
Functional Encryption: Deterministic to Randomized
Functions from Simple Assumptions

Shashank Agrawal* David J. Wu†

Abstract

Functional encryption (FE) enables fine-grained control of encrypted data by allowing users to
compute only those functions for which they have a key. Until recently, FE schemes could only support
deterministic functions, but this changed with the work of Goyal et al. (TCC 2015), who formalized the
study of functional encryption for the more general class of randomized functionalities with security
against malicious encrypters. While public-key functional encryption can be constructed from many
assumptions, the only known construction for randomized functionalities in the public-key setting is
due to Goyal et al. and achieves selective security from indistinguishability obfuscation.

Our key contribution in this work is a generic transformation that converts any general-purpose,
public-key FE scheme for deterministic functionalities into one that supports randomized functionali-
ties. Our transformation uses the underlying FE scheme in a black-box way and can be instantiated
using very standard number-theoretic assumptions (for instance, the DDH and RSA assumptions
suffice). When applied to existing FE constructions, we obtain several adaptively-secure, public-
key functional encryption schemes for randomized functionalities with security against malicious
encrypters from many different assumptions such as concrete assumptions on multilinear maps,
indistinguishability obfuscation, and in the bounded-collusion setting, the existence of public-key
encryption, together with standard number-theoretic assumptions.

Additionally, we introduce a new, stronger definition for malicious security as the existing one falls
short of capturing an important class of malleability attacks. In realizing this definition, our compiler
combines ideas from disparate domains like related-key security for pseudorandom functions and
deterministic encryption in a novel way. We believe that our techniques could be useful in expanding
the scope of new variants of functional encryption (e.g., multi-input, hierarchical, and others) to
support randomized functionalities.

*University of Texas at Austin. Email: sagrawal@cs.utexas.edu. Part of this work was done while the author was at the
University of Illinois, Urbana-Champaign.

†Stanford University. Email: dwu4@cs.stanford.edu. This work was supported by NSF, DARPA, the Simons foundation, a
grant from ONR, and an NSF Graduate Research Fellowship. Opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of DARPA.

sagrawal@cs.utexas.edu
dwu4@cs.stanford.edu

Contents

1 Introduction 1
1.1 Our Contributions . 2
1.2 Security Against Malicious Encrypters . 4
1.3 Overview of Our Generic Transformation . 5

2 Preliminaries 7
2.1 RKA-Secure PRFs . 7
2.2 Functional Encryption . 7

3 Functional Encryption for Randomized Functionalities 9

4 Our Generic Transformation 12
4.1 Proof of Theorem 4.1: Description of Simulator . 13
4.2 Proof of Theorem 4.1: Hybrid Argument . 15
4.3 Proof of Theorem 4.1: Correctness . 19

5 Instantiating and Applying the Transformation 19
5.1 Instantiating Primitives . 19
5.2 Applying the Transformation . 21

6 Conclusions 23

A Additional Preliminaries 29
A.1 Non-Interactive Zero-Knowledge Arguments of Knowledge 30
A.2 One-Way Permutations . 31

B Hybrid Argument Proofs from Section 4.2 31
B.1 Proof of Lemma 4.3 . 31
B.2 Proof of Lemma 4.4 . 32
B.3 Proof of Lemma 4.5 . 33
B.4 Proof of Lemma 4.6 . 33
B.5 Proof of Lemma 4.7 . 35

C Correctness Proof 38

1 Introduction

Traditionally, encryption schemes have provided an all-or-nothing approach to data access: a user who
holds the secret key can completely recover the message from a ciphertext while a user who does not hold
the secret key learns nothing at all from the ciphertext. In the last fifteen years, numerous paradigms, such
as identity-based encryption [Sha84, BF01, Coc01], attribute-based encryption [SW05, GPSW06, BSW07],
predicate encryption [BW07, KSW08, LOS+10, OT10], and more have been introduced to enable more
fine-grained access control on encrypted data. More recently, the cryptographic community has worked
to unify these different paradigms under the general umbrella of functional encryption (FE) [SS10, BSW11,
O’N10].

At a high level, an FE scheme enables delegation of decryption keys that allow users to learn specific
functions of the data, and nothing else. More precisely, given a ciphertext for a message x and a secret key
for a function f , one can only learn the value f (x). In the last few years, numerous works have explored
different security notions [BSW11, O’N10, AGVW13, BO13, BF13, AAB+15, AAP15] as well as constructions
from a wide range of assumptions [GVW13, ABF+13, DIJ+13, GKP+13, GGH+13, Wat15, ABSV15, AS15].
Until very recently, the vast majority of work in functional encryption has focused on deterministic
functionalities, i.e., on schemes that issue keys for deterministic functions only. However, there are many
natural scenarios where the functionality of interest is more naturally captured by a randomized function.

Supporting randomized functionalities. Consider the problem of conducting audits on an encrypted
database, an interesting question first raised by Goyal et al. [GJKS15]. For instance, a government oversight
agency is interested in auditing banks to check for improper behavior. On the one hand, it is unsafe for
a bank to give its entire database to an external party, and on the other, agencies do not have time to
verify every record. Ideally, banks would encrypt their databases before providing access, and an auditor
would be able to sample and verify a few randomly chosen records from each database. We can satisfy this
seemingly conflicting set of requirements with an FE scheme for randomized functionalities. Specifically,
the bank encrypts its database under the FE scheme, and the auditor is given a secret key that allows it to
sample records from the database.

Constructing an encryption scheme that supports this sampling functionality is a nontrivial task.
There are several aspects of this problem that make it challenging. For instance, if the auditor has two
keys, then applying each key to the database should give an independent draw from the database. Thus,
with multiple keys, the auditor can sample a random subset of records. Furthermore, applying the same
key again and again to a particular database should not reveal multiple records. On the flip side, if the
same key is applied to two different databases, the auditor should get an independent sample from each.

There are several other areas where the ability to issue keys for randomized functions is very useful,
such as differentially-private data release. Motivated by these applications, Alwen et al. [ABF+13] and
Goyal et al. [GJKS15] were the first to formally study the problem of FE for randomized functionalities.
Here, a secret key for a randomized function f and an encryption of a message x should produce a single
sample from the output distribution of f (x). Moreover, given a collection of secret keys sk f1 , . . . ,sk fn for
functions f1, . . . , fn , and ciphertexts ctx1 , . . . ,ctxn corresponding to messages x1, . . . , xn , where neither the
functions nor the messages need to be distinct, each secret key sk fi and ciphertext ctx j should reveal an
independent draw from the output distribution of fi (x j), and nothing more.

In supporting randomized functionalities, handling malicious encrypters is a central issue: a malicious
encrypter may construct a ciphertext for a message x such that when decrypted with a key for f , the
resulting distribution differs significantly from that of f (x). For instance, in the auditing application

1

discussed earlier, a malicious bank could manipulate the randomness used to sample records in its
database, thereby compromising the integrity of the audit. We refer to [GJKS15] for a more thorough
discussion on the importance of handling malicious encrypters.

1.1 Our Contributions

To date, the only known construction of public-key FE for randomized functionalities secure against mali-
cious encrypters is due to Goyal et al. [GJKS15] and relies on indistinguishability obfuscation (iO) [BGI+01,
GGH+13]. However, iO is not a particularly appealing assumption since the security of existing iO con-
structions either rely on an exponential number of assumptions [BR14, BGK+14, PST14, Zim15, AB15],
or on a polynomial set of assumptions but with an exponential loss in the security reduction [GLW14,
GLSW15]. This shortcoming may even be inherent, as suggested by [GGSW13]. Moreover, numerous
recent attacks on multilinear maps (the underlying primitive on which all candidate constructions iO are
based) [CHL+15, BWZ14, CGH+15, CLLT15, HJ16, CFL+16, CJL16, MSZ16] have reduced the community’s
confidence in the security of existing constructions of iO.

On the other hand, functional encryption for deterministic functions can be realized from a variety of
assumptions such as the existence of public-key encryption [SS10, GVW12], learning with errors [GKP+13],
indistinguishability obfuscation [GGH+13, Wat15], multilinear maps [GGHZ16], and more. Thus, there is
a very large gap between the assumptions needed to build FE schemes for deterministic functionalities
and those needed for randomized functionalities. Hence, it is important to ask:

Does extending public-key FE to support the richer class of randomized functions require strong additional
assumptions such as iO?1

If there was a general transformation that we could apply to any FE scheme for deterministic functions,
and obtain one that supported randomized functions, then we could leverage the extensive work on
FE for the former to build FE for the latter with various capabilities and security guarantees. In this
paper, we achieve exactly this. We bridge the gap between FE schemes for deterministic and randomized
functionalities by showing that any general-purpose FE scheme for deterministic functionalities can
be extended to support randomized functionalities with security against malicious encrypters. Our
generic transformation applies to any general-purpose FE scheme with perfect correctness and only
requires fairly mild additional assumptions (e.g., the decisional Diffie-Hellman (DDH) [Bon98] and the
RSA [RSA78, Bon99] assumptions suffice). Moreover, our transformation is tight in the sense that it
preserves the security of the underlying FE scheme. Because our transformation relies only on simple
additional assumptions, future work in constructing general-purpose FE can primarily focus on handling
deterministic functions rather than devising specialized constructions to support randomized functions.
We now give an informal statement of our main theorem:

Theorem 1.1 (Informal). Under standard number-theoretic assumptions, given any general-purpose,
public-key functional encryption scheme for deterministic functions, there exists a general-purpose, public-
key functional encryption scheme for randomized functions secure against malicious encrypters.

In this work, we focus on simulation-based notions of security for FE. As shown by several works [BSW11,
O’N10, AGVW13], game-based formulations of security are inadequate if the function family under consid-
eration has some computational hiding properties. Moreover, there are generic ways to boost the security

1A similar type of question was also raised recently in the context of positional accumulators [OPWW15], FE for deterministic
functions [GGHZ16], multi-input functional encryption [BLR+15], and attribute-based fully homomorphic encryption [CM16].

2

of FE for deterministic functionalities from game-based to best-possible simulation-based [DIJ+13].
Hence, it is not only prudent but also sufficient to design a transformation technique that works on FE
schemes with simulation-based security.

Recently, Komargodski et al. [KSY15] considered a variant of the central question we ask in the private-
key setting. They show that starting from any “function-private” secret-key FE scheme for deterministic
functionalities, they can construct a secret-key FE for randomized functionalities. Combining their
transformation with the Brakerski-Segev function-privacy transformation [BS15a], their technique can
be applied to any general-purpose FE scheme in the secret-key setting. Due to the reliance on function
privacy [SSW09, BRS13], however, the Komargodski et al. transformation does not translate to the public-
key setting. Moreover, their transformation does not address the problem of malicious encrypters.

Concrete instantiations. Instantiating Theorem 1.1 with existing FE schemes such as [GVW13, GGHZ16,
GGH+13] and applying transformations like [BV16, DNR04, DIJ+13, ABSV15] to boost correctness and/or
security, we obtain several new public-key FE schemes for randomized functionalities with adaptive
simulation-based security against malicious encrypters. For example, if we start with

• the GVW scheme [GVW12], we obtain a scheme secure under bounded collusions assuming the
existence of semantically-secure public-key encryption and low-depth pseudorandom generators.

• the GGHZ scheme [GGHZ16], we obtain a scheme with best-possible simulation security relying
on the polynomial hardness of concrete assumptions on composite-order multilinear maps [BS02,
CLT13, CLT15].

• the GGHRSW scheme [GGH+13], we obtain a scheme with best-possible simulation security from
indistinguishability obfuscation.

The second and third schemes above should be contrasted with the one given by Goyal et al. [GJKS15],
which achieves selective security assuming the existence of iO. We describe these instantiations in greater
detail in Section 5.

Security definition. We also propose a strong simulation-based definition for security against malicious
encrypters, strengthening the one given by Goyal et al. [GJKS15]. We first give a brief overview of their
definition in Section 1.2 and then show why it does not capture an important class of malleability attacks.
We also discuss the subtleties involved in extending their definition.

