, group signature schemes with
revocation, which is called revocable group signature (R-GS), have been proposed. In particular, Libert,
Peters and Yung [45] proposed the first scalable R-GS schemes, where all costs regarding signers is at
most logarithmic in N , where N is the maximum number of group member. Their main technique to
achieve scalability is to employ broadcast encryption, where the group manager publishes a ciphertext
of a broadcast encryption scheme by indicating non-revoked members as authorized receivers, and then
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only non-revoked members can prove the decryption ability of the ciphertext. Concretely, they apply
the Naor–Naor–Lotspiech framework [53] and the Dodis–Fazio construction [26], where the Complete
Subtree (CS) method of the framework is implemented from identity-based encryption (IBE) and the
Subset Difference (SD) method of the framework is implemented from hierarchical IBE (HIBE), respec-
tively. LPY proposed two R-GS schemes with respect to CS and SD methods in [45]. We denote these
schemes the CS-based LPY scheme and the SD-based LPY scheme, respectively.

Our Motivation: Though LPY R-GS schemes [45, 44] are asymptotically quite efficient, these schemes
are not very efficient in practice. For example, the signature size of the LPY scheme [45] is roughly 10
times larger than that of the RSA signature (in 160-bit security), and that of the LPY scheme in [44] is
further larger. Since the LPY R-GS schemes are constructed in the standard model and use the Groth–
Sahai proof, their schemes are not efficient. Therefore, it seems natural to consider a R-GS scheme
secure in the random oracle model, where the scheme realizes the same efficiency as the LPY schemes in
an asymptotic sense, but has a small signature size. Moreover, from a practical perspective, even if there
is an efficient scheme in the standard model, it is always meaningful to provide a more efficient scheme
in the random oracle model as an alternative choice. In fact, two of the three public-key encryption
schemes listed in ISO/IEC 18033-2 [1] are secure only in the random oracle model. In addition, several
group signature schemes (e.g., Hwang et al. [35] or Furukawa–Imai [29]) listed in ISO/IEC 20008-2 [2]
are also only provably secure in the random oracle model. We note that (R-)GS schemes secure in the
standard model [33, 45, 44, 46] are constructed by Groth–Sahai proofs [34], and ones secure in the ran-
dom oracle model [14, 24, 29] are constructed by the Fiat–Shamir transformation [28], which converts
Σ-protocols to Non-Interactive Zero Knowledge (NIZK) proofs. Therefore, in order to construct an
efficient and scalable R-GS scheme secure in the random oracle model, one may think that a LPY R-GS
scheme in the random oracle model can be constructed easily via the Fiat–Shamir transformation, as
in [14, 24, 29]. However, it is not straightforward to construct such a scheme due to the following two
reasons.

• The languages of the Groth–Sahai proof and those of the Fiat–Shamir proof are completely dif-
ferent.

• There is no suitable HIBE scheme (i.e., achieving constant ciphertext size, compatibility of the
Fiat–Shamir proof, etc., see below) in the random oracle model.

As for the former issue, the Groth–Sahai proofs prove pairing product equation relation, and therefore
the witness of the Groth–Sahai proofs is typically “group elements”. In contrast, the witness of the
Fiat–Shamir proof is “discrete logarithm” of group elements, for example. Therefore, even there exists
a standard model scheme which proves the possession of certain group elements, it is not obvious to
directly convert the scheme to the one in the random oracle model.

As for the latter issue, the SD-based LPY scheme applies HIBE which strongly depends on the
underlying algebraic structures. Moreover, the ciphertext-size must be constant in order to achieve the
constant signing/verification costs, and this is the reason why the SD-based LPY scheme selects the
Boneh–Boyen–Goh HIBE scheme [13]. That is, even if the Gentry–Silverberg HIBE scheme [30] (which is
secure in the random oracle model) is applied, the ciphertext size is not constant and signing/verification
costs depend to N . So, even if we allow to use random oracles, it seems difficult to implement the SD-
based LPY scheme (and so is the LPY scheme [44] based on the concise vector commitment [48], due
to the same reason) in the random oracle in an efficient way. For more discussion of the difficulty of the
SD-based construction, see Section 4.4.

The last option may be the CS-based LPY scheme [45] since the CS method does not apply HIBE but
IBE, and the Boneh–Franklin IBE scheme [15] is quite efficient in the random oracle model. However,
the next hurdle is signatures computed by the group manager. That is, in the CS-based LPY scheme
(and other LPY schemes also), the group manager computes a signature for the ciphertext of broadcast
encryption for proving that the ciphertext is computed by the group manager. Moreover, since the
number of ciphertexts contained in the revocation list is O(r log(N/r)) in the CS-based scheme case,
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Table 1: Comparison of Pairing based R-GS Schemes
Scheme public key signature certificate revocation list signing verification revocation StM/ Scalability

size size size size cost cost cost ROM2

BS [16] O(1) O(1) O(1) O(r) O(1) O(r) O(1) ROM No

NF [51] O(T ) O(1) O(1) O(r) O(1) O(r) O(r) ROM No

LV [47] O(T ) O(1) O(1) O(r) O(1) O(r) O(r) StM No

NFHF1 [50] O(N) O(1) O(1) O(r) O(1) O(1) O(r) ROM No

NFHF2 [50] O(
√
N) O(1) O(1) O(r) O(1) O(1) O(r) ROM No

FHM [27] O(1) O(1) O(1) O(N) O(1) O(1) O(Nr) ROM No

LPY1(CS) [45] O(1) O(1) O(logN) O(r · log(N/r)) O(1) O(1) O(r · log(N/r)) StM Yes

LPY2(SD) [45] O(logN) O(1) O(log3N) O(r) O(logN)1 O(1) O(r · logN) StM Yes

LPY3 [44] O(logN) O(1) O(1) O(r) O(1) O(1) O(r) StM Yes

AEHS [4] O(1) O(1) O(R) O(1) O(r)1 O(1) O(r) StM Yes

Ours O(1) O(1) O(logN) O(r · log(N/r)) O(1) O(1) O(r · log(N/r)) ROM Yes

N : The maximum number of group members.
T : The maximum number of revocation epochs.
r: The number of revoked users.
R: The maximum number of revoked users.

1 This complexity is only required at the first signature generation of each revocation epoch.
2 Standard Model / Random Oracle Model

Table 2: Comparison of Signature Length of R-GS Schemes
Scheme [G,Zp,F ]1 80-bit security2 160-bit security3 Assumption Pairing5

NFHF1 [50] [4,16,3] 3910 bits 5888 bits DDH on F1, q-SDH Asym

NFHF2 [50] [10,30,3] 7310 bits 11008 bits DDH on F1, q-SDH Asym

FHM [27] [10,8,0] 3120 bits 7168 bits DLIN, q-SDH, PDHE4 Sym

LPY [45] [96,0,0] 16896 bits 49152 bits DLIN, q-SDH Sym

Ours [5,13,0] 3060 bits 4608 bits DLIN, q-SDH Asym
1 F is a group such that the Decisional Diffie–Hellman (DDH) assumption holds, different from G.
2 In the symmetric pairing (|G|, |Zp|, |F|) = (176 bits, 170 bits, 170 bits), and in the asymmetric pairing (|G|, |Zp|,
|F|) = (170 bits, 170 bits, 170 bits).

3 In the symmetric pairing (|G|, |Zp|, |F|) = (512 bits, 256 bits, 256 bits), and in the asymmetric pairing (|G|, |Zp|,
|F|) = (256 bits, 256 bits, 256 bits).

4 Power Diffie–Hellman Exponent assumption
5 Symmetric Pairing/ Asymmetric Pairing

a signer needs to hide which ciphertext is selected, for achieving anonymity.1 Therefore, even if the
CS-based LPY scheme is directly constructed in the random oracle model, a signer is required to prove
the same things, where the signer needs to hide the corresponding ciphertext but simultaneously needs
to prove that the ciphertext is computed by the group manager, for proving the decryption ability of
a broadcast encryption ciphertext. This procedure seems difficult to lead to an efficient R-GS scheme,
and therefore an efficient R-GS construction in the random oracle model is still not obvious at all.

1.1 Our Contribution

In this paper, we propose the most scalable R-GS scheme secure under popular complexity assumptions
(the decision linear (DLIN) assumption and the q-strong Diffie–Hellman (q-SDH) assumption) with
the help of random oracle. More concretely, (1) the scheme achieves the same efficiency as the LPY
schemes in an asymptotic sense, i.e., all costs regarding the signer are at most logarithmic in N , and the
signing/verification costs are constant (see Table 1), and (2) the signature size of the proposed R-GS
scheme is roughly 10-times smaller than that of the LPY schemes [45] in 160-bit security, which is nearly
equal to that of the RSA signature scheme (See Table 2. The bit length for 80-bit security and 160-bit
security is calculated by using the estimation of [22]). Our techniques are explained as follows.

1Recently, R-GS schemes secure in the standard model which achieve constant-size revocation list have been pro-
posed [4, 52]. However, these schemes apply an identity-based revocation scheme [5] or extended accumulators based on [8]
respectively, and these also strongly depend on the underlying algebraic structures.
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1. For revocation, we directly apply the NNL framework without applying the use of IBE or HIBE
which is used in the original LPY schemes [45]. That is, the group manager publishes a revocation
list containing signatures of non-revoked users.

2. In order to prove that a signer is not revoked, the signer proves that a signature corresponding
to the signer is contained in the revocation list by using the Boneh–Boyen–Shacham (BBS) group
signature [14]. The construction of the proposed scheme can be seen as parallel BBS group
signature since the possession of both (1) a membership certificate and (2) a signature contained
in the revocation list are simultaneously proved by the BBS group signature scheme.

3. In order to further reduce the signature size, we apply the randomness reuse technique due to
Kurosawa [40].

Our scheme is secure under the DLIN assumption and the q-SDH assumption. We additionally remark
that asymmetric pairing setting is highly desirable in practice due to the recent novel works, e.g., [32, 7].
Therefore, we use the asymmetric pairing setting though the LPY schemes use the symmetric pairing
setting.

Related Work: Many efficient constructions have been proposed, most of these schemes rely on the
random oracle model [14, 3, 19, 37, 29, 24, 11, 55, 25]. Though most of them are based on discrete-
logarithm type assumptions, Gordon et al. [31] proposed the first group signature scheme from lattice
assumptions. Later, Camenisch et al. [20], Laguillaumie et al. [41], Nguyen et al. [54], and Ling et
al. [49] proposed lattice-based group signature schemes with shorter group public key or signature
size. Recently, Libert et al. [43] proposed a lattice-based group signature scheme with a simple joining
mechanism.

Boneh, Boyen, and Shacham [14] proposed an R-GS scheme where the group manager publishes a
list containing membership certificates of revoked users, and only non-revoked users can update their
membership certificate from the list. This technique was also applied by Delerablée and Pointcheval [24],
and Furukawa and Imai [29]. However, mainly there are two problems of this technique as follows.
First, non-revoked users are involved in the revocation even when they are not revoked, and second,
the membership certificate update cost is O(r). In order to get rid of signers’ task of the update of
membership certificate, Brickell [18] proposed the concept of verifier-local revocation (VLR), where
no signer is involved in the revocation procedure. In the VLR technique, a revocation list is given
to verifiers and verifiers check sequentially whether the signer is included in the revocation list. This
technique allows that signing cost becomes independent of the number of revoked users, but the verifying
cost is O(r). The specific constructions were proposed by Boneh and Shacham [16], Nakanishi and
Funabiki [51], Libert and Vergnaud [47], Langlois, Ling, Nguyen and Wang [42], and so on. This VLR
type technique can be used for the open functionality, and Bichsel et al. [11] constructed an efficient
R-GS scheme without using encryption though the cost of opening depends on the number of users.

Though either the signing cost or the verification cost is O(r) in the above methodologies, Nakanishi,
Fuji, Hira, and Funabiki [50] proposed the first R-GS scheme with constant both signing and verification
costs. As one drawback of their construction, the public key size is O(

√
N). Later, Fan, Hsu, and

Manulis [27] also proposed a R-GS scheme with not only the constant signing/verification costs but also
the constant size public key, however, the size of revocation list is O(N).

Recently, Kumar et al. [39] proposed a group signature scheme with probabilistic revocation. In
their scheme, a token (which they call alias token) is contained in a group signature, and the same token
is used when group signatures are generated in the same time period, i.e., these are linkable during a
time period, and this model is different from the LPY model that we adopt in this paper.

In the research of security models, first, Bellare, Micciancio, and Warinschi (BMW) [9] showed that
full-anonymity and full traceability are sufficient for (static) group signatures, and now the BMW model
is widely recognized as the de-facto standard security model of the group signature area. Bellare, Shi,
and Zhang (BSZ) [10], and Kiayias and Yung (KY) [38, 36] independently extended the BMW model
from static groups to dynamic groups. Later, Sakai et al. [58] showed that there is a room for improving
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the BSZ model since a signature hijacking attack is possible in the BSZ model, and proposed an extended
BSZ model by considering a new security notion called opening soundness. In LPY papers [45, 44], they
extended the KY model by considering the revocation functionality (the LPY model). Recently, Bootle
et al. [17] pointed out that in the previous models, a user may be able to sign messages with respect to
earlier time intervals during which the user was not a member of the group. Note that they also gave a
countermeasure, and it is also applicable to our scheme. Since our main aim is to implement the LPY
scheme in the random oracle model, we adopt the LPY model in this paper.

2 Preliminaries

In this section, we review the complexity assumptions which our scheme relies on, the BBS+ signature

scheme, and the complete subtree method. Let x
R←− X denote that x as being uniformly sampled from

the set X , and x R←− X denote that x as being sampled from the distribution of the random variable X.

2.1 Complexity Assumptions

Let G be a probabilistic polynomial-time algorithm that takes a security parameter λ as input and
generates a parameter (p,G1,G2,GT , e, g, h) of bilinear groups, where p is a λ-bit prime, G1,G2 and GT

are groups of order p, e is a bilinear map from G1 × G2 to GT , and g, h are generators of G1 and G2,
respectively. Here we use the asymmetric setting, i.e., G1 ̸= G2. Similarly, we describe (p,G, g)← G(1λ)
with the same manner.

Let (p,G, g) R←− G(1λ), x R←− Zp and y := gx. The discrete logarithm (DL) problem is stated as
follows: Given (g, y, p,G), output x = logg y. The advantage of an probabilistic polynomial-time (PPT)

algorithm A against the DL problem is defined as AdvDL
A (λ) = Pr[A(g, y, p,G) = x | y = gx].

Definition 1 We say that the DL assumption holds if AdvDL
A (λ) is negligible in λ for any PPT algorithm

A.

Let (p,G1,G2,GT , e, g, h)
R←− G(1λ), γ ← Z and Ai := gγ

i
for i = 0, . . . , q. The q-strong Diffie–

Hellman (q-SDH) problem is stated as follows: Given (g, (Ai)0≤i≤q, h, h
γ), output (c, g1/(γ+c)) where c ∈

Z∗
p. The advantage of an algorithm A against the q-SDH problem is defined as Advq-SDH

A (λ) = Pr[A(g,
(Ai)0≤i≤q, h, h

γ) = (c, g1/(γ+c)) ∧ c ∈ Zp].

Definition 2 We say that the q-SDH assumption holds if Advq-SDH
A (λ) is negligible in λ for any PPT

algorithm A.

Let (p,G1,G2,GT , e, g, h)
R←− G(1λ), u, v, h ← G1, α, β, r ← Zp and g1 := uα, g2 := vβ. The

decision linear (DLIN) problem is stated as follows: Given (u, v, h, uα, vβ, z), output 1 if z = hα+β,
otherwise 0 if z = hr. The advantage of an algorithm A against the DLIN problem is defined as
AdvDLIN

A (λ) = |Pr[A(u, v, h, uα, vβ, z) = 1 | z = hα+β]− Pr[A(u, v, h, uα, vβ, z) = 1 | z = hr]|.

Definition 3 We say that the DLIN assumption holds if AdvDLIN
A (λ) is negligible in λ for any PPT

algorithm A.

2.2 BBS+ Signature

We introduce the BBS+ signature scheme [29, 6] in the following. Let g0, g1, . . . , gL, gL+1 be generators
of G1, h be a generator of G2 and e : G1 ×G2 → GT be a pairing function.

Key Generation: Choose γ
R←− Z∗

p, and let w = hγ . The verification key is vk = w, and the secret key
is sk = γ.

Signing: For the message (m1, . . . ,mL) ∈ ZLp , choose η, ζ
R←− Zp and compute A = (g0g

ζ
1g
m1
2 · · ·

gmLL+1)
1

η+γ . Let the signature σ = (A, η, ζ).
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Verifying: For the signature σ = (A, η, ζ) and (m1, . . . ,mL), if e(A, h
ηvk) = e(g0g

ζ
1g
m1
2 · · · g

mL
L+1, h)

then output 1, and otherwise output 0.

This signature scheme has unforgeability against chosen message attack (CMA) under the q-SDH as-
sumption. For the formal security proof, see [6]. In our usage, we set L = 2.

2.3 Complete Subtree Method

Naor, Naor and Lotspiech (NNL) [53] proposed the subset cover framework that is a general technique
for membership revocation and traitor tracing, and this technique is used for constructing broadcast
encryption. This framework is implemented by two methods: Subset Difference (SD) and Complete
Subtree (CS) method. Let N be the set of all signers, and R ⊂ N be the set of revoked signers. In
such a case, the set of non-revoked users are divided into num disjoint sets where num is the number of
subset. That is, N \R = S1 ∪ · · · ∪ Snum. Denote Si (1 ≤ i ≤ num) as the set of leaf nodes that have the
same parent node vi. In [53], it is proved that num ≤ r · log(N/r) in the case of the CS method, where
num is the number of subset and r = |R|.

By using the CS method, we can construct a symmetric key setting broadcast encryption scheme as
follows. A key is assigned to each node of a binary tree, and each user is assigned to a leaf node of the
binary tree, and let {u0, u1, . . . , uℓ} be the path from the root node to the leaf node. Then, the user
obtains a key associated with each uj ∈ {u0, u1, . . . , uℓ}. A ciphertext is computed by keys of nodes
defined by the method. Let {u′0, u′1, . . . , u′num} be a set of nodes whose corresponding keys are used for
encryption. If a user, whose path is {u0, u1, . . . , uℓ}, is indicated as an authorized receiver, then there
exists a node u such that u ∈ {u0, u1, . . . , uℓ} ∩ {u′0, u′1, . . . , u′num}. Therefore, the user can decrypt the
ciphertext using the key associated with the node u.

3 Definition of Revocable Group Signature

In this section, we give definitions of R-GS. We adopt the LPY model [45] which is a modification of
the Kiayias–Yung (KY) model [38, 36].

An R-GS scheme consists of the following six probabilistic polynomial-time algorithms (Setup, Join,
Revoke, Sign, Verify, Open).

Setup: It takes as inputs a security parameter λ ∈ N and the number of group member N ∈ N, and
outputs the group public key gpk , the secret key of the group manager skGM , the secret key of
the opener skOA, public information represented state St = (Stusers, Sttrans). After the execution
of Setup, state St is initialized as Stusers = ∅, and Sttrans = ϵ (empty string).

Join: It is an interactive protocol between the group manager and a signer. Let the execution of Join
(that the signer takes as input λ and gpk , the group manager takes as input λ, gpk , St and skGM )
denote as [Jusers(gpk), JGM (gpk , St, skGM )]. By the execution of Join, the signer gets a membership
certificate cert i and the secret key seci. In addition, St is updated as Stusers := Stusers ∪{i}, and
Sttrans := Sttrans||⟨i, transcript⟩.

Revoke: It takes as input the set of revoked users Rt ⊂ Stusers for gpk , skGM , revocation epoch t, and
outputs the revocation list RLt for the epoch t.

Sign: It takes as input gpk , t, RLt, cert i, seci and a message M , and outputs ⊥ if i ∈ Rt, and otherwise
outputs a group signature σ.

Verify: It takes as inputs σ, t, RLt, M , gpk , and outputs 1 if σ is valid a group signature and otherwise
outputs 0.

Open: It takes as inputs M , t, RLt, σ, skOA, gpk , St, and outputs a signer index i ∈ Stusers or ⊥.

Let cert i ⇌gpk seci denote that certi and seci are a valid certificate and a secret key by the execution
of [Jusers(gpk), JGM (gpk , St, skGM )]. We borrow this notation from the LPY model.
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Correctness: We say that a R-GS scheme satisfy correctness when the R-GS satisfy following re-
quirement.

1. St = (Stusers, Sttrans), where |Stusers| = |Sttrans| (i.e., all signer is assigned to unique tag, respec-
tively).

2. If [Jusers(gpk), JGM (gpk , St, skGM )] is executed correctly, and the signer gets ⟨i, certi, seci⟩, then
cert i ⇌gpk seci.

3. For all ⟨i, certi, seci⟩ such that cert i ⇌gpk seci and the revocation epoch t, the equation Verify(σ,
M, t,RLt, gpk) = 1 is satisfied where σ = Sign(gpk, t, RLt, certi, seci,M).

4. For all state St and ⟨i, certi, seci⟩ that issued by using St, If St′ is the state that can be reached from
St, For t such that i ̸∈ Rt and σ = Sign(gpk, t, RLt, certi, seci,M), the equation Open(M, t,RLt, σ,
skOA, gpk, St

′) = i is satisfied.

Security Requirements: Here, we introduce the security requirements of R-GS. First, the notation
and the oracles used in the definitions are given as follows:

• stateI : The current state. It is included (St, gpk, skGM , skOA) and epoch t. Initial state is (St, gpk,
skGM , skOA)← Setup(1λ, N) and t = 0.

• n = |Stusers| < N : The number of the group member.

• Sigs: The history of signatures issued by signing oracle. The form of each element is (i, t,M, σ),
which means σ is the signature for message M in the epoch t by the signer i.

• Ua: The set of the group members that collude with the adversary.

• U b: The set of the group members that do not collude with the adversary.

• Ogpk, OGM , OOA: When these oracle are called, return gpk , skGM , skOA to the adversary, respec-
tively.

• Oa-join: The adversary executes Join with honest group manager, and the signer that collude with
the adversary is added to the group. Then the number of users n is incremented and add the
information of new signer to St = (Stusers, Sttrans).

• Ob-join: The adversary executes Join while colluding the group manager (this signer does not
collude with the adversary). Then the number of users n is incremented and add the information
of new signer to St = (Stusers, Sttrans).

• Osig: It receives a query that is a message M and index i and returns ⊥ if i ∈ Rt or i /∈ U b, and
otherwise returns σ for the signer i and epoch t. Then, Sigs := Sigs||(i, t,M, σ).

• Oopen: It receives a query that is (M,σ) and epoch t, and returns the index of the signer i who
generated the signature σ. Let denote S = {(M,σ, t)}, and we will write O¬S

open as the element of
S cannot be queried to Oopen.

• Oread,Owrite: Reading and writing stateI .

• Orevoke: It revokes a signer from the group. It receives a query of signer index i ∈ Stusers and
increment t, add i in Rt and update RLt.

Next, we define anonymity, which guarantees that no adversary (who does not have skOA) can
distinguish whether signers of two group signatures are the same or not.
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Definition 4 (Anonymity [45]) Anonymity is defined by the following game ExpanonymA .

Experiment ExpanonymA (λ)

stateI = (St, gpk, skGM , skOA)← Setup(1λ, N)

(aux,M∗, t∗, RLt∗ , (sec
∗
i , cert

∗
i ), (sec

∗
1, cert

∗
1))← A(play : Ogpk,OGM ,Orevoke,Oopen,Oread,Owrite)

If ¬cert∗b ⇌gpk sec
∗
b or IsRevoked(sec∗b , cert

∗
b , RLt∗) = 1 for b ∈ {0, 1} or cert∗0 = cert∗1 then return 0

d
R←− {0, 1}; σ∗ ← Sign(gpk , t∗, cert∗d, sec

∗
d,M

∗)

d′ ← A(guess : σ∗, aux,Ogpk,OGM ,O¬{(M∗,σ∗,t∗)}
open ,Oread,Owrite)

If d′ = d then return 1

Return 0.

The advantage of the adversary A against the above game is AdvanonymA (λ) = |Pr[ExpanonymA (λ) =
1]− 1/2|. We say that the R-GS scheme satisfies anonymity if AdvanonymA (λ) is negligible in λ for any
probabilistic polynomial-time algorithm A.

Next, we define non-frameability which guarantees that no adversary (who can corrupt the group
manager and the opener) can produce a group signature whose opening result is an honest user.

Definition 5 (Non-Frameability [45]) Non-frameability is defined by the following game ExpframeA .

Experiment ExpframeA (λ)

stateI = (St, gpk, skGM , skOA)← Setup(1λ, N)

(M∗, σ∗, t∗, RLt∗)← A(Ogpk,OGM ,OOA,Ob-join,Orevoke,Osig,Oread,Owrite)
If Verify(σ∗,M∗, t∗, RLt∗ , gpk) = 0 then return 0

i = Open(M∗, t∗, RLt∗ , σ
∗, skOA, gpk, St

′)

If i ̸∈ U b return 0

If (∧j∈Ubs.t.j=i(j, t∗,M∗, ∗) ̸∈ Sigs) then return 1

Return 0.

The advantage of A against the above game is AdvframeA (λ) = Pr[ExpframeA (λ) = 1]. We say that the

R-GS scheme satisfies non-frameability if AdvframeA (λ) is negligible in λ for any probabilistic polynomial-
time algorithm A.

Next, we define misidentification resistance which guarantees that no adversary (who does not have
skGM ) can produce a valid group signature whose opening result is in outside of the set of non-revoked
adversarially-controlled users.

Definition 6 (Misidentification resistance [45]) Misidentification resistance is defined by the fol-
lowing game ExpmisidA .

Experiment ExpmisidA (λ)

stateI = (St, gpk, skGM , skOA)← Setup(1λ, N)

(M∗, σ∗, t∗, RLt∗)← A(Ogpk,Oa-join,Orevoke,Oread,OOA)
If Verify(σ∗,M∗, t∗, RLt∗ , gpk) = 0 then return 0

i = Open(M∗, t∗, RLt∗ , σ
∗, skOA, gpk, St

′)

If (i ̸∈ Ua \Rt∗) return 1

Return 0.

The advantage of A against the above game is AdvmisidA (λ) = Pr[ExpmisidA (λ) = 1]. We say that the
R-GS scheme satisfies misidentification resistance if AdvmisidA (λ) is negligible in λ for any probabilistic
polynomial-time algorithm A.
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4 Proposed R-GS Scheme

In this section, we give the proposed R-GS scheme. First, we explain our technique called parallel BBS
group signature technique which is the core technique of our R-GS construction.

4.1 An NIZK Proof for Parallel BBS Group Signature Technique

In our R-GS scheme, each signer is associated to a leaf node of a binary tree. Let g, g1, g2, f1, f2, f3,
h0, h1, X ∈ G1 and h ∈ G2. Let {u0, u1, . . . , uℓ} be the path from the root node to the leaf node.

Then, the signer is issued BBS+ signatures {Aj = (gh
ζj
0 h

uj
1 X)

1
γ0+ηj }j∈[1,ℓ] for all uj ∈ {u0, u1, . . . , uℓ}

as the membership certificate. A revocation list contains BBS+ signatures {Bi,t = (gh
ζ′i
0 h

ui
1 h

t
2)

1
η′
i
+γ1 } for

all ui ∈ {u′0, u′1, . . . , u′num} where {u′0, u′1, . . . , u′num} is determined by the CS method. If a signer is not
revoked, then there exist two signatures Aj and Bi,t that sign the same node uj = ui.

In order to describe our R-GS scheme, first, we show NIZK proofs which prove the possession of two
BBS+ signatures and also prove the equality of the two signed messages. Since we use two BBS group
signatures simultaneously, we call it the parallel BBS group signature technique. The fact to be proved
is described as follows:

• A signer i has a membership certificate Aj that proves “the signer belongs to the group.” Let uj
be the signed message of Aj where uj ∈ {u0, u1, . . . , uℓ}.

• A signature Bj,t, whose signed message is also uj , is contained in the revocation list that proves
“the signer who is a descendant of the node uj is not revoked at time t.”

• Aj held by the signer contains a secret key x, which is hidden against even the group manager
(for non-frameability).

We prove the above statement as follows: Let θ = (A, η, ζ) be a BBS+ signature for the message (m,x)

such that A = (ghζ0h
m
1 h

x
2)

1
η+γ0 . Let Θ = (Bt, η

′, ζ ′) be a BBS+ signature for the message (m′, t) such

that Bt = (ghζ
′

0 h
m′
1 ht2)

1
η′+γ1 . The statement of the protocol, that proves that possession of (A, x) and Bt

such that m = m′, is described as follows. Let vk0 = hγ0 and vk1 = hγ1 be the verification key for the
BBS+ signatures A and Bt with m = m′, respectively, and H be a random oracle. The prover chooses

α, β
R←− Zp and encrypts A and Bt as follows:

ψ1 = fα1 , ψ2 = fβ2 , ψ3 = fα+β3 , ψ4 = (gα1 g
β
2A), ψ5 = (g′α1 g

′β
2 Bt).

As a remark, the prover needs to encrypt both A and Bt since information of which A and Bt are
used helps an adversary to break anonymity in the proposed group signature scheme.

Moreover, we note that A and Bt are encrypted using same scheme and its randomnesses are reused.
This technique comes from Kurosawa’s multi-recipient public-key encryption. This paper shows that
randomness in the Cramer–Shoup encryption [23] can be reused for directing different messages to
different recipients. We use this technique in order to encrypt a vector of messages. Intuitively, this
might be reminiscent of the fact that under the decisional Diffie–Hellman assumption, given gx, gy1 ,
and gy2 the two elements gxy1 and gxy2 look random elements. For further details, please refer to our
security proof or the [40] paper.

Next, the prover proves that the value (α, β, x,m, η, η′, ζ, ζ ′) satisfies the following relation, where

η, η′
R←− Zp:

ψ1 = fα1 , ψ2 = fβ2 , ψ3 = fα+β3 ,

e(ψ4 · g−α1 g−β2 , hηvk0) = e(ghζ0h
m
1 h

x
2 , h), ψ

η
1f

−αη
1 = 1, ψη2f

−βη
2 = 1,

e(ψ5 · g′−α1 g′−β2 , hη
′
vk1) = e(ghζ

′

0 h
m
1 h

t
2, h), ψ

η′

1 f
−αη′
1 = 1, ψη

′

2 f
−βη′
2 = 1.
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The first line and second line, and the first line and third line are the statement of the BBS group
signature scheme. This relations can be seen as parallel BBS group signature for A (the first line and
second line) and Bt (the first line and third line), respectively, where α and β are reused. As a remark,

the equation ψη1f
−αη
1 = 1 (resp.ψη

′

1 f
−αη′
1 = 1) is for proving the validity of αη (resp. αη′).2 Note that

the value t is not a witness, since t (which indicates a revocation epoch in our R-GS scheme) is a public
value.

Here, we give the NIZK proof which is constructed from a Σ-protocol for proving (α, β, x,m, η,
η′, ζ, ζ ′) via the Fiat–Shamir transformation. Briefly, random values are chosen for each witness and R
values are computed according to the relation to be proved. Note that the suffix appeared in random/R
values indicate the corresponding witness.

Proof: The proof of the above relations is as follows: Choose rα, rβ, rη, rζ , rη′ , rζ′ , rαη, rβη, rαη′ , rβη′ , rm,

rx
R←− Zp and compute Rα, Rβ, Rα+β, RA, RB, Rαη, Rβη, Rαη′ , Rβη′ in the following.

Rα ← f rα1 , Rβ ← f rα2 , Rα+β ← f
rα+rβ
3 ,

RA ← e(ψ4, h)
rηe(g1, h)

−rαηe(g1, vk0)
−rαe(g2, h)

−rβηe(g2, vk0)
−rβe(h0, h)

−rζe(h1, h)
−rme(h2, h)

−rx ,

Rαη ← ψ
rη
1 f

−rαη
1 , Rβη ← ψ

rη
2 f

−rβη
2 ,

RB ← e(ψ5, h)
rη′e(g′1, h)

−rαη′e(g′1, vk0)
−rαe(g′2, h)

−rβη′e(g′2, vk0)
−rβe(h0, h)

−rζ′e(h1, h)
−rm ,

Rαη′ ← ψ
rη′
1 f

−rαη′
1 , Rβη′ ← ψ

rη′
2 f

−rβη′
2 .

Here, (Rα, Rβ, Rα+β, RA, Rαη, Rβη) and (Rα, Rβ, Rα+β, RB, Rαη′ , Rβη′) correspond to a BBS group
signature, respectively. Again, Rα, Rβ, andRα+β are commonly used. Using the aboveRα, . . . , Rβη′ ,
compute

c← H(ψ1, . . . , ψ5, Rα, . . . , Rβη′),

and then compute following values:

sα ← rα + cα, sβ ← rβ + cβ, sη ← rη + cη, sζ ← rζ + cζ, sη′ ← rη′ + cη′,

sζ′ ← rζ′ + cζ ′, sαη ← rαη + cαη, sαη′ ← rαη′ + cαη′, sβη ← rβη + cβη,

sβη′ ← rβη′ + cβη′, sm ← rm + cm, sx ← rx + cx.

Finally, output the proof π = (c, sα, sβ, sη, sζ , sη′ , sζ′ , sαη, sαη′ , sβη, sβη′ , sm, sx), and the prover
sends (ψ1, ψ2, ψ3, ψ4, ψ5, π) to the verifier.

Verify: The verifier computes the following values from π:

R′
α ← f sα1 ψ−c

1 , R′
β ← fsα2 ψ−c

2 , R′
α+β ← f

sα+sβ
3 ψ−c

3 ,

R′
A ← e(ψ4, h)

sηe(g1, h)
−sαηe(g1, vk0)

−sαe(g2, h)
−sβηe(g2, vk0)

−sβe(h0, h)
−sζ

· e(h1, h)−sme(h2, h)−sx(e(g, h)/e(ψ4, vk0))
−c,

R′
αη ← ψ

sη
1 f

−sαη
1 , R′

βη ← ψ
sη
2 f

−sβη
2 ,

R′
B ← e(ψ5, h)

sη′e(g′1, h)
−sαη′e(g′1, vk0)

−sαe(g′2, h)
−sβη′e(g′2, vk0)

−sβe(h0, h)
−sζ′

· e(h1, h)−sm(e(g, h)e(h2, h)t/e(ψ5, vk1))
−c,

R′
αη′ ← ψ

sη′
1 f

−sαη′
1 , R′

βη′ ← ψ
sη′
2 f

−sβη′
2 .

If c = H(ψ1, . . . , ψ5, R
′
α, . . . , R

′
βη′) then the proof π is accepted, and otherwise rejected.

In the next section, we give the proposed R-GS scheme. In our R-GS scheme, A (generated in the Join
algorithm) is a membership certificate and B (generated in the Revoke algorithm and contained in the
revocation list) is a signature corresponding to non-revoked users.

2Note that in the original BBS group signature scheme a Boneh–Boyen (BB) short signature [12] is used as a membership
certificate. Since we need to use a signature scheme with multiple signed messages, we use the BBS+ signature scheme
instead of the BB signature scheme.
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4.2 The Proposed R-GS Construction via Parallel BBS Group Signature Technique

Here, the construction of the proposed scheme is described as follows. In our scheme, a signer is assigned
to a leaf node, and let (u0, u1, . . . , uℓ) be the path from the root to the leaf. Then the signer is issued a

membership certificate according to the path such that {Aj = (gh
ζj
0 h

uj
1 X)

1
γ0+ηj }j∈[1,ℓ]. Moreover, if the

signer is not revoked (at t), Bi,t = (gh
ζ′i
0 h

ui
1 h

t
2)

1
η′
i
+γ1 is contained in the revocation list where ui = uj .

Then, a group signature is computed shown in Sect. 4.1 by setting m = uj as a signed message of the
BBS+ signature. Note that x (chosen in the Join algorithm) is known by a user only, and therefore no
group manager can make a group signature instead of the user.

Setup(1λ, N): Choose (p,G1,G2,GT , e, g, h)
R←− G(1λ), f1, f2, f3, h0, h1, h2

R←− G1 \ {1}. Let γ0, γ1
R←− Zp

and (sk0, vk0) = (γ0, h
γ0), (sk1, vk1) = (γ1, h

γ1). Then, choose ξ1, ξ2, ξ3, ξ
′
1, ξ

′
2, ξ

′
3

R←− Zp, and

compute g1 = f ξ11 f
ξ3
3 , g2 = f ξ22 f

ξ3
3 , g

′
1 = f

ξ′1
1 f

ξ′3
3 , g

′
2 = f

ξ′2
2 f

ξ′3
3 . Choose a hash function H : {0, 1}∗

→ Zp. Let skOA = (ξ1, ξ2, ξ3, ξ
′
1, ξ

′
2, ξ

′
3), skGM = (sk0, sk1) = (γ0, γ1), gpk = (p,G1,G2,GT , e,

g, f1, f2, f3, g1, g2, g
′
1, g

′
2, h0, h1, h2, h, vk0, vk1,H), and St = (Stusers, Sttrans) = (∅, ϵ). Finally,

output skOA, skGM , gpk, St.

Join: A user i chooses x
R←− Zp and computes a signature sigi for the message X = hx2 , then send

(X, sigi) to the group manager. Next, the group manager assigns the user i to a leaf uℓ of the
binary tree. Let u0, u1, . . . , uℓ be the path from the root node to the lead node. For j = 0, . . . , ℓ,

the group manager chooses ηj , ζj
R←− Zp, and computes Aj = (gh

ζj
0 h

uj
1 X)

1
γ0+ηj . Then, the group

manager sends {θj = (Aj , ηj , ζj)}ℓj=0 and ⟨vi⟩ := (u0, . . . , uℓ) to the user i. The user obains the user

membership certificate certi = (⟨vi⟩, {Aj}ℓj=0, X) and secret key seci = x, respectively. Finally,

the group manager adds i and transcripti = (X, {Aj}ℓj=0, sigi) to the state Sttrans.

Revoke(gpk, skGM , t, Rt): Determine the set of node {u′0, u′1, . . . , u′num} from the CS method (note that

num ≤ r · log(N/r)). For all i, choose η′i, ζ
′
i

R←− Zp, then compute Bi,t = (gh
ζ′i
0 h

ui
1 h

t
2)

1
η′
i
+γ1 and let

{Θ = (Bi,t, η
′
i, ζ

′
i)}numi=0. Then, output RLt = (t, Rt, {Θi}numi=1).

Sign(gpk, t, RLt, certi, seci,M): If i ∈ Rt then return ⊥. Otherwise, the signature is computed as

follows. Since i ̸∈ Rt, there exist (Aj , x) and Bj,t such that Aj = (gh
ζj
0 h

uj
1 h

x
2)

1
γ0+ηj and Bj,t =

(gh
ζ′i
0 h

uj
1 h

t
2)

1
η′
i
+γ1 . Choose α, β

R←− Zp and compute ψ1 = fα1 , ψ2 = fβ2 , ψ3 = fα+β3 , ψ4 = (gα1 g
β
2Aj),

and ψ5 = (g′α1 g
′β
2 Bj,t). Then, the signer issues an NIZK proof π that proves (Aj , x) is possessed and

uj corresponds to both Aj andBj,t as shown in Sect. 4.1 by settingm := uj . Again note that t is not
a witness. Moreover, we note that the signed messageM is included such as c← H(M,ψ1, . . . , ψ5,
Rα, . . . , Rβη′). Finally, output the signature σ = (ψ1, . . . , ψ5, π).

Verify(σ,M, t, RLt, gpk): The verifier checks the NIZK proof π as the verifying procedure in Sect. 4.1.
Note that the signed message M is included such as c = H(M,ψ1, . . . , ψ5, R

′
α, . . . , R

′
βη′). If π is

accepted, then output 1, and otherwise output 0.

Open(M, t,RLt, σ, skOA, gpk, St): Compute A′ = (ψ4/ψ
ξ1
1 ψ

ξ2
2 ψ

ξ3
3 ). If there exists ⟨i, transcripti⟩ = (X,

{θj}ℓj=0, sigi) where θ = (A′, ∗, ∗) in Sttrans, then verify sigi and output i if sigi is a valid signature,
and otherwise output ⊥.

4.3 Security

The proposed scheme satisfies the following Theorems 4.1, 4.2, and 4.3.

Theorem 4.1 The proposed R-GS scheme has anonymity in the random oracle model under the DLIN
assumption, where H is modeled as a random oracle.
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Since anonymity means that no signer can be identified without opener’s secret key, the attack
on anonymity is equal to the attack on the encryption (ψ1, . . . , ψ5) by which membership certificate is
encrypted.Namely, the anonymity of this scheme is reduced to the CCA security of the linear encryption
scheme [59].

The concrete proof is given as follows. The proof proceeds with a sequence of games. First, we
define the following games. In the following we denote by Si the event that in Game i the adversary
successfully guesses the bit picked by the challenger.

Game 0. The initial game is identical to the game defined in the definition of admitter anonymity. We
assumed that queries to the hash function are responded by the challenger. For this purpose the
challenger maintains a hash list, which contains tuples of the form (M,ψ1, . . . , ψ5, Rα, . . . , Rβη′ , c).
for the hash function H.

Game 1. In this game we replace the zero-knowledge proof of the challenge signature with a simulated
proof. When the adversary asks a challenge signature (ψ∗

1, . . . , ψ
∗
5, c

∗, R∗
α, . . . , R

∗
βη′) by sending

(i0, i1,M), the challenger computes it as follows]: the challenger flips the bit b ∈ {0, 1}, computes
(ψ∗

1, . . . , ψ
∗
5) as specified in the construction with the signing key (cert ib , secib), generates random

integers c∗, s∗α, . . . , s
∗
βη′ ← Z∗

p, and compute

R′
α ← f

s∗α
1 ψ∗−c∗

1 , R′
β ← f

s∗α
2 ψ∗−c∗

2 , R′
α+β ← f

s∗α+s
∗
β

3 ψ∗−c∗
3 ,

R′
A ← e(ψ∗

4, h)
s∗ηe(g1, h)

−s∗αηe(g1, vk0)
−s∗αe(g2, h)

−s∗βηe(g2, vk0)
−s∗βe(h0, h)

−s∗ζ

· e(h1, h)−s
∗
me(h2, h)

−s∗x(e(g, h)/e(ψ∗
4, vk0))

−c∗ ,

R′
αη ← ψ

∗s∗η
1 f

−s∗αη
1 , R′

βη ← ψ
∗s∗η
2 f

−s∗βη
2 ,

R′
B ← e(ψ∗

5, h)
s∗
η′e(g′1, h)

−s∗
αη′e(g′1, vk0)

−s∗αe(g′2, h)
−s∗

βη′e(g′2, vk0)
−s∗βe(h0, h)

−s∗
ζ′

· e(h1, h)−s
∗
m(e(g, h)e(h2, h)

t/e(ψ∗
5, vk1))

−c∗ ,

R′
αη′ ← ψ

∗s∗
η′

1 f
−s∗

αη′
1 , R′

βη′ ← ψ
∗s∗
η′

2 f
−s∗

βη′
2 .

The challenger adds the tuple (M,ψ∗
1, . . . , ψ

∗
5, R

∗
α, . . . , R

∗
βη′, c

∗) to the hash list for H. At this point
if the list for H already contains a tuple of the form (M,ψ∗

1, . . . , ψ
∗
5, R

∗
α, . . . , R

∗
βη′ , c) for some c, the

challenger outputs ⊥ and halts. Otherwise the challenger sends (ψ∗
1, . . . , ψ

∗
5, c

∗, s∗α, . . . , s
∗
βη′) to the

adversary as the challenge signature. We will argue that this change introduce only a negligible
difference in the adversary’s advantage.

Game 2. In this game we modify the linear encryption in the challenge to be “invalid.” More pre-
cisely, to compute the challenge (ψ∗

1, . . . , ψ
∗
5, c

∗, s∗α, . . . , s
∗
βη′), the challenger selects random inte-

gers α, β ← Zp and τ ← Zp \ {α + β}, and computes ψ∗
1 = fα1 , ψ

∗
2 = fβ2 , ψ

∗
3 = f τ3 , ψ

∗
4 =

(ψ∗
1)
ξ1(ψ∗

2)
ξ2(ψ∗

3)
ξ3Aib , and ψ

∗
5 = (ψ∗

1)
ξ′1(ψ∗

2)
ξ′2(ψ∗

3)
ξ′3Bib where f1, f2, f3 are the part of the group

public key gpk , b is the bit flipped for the challenge, Aib is the part of the user membership cer-
tificate of the member ib, Bib is the signature of the group manager in the revocation list RLt∗

corresponding the member ib. Notice that challenger uses the secret key skOM for opener (ac-
tually its component ξ1, ξ2, ξ3, ξ

′
1, ξ

′
2, ξ

′
3) to compute the challenge. All the other components of

the challenge is generated as in Game 1. This modification also does not change the adversary’s
winning probability non-negligibly, provided that the DLIN assumption holds.

Game 3. In this game we modify the opening oracle to reject a signature (ψ1, . . . , ψ5, sα, . . . , sβη′)
when it satisfies the following two conditions: (ψ1, . . . , ψ5) = (ψ∗

1, . . . , ψ
∗
5), that is, the com-

ponent ψ1, . . . , ψ5 in the query are reused from the challenge signature, and (R′
α, . . . , R

′
βη′) =

(R∗
α, . . . , R

∗
βη′), where (R′

α, . . . , R
′
βη′) is the group elements reproduced in the verification process.

This change does not affect the adversary’s advantage non-negligibly.

Game 4. We further introduce another rejection rule. In this game the opening oracle rejects a signa-
ture that contains a ciphertext whose linear encryption component (ψ1, ψ2, ψ3) does not constitute

12



a linear tuple. Specifically when ψ1, ψ2, ψ3 satisfy ψ1 = fα1 , ψ2 = fβ2 , ψ3 = fv3 , the challenger
immediately rejects queries such that α+ β ̸= v, and all other queries are treated as before. This
modification does not affect the behavior of the adversary, as the adversary can issue such as
invalid query with a valid (that passes the verification) proof only with negligible probability.

Lemma 4.1 |Pr[S0]− Pr[S1]| is negligible.

Proof. We claim that the distribution (of the challenge) in Game 1 is identical to that in Game 0 except
for cases in which the challenger outputs ⊥. This follows from a standard discussion of the simulation of
zero-knowledge proof. To see this, we can observe that s∗α−c∗α in Game 1 corresponding to rα in Game
0, and similar correspondence holds for all other s∗’s and r’s. We can also see that both s∗α− c∗α and rα
are uniformly distributed over Zp. We will then see that the challenger in Game 1 outputs ⊥ only with
negligible probability. It can be obtained from the fact that (R∗

α, . . . , R
∗
βη′) are distributed uniformly

over a set with cardinality (at least) p, that is, the oracle queries to H issued before the challenge phase
contain (M,ψ∗

1, . . . , ψ
∗
5, R

∗
α, . . . , R

∗
βη′ , c) with probability (at most) qH/p where qH denotes the number

of oracle queries to H issued by the adversary. □

Lemma 4.2 |Pr[S1]− Pr[S2]| is negligible, provided that the DLIN assumption holds.

Proof. We will describe a distinguishing algorithm B of the DLIN problem to bound the absolute
difference |Pr[S1] − Pr[S2]|. The algorithm receives a tuple (f1, f2, f3, f

α
1 , f

β
2 , f

τ
3 ), in which τ is either

α+β or not, together with the description (p,G,GT , e, g, h) of the bilinear groups. The distinguisher sets
up the scheme by choosing ξ1, ξ2, ξ3, ξ

′
1, ξ

′
2, ξ

′
3, γ0, γ1, ηi, ζi, η

′
i, ζ

′
i, xi ← Zp(1 ≤ i ≤ n), h0, h1, h2 ← G\{1},

setting g1 = uξ1hξ3 , g2 = vξ2hξ3 , vk0 = hγ0 , vk1 = hγ2 and Ai = (ghζ0h
ui
1 g

xi)
1

γ0+η , Bi = (gh
ζ′i
0 h

ui
1 h

t
2)

1
γ1+η

′ ,
and skOA = (ξ1, ξ2, ξ3, ξ

′
1, ξ

′
2, ξ

′
3), cert i = (⟨vi⟩, {Aj}ℓj=0, g

xi), seci = xi. Queries from the adversary A to
the random oracle H are responded in the ordinary manner, that is, all fresh queries are responded with
a random hash value and are recorded together with the hash value, while previously issued queries are
responded in the same way as in the previous query. Opening queries are responded as specified in the
scheme, that is, the distinguisher first verifies the NIZK proof and if the proof passes the verification, the
distinguisher decrypts the linear encryption part (ψ1, . . . , ψ5) using (ξ1, ξ2, ξ3, ξ

′
1, ξ

′
2, ξ

′
3), otherwise return

⊥. When the adversary requests a challenge regarding (i0, i1,M), the distinguisher proceeds as follows:
To compute the challenge (ψ∗

1, . . . , ψ
∗
5, s

∗
α, . . . , s

∗
βη′), the distinguisher flips a bit b, and sets ψ∗

1 = fα1 ,

ψ∗
2 = fβ2 , ψ

∗
3 = f τ3 , ψ

∗
4 = (ψ∗

1)
ξ1(ψ∗

2)
ξ2(ψ∗

3)
ξ3Aib , and ψ

∗
5 = (ψ∗

1)
ξ′1(ψ∗

2)
ξ′2(ψ∗

3)
ξ′3Bib . The zero-knowledge

proof (c∗, s∗α, . . . , s
∗
βη′) is computed with the simulation algorithm as in Game 1. The distinguisher

sends the challenge computed as above to the adversary. After receiving the challenge, the adversary
further makes queries to the random oracle and the opening oracle, which are responded as before by
the distinguisher. Finally, the adversary outputs the guess b′. The distinguisher outputs 1 if b = b′,
outputs 0 otherwise.

Observe that when the distinguisher receives a random tuple (τ ̸= α + β), the adversary’s view
is equivalent to that of Game 2. In contrast, when the distinguisher receives a linear tuple, we can
see that the view is identical to that of Game 1, as the equation (ψ∗

1)
ξ1(ψ∗

2)
ξ2(ψ∗

3)
ξ3 = gα1 g

β
2 and

(ψ∗
1)
ξ′1(ψ∗

2)
ξ′2(ψ∗

3)
ξ′3 = g′α1 g

′β
2 holds. Finally, the lemma follows from the inequality

∣∣∣Pr[S1] − Pr[S2]
∣∣∣ =∣∣∣Pr[B(f1, f2, f3, fα1 , fβ2 , f τ3 ) | τ = α+ β]− Pr[B(f1, f2, f3, fα1 , f

β
2 , f

τ
3 ) | τ ̸= α+ β]

∣∣∣ = AdvDLIN
B (λ).

□

Lemma 4.3 |Pr[S2]− Pr[S3]| ≤ 1/p2.

Proof. Since Game 3 differs from Game 2 only when a queried signature, when verified, produces the
same (Rα, . . . , Rβη′) as the (R∗

α, . . . , R
∗
βη′) used in the challenge phase, we examine the mapping ϕ :

(Rα, Rβ, Rα+β, RA, RB, Rαη, Rβη, Rαη′, Rβη′) → (sα, Rβ, Rα+β, RA, RB, Rαη, Rβη, Rαη′, Rβη′), implicitly
defined by the verification algorithm (notice that the mapping ϕ implicitly depends on the group public
key and the signature to be verified), and argue that it is injective with overwhelming probability.
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Since the mapping ϕ is a linear function, by calculating the determinant of a matrix we can see that
ϕ is injective if and only if 1

xi∗+γ0
+(τ−β−α)ξ3 logg h ̸= 0 and 1

xi∗+γ1
+(τ−β−α)ξ′3 logg h ̸= 0. Since the

adversary can issue queries satisfying the condition (ψ1, . . . , ψ5) = (ψ∗
1, . . . , ψ

∗
5) and (R′

α, . . . , R
′
βη′) =

(R∗
α, . . . , R

∗
βη′) only when the mapping ϕ is injective, the difference |Pr[S2]− Pr[S3]| is bounded by the

probability that the above equation holds. Actually the probability that the equations hold is 1/p2, since
the random values that appear in the equation are distributed uniformly over Zp and independently. □

Lemma 4.4 |Pr[S3]− Pr[S4] is negligible.

Proof. Game 4 differs from Game 3 when the adversary queries the opening oracle with a signature
which is not rejected in Game 3 but is rejected in Game 4. We thus bound the probability that the
adversary issues such a query. More precisely, the event we consider is that the adversary issues a
signature σ = (ψ1, . . . , ψ5, sα, Rβ, Rα+β, RA, RB, Rαη, Rβη, Rαη′, Rβη′) such that: it is not rejected by
the opening oracle, (ψ1, ψ2, ψ3) does not constitute a linear tuple, and (ψ1, . . . , ψ5, R

′
α, . . . , R

′
βη′) ̸=

(ψ∗
1, . . . , ψ

∗
5, R

∗
α, . . . , R

∗
βη′) in which (R′

α, . . . , R
′
βη′) is the group elements computed in Verify algorithm

and (R∗
α, . . . , R

∗
βη′) are the group elements used for generating challenge signature. If the adversary

issues such a query to the opening oracle, there should be the query (M,ψ1, . . . , ψ5, Rα, . . . , Rβη′) in H
(issued by the adversary explicitly or by the opening oracle for verifying the queried signature) such
that (ψ1, ψ2, ψ3) does not constitute a linear tuple, and the hash value H(M,ψ1, . . . , ψ5, Rα, . . . , Rβη′)
coincides with the unique challenge c that is determined from the problem instance (ψ1, . . . , ψ5) and
the commitment (Rα, . . . , Rβη′). Hence for concluding the proof it is sufficient to bound the probability
of this event. Noticing that in this case any query (M,ψ1, . . . , ψ5, Rα, . . . , Rβη′) to H in question is
different from (ψ∗

1, . . . , ψ
∗
5, R

∗
α, . . . , R

∗
βη′) which is used for backpatching, the output of H is chosen from

Zp uniformly, and thus the probability that a query to H described as above exists with probability less
than qH + qopen/p in which qH and qopen respectively denote the upper bounds of the number of queries
issued by the adversary to H and the opening oracle, therefore qH + qopen/p is negligible. □

Lemma 4.5 Pr[S4] = 1/2.

Proof. Here we prove that in this game the value (ψ∗
1)
ξ1(ψ∗

2)
ξ2(ψ∗

3)
ξ3 and (ψ∗

1)
ξ′1(ψ∗

2)
ξ′2(ψ∗

3)
ξ′3 are

uniformly random even when conditioned on the adversary’s view. To this end we examine the distri-
bution of the adversary’s view related to the randomness ξ1, ξ2, ξ3, ξ

′
1, ξ

′
2, ξ

′
3 under the condition where

all the other randomness involved in the game are fixed. The adversary obtains information related
ξ1, ξ2, ξ3, ξ

′
1, ξ

′
2, ξ

′
3 from the part of the group public key g1, g2, g

′
1, g

′
2 and the responses from the opening

oracle. As for the responses from the opening oracle, any query whose ϕ1, ψ2, ψ3 components does not
constitute the linear tuple will be rejected by the opening oracle, thus the adversary gains no information
on ξ1, ξ2, ξ3, ξ

′
1, ξ

′
2, ξ

′
3 from such queries. A query with a linear tuple also gives no information to the

adversary. When the adversary issues a signature (ψ1, . . . , ψ5, c, sα, . . . , sβη′), the opening oracle com-
putes group elements (ψ∗

1)
ξ1(ψ∗

2)
ξ2(ψ∗

3)
ξ3 and (ψ∗

1)
ξ′1(ψ∗

2)
ξ′2(ψ∗

3)
ξ′3 (the rest of the calculation performed

by the oracle is done without referring to ξ1, ξ2, ξ3, ξ
′
1, ξ

′
2, ξ

′
3), which is what the adversary learns from

this query. It in fact does not increase the information the adversary knows, since the above equa-
tion can be rewritten as (ψ∗

1)
ξ1(ψ∗

2)
ξ2(ψ∗

3)
ξ3 = (fα1 )

ξ1(fβ2 )
ξ2(fα+beta3 )ξ3 = (f ξ11 f

ξ3
3 )α(f ξ22 f

ξ3
3 )β = gα1 g

β
2 and

(ψ∗
1)
ξ′1(ψ∗

2)
ξ′2(ψ∗

3)
ξ′3 = gα1 g

β
2 can be similarly obtained, when we write ψ1 = fα1 , ψ2 = fβ2 , and ψ3 = fα+β3 .

The right-hand side of the equation shows that the response of the opening oracle gives no information
to the adversary, since all the values that appears in the right-hand side are already known to the
adversary.

The above discussion shows that the responses of the opening oracles do not leak any information
of ξ1, ξ2, ξ3, ξ

′
1, ξ

′
2, ξ

′
3. Finally we shows that the value (ψ∗

1)
ξ1(ψ∗

2)
ξ2(ψ∗

3)
ξ3 and (ψ∗

1)
ξ′1(ψ∗

2)
ξ′2(ψ∗

3)
ξ′3 are

uniformly distributed conditioned on the group public key g1, g2, g
′
1, g

′
2. This can be done by considering

the following equation  logg g1
logg g2

logg(ψ
∗
1)
ξ1(ψ∗

2)
ξ2(ψ∗

3)
ξ3

 =

 t1 0 t3
0 t2 t3
t1α t2β t3τ

ξ1ξ2
ξ3

 ,
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where t1 = logg f1, t2 = logg f2, and t3 = logg f3. Since the matrix in the right-hand side has the deter-

minant t1t2t3(τ − α − β) ̸= 0, the value (ψ∗
1)
ξ1(ψ∗

2)
ξ2(ψ∗

3)
ξ3 is distributed uniformly and independently

of g1 and g2. This shows that the challenge signature is independent of Aib and hence of the challenge
bit b. □
From the above, the proof of Theorem 4.1 is completed. □

Theorem 4.2 The proposed R-GS scheme has non-frameability in the random oracle model under the
DL assumption, where H is modeled as a random oracle.

The discrete logarithm x of X in the membership certificate is the secret information that only the
signer knows, and the signer issues the NIZK proof for the knowledge of x in the signing. Therefore, it
seems that the signature cannot be forged without x. In the simulation of the adversary against the DL
problem, the extractor of x can be construct by rewinding the adversary against non-frameability (this
proof is based on the forking lemma [56]). Therefore, the non-frameability of this scheme is reduced to
the DL problem.

Proof. The adversary A comes up with a forgery (M∗, σ∗) that opens to some honest user i ∈ U b and
that did not issue a signature.

Given a problem instance (g, y = gx, p,G1), the simulator B generates (f1, f2, f3, h0, h1, h2) ← G1 \
{1}, h← G2, γ0, γ1, ξ1, ξ2, ξ3, ξ

′
1, ξ

′
2, ξ

′
3 ← Zp, then compute (sk0, vk0) = (γ0, h

γ0), (sk1, vk1) = (γ1, h
γ1),

g1 = f ξ11 f
ξ3
3 , g2 = f ξ22 f

ξ3
3 , g′1 = f

ξ′1
1 f

ξ′3
3 , g′2 = f

ξ′2
2 f

ξ′3
3 , set skOA = (ξ1, ξ2, ξ3, ξ

′
1, ξ

′
2, ξ

′
3), skGM = (sk0, sk1),

gpk = (p,G1,G2,GT , e, g, f1, f2, f3, g1, g2, g
′
1, g

′
2, h0, h1, h2, h, vk0, vk1, H).

At the beginning of the game, B picks a random index j∗ ← {1, . . . , qjoin} of the Ob-join query. Then,
B interacts with A as follows:

• Ogpk, OGM , OOA query: B returns gpk , skGM and skOA as described above, respectively.

• Ob-join query: When A (as group manager) requests to run Join protocol for a new honest user i
in the group, B executes Juser. Depending on the index of Ob-join queries, B behaves as follows:

– If i ̸= i∗, B follows Juser exactly.

– If i = i∗, B sends the value y = gx as X. In subsequent steps of the Join protocol, B
proceeds as the real Juser. When Join terminates, B obtain a membership certificate certi =
(⟨vi⟩, {Aj}ℓj=0, y).

• Orevoke query: It can be treated as the real game, since B has skGM .

• Osig query: When A asks a signature for a message M of the user i ∈ U b, B treats as follows:

– If i ̸= j∗, B can simulate the signing algorithm as the real game.

– If i = j∗, B generates the signature using cert j∗ , issued by the j∗th query of Ob-join.

Finally, A outputs a signature σ∗ = (ψ∗
1, . . . , ψ

∗
5, c

∗, s∗α, . . . , s
∗
βη′), for some message M∗, that opens

to some user i∗ ∈ U b who did not sign M∗. Then, B computes Ai∗ = ψ4/ψ
ξ1
1 ψ

ξ2
2 ψ

ξ3
3 . If there exists the

transcript (⟨vi⟩, {Aj}ℓj=0, X) such that X = y = gx, we apply forking lemma [56] and obtain the discrete
logarithm x of y = gx, then output x. Otherwise, B outputs ⊥ and halts.

For proving the theorem, we use the forking lemma [56].

Lemma 4.6 (Forking Lemma) Fix an integer qH ≥ 1. Let A be a randomized algorithm that on
input x, h1, . . . , hqH , where x is a random source for running A, h1, . . . , hqH are the responses from
the random oracle. The acceptance probability of A, denoted acc(k) is defined as acc(λ) = Pr[i ≥ 1 |
vk ← Gen(1λ);x ← R;h1, . . . , hqH ← Zp; i = A(vk, x)(h1,...,hqH )]. The forking algorithm B corresponds
with A is a randomized algorithm proceed as follows: (1) x←R, (2) h1, . . . , hqH , h′1, . . . , h′qH ← Zp, (2)
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i← A(vk, x)(h1,...,hqH ), (4) i′ ← A(vk, x)(h1,...,hi−1,h
′
i,...,h

′
qH

), (5) Outputs 1 if (i = i′)∧(i ̸= 0)∧(hi ̸= h′i′),
otherwise outputs 0.

Let frk(k) be the probability that B outputs 1. Then, the following equation frk(k) ≥ acc(k) ·(
acc(k)
qH
− 1

p

)
holds.

Next, we prove the following lemma by using the forking lemma.

Lemma 4.7

AdvframeA (λ) ≤
(
qb-join · qsig ·AdvDL

B (λ) +
(1 + qsig)

p

)1/2

Proof.

frk(λ) ≥ Advframe
A (λ) ·

(Advframe
A (λ)− 1/p

qsig
− 1

p

)
>

(Advframe
A (λ))2

qsig
− 1 + 1/qsig

p
.

Moreover, if A outputs forged signature, B outputs the discrete logarithm with probability 1/qb-join.

That is,
(Advframe

A (λ))2

qsig
− 1+1/qsig

p ≤ qb-join ·AdvDL
B (λ) holds. □

From the forking lemma, it is shown that Advframe
A (λ) is negligible if AdvDL

B (λ) is negligible.
□

Theorem 4.3 The proposed R-GS scheme has misidentification resistance in the random oracle model
under the q-SDH assumption and knowledge of secret key (KOSK) assumption [57], where H is modeled
as a random oracle.

The misidentification attack means a forgery of the BBS+ signature as membership certificate.
Hence, the security against misidentification attacks can be reduced to the unforgeability of the BBS+
signature scheme, and it is proved in [6]. We consider two types of forgers: (1) forgery of the certificate
for belonging to the group, and (2) forgery of the certificate of the non-revoked users. Since breaking
the unforgeability of the BBS+ signature scheme allows us to construct an algorithm that breaks the
q-SDH assumption, the theorem holds.

In the actual Join algorithm, a user sends X = hx2 to the group manager, and the group manager,
who has the signing key of the BBS+ signature scheme, can sign x without knowing x itself, and can
make a certificate A. Whereas, in the security proof, the simulator needs to send a signed message
x in order to access the signing oracle of the underlying BBS+ signature scheme. However, since an
adversary sends not x but X to the simulator, we need to consider how to obtain the corresponding x
in the security proof. To circumvent this obstacle, one solution is to add the proof of knowledge of the
secret key in the beginning of the Join algorithm, and extract x by rewinding the adversary. However, we
need to rewind the adversary a number of queried times. This requires much loose reduction cost, and it
seems difficult to estimate the actual success probability of the extraction. Therefore, we introduce the
knowledge of secret key (KOSK) assumption [57] where the adversary is required to reveal the secret
key of the honest users, which is joined by Oa-join queries. In addition, we assume that Oa-join queries
are not executed concurrently.

In type (1) forgery, we simulate a group manager who implements the join protocol. In this simula-
tion, he/she gets X = hx2 from a user and sends Aj to the user. The group manager needs x = logh2 X
that is sent to the signature oracle in order to get signature Aj . On the other hand, in type (2), we
simulate a group manager who implements the Revoke algorithm. In this simulation, he/she can make
Bj that is a part of revocation list RLt without proof of knowledge.

Proof. The adversary A comes up with a forgery (M∗, σ∗) that doesn’t open to non-revoked dishonest
user i ∈ Ua \ Rt∗ and that did not issue a signature. We will argue that the simulator B that breaks
the BBS+ signature (which is secure under q-SDH assumption) can be constructed from the adversary
A that breaks the misidentification resistance of the proposed scheme.
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At the beginning of the game, B picks a random index j∗ ← {1, . . . , qjoin} of the Oa-join query. We
consider two types of adversary. Given a problem instance (g, w = hγ , p,G1) (public key of the BBS+ sig-
nature), the simulator B generates (f1, f2, f3, h0, h1, h2)← G1 \{1}, h← G2, γ0, γ1, ξ1, ξ2, ξ3, ξ

′
1, ξ

′
2, ξ

′
3 ←

Zp. If we consider type (1) forger, set vk0 = w, and compute (sk1, vk1) = (γ1, h
γ1). Otherwise

(i.e., consider type (2) forger), set vk1 = w, and compute (sk0, vk0) = (γ0, h
γ0). Then, compute

g1 = f ξ11 f
ξ3
3 , g2 = f ξ22 f

ξ3
3 , g′1 = f

ξ′1
1 f

ξ′3
3 , g′2 = f

ξ′2
2 f

ξ′3
3 , set skOA = (ξ1, ξ2, ξ3, ξ

′
1, ξ

′
2, ξ

′
3), skGM = (sk0, sk1),

gpk = (p,G1,G2,GT , e, g, f1, f2, f3, g1, g2, g
′
1, g

′
2, h0, h1, h2, h, vk0, vk1, H).

• Type (1) forger: The adversary A forges a certificate Aj∗ for that belonging to the group, which
corresponds with Oa-join queries.

• Type (2) forger: The adversary A forges a certificate Bj∗,t∗ for that the non-revoked member,
which corresponds with Orevoke queries.

B interacts A as follows:

• Ogpk query: B returns gpk as described above to A.

• Oa-join query: When A requests to run Join protocol for a (corrupted) user i in the group, B
executes JGM . B behaves as follows:

– Type (1) forger: When A sends a group elements X, A also sends x = logh2 X (by the KOSK
assumption). Then B asks the signing oracle of the BBS+ signature to generate a (part of)

certificate Aj = (gh
ζj
0 h

uj
1 h

x
2)

1
γ+ηj . In the subsequent step of the Join protocol, B proceeds as

the real JGM .

– Type (2) forger: It can be treated as in real game.

• Orevoke query: When A asks to revoke the user i, B behaves as follows.

– Type (1) forger: B generates new certificates for non-revoked users {Θ = (Bi,t, η
′
i, ζ

′
i)}numi=0. It

can be treated as in real game, since B has skGM .

– Type (2) forger: B generates the BBS+ signature {Bi,t = (gh
ζ′i
0 h

ui
1 h

t
2)

1
η′
i
+γ } by asking the

signing oracle of BBS+ signatures. In the subsequent steps, B proceeds as the real game.
new certificates for non-revoked users {Θ = (Bi,t, η

′
i, ζ

′
i)}numi=0.

Finally, A outputs a signature σ∗ = (ψ∗
1, . . . , ψ

∗
5, c

∗, s∗α, . . . , s
∗
βη′), for some message M∗, that opens

to some user i∗ ∈ Ua \ Rt∗ who did not sign M∗. Then, B decrypts ψ4 to get Ai∗ (if type (1) forger)
or decrypts ψ5 to get Bi∗,t∗ (if type (2) forger). B outputs the decrypted certificates as the forged
signature. Let the events that A of Type (1) and (2) succeed to forge the BBS+ signature be F1 and
F2, respectively. From the above game, B can forge the BBS+ signature if A wins the misidentification
game. Therefore, the following equation AdvmisidA (λ) ≤ Pr[F1] + Pr[F2] holds. The probability Pr[F1]
and Pr[F2] are negligible if the q-SDH assumption holds since the BBS+ signature is unforgeable under
q-SDH assumption. Therefore, it is shown that AdvmisidA (λ) is negligible if the q-SDH assumption holds.

□

4.4 Discussion on the construction of SD-based R-GS scheme

In this section, again we consider to construct a SD-based scheme in the random oracle model in an
efficient way. By using the SD method, all (non-revoked) users are partitioned as S1, . . . , Snum (as in the
CS method) where num = O(r). Each set Sj is described as Sj := Skj ,k′j where kj and k

′
j are node of the

tree of level ϕj and ψj , respectively. If a signer who has certificates of u0, u1, ..., uℓ is not revoked, that
the condition (1) kj = uϕj (kj is an ancestor of the leaf node that the signer is assigned) and (2) k′j ̸= uψj
(k′j is not an ancestor of the leaf node) must hold. The first “equality” condition can be proved as in our
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CS-method based scheme. However, it is not trivial to prove the second “inequality” condition where
signed messages of two BBS+ signatures are different without showing messages themselves. In [44],

this inequality relation is proved by using the Boneh–Boyen signature with the form g
1/(k′j−uψj ) and

Groth–Sahai proofs for the verification pairing equation of the signature. As mentioned in the paper,
the languages of the Groth–Sahai proof and those of the Fiat–Shamir proof are completely different.
This is the first obstacle.

Even if we can solve this problem, the next problem is efficiency (signature size). That is, we need
to prove (at least) one more relation compared to the CS method based scheme. More precisely, in
our scheme two BBS group signature schemes are run for A and Bt, respectively, and we need to (at
least) run one more BBS group signature if the inequality relation needs to be proved additionally. This
means the signature size is at least 1.5 times longer than that of the proposed scheme. This is the
second obstacle.

From the above discussions, it seems not trivial to efficently construct a SD-based scheme in the
random oracle model. We leave it as a future work of this paper.

5 Conclusion

In this paper, we proposed a scalable R-GS group signature scheme with compact signature size. In
order to efficiently implement the scheme, we used the parallel BBS group signature technique where
two BBS group signature schemes are simultaneously run but a part of random values are commonly
used. By using this technique, we do not have to apply broadcast encryption which was used in the
LPY schemes. Since random oracles break underlying algebraic structures, it seems not trivial to achieve
constant certificate size [44] or constant revocation list [4, 52] without detracting the current efficiency.
We leave it as an interesting future work of this paper.

Acknowledgement: We thank the members of Shin-Akarui-Angou-Benkyou-Kai for their helpful
comments.
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