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Abstract. During the last years, the industry sector showed particular
interest in solutions which allow to encrypt and decrypt data within one
clock cycle. Known as low-latency cryptography, such ciphers are desirable
for pervasive applications with real-time security requirements. On the
other hand, pervasive applications are very likely in control of the end user,
and may operate in a hostile environment. Hence, in such scenarios it is
necessary to provide security against side-channel analysis (SCA) attacks
while still keeping the low-latency feature.
Since the single-clock-cycle concept requires an implementation in a fully-
unrolled fashion, the application of masking schemes – as the most widely
studied countermeasure – is not straightforward. The contribution of this
work is to present and discuss about the difficulties and challenges that
hardware engineers face when integrating SCA countermeasures into low-
latency constructions. In addition to several design architectures, practical
evaluations, and discussions about the problems and potential solutions
with respect to the case study PRINCE (also compared with Midori), the
final message of this paper is a couple of suggestions for future low-latency
designs to – hopefully – ease the integration of SCA countermeasures.

1 Introduction

The need for integration of side-channel analysis (SCA) [29] countermeasures into
pervasive security-enabled devices is known to both academia and industry. Such
a demand has also been motivated by several practical key-recovery attacks on
commercial applications, e.g., [2,22,31,34,41,54]. From another perspective, there
are several important applications for which a low-latency encryption and instant
response time is highly desirable, such as read/write access to encrypted memory
modules, which should be preferably conducted in a single clock cycle (initially
motivated by [27]). It is also expected that given the ongoing growth of pervasive
computing, there will be many more future embedded systems that require low-
latency encryption, especially applications with real-time requirements, e.g., in
the automotive domain. Hence, such pervasive applications, where low-latency
cryptography is required, should be protected against SCA threats.

Here in this work, we present the challenges one may face by integrating SCA
countermeasures into implementations with low-latency target. Insertion of hiding
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techniques [32] in this scenario is either straightforward (such as noise generation
or dual-rail logic) or ineffective (such as time randomization or shuffling) due
to the fully unrolled architecture of low-latency implementations. Therefore, our
focus is the integration of masking schemes into such designs. In particular, we
concentrate on threshold implementation (TI) [40] as a provably-secure scheme
against first-order SCA attacks. It should be noted that integration of ad hoc
approaches, e.g., random pre-charging of [6], are out of our focus since we target
solutions with provable security.

We should point out that it has previously been supposed that unrolled circuits
– also the case of low-latency concept – are inherently secure against SCA attacks
(see [6]). However, other practical results, e.g., in [36] and [51], showed that un-
rolling may make the attacks complicated since the common hypothetical power
models (Hamming weight/distance) may not fit to the circuit’s leakage anymore,
but sophisticated yet first-order leakages can be exploited for key recovery.

As a known case study, PRINCE [13] (particularly designed as a low-latency
cipher) is targeted in our investigations. We demonstrate design architectures and
practical results with respect to the power consumption as well as SCA protec-
tion of different variants of implementations of PRINCE. In addition to several
discussions about the SCA protection versus low-latency concept, we present a
mixture of asynchronous circuit design methodology with threshold implemen-
tation which is expected to realize an SCA-protected self-timed design. Finally,
having the PRINCE case study in mind, we give a couple of suggestions for the
future low-latency cipher designs with the goal of mitigating the challenges, where
SCA protection is desirable.

Furthermore, we consider the cipher Midori [3] which was designed with the
goal of minimizing energy consumption. Since energy consumption and latency –
to some extent – are proportional, we also provide a comparison between PRINCE
and Midori with respect to latency when both are equipped with similar masking
countermeasure.

2 Preliminaries

2.1 PRINCE

PRINCE [13] is a 64-bit block cipher that uses a 128-bit secret key k. The key
expansion divides k into two 64-bit parts as k = (k0||k1), and derives k′0 from k0
by a linear function as (k0 ≫ 1)⊕ (k0 � 63). The subkeys k0 and k′0 are used as
input and output whitening keys respectively, while k1 is used as the round key
for the core block cipher PRINCEcore (see Figure 1).

Each of the first five round functions Ri consists of S-Layer (by a 4-bit Sbox),
M′-Layer (multiplication with a 64×64 matrix M ′), ShiftRows (the same as the
AES one but on 4-bit cells), RCi-add (XORing the state with a 64-bit constant
RCi), and kadd (XORing k1 into the 64-bit state).

The last five inverse round functions R−1i are formed by the inverse of the cor-
responding operations. It is noteworthy that M ′ matrix is an involution, hence the
inverse of M′-Layer is itself. Further, due to its underlying FX-construction [26]
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Fig. 1. A schematic view of PRINCE

as well as the α-reflection, i.e., RCi∈{0,...,11} ⊕RC11−i = α, the PRINCE encryp-
tion can turn to its decryption by swapping the whitening keys and XORing α to
k1,

PRINCEDec
(k0,k′0,k1)

= PRINCEEnc
(k′0,k0,k1⊕α).

Note that RC0 = 0, and RCi∈{1,...,5} as well as α are derived from the fraction
part of π = 3.141 . . ..

2.2 Threshold Implementation

Let us denote a 4-bit intermediate value of PRINCE, e.g., the Sbox input, as
x = 〈x1, . . . , x4〉. Under the n−1 order Boolean masking concept, x is represented

by (x1, . . . ,xn), where x =
n⊕
i=1

xi and each xi similarly denotes a 4-bit vector

〈xi1, . . . , xi4〉.
The linear functions, such as M′-Layer, can be simply applied to the shares

of x as L(x) =
n⊕
i=1

L(xi). Clearly, the non-linear functions, e.g., Sbox, cannot

be trivially shared. Following the TI concept [8, 40], the minimum number of
shares to realize an Sbox to be secure against first-order attacks is n = t + 1,
where t denotes the algebraic degree of the Sbox. The shared Sbox should provide
the output also in a shared form (y1, . . . ,ym), where m ≥ n when the Sbox is
a bijection. Obviously, to ensure the correctness of the computation, we should

have S(x) = y =
m⊕
i=1

yi.

Each output share yj∈{1,...,m} is given by a component function fj(·) over a
subset of input shares. Defined as non-completeness, for first-order security each
component function fj∈{1,...,m}(·) must be independent of at least one input share.
The security of masking schemes (to some extent) depends on the uniform distri-
bution of the masks. Therefore, the output of a TI Sbox must be also uniform,
since it supplies other non-linear functions. For example, the Sbox output of one
PRINCE round is given to the next S-Layer after being processed by the linear
diffusion layers. In case of the bijective PRINCE Sbox (n = m), each (x1, . . . ,xn)
should be mapped to a unique (y1, . . . ,yn) to satisfy the uniformity. In other
words, it is enough to check whether the TI Sbox also forms a bijection with 4n
input (and output) bit length.
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Fig. 2. Area versus latency of unrolled PRINCE

The PRINCE Sbox has an algebraic degree of t = 3. Hence, the number of
input and output shares n = m > 3 what directly affects the complexity of the
circuit and its associated area overhead. Therefore, it is preferable to decompose
the Sboxes into smaller non-linear functions each with maximum algebraic degree
of 2, which enables staying with the minimum number of shares n = m = 3. Note
that in this case, registers must be placed between the shared decomposed func-
tions. Otherwise, the glitches propagate into cascaded shared non-linear circuits,
and violate the non-completeness property. As an example, the authors of [42] pre-
sented a decomposition of the PRESENT [12] Sbox into two quadratic bijections
g and f.

Above we briefly reviewed the TI concept. For detailed information, the inter-
ested reader is referred to the original articles [8, 40].

3 Design Architectures

As stated before, PRINCE cipher has been designed with respect to low-latency
feature. The goal was to achieve a short latency when the cipher is implemented in
a fully-unrolled fashion. In other words, the implementation contains no sequential
elements, e.g., register/flip-flop, and hence no clock.

In our investigations, in order to synthesize for an ASIC platform, we made
use of Synopsys Design Compiler using the UMCL18G212T3 [49] ASIC standard
cell library, i.e., UMC 0.18µm. As a side note, such a standard library has not
been covered by the original article [13], where Nangate 45 nm, UMC 90 nm, and
UMC 130 nm technologies have been considered. Therefore, the performance fig-
ures which we report here are based on our syntheses. Since the area requirement,
i.e., Gate Equivalence (GE), of an implementation varies depending on the desired
latency, we give in Figure 2 a curve of GE of the unrolled PRINCE implementa-
tion over the latency. We should stress that similar to the target of the seminal
work [13], all our design architectures support both encryption and decryption.
For the threshold implementations, the syntheses have been performed by keeping
the hierarchy to avoid the combination of different shares (otherwise, first-order
leakage is probable), and for the unrolled (unprotected) designs the hierarchy is
avoided which allows the synthesizer to combine the cascaded circuits and reach
the desired latency.
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Fig. 3. Unrolled TI of PRINCE, only first and last round masked

As stated in Section 2.2, in order to realize a masked hardware implemen-
tation, the masked non-linear functions (Sboxes) should be separated from each
other by means of registers to avoid the propagation of glitches. Therefore, an un-
rolled architecture can never be properly masked. It is noteworthy that unrolled
architectures already change the leakage characteristics of the device (see [6,51]).
Hence, one may suppose that integration of masking into unrolled architectures
may complicate the device leakage in such a way that it becomes unexploitable.
However, such a combination would definitely lead to first-order leakage detectable
e.g., by t-test [18, 24, 44]. As a heuristic-based example, it can be supposed that
masking the first and last rounds of PRINCE should suffice to protect against
SCA attacks1. The PRINCE Sbox is a cubic 4-bit bijection, i.e., algebraic degree
t = 3, and at least n = m = 4 shares are required. The PRINCE Sbox belongs
to the class C231 (with respect to the category given in [10]), which needs three
decomposition stages to be uniformly shared with 3 as well as 4 shares, while it
can be uniformly shared in one stage with n = m = 5 shares. It has been given
in Section 2.2 that the uniformity is required because the output of the shared
Sbox feeds the next non-linear functions. Hence, the non-uniform output of the
first cipher round does not play any role, if the second cipher round is not masked.
Therefore, we can stay with n = m = 4 shares and make the (non-uniform) shared
PRINCE Sbox in one stage by direct sharing [11]. We have implemented such a
design, whose block diagram is shown in Figure 3 and all the corresponding for-
mulations are given in Appendix A. Further, its timing and area overheads are
listed in Table 1. It turned out that this design is 3-6 times larger than the un-
protected unrolled design and 2-3 times slower. We deal with its practical SCA
evaluations in Section 3.4. We should emphasize that except for the first and last
(i.e., masked) rounds, the hierarchy is not kept. This allows the optimization of
the middle rounds, while the functions over the shared signals (in the first and

1 In general, it is not a true statement since i) the unmasking at the end of the first round
(see Figure 3) would anyway lead to (although hard-to-exploit) first-order leakage, and
ii) the adversary can set certain plaintext bits to a fixed value and target the second
cipher round.
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the last rounds) must be kept separate to avoid any combination over the shares.
Otherwise, the design would exhibit first-order leakage at the first and/or last
rounds.

3.1 Round-based Architecture

Alternatively, we can consider the round-based architecture, although it obviously
needs a fast clock, and the setup- and hold-time of the registers increase the whole
latency. A round-based design has been given in the original article [13] which is
also depicted in Figure 4(a). In this design two separate modules for the Sbox and
its inverse are considered. It has been reported in a couple of works [9,37,42] that
shared Sboxes are the most area consuming part. Therefore, one of our attempts
with respect to this issue is to combine these two modules. Indeed, we have realized
that the PRINCE Sbox and its inverse are affine equivalent. In other words, we
can write

∀x, S(x) = A2

(
S−1 (A1 (x))

)
,

with A1 and A2 input- and output-affine transformations. In case of the PRINCE
Sbox, there exists only one pair (A1, A2), and A1 and A2 are the same. Hence, we
can write S = A ◦ S−1 ◦A, with A: B8A93021EDFC6574 as2

e = 1 + a+ b+ d, f = 1 + a, g = d, h = 1 + c,

with 〈a, b, c, d〉 the 4-bit input, 〈e, f, g, h〉 the 4-bit output, and a and e the least
significant bits. Based on this findings, we developed another round-based archi-
tecture, shown in Figure 4(b), where only one S-Layer module is instantiated.

More detailed information about the active data path of both round-based
designs at each cipher round is given in Appendix B. Table 1 lists the differences
between these two designs. Note that we constrained the syntheses of both designs
with different latencies to obtain both fastest and smallest designs for fair com-
parisons. As stated, the objective is to make use of only one S-Layer, hence our
design utilizes more multiplexers compared to the original round-based design.
Further, we optimized the way that whitening keys k0 and k′0 are added to the
state considering the fact that it should support both encryption and decryption.
Another issue is how to deal with the round constants. As given in Section 2.1, the
round constants have been randomly selected, hence a combinatorial circuit should
realize the selection of RCi at each round. We have examined several cases, and
the most optimized design (with respect to area) has been achieved by employing
a multiplexer which selects one of the RC0 to RC11 by the round counter. The
role of optimization was to assign 0111 as the round counter to the round number
i = 5. Therefore, the order of the round counter 0010, 0011, . . ., 0111, 1000,
. . ., 1100, 1101 can be reversed (required for decryption) by inverting the round
counter bits (see Figure 4(b)). We should also point out that in both original and
our round-based designs, the state register is placed right after the multiplexer.
That allows the synthesizer to combine them and make use of scan flip-flop, which
is smaller than a sum of a multiplexer and a flip-flop [43].

2 It also holds for S−1 = A′ ◦ S ◦A′, with A′: 5764FDCE1320B98A.
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Fig. 4. Round-based designs

As a side note, our round-based design is not necessarily the most optimized
design. The tricks, that we used in our design, can be also applied in the original
one (Figure 4(a)). However, since our target is to instantiate one S-Layer to ease
the threshold implementations, we consider our round-based architecture as the
basis of the further designs.

3.2 Uniform Sharing of the Sbox

The uniform sharing of the cubic 4-bit bijection C231, to which the PRINCE Sbox
belongs, with 3 shares can only be achieved by a three-stage quadratic decompo-
sition [11]. As listed in [11], there exist 5 quadratic classes, Q4, Q12, Q293, Q294,
and Q299, that can be uniformly shared in one stage3. With respect to their size,
i.e., the number of 2-input AND and XOR gates in their Algebraic Normal Form
(ANF), Q4, Q294, Q12, Q293, and Q299 are respectively the smallest to the largest
functions. We tried to decompose C231 by a set of the smallest quadratic functions.
Indeed, several decompositions exist (see Appendix C for a complete list). If Q4

is involved in the decomposition, the other quadratic functions are a combination
of (Q293,Q299) or (Q293,Q293) or (Q299,Q299). None of these combinations lead
to a small design since Q293 and Q299 are amongst the largest classes. Instead, we
can do the decomposition by Q294 in three stages. To this end, we first extracted

3 One more quadratic class Q300 exists, but needs two stages for a uniform sharing with
3 shares.
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all affine transformations A1, A2, and A3 in such a way that

S−1 = A3 ◦ C223 ◦A2 ◦ Q294 ◦A1.

There exist 2048 such (A1, A2, A3) triples4, and several solutions exist to decom-
pose C223 (see Appendix C). One of the smallest ones is C223 = A6◦Q294◦A5◦Q294◦
A4, and we found 262 144 affine triples (A4, A5, A6) for such a decomposition. At
the last step, we combined these two decompositions as

S−1 = A3 ◦A6︸ ︷︷ ︸
Aout

◦Q294 ◦ A5︸︷︷︸
Am2

◦Q294 ◦A4 ◦A2︸ ︷︷ ︸
Am1

◦Q294 ◦ A1︸︷︷︸
Ain

, (1)

and examined all 2048× 262 144 cases5. With respect to the size of the resulting
affines, we considered the number of 2-input XOR gates as well as the Hamming
weight of the constants. The smallest combination has been achieved as

Ain : 8293C6D70A1B4E5F, e = b, f = a, g = c, h = 1 + a+ d,

Am1 : C480E6A2D591F7B3, e = d, f = c, g = 1 + b, h = 1 + a,

Am2 : 08C43BF72AE619D5, e = c, f = c+ d, g = b, h = a+ b,

Aout : 21748BDE6530CF9A, e = a+ b, f = 1 + a+ c, g = b+ d, h = c. (2)

In order to share Q294 : 0123456789BAEFDC as

e = a+ bd, f = b+ cd, g = c, h = d,

we can follow the direct sharing [11], which has been applied in [38]. The com-
ponent function f i,jQ294

(〈ai, bi, ci, di〉, 〈aj , bj , cj , dj〉) = 〈e, f, g, h〉 has been defined
in [38] as

e = ai + bidi + dibj + bidj g = ci

f = bi + cidi + dicj + cidj h = di, (3)

and it has been given that the three 4-bit output shares provided by f2,3Q294
(., .),

f3,1Q294
(., .) and f1,2Q294

(., .) make a uniform first-order sharing of Q294.
Since the affine functions applied on all shares do not change the uniformity,

our construction – given in Equation (1) – in addition to the set of affines (Equa-
tion (2)) and component function fQ294

(Equation (3)) form a uniform first-order
sharing of the PRINCE Sbox inverse. To the best of our knowledge, this is amongst
the smallest construction which fulfills all the TI properties with n = m = 3 shares.
Note that the shared quadratic functions should be separated by registers to avoid
the propagation of glitches.

3.3 Implementation

Our construction of the first-order TI of PRINCE is depicted in Figure 5. All
operations except key and constant additions (and the S-Layer) are repeated

4 It is the same for S−1 = A3 ◦ Q294 ◦A2 ◦ C223 ◦A1.
5 The result is a multiset, i.e., with repeated elements.
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Fig. 5. Round-based first-order threshold implementation of PRINCE

three times. It suffices if the constant of the affine functions A, Ain, Am1, Am2,
and Aout are applied on only one share6. The key and the constants are not
shared, which is the same scenario applied in several works, e.g., [7–9,37,42], and
is adequate to resist against first-order attacks. Hence, the keys and constant are
also applied on only one share.

Due to the registers integrated into the shared Sbox, the design realizes a
pipeline with three stages. In other words, three consecutive (shared) inputs (plain-
texts/ciphertexts) can be fed into the design, and after 40 clock cycles three out-
puts (ciphertexts/plaintexts) are consecutively given out. Thanks to the uniform
sharing of the Sbox, excluding the masks required to share the input, the design
does not require any fresh randomness during the computations. The performance
figures of this design are also given in Table 1 for comparison purposes.

3.4 Practical Evaluations

For the practical investigations – rather than ASIC-based experiments or sim-
ulation – we ported the designs to an FPGA-based platform. We have used a
SAKURA-X board [1] with a Kintex-7 FPGA, particularly designed for SCA
evaluations. In order to monitor the power consumption, we measured the voltage
drop over a shunt resistor placed at the Vdd path of the Kintex FPGA. The power
traces have been collected by means of a digital LeCroy oscilloscope at the sam-
pling rate of 500 MS/s. Because of the low amplitude of the measured signal (due
to the underlying low-power technology of Xilinx 7 series FPGAs), we employed
an AC amplifier ZFL-1000LN+ from Mini-Circuits with 10 dB gain.

For SCA evaluation purposes, we applied the non-specific t-test (also known
as fixed versus random t-test). This test procedure, originally called TVLA, has
been proposed in [18], extended in [44] and [20, 21], and applied in e.g., [7, 8, 38].
The test – which compares the leakages associated to random inputs with that to
a fixed input – can examine the existence of a detectable leakage, but cannot give
any impression whether the leakage is exploitable. Hence, in case the t-test reports

6 It does not affect either the functionality or the uniformity.
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a first-order detectable leakage, we perform a signal-to-noise ratio (SNR) check.
In such a check, the variance of the average leakage traces classified by e.g., the
value of a plaintext nibble (divided by the variance of the noise) is examined [32].
It indeed can give an overview about the dependency of the average (first-order)
leakages to the processed data. Here, we do not show any attack results, and only
discuss about the existence of detectable leakages, and compare the amount of
dependency of the leakages to the processed data.

For the unrolled unprotected design, Figure 6 shows a sample power trace, the
t-test result as well as the SNR over all 16 plaintext nibbles. Since the design is not
masked, the t-test as expected shows a pretty strong first-order leakage. Along the
same lines, the corresponding SNR exhibit a clear dependency between the traces
and the plaintext nibbles. Hence, a successful key-recovery attack is expected (e.g.,
in [51]). We should here note that 23.3 mV power peak is relatively large7 for this
low-power FPGA. Since several gates are packed into one LUT, the equivalent de-
sign in ASIC can be more glitchy, and hence (probably) more energy consuming8.
This may harden the development of fully unrolled (even low-latency) designs
into low-energy, e.g., battery-powered, applications (see simulation-based results
in [3] and [4]).

We have shown the corresponding results of the unrolled TI design in Figure 7.
As stated before, only the first and the last rounds are masked by means of four
shares (see Figure 3). During the measurements, the 4-share input as well as other
3 independent fresh random masks (m1, m2, m3 for the last round) are given to
the Kintex-7 FPGA. The output is also provided in a 4-share masked form. As
discussed before, since the middle rounds are not masked, we expected that the t-
test exhibits first-order leakage. However, the SNR over plaintext nibbles shows a
significant reduction, a factor of about 0.03, compared to the unrolled unprotected
design (Figure 6(c) vs. Figure 7(c)). It indeed gives an impression that the first-
order attacks on the first round are expect to be challenging. However, if the
attacker fixes certain plaintext parts, he can target the second cipher round, which
is not masked.

Compared to these, the round-based TI design, whose results are depicted in
Figure 8, exhibits no first-order leakage with 100 million traces confirming the
correctness of our TI construction. We should here emphasize that the design was
operating at a frequency of 6 MHz during the measurements, and we filled the
3-stage pipeline with the same data. In other words, this way we have reduced the
algorithmic noise of the pipeline architecture (see [46]), that allows us to mitigate
the side effects into the evaluations. As expected, the higher-order t-tests report
detectable leakages through higher-order moments. Regardless of the difference in
their SCA-resistance levels, the power peak of the round-based TI architecture is
significantly smaller than that of the unrolled designs, i.e., 10 times and 30 times
compared to the unprotected and the TI unrolled designs respectively.

7 We showed real voltage values, i.e., output of the amplifier divided by 10.
8 This is a guess by the authors and should be examined in practice
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Table 1. Performance figures of different PRINCE implementations. For each design,
the first and the second row represents the smallest and the fastest variant respectively.

Design
Area Crit. Path Clock Latency Throughput Powera DPA
[GE] [ns] # [ns] [Gbps] Peak [mV] res.

Unrolled
8 512 13

1
13 4.923

23.3
22 040 8 8 8.000

Unrolled TI
48 012 38

1
38 1.684

59.5 ∼b

77 921 13.2 13.2 4.848

Round-based [13]
2 809 5.6

13
72.8 0.879

1.7c

4 698 1.5 19.5 3.282

Round-based ours
2 286 4.9

14
68.6 0.933

1.5c

4 663 2 28 2.285

Round-based TI
9 292 4

40
160 1.143d 2.3c

X
11 275 1.9 76 2.406d 21e

Round-based TI
Asynchronous

(simple Ack)

25 701 11
40×2f

800 0.208d

53.7 X
31 936 5.4 432 0.423d

Midori64 7 297 4
31

124 1.000g

20.2e X
Round-based TI 9 237 1.9 58.9 2.105g

a measured from the FPGA implementations
b only at the first and the last rounds
c @ 6 MHz
d considering the 3-stage pipeline
e by controlled ring-oscillator clock
f doubled due to pre-charge/evaluation phases
g considering the 2-stage pipeline

4 Asynchronous Design

We have already discussed in Section 1 that low-latency concept is closely con-
nected to the unrolled (single-cycle) architecture since the high clock rates (needed
to rapidly run register-based designs) are not available or supported by many sys-
tems. For instance, in many FPGA designs clock rates above 200 MHz are often
difficult to realize. In this settings, asynchronous circuits seem to be an alterna-
tive to this issue. With asynchronous circuit design, also known as self-timed and
clock-less design, it is possible to realize circuits with high performance parame-
ters in terms of their power, throughput, electromagnetic emissions, etc. [39, 45].
Asynchronous design is not as well-established and widely-used as synchronous
design methodology. Hence, the standard tools for asynchronous design are not
available, or not widely known, or particularly customized for certain technologies.

Because the field of asynchronous circuit design covers a wide range, we fo-
cus only on certain concepts which are relevant to our case studies. In terms of
PRINCE, consider the round-based synchronous architecture in Figure 4(a). The
maximum clock frequency is defined by the longest critical path (most likely when
both Sbox and its inverse are active). However, such a path is not always active. In
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other words, in all clock cycles except the middle one (see Figure 17 in Appendix B)
the design can be clocked faster. If this design is realized by asynchronous design
methodology, the end of the computation of one cipher round initiates the start
of the next round. Hence, the design operates at its maximum speed, or let say
with its lowest latency. In this case – similar to the unrolled architectures – the
time when the computations are finished, i.e., the ciphertext is ready to be read,
depends on the given inputs, but the maximum latency can be estimated.

As shown in Section 3, the round-based TI design can provide the first-order
resistance, but it needs a clock with a frequency between 250 MHz and 500 MHz to
achieve the highest throughput (see Table 1). Hence, our objective in this section
is to realize the round-based TI design with an asynchronous design methodology.

State of the art. We should emphasize that the asynchronous design has been
previously applied as a sole SCA countermeasure. One of the earlier works [33]
describes a smartcard chip which relies on self-timed circuits to provide protection
against physical attacks. The authors proposed to solely use dual-rail encoding
to reduce the threat of data-dependent power consumption but also noted the
obvious difficulties of this approach, e.g., varying wire lengths. Furthermore, they
highlighted the problem of timing leakage of asynchronous circuits and advise to
minimize data dependent gate delays coupled with the insertion of dummy delays
to reduce this leakage. Later in [23] the security of a similar self-timed circuit has
thoroughly been tested in practice. The authors found that small imbalances in
the dual-rail circuits cause data-dependent leakage which enables an attacker to
perform a successful DPA on the asynchronous circuit. They showed that their
asynchronous design alone is not sufficient to prevent SCA attacks, and that these
imbalances need to be eliminated during the design process to increase the level of
security. This is in line with [30, 53] where some of the difficulties, e.g., no global
clock, with respect to performing DPA on asynchronous designs are described.

One of the first clock-less implementation of AES was presented in [52]. It
also relies on power-balancing capability of dual-rail and the absence of a global
clock to thwart DPA. The dual-rail circuits were found to be more secure than the
single-rail one, however this is only based on simulation results and a thorough
practical evaluation is missing.

Another approach to secure AES using clock-less circuits is presented in [14].
It again relies on an asynchronous style called quasi delay insensitive (QDI) which
has a range of supply voltages. The authors noted the above-mentioned limitation
of this implementation style with respect to SCA resistance [15]. Therefore, they
proposed to lower the supply voltage to reduce the SNR and thwart DPA. How-
ever, [14] does not include practical experiments related to this approach. Further
techniques [16, 17] have been proposed to harden QDI against DPA based on the
introduction of random timing and path swapping. However, their efficiency was
only evaluated using electrical simulations.

More recently, an AES round function in Null Convention logic - another delay
insensitive logic paradigm - has been proposed in [50] in which the SCA resistance
has again been only evaluated with simulations.
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Chapter 2: Fundamentals 11

only memory: the address would be bundled with req and the data would be
bundled with ack. These alternatives are explained later in section 7.1.1. In the
following sections we will restrict the discussion to push channels.

All the bundled-data protocols rely on delay matching, such that the order
of signal events at the sender’s end is preserved at the receiver’s end. On a
push channel, data is valid before request is set high, expressed formally as
V alid(Data) ≺ Req. This ordering should also be valid at the receiver’s end,
and it requires some care when physically implementing such circuits. Possible
solutions are:

To control the placement and routing of the wires, possibly by routing all
signals in a channel as a bundle. This is trivial in a tile-based datapath
structure.

To have a safety margin at the sender’s end.

To insert and/or resize buffers after layout (much as is done in today’s
synthesis and layout CAD tools).

An alternative is to use a more sophisticated protocol that is robust to wire
delays. In the following sections we introduce a number of such protocols that
are completely insensitive to delays.

2.1.2 The 4-phase dual-rail protocol
The 4-phase dual-rail protocol encodes the request signal into the data signals

using two wires per bit of information that has to be communicated, figure 2.2.
In essence it is a 4-phase protocol using two request wires per bit of information
d; one wire d .t is used for signaling a logic 1 (or true), and another wire d .f
is used for signaling logic 0 (or false). When observing a 1-bit channel one
will see a sequence of 4-phase handshakes where the participating “request”
signal in any handshake cycle can be either d .t or d .f . This protocol is very

"1""0" "E"

dual-rail
(push) channel

0

0
1
1

d.t d.f

0

1
0
1

Valid  "0"
Valid  "1"
Not used

Empty ("E")
2n

Ack

Data, Req4-phase

Data {d.t, d.f} Empty Valid Empty Valid

Ack

Figure 2.2. A delay-insensitive channel using the 4-phase dual-rail protocol.Fig. 9. A delay-insensitive 4-phase dual-rail protocol (taken from [45])

It should be noted that in a majority of the aforementioned articles SCA
resistance was not the sole motivation for asynchronous circuits. Other beneficial
properties include a low-power consumption for embedded devices and some form
of an integrated fault tolerant scheme.

What we want to examine here is not the application of asynchronous de-
sign to prevent SCA leakages. In short, we do not aim at e.g., realizing the
round-based unprotected architecture with asynchronous methodology and ex-
amine its SCA resistance. Instead, our goal is to investigate the challenges and
outcomes of implementing a correctly-masked design, e.g., round-based threshold
implementation (Figure 5), under the concept of asynchronous designs. Such an
investigation is conducted with the goal of achieving a clock-less design while it is
expected to still satisfy the desired first-order SCA protection due to its underlying
uniform TI construction.

4.1 Fundamentals

Different parts of an asynchronous circuit need to communicate with each other.
For example, the finish of one PRINCE round should initiate the next round. A
couple of different handshaking protocols exist to establish such a communication.

The 4-phase dual-rail protocol encodes the data signals into two wires per bit (see
Figure 9). Each logical ‘1’ or ‘0’ is represented by {1,0} or {0,1} respectively, while
{0,0} is known as “no data” (or “empty”) and {1,1} as invalid. A transition from
one valid coding to another is not allowed, unless an “empty” value is transmitted
in-between, that forms a return-to-zero protocol. This protocol is very robust;
two parties can communicate reliably regardless of delays in the wires, i.e., it is
delay-insensitive [45].

This concept is very similar to the WDDL logic style [48], which has been
designed to mitigate SCA leakages. The underlying dual-rail pre-charge logic is
the same encoding; the valid encodings {0,1} and {1,0} are known as evaluation
phase and the empty value {0,0} as pre-charge phase. A WDDL circuit is usually
a synchronous design, where the evaluation/pre-charge phases are controlled by
the clock signal (the same concept as in Figure 9 by replacing the Ack signal
with clock). This protocol is familiar to most digital designers, and avoids any
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Fig. 10. Exemplary circuits to generate the Ack and clk signals
(a) and (b) for asynchronous designs, (c) for a synchronous design

glitches in the circuit hence achieving a low-power construction. However, it has a
disadvantage due to the extra return-to-zero transitions that cost time and energy.

We can implement the combinatorial parts of a design based on the WDDL
concept, and add extra logic to detect the end of the pre-charge as well as eval-
uation phase. This allows us to form the Ack signal (see Figure 9). As shown in
Figure 10(a), we can integrate n 2-input NOR gates, each of which for a dual-rail
signal, and by means of an n-input AND and an n-input NOR gate9 we can gen-
erate Ackp and Acke respectively. When all n dual-rail signals are in pre-charge
phase (resp. in evaluation phase), it can be detected by observing Ackp (resp.
Acke). These two signals can drive an SR-latch to generate the desired Ack signal.

4.2 Asynchronous Round-based TI

WDDL combinatorial circuits (generally asynchronous circuits) are glitch free,
i.e., each dual-rail signal changes only once at each pre-charge/evaluation phase.
Threshold implementation has been developed mainly for glitchy circuits, and the
registers should be placed between the non-linear shared functions to avoid the
propagation of the glitches [40]. Hence, at the first glance it seems that it is not
essential anymore to instantiate such registers if the circuit is glitch free.

Following this concept, we have implemented the round-based TI design pre-
sented in Figure 11, and did not integrate registers between the shared Q294 func-
tions. The state register is moved to the end of the round function, and the Ack

signal is generated based on the state register input. By a couple of engineering
tricks the design is mapped to our FPGA platform. We should here emphasize
that Xilinx FPGAs are developed yet only for synchronous designs, and integra-
tion of asynchronous circuits is neither straightforward nor efficient. For example,
each dual-rail WDDL gate should be implemented by a LUT [5].

Our design is a self-timed circuit, i.e., it does not require an external clock, and
once the reset signal goes LO, the circuit starts the first evaluation phase, which
is the first PRINCE round. Controlled by the internally-generated Ack signal, the

9 Such large gates are made by cascading the smaller gates.
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Fig. 11. Asynchronous round-based first-order threshold implementation of PRINCE

end of the evaluation phase triggers the state register to save the cipher state and
simultaneously the start of the pre-charge phase. As stated before, a disadvantage
of such a concept is its required interleaved pre-charge/evaluation phases. Because
we avoided the extra registers within the Sbox, the design does not form a pipeline
anymore. Therefore, a full PRINCE is performed by 14 (pre-charge, evaluation)
cycles. Figure 12 shows a sample power trace of such a design, where the cipher
rounds can be identified. However, the t-test indicates a pretty strong first-order
leakage. Note that the design still realizes a uniform threshold implementation
with 3 shares, and we have not used WDDL as an SCA countermeasure, rather as
a 4-phase dual-rail protocol to enable detection of the end of the evaluation (and
pre-charge) of the combinatorial circuit.

A more careful investigation about the detected first-order leakage clarified
that although the circuit is glitch free, the non-linear circuits are cascaded. One of
the component functions of the second non-linear circuit (the second shared Q294

in Figure 11) starts to evaluate when two output shares of the first non-linear
circuit are both evaluated. Further, these two shares depend on all three shares
of the Sbox input. Therefore, the start of the evaluation of the second non-linear
circuit depends on all three input shares of the Sbox. This, which is a non-linear
condition (i.e., when both two output shares of the first non-linear circuit are
evaluated) is the reason for such a detectable first-order leakage (see [23] for a
similar experience on an unmasked design). Although placing registers between
the shared non-linear functions was initially introduced to avoid the propagation
of glitches, it also synchronizes the start of their evaluation to be independent
of the timing of the previous stage. As a result, the shared non-linear functions
should also be isolated from each other even in asynchronous circuits.

If we isolate the shared non-linear circuits by means of registers, and trigger
the registers to store when all 3 shares are evaluated, again the time of triggering
the registers as well as the circuit which generates the Ack signals (Figure 10(a))
depends on all 3 shares and leak through first-order moments. As a proof of
concept, we have examined this issue by realizing the asynchronous round-based
TI design with registers in the Sbox module where the combinatorial parts are
made by WDDL gates. In this case, the Ack signals are generated by observing the
input of all three registers, i.e., when the pre-charge/evaluation of the entire circuit
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Fig. 12. Evaluation results, asynchronous round-based TI design

– pipeline with 3 stages – is completed. The evaluation of this construction has
also showed detectable first-order leakage. So, we omit the corresponding results.

As a side note, the early propagation effect [47] of WDDL aggravates this is-
sue. In the above explained experiments we have used the noEE version [5] of
WDDL (available only for FPGAs), that avoids early propagation only in evalu-
ation phase. We have also made use of its successor, AWDDL [35] (also only for
FPGAs) which avoids early propagation in both phases. Regardless of its double
area requirements, its utilization in our case slightly reduced the first-order leak-
age, but could not avoid it due to the known imbalances between the delay of
dual rails. In other words, the time required for full pre-charge/evaluation phase
of non-linear circuits still depends on three shares and hence on unshared input.

Therefore, the only solution which we could consider for a secure design is to
simplify the Ack generator circuit. It means that if we generate the Ack signal
based on only one share of one of the state registers, the start time of the next
pre-charge/evaluation phase should be independent from the unshared values.
However, such a circuit cannot guarantee that the pre-charge/evaluation of the
other parts of the circuit are also finished. Therefore, we have found a path with
the largest delay and connected the Ack generator circuit accordingly. To ensure
the end of the pre-charge/evaluation of the other circuits, the generated Ack signal
is delayed (see Figure 10(b)).

A sample trace as well as the t-test results are shown in Figure 13, which
confirms the prevention of first-order leakages. This construction is still a self-
timed asynchronous circuit without external clock, but it is vastly customized.
For instance, it does not operate at its maximum speed, and controlled mainly
by a delayed periodic signal. Hence, we do not benefit from all the features of
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Fig. 13. Evaluation results, asynchronous round-based TI design with simple Ack

asynchronous methodology. If we ignore the low-power feature of this construction,
it is not significantly different from the corresponding synchronous design with
a high speed clock. As we listed in Table 1, the asynchronous design is much
larger than its synchronous variant. Further, due to the interleaved (pre-charge,
evaluation) phases, the latency of the asynchronous design is also not convincing.

The interleaved (pre-charge, evaluation) phases of 4-phase dual-rail protocols
(e.g., WDDL which we used here) doubles the latency of the design. Alterna-
tively, one can utilize a 2-phase dual-rail protocol [45], where ‘1’ and ‘0’ values
are encoded as signal transitions. Such protocols lead to faster but much more
complex circuits. We have applied Level-Encoded Dual-Rail (LEDR) [19] concept
and designed and evaluated the corresponding circuit, but due to the similarity
of the results to that of the WDDL, their presentation is omitted. In short, the
design was much bigger than its WDDL variant, but slightly faster. However, all
issues with respect to isolation of non-linear functions as well as the Ack generator
circuit hold true.

In this situation, where the operation of non-linear circuits must be isolated
and independent of other non-linear parts, we believe that the synchronous de-
sign is favorable. For the remaining issue, i.e., absence of a fast clock in many
applications where low-latency cryptography is required, we suggest to generate
such a clock by means of a ring oscillator. Since the energy consumption of large
clock-trees (operated at a high frequency) is not desirable in many applications,
the ring oscillator can be controlled by the start and end of e.g., the encryption
module. A schematic view of an exemplary circuit is depicted in Figure 10(c).
Obviously the ring oscillator should be adjusted based on the critical path delay
of the circuit.
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Fig. 14. Evaluation results, round-based TI design clocked by a controlled ring oscillator

We have practically evaluated such a construction as well, whose results are
shown by Figure 14. As expected, higher power consumption peak compared to the
same design operated at 6 MHz (see Figure 8(a)) is observed. However, the first-
order leakage is still avoided, and more interestingly the higher-order leakages are
mitigated (Figure 14 vs. Figure 8). The reason is due to the overlap between the
adjacent power peaks, which leads to higher amount of noise, and consecutively
harder higher-order leakages to detect, e.g., in [38].

5 Discussion

We have discussed and shown that SCA-protected designs (by means of mask-
ing) should involve registers even in case of asynchronous designs. Therefore, the
low-latency concept – with a perspective of unrolled architectures – is in contra-
diction with masking in hardware. As a result, round-based architectures are the
only possible solution for applications, where provably-secure SCA protection is
required. In this scenario, in order to achieve a low latency two parameters play
the most important role: i) the latency of each cipher round, and ii) the number
of rounds.

Obviously, the most challenging issue, which we faced, was uniform realization
of the shared Sbox with 3 shares. In the seminal article [13], 8 different Sboxes (up
to affine equivalent) are suggested for the PRINCE-family. However, all of them
need at least a 3-stage decomposition to be able to uniformly shared with 3 shares.
Such a decomposition, as shown in Section 3.3, leads to a pipeline round-based
architecture with 3 stages. This – as stated above – increases the number of clock
cycles required for each cipher round, and negatively affect the latency.
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For the future designs, our first suggestion is to select Sboxes, whose uniform
sharing needs a low number of stages. The extreme case is to apply quadratic
Sboxes, which can be shared in one stage, but such a choice leads to higher number
of rounds (see PrintCipher [28]), which affect the low-latency target as well. Hence,
the trade-off here is to select either a quadratic Sbox, which needs more number
of rounds, or a cubic TI-friendly Sbox which forms a pipeline, hence more number
of clock cycles per round.

The second challenging issue was to deal with round constants. In case of
PRINCE, the round constants have been selected from a semi-random source
(fraction of π = 3.141 . . .). This design decision does not have any performance
penalty in case of unrolled architecture, since a round constant just turns some
XOR gates of the prior AddRoundKey to XNOR, i.e., for free10. However, for a
round-based design, this leads to a relatively large combinatorial circuit since each
round constant should be selected at each round based on the round counter11.
Hence, it is advisable to systematically generate the round constants, e.g., by
means of an LFSR. Note that if a large LFSR is chosen, the area required to save
its state (by registers) has also a negative impact on the area overhead.

In case of PRINCE, due to its underlying α-reflection structure, encryption
and decryption circuits are very similar. M′-Layer of PRINCE is self-inverse, and
the Sbox is affine equivalent to its inverse, but it consists of two different round
functions. Such a construction makes the round-based architecture (required for
SCA protection) more complicated as both round functions need to be imple-
mented (see Figure 4), which obviously increases the area requirements. Hence, it
is preferred to have a design with a unique round function. In this case, achieving
highly-similar encryption and decryption might be challenging.

5.1 Comparison to Midori

The Midori cipher has been introduced in [3] with the main goal of reducing the
energy consumption. Based on the simulation results and the discussions given
in [3,4], a round-based architecture is targeted to achieve the minimum energy con-
sumption per bit. Further, it has been shown that the full latency of a round-based
implementation of Midori outperforms that of other considered ciphers including
PRINCE. Therefore, we considered Midori64 for comparison purposes12.

Midori64 state is a 64-bit block, and its 4-bit Sbox (applied on all state nibbles)
is an involution. Its linear layer includes an involutional MixColumn operation
(made of a couple of XORs), and a ShiftCell which swaps the 4-bit cells of the
state. It consists of 15 rounds, and respectively 15 round constants (each 16 bits)
which are added to the LSB of the state nibbles. The 128-bit key is divided into
two parts which are alternatively added to the sate at each round, and their XOR
is used as a pre- and post-whitening key.

10 2-input XOR and XNOR gates need the same area [43].
11 In our round-based designs, the selection of the round constant followed by 64-bit

XOR need an area of 265 GE.
12 We are aware of the weakness reported in [25], but to be compatible with PRINCE,

i.e., 64-bit block size, we excluded Midori128 in our investigations.
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Fig. 15. Round-based first-order threshold implementation of Midori64

Figure 15 shows a round-based implementation of Midori64, which supports
both encryption and decryption. Note that the authors of [3] proposed to apply
the inverse of the linear operations, i.e., ShiftCell−1 ◦MixColumn, over the round
keys and round constants for the decryption. However, we found our solution (see
Figure 15) which needs 64 extra 2-input XOR gates, cheaper than the original
suggestion.

In order to realize its threshold implementation, the linear layers are simply
repeated over the 3 shares, and a uniform representation of its Sbox is constructed.
The Midori64 Sbox is affine equivalent to C266 class [11], which can be decomposed
to two quadratic bijections with uniform TI. Amongst many possible solutions we
selected Q12 ×Q12 and found affine functions as

S = Aout ◦ Q12 ◦Am ◦ Q12 ◦Ain.

There exist 147 456 such (Ain, Am, Aout) triples, and we selected the following
settings (with respect to the same criteria explained in Section 3.2):

Ain : 0A1B82934E5FC6D7, e = b, f = a, g = d, h = a+ c,

Am : 84B70C3F95A61D2E, e = b+ d, f = b, g = a, h = 1 + a+ c,

Aout : 8A02DF57CE469B13, e = c, f = a, g = c+ d, h = 1 + b. (4)

The sharing of Q12 : 0123456789CDEFAB with

e = a, f = b+ bd+ cd, g = c+ bd, h = d

can be derived by direct sharing [11]. If we define the component function
f i,jQ12

(〈ai, bi, ci, di〉, 〈aj , bj , cj , dj〉) = 〈e, f, g, h〉 as

e = ai, g = bidi + dibj + bidj ,

f = bi + bidi + dibj + bidj + cidi + dicj + cidj , h = di, (5)

we can form a uniform shared representation of Q12 by f2,3Q12
(., .), f3,1Q12

(., .) and

f1,2Q12
(., .), as shown in Figure 15.

We have also practically examined its SCA resistance by the FPGA proto-
type. For comparison purposes we considered only a synchronous version, where
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Fig. 16. Evaluation results, round-based TI design of Midori64 clocked by a controlled
ring oscillator

the clock is provided by a controlled ring oscillator (with the same number of
inverters as in the corresponding PRINCE design). The results (indicating first-
order resistance and stronger leakage through higher-order moments compared to
its corresponding PRINCE) are shown in Figure 16, and the performance results
are listed in Table 1.

5.2 Conclusions

We have presented the results of an extensive study on application of masking,
particularly TI, on PRINCE considering its low-latency goal. As given in Table 1,
the asynchronous design is around 2.8 times larger and around 2.6 times slower
than its synchronous variant. Further, an overview about its power consumption
(FPGA prototype) shows no advantage, even compared to the case when the
synchronous design operates at a high frequency13. More importantly, we faced
several issues regarding its detectable first-order leakage. Finally, the design, which
could prevent the leakages, was not much structurally different to a synchronous
design, whose clock is internally generated.

Based on Table 1, the fastest synchronous round-based TI needs 11 275 GE
which is in the range of the unprotected unrolled design (8 512 - 22 040 GE). Al-
though its critical path with 1.9 ns delay is more than 4 times shorter than that of
the fastest unrolled design, its 40 clock cycle latency leads to 76 ns which is around
10 times more than 8 ns latency of the unrolled design. However, its underlying

13 Note here the difference between power consumption of equivalent FPGA and ASIC
circuits.
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pipeline architecture compensates in terms of throughput to be between 2 and 3
times less than the unprotected unrolled designs.

Compared to the synchronous round-based TI of PRINCE, Midori64 is smaller
and achieves lower latency (58.9 ns vs. 76 ns for the fastest designs), but their
throughput are comparable considering the full capacity of the pipelines. We
should emphasize that most of the suggestions (given above) can be seen in the
design of Midori: i) the Sbox is an involution and TI friendly, ii) MixColumn is an
involution, iii) it consists of only one type of round function, and iv) the round
constants are short (16 bits per round) although they cannot be generated system-
atically. However, with respect to [25] our observation is that: there is still a gap
to fill, i.e., a low-latency cipher, which in addition to the desired cryptographic
strength, can easily deal with the challenges addressed in this article. In short,
the candidate should still achieve a low latency when fully unrolled as well as in a
round-based fashion, and at the same time its masked (TI) round-based variant is
efficient in terms of area and latency for the applications, where provably-secure
SCA protection is required.
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T. Yalçin. PRINCE - A Low-Latency Block Cipher for Pervasive Computing Appli-
cations - Extended Abstract. In ASIACRYPT 2012, volume 7658 of Lecture Notes
in Computer Science, pages 208–225. Springer, 2012.

14. G. Bouesse, M. Renaudin, A. Witon, and F. Germain. A clock-less low-voltage
aes crypto-processor. In Solid-State Circuits Conference, 2005. ESSCIRC 2005.
Proceedings of the 31st European, pages 403–406. IEEE, 2005.

15. G. F. Bouesse, M. Renaudin, S. Dumont, and F. Germain. DPA on quasi delay
insensitive asynchronous circuits: Formalization and improvement. In DATE, pages
424–429. IEEE Computer Society, 2005.

16. G. F. Bouesse, M. Renaudin, and G. Sicard. Improving DPA resistance of quasi
delay insensitive circuits using randomly time-shifted acknowledgment signals. In
VLSI-SoC, volume 240 of IFIP, pages 11–24. Springer, 2005.

17. G. F. Bouesse, G. Sicard, and M. Renaudin. Path swapping method to improve DPA
resistance of quasi delay insensitive asynchronous circuits. In CHES, volume 4249
of Lecture Notes in Computer Science, pages 384–398. Springer, 2006.

18. J. Cooper, E. Demulder, G. Goodwill, J. Jaffe, G. Kenworthy, and P. Rohatgi. Test
Vector Leakage Assessment (TVLA) Methodology in Practice. International Cryp-
tographic Module Conference, 2013.

19. M. E. Dean, T. E. Williams, and D. L. Dill. Efficient self-timing with level-encoded
2-phase dual-rail (ledr). In Conference on Advanced Research in VLSI, pages 55–70.
MIT Press, 1991.

20. A. A. Ding, C. Chen, and T. Eisenbarth. Faster, and More Robust T-test Based
Leakage Detection. In COSADE 2016, volume ?? of Lecture Notes in Computer
Science, pages ??–?? Springer, 2016. to appear.

21. F. Durvaux and F. Standaert. From Improved Leakage Detection to the Detection of
Points of Interests in Leakage Traces. In EUROCRYPT 2016, volume ?? of Lecture
Notes in Computer Science, pages ??–?? Springer, 2016. to appear.

22. T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh, and M. T. M.
Shalmani. On the Power of Power Analysis in the Real World: A Complete Break
of the KeeLoqCode Hopping Scheme. In Advances in Cryptology - CRYPTO 2008,
volume 5157 of Lecture Notes in Computer Science, pages 203–220. Springer, 2008.

23. J. J. A. Fournier, S. W. Moore, H. Li, R. D. Mullins, and G. S. Taylor. Security
evaluation of asynchronous circuits. In CHES, volume 2779 of Lecture Notes in
Computer Science, pages 137–151. Springer, 2003.



Side-Channel Analysis Protection and Low-Latency in Action 25

24. G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi. A testing methodology for side
channel resistance validation. In NIST non-invasive attack testing workshop, 2011.
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/

papers/08_Goodwill.pdf.
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A Masked Unrolled Design (only first and last rounds)

To share the Sbox and its inverse with 4 shares, we represented the Sbox as
S = A2 ◦ C231 ◦A1 and its inverse as S−1 = A4 ◦ C231 ◦A3 with
A1 : EF548932AB10CD76, A2 : 08192A3B4C5D6E7F, A3 : 92386DC7F45E0BA1, A4 :
51736240FBD9C8EA, and C231 : 0123468B59CEDA7F as

e =a+ d+ ac+ ad+ bd+ abc+ bcd

f =b+ ac+ bc+ bd+ abd

g =c+ d+ bc+ ad+ cd+ abd+ bcd

h =bc+ ad+ bd+ cd+ abd+ acd+ bcd.
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By applying direct sharing on C231 we reach the component function
f i,j,kC231 (〈ai, bi, ci, di〉, 〈aj , bj , cj , dj〉, 〈ak, bk, ck, dk〉) = 〈e, f, g, h〉 as

e =ai + di + aici + aicj + aick + ajci + aidi + aidj + aidk + ajdi + bidi+

bidj + bidk + bjdi + aibici + aibjck + aibkcj + ajbick + ajbkci+

akbicj + akbjci + aibicj + aibjcj + aibick + aibkck + ajbjci+

ajbici + aibjci + aibkci + ajbicj + bicidi + bicjdk + bickdj+

bjcidk + bjckdi + bkcidj + bkcjdi + bicidj + bicjdj + bicidk+

bickdk + bjcjdi + bjcidi + bicjdi + bickdi + bjcidj

f =bi + aici + aicj + aick + ajci + bici + bicj + bick + bjci + bidi + bidj+

bidk + bjdi + aibidi + aibjdk + aibkdj + ajbidk + ajbkdi + akbidj+

akbjdi + aibidj + aibjdj + aibidk + aibkdk + ajbjdi + ajbidi+

aibjdi + aibkdi + ajbidj

g =ci + di + bici + bicj + bick + bjci + aidi + aidj + aidk + ajdi + cidi + cidj+

cidk + cjdi + aibidi + aibjdk + aibkdj + ajbidk + ajbkdi + akbidj+

akbjdi + aibidj + aibjdj + aibidk + aibkdk + ajbjdi + ajbidi + aibjdi+

aibkdi + ajbidj + bicidi + bicjdk + bickdj + bjcidk + bjckdi + bkcidj+

bkcjdi + bicidj + bicjdj + bicidk + bickdk + bjcjdi + bjcidi + bicjdi+

bickdi + bjcidj

h =bici + bicj + bick + bjci + aidi + aidj + aidk + ajdi + bidi + bidj + bidk+

bjdi + cidi + cidj + cidk + cjdi + aibidi + aibjdk + aibkdj + ajbidk+

ajbkdi + akbidj + akbjdi + aibidj + aibjdj + aibidk + aibkdk + ajbjdi+

ajbidi + aibjdi + aibkdi + ajbidj + aicidi + aicjdk + aickdj + ajcidk+

ajckdi + akcidj + akcjdi + aicidj + aicjdj + aicidk + aickdk + ajcjdi+

ajcidi + aicjdi + aickdi + ajcidj + bicidi + bicjdk + bickdj + bjcidk+

bjckdi + bkcidj + bkcjdi + bicidj + bicjdj + bicidk + bickdk + bjcjdi+

bjcidi + bicjdi + bickdi + bjcidj

By implementing four instances of this component function f2,3,4C231 (., ., .),

f3,4,1C231 (., ., .), f4,1,2C231 (., ., .), and f1,2,3C231 (., ., .) we reach a correct, non-complete, but
non-uniform sharing of C231. Note that the 64-bit masks m1, m2, and m3 required
to share the last input round are independent of the masks used to share the
cipher input.
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B Round-based Designs
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Fig. 17. Detailed active parts of the original round-based architecture [13]
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Fig. 18. Detailed active parts of our round-based architecture
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C Decomposition of C231

Table 2. All possible ways to decompose C231 by selected quadratic bijections in three
stages

C231 C150 C151 C158 C159 C168 C171 C172 C214 C215 C223 C262 C266 C296 C297
Q4 × ×
Q12 × × × × × × × × × × × ×
Q293 × × × × × × × × × × × × ×
Q294 × × × × × × × × × × ×
Q299 × × × × × × × × × × × × ×
C150 : Q12 ×Q293

C151 : Q293 ×Q12

C158 : Q299 ×Q293

C159 : Q293 ×Q299

C168 : Q293 ×Q293

C171 : Q293 ×Q12 Q294 ×Q293

C172 : Q12 ×Q293 Q293 ×Q294

C214 :
Q4 ×Q299 Q12 ×Q12 Q12 ×Q294 Q12 ×Q299 Q293 ×Q4 Q293 ×Q12

Q293 ×Q294 Q293 ×Q299 Q294 ×Q12 Q294 ×Q294 Q294 ×Q299

C215 :
Q4 ×Q293 Q12 ×Q12 Q12 ×Q293 Q12 ×Q294 Q294 ×Q12 Q294 ×Q293

Q294 ×Q294 Q299 ×Q4 Q299 ×Q12 Q299 ×Q293 Q299 ×Q294

Q12 ×Q299 Q293 ×Q293 Q293 ×Q294 Q294 ×Q293 Q294 ×Q294 Q299 ×Q12C223 : Q299 ×Q299

C262 : Q12 ×Q299 Q294 ×Q299 Q299 ×Q12 Q299 ×Q294

C266 : Q12 ×Q12 Q294 ×Q299 Q299 ×Q294 Q299 ×Q299

C296 : Q12 ×Q299 Q293 ×Q293 Q294 ×Q12 Q299 ×Q294 Q299 ×Q299

C297 : Q12 ×Q294 Q293 ×Q293 Q294 ×Q299 Q299 ×Q12 Q299 ×Q299