Our techniques. At a very high level, we must balance between two conflicting goals in order to achieve
our strengthened security definition. On the one hand, the encryption and key-generation algorithms
must be randomized to ensure that the decryption operation induces the correct output distribution,
or even more fundamentally, that the scheme is semantically-secure. On the other hand, a malicious
encrypter could exploit its freedom to choose the randomness when constructing ciphertexts in order
to induce correlations when multiple ciphertexts or keys are operated upon. We overcome this barrier
by employing ideas from disparate domains like related-key security for pseudorandom functions and
deterministic encryption in a novel way. We discuss our transformation and the tools involved in more
detail in Section 1.3.

We believe that our techniques could be used to extend the capability of new variants of functional
encryption like multi-input FE [GGG+14, BLR+15], hierarchical or delegatable FE [ABG+13, CGJS15,

3

BS15b], and others so that they can support randomized functionalities with security against malicious
encrypters as well.

1.2 Security Against Malicious Encrypters

Simulation security. Informally, simulation security for FE schemes supporting randomized functional-
ities states that the output of any efficient adversary with a secret key for a randomized function f and an
encryption of a message x can be simulated given only f (x;r), where the randomness r used to evaluate
f is independently and uniformly sampled. Goyal et al. [GJKS15] extend this notion to include security
against malicious encrypters by further requiring that the output of any efficient adversary holding a
secret key for a function g and a (possibly dishonestly-generated) ciphertext ĉt should be simulatable
given only g (x̂;r), where x̂ is a message that is information-theoretically fixed by ĉt, and the randomness
r is uniform and unknown to the adversary. This captures the notion that a malicious encrypter is unable
to influence the randomness used to evaluate the function during decryption.

More formally, in the simulation-based definitions of security [BSW11, O’N10], an adversary tries to
distinguish its interactions in a real world where ciphertexts and secret keys are generated according to
the specifications of the FE scheme from its interactions in an ideal world where they are constructed by a
simulator given only a minimal amount of information. To model security against malicious encrypters,
Goyal et al. give the adversary access to a decryption oracle in the security game (similar to the formulation
of IND-CCA2 security [RS92]) that takes as input a single ciphertext ct along with a function f . In the real
world, the challenger first extracts a secret key sk f for f and then outputs the decryption of ct with sk f . In
the ideal world, the challenger invokes the simulator on ct. The simulator then outputs a value x (or a
special symbol ⊥), at which point the challenger replies to the adversary with an independently uniform
value drawn from the distribution f (x) (or ⊥).

Limitations of the existing definition. While the definition in [GJKS15] captures security against dis-
honest encrypters when dealing with deterministic functionalities, it does not fully capture the desired
security goals in the randomized setting. Notably, the security definition only considers one ciphertext.
However, when extending functional encryption to randomized functionalities, we are also interested in
the joint distribution of multiple ciphertexts and secret keys. Thus, while it is the case that in any scheme
satisfying the security definition in [GJKS15], the adversary cannot produce any single ciphertext that
decrypts improperly, a malicious encrypter could still produce a collection of ciphertexts such that when
the same key is used for decryption, the outputs are correlated. In the auditing application discussed
before, it is imperative to prevent this type of attack, for otherwise, the integrity of the audit can be
compromised.

Strengthening the definition. A natural way to strengthen Goyal et al.’s definition is to allow the de-
cryption oracle to take in a set of (polynomially-many) ciphertexts along with a function f . In the real
world, the challenger extracts a single key sk f for f and applies the decryption algorithm with sk f to each
ciphertext. In the ideal world, the simulator is given the set of ciphertexts and is allowed to query the
evaluation oracle O f once for each ciphertext submitted. On each query x, the oracle responds with a
fresh evaluation of f (x). This direct extension, however, is too strong, and not achievable by any existing
scheme. Suppose that an adversary could efficiently find two ciphertexts ct1 6= ct2 such that for all secret
keys sk, Decrypt(sk,ct1) =Decrypt(sk,ct2), then it can easily distinguish the real and ideal distributions.
When queried with (f , (ct1,ct2)), the decryption oracle always replies with two identical values in the real

4

world irrespective of what f is. In the ideal world, however, it replies with two independent values since
fresh randomness is used to evaluate f every time.

While we might want to preclude this type of behavior with our security definition, it is also one
that arises naturally. For example, in both Goyal et al.’s and our construction, ciphertexts have the form
(ct′,π) where ct′ is the ciphertext component that is actually combined with the decryption key and π is a
proof of the well-formedness of ct′. Decryption proceeds only if the proof verifies. Since the proofs are
randomized, an adversary can construct a valid ciphertext component ct′ and two distinct proofs π1,π2

and submit the pair of ciphertexts (ct′,π1) and (ct′,π2) to the decryption oracle. Since π1 and π2 do not
participate in the decryption process after verification, these two ciphertexts are effectively identical from
the perspective of the decryption function. However, as noted above, an adversary that can construct
such ciphertexts can trivially distinguish between the real and ideal worlds.

Intuitively, if the adversary submitted the same ciphertext multiple times in a decryption query, it
does not make sense for the decryption oracle to respond with independently distributed outputs in the
ideal experiment. The expected behavior is that the decryption oracle responds with the same value
on all identical ciphertexts. In our setting, we generalize the notion of “ciphertext equivalence.” In
particular, when the adversary submits a decryption query, the decryption oracle in the ideal experiment
responds consistently on all equivalent ciphertexts that appear in the query. Formally, we capture this by
introducing an efficiently-checkable equivalence relation on the ciphertext space of the FE scheme. For
example, if the ciphertexts have the form (ct′,π), one valid equivalence relation on ciphertexts is equality
of the ct′ components. To respond to a decryption query, the challenger first groups the ciphertexts
according to their equivalence class, and responds consistently for all ciphertexts belonging to the same
class. Thus, without loss of generality, it suffices to just consider adversaries whose decryption queries
contain at most one representative from each equivalence class. We provide a more thorough discussion
of our strengthened definition in Section 3.

As far as we understand, the Goyal et al. construction remains secure under our strengthened notion
of security against malicious encrypters, but it was only shown to be selectively secure assuming the
existence of iO (and one-way functions). Our transformation, on the other hand, provides a generic way of
building adaptively-secure schemes from both iO as well as plausibly weaker assumptions such as those
on composite-order multilinear maps (Section 5). Finally, we note that not all schemes satisfying the Goyal
et al. security notion satisfy our strengthened definition. In fact, a simplified version of our transformation
yields a scheme secure under their original definition, but not our new definition (Remark 4.2).

1.3 Overview of Our Generic Transformation

Our primary contribution in this work is giving a generic transformation from any simulation-secure
general-purpose (public-key) FE scheme2 for deterministic functionalities to a corresponding simulation-
secure (public-key) FE scheme for randomized functionalities. In this section, we provide a brief overview
of our generic transformation. The complete construction is given in Section 4.

Derandomization. Our starting point is the generic transformation of Alwen et al. [ABF+13] who use a
pseudorandom function (PRF) to “derandomize” functionalities. In their construction, an encryption of a
message x consists of an FE encryption of the pair (x,k) where k is a uniformly chosen PRF key. A secret
key for a randomized functionality f is constructed by first choosing a random point t in the domain of

2Our transformation requires that the underlying FE scheme be perfectly correct. Using the transformations in [DNR04, BV16],
approximately correct FE schemes can be converted to FE schemes that satisfy our requirement.

5

the PRF and then extracting an FE secret key for the derandomized functionality g t (x,k) = f (x;PRF(k, t)),
that is, the evaluation of f using randomness derived from the PRF. Evidently, this construction is not
robust against malicious encrypters, since by reusing the same PRF key when constructing the cipher-
texts, a malicious encrypter can induce correlations in the function evaluations. In fact, the problem
is more severe since there could be certain “weak” PRF keys k where the behavior of PRF(k, ·) is easily
distinguishable from that of a truly random function.3

Secret sharing the PRF key. In our transformation, we start with the same derandomization approach.
Since allowing the encrypter full control over the PRF key is problematic, we instead secret share the PRF
key across the ciphertext and the decryption key. Suppose the key-space K of the PRF forms a group
under an operation ¦. As before, an encryption of a message x corresponds to an FE encryption of the
pair (x,k), but now k is just a single share of the PRF key. To issue a key for f , another random key-share
k ′ is chosen from K. The key sk f is then an FE key for the derandomized functionality f (x;PRF(k ¦
k ′, x)). In this scheme, a malicious encrypter is able to influence the PRF key, but does not have full
control. However, because the malicious encrypter can induce correlated PRF keys in the decryption
queries, the usual notion of PRF security no longer suffices. Instead, we require the stronger property
that the outputs of the PRF appear indistinguishable from random even if the adversary observes PRF
outputs under related keys. Security against related-key attacks (RKA-security) for PRFs has been well-
studied [Bih94, Knu93, BK03, BC10, BCM11, LMR14, ABPP14, ABP15] in the last few years, and for our
particular application, a variant of the Naor-Reingold PRF is related-key secure for the class of group-
induced transformations [BC10].

Applying deterministic encryption. By secret-sharing the PRF key and using a PRF secure against
related-key attacks, we obtain robustness against malicious encrypters that only requests the decryption
of unique (x,k) pairs (in this case, either k or x is unique, so by related-key security, the output of
the PRF appears uniformly random). However, a malicious encrypter can encrypt the same pair (x,k)
multiple times, using freshly generated randomness for the base FE scheme each time. Since each of
these ciphertexts encrypt the same underlying value, in the real world, the adversary receives the same
value from the decryption oracle. In the ideal world, the adversary receives independent draws from the
distribution f (x). This problem arises because the adversary is able to choose additional randomness
when constructing the ciphertexts that does not affect the output of the decryption algorithm. As such, it
can construct ciphertexts that induce correlations in the outputs of the decryption process.

To protect against the adversary that encrypts the same (x,k) pair, we note that in the honest-encrypter
setting, the messages that are encrypted have high entropy (since the key-share is sampled uniformly at
random). Thus, instead of having the adversary choose its randomness for each encryption arbitrarily, we
instead force the adversary to derive the randomness from the message. This is similar to what is done
when constructing deterministic public-key encryption [BBO07, BFOR08, BS11, FOR12]. Specifically, we
sample a one-way permutation h on the key-space of the PRF, set the key-share in the ciphertext to h(k)
where k is uniform over K, and then derive the randomness used in the encryption using a hard-core
function of h. In addition, we require the adversary to include a non-interactive zero-knowledge (NIZK)
argument that each ciphertext is properly constructed. In this way, we guarantee that for each pair (x,k),
there is exactly a single ciphertext that is valid. By our admissibility requirement, the adversary is required

3Recall that the PRF security property only states that for a randomly chosen key, the behavior ofPRF(k, ·) looks indistinguishable
from that of a truly random function. Thus, it is possible that there exists a negligible fraction of “weak” PRF keys that are easy
to find.

6

to submit distinct ciphertexts (since matching ciphertexts belong to the same equivalence class). Thus,
the underlying messages encrypted by each ciphertext in a decryption query necessarily differ in either
the key-share or the message component. Security then follows by RKA-security.

2 Preliminaries

For n ≥ 1, we write [n] to denote the set of integers {1, . . . ,n}. For bit-strings a,b ∈ {0,1}∗, we write a‖b

to denote the concatenation of a and b. For a finite set S, we write x
R←− S to denote that x is sampled

uniformly from S. We denote the evaluation of a randomized function f on input x with randomness r by
f (x;r). We write Funs[X ,Y] to denote the set of all functions mapping from a domain X to a range Y . We
use λ to denote the security parameter. We say a function f (λ) is negligible in λ, denoted by negl(λ), if
f (λ) = o(1/λc) for all c ∈N. We say an algorithm is efficient if it runs in probabilistic polynomial time in
the length of its input. We use poly(λ) (or just poly) to denote a quantity whose value is bounded by some
polynomial in λ.

We now formally define the tools we need to build FE schemes for randomized functionalities with
security against malicious encrypters. In Appendix A, we also review the standard definitions of non-
interactive zero-knowledge (NIZK) arguments of knowledge [BFM88, FLS90, Gro06, GOS06], and one-way
permutations [Gol01].

2.1 RKA-Secure PRFs

We first review the standard definition of a pseudorandom function (PRF) and the notion of related-key
security [Bih94, Knu93, BK03, BC10, BCM11, LMR14, ABPP14, ABP15] for PRFs.

Definition 2.1 (Pseudorandom Function [GGM84]). Let K = {Kλ}λ∈N, X = {Xλ}λ∈N, and Y = {Yλ}λ∈N
be ensembles where Kλ, Xλ, and Yλ are finite sets and represent the key-space, domain, and range,
respectively. Let F :Kλ×Xλ→Yλ be an efficient computable family of functions. Then F is a PRF if for all
efficient non-uniform adversaries A,∣∣∣Pr

[
k

R←−Kλ :AF (k,·)(1λ) = 1
]
−Pr

[
f

R←−Funs[Xλ,Yλ] :A f (·)(1λ) = 1
]∣∣∣= negl(λ).

Definition 2.2 (RKA-Secure PRF [BK03, BC10]). Let K = {Kλ}λ∈N, X = {Xλ}λ∈N, and Yλ = {Yλ}λ∈N be
ensembles as in Definition 2.1, and let F :Kλ×Xλ→Yλ be an efficiently computable family of pseudo-
random functions. LetΦ⊆ Funs[Kλ,Kλ] be a family of key derivation functions. We say that F isΦ-RKA
secure if for all efficient non-uniform adversaries A,∣∣∣Pr

[
k

R←−Kλ :AO(k,·,·)(1λ) = 1
]
−Pr

[
f

R←−Funs[Φ×Xλ,Yλ] :A f (·,·)(1λ) = 1
]∣∣∣ = negl(λ),

where the oracle O(k, ·, ·) outputs F (φ(k), x) on input (φ, x) ∈Φ×Xλ.

Definition 2.3 (Group Induced Classes [Luc04, BC10]). If the key space K forms a group under an opera-
tion ¦, then the group-induced classΦ¦ is the class of functionsΦ¦ =

{
φb : a ∈K 7→ a ¦b | b ∈K}

.

2.2 Functional Encryption

The notion of functional encryption was first formalized by Boneh et al. [BSW11] and O’Neill [O’N10].
The work of Boneh et al. begins with a natural indistinguishability-based notion of security. They then

7

describe some example scenarios where these game-based definitions of security are inadequate (in the
sense that a trivially insecure FE scheme can be proven secure under the standard game-based definition).
To address these limitations, Boneh et al. defined a stronger simulation-based notion of security, which
has subsequently been the subject of intense study [GVW12, AGVW13, DIJ+13, GKP+13, GJKS15]. In this
work, we focus on this stronger security notion.

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles where Xλ and Yλ are finite sets and represent the
input and output domains, respectively. Let F = {Fλ}λ∈N be an ensemble where each Fλ is a finite collec-
tion of (deterministic) functions from Xλ to Yλ. A functional encryption scheme FE= (Setup,Encrypt,
KeyGen,Decrypt) for a (deterministic) family of functions F = {Fλ}λ∈N with domain X = {Xλ}λ∈N and
range Y = {Yλ}λ∈N is specified by the following four efficient algorithms:

• Setup: Setup(1λ) takes as input the security parameter λ and outputs a public key MPK and a master
secret key MSK.

• Encryption: Encrypt(MPK, x) takes as input the public key MPK and a message x ∈Xλ, and outputs
a ciphertext ct.

• Key Generation: KeyGen(MSK, f) takes as input the master secret key MSK, a function f ∈Fλ, and
outputs a secret key sk.

• Decryption: Decrypt(MPK,sk,ct) takes as input the public key MPK, a ciphertext ct, and a secret
key SK, and either outputs a string y ∈Yλ, or a special symbol ⊥. We can assume without loss of
generality that this algorithm is deterministic.

First, we state the correctness and security definitions for an FE scheme for deterministic functions.

Definition 2.4 (Perfect Correctness). A functional encryption scheme FE = (Setup,Encrypt,KeyGen,
Decrypt) for a deterministic function family F = {Fλ}λ∈N with message space X = {Xλ}λ∈N is perfectly
correct if for all f ∈Fλ, x ∈Xλ,

Pr[(MPK, MSK) ← Setup(1λ);Decrypt(MPK,KeyGen(MSK, f),Encrypt(MPK, x)) = f (x)] = 1.

Our simulation-based security definition is similar to the one in [AGVW13], except that we allow an
adversary to submit a vector of messages in its challenge query (as opposed to a single message). Our
definition is stronger than the one originally proposed by Boneh et al. [BSW11] because we do not allow
the simulator to rewind the adversary. On the other hand, it is weaker than [GVW12, DIJ+13] since the
simulator is allowed to program the public parameters and the responses to the pre-challenge secret key
queries.

Definition 2.5 (SIM-Security). An FE scheme FE= (Setup,Encrypt,KeyGen,Decrypt) for a deterministic
function family F = {Fλ}λ∈N with message space X = {Xλ}λ∈N is (q1, qc , q2)-SIM-secure if there exists an
efficient simulator S = (S1,S2,S3,S4) such that for all PPT adversaries A = (A1,A2), where A1 makes
at most q1 oracle queries and A2 makes at most q2 oracle queries, the outputs of the following two
experiments are computationally indistinguishable:

8

Experiment RealFEA (1λ):
(MPK, MSK) ← Setup(1λ)
(x,st) ←AO1(MSK,·)

1 (MPK) for x ∈X qc

λ
ct∗i ←Encrypt(MPK, xi) for i ∈ [qc]

α←AO2(MSK,·)
2 (MPK,

{
ct∗i

}
i∈[qc]

,st)

Output (x,
{

f
}

,α)

Experiment IdealFEA (1λ):
(MPK,st′) ←S1(1λ)

(x,st) ←AO′
1(st′,·)

1 (MPK) where x ∈X qc

λ
• Let f1, . . . , fq1 be A1’s oracle queries
• Let yi j = f j (xi) for i ∈ [qc], j ∈ [q1]

(
{
ct∗i

}
i∈[qc]

,st′) ←S3(st′,
{

yi j
}

i∈[qc], j∈[q1])

α←AO′
2(st′,·)

2 (MPK,
{
ct∗i

}
i∈[qc]

,st)

Output (x,
{

f ′} ,α)

where O1(MSK, ·) and O′
1(st′, ·) are pre-challenge key-generation oracles, and O2(MSK, ·) and O′

2(st′, ·) are
post-challenge ones. The oracles take a function f ∈Fλ as input and behave as follows:

• Real experiment: Oracles O1(MSK, ·) and O2(MSK, ·) both implement the key-generation func-
tion KeyGen(MSK, ·). The set

{
f
}

is the (ordered) set of key queries made to O1(MSK, ·) in the
pre-challenge phase and to O2(MSK, ·) in the post-challenge phase.

• Ideal experiment: Oracles O′
1(st′, ·) and O′

2(st′, ·) are the simulator algorithms S2(st′, ·) and S4(st′, ·),
respectively. On each invocation, the post-challenge simulator S4 is also given oracle access to
the ideal functionality KeyIdeal(x, ·). The functionality KeyIdeal accepts key queries f ′ ∈Fλ and
returns f ′(xi) for every xi ∈ x. Both algorithms S2 and S4 are stateful. In particular, after each
invocation, they update their state st′, which is carried over to the next invocation. The (ordered)
set

{
f ′} denotes the key queries made to O′

1(st′, ·) in the pre-challenge phase, and the queries S4

makes to KeyIdeal in the post-challenge phase.

3 Functional Encryption for Randomized Functionalities

In a functional encryption scheme that supports randomized functionalities, the function class Fλ is
expanded to include randomized functions from the domain Xλ to the range Yλ. Thus, we now view the
functions f ∈Fλ as taking as input a domain element x ∈Xλ and randomness r ∈Rλ, where R= {Rλ}λ∈N
is the randomness space. As in the deterministic setting, the functional encryption scheme still consists
of the same four algorithms, but the correctness and security requirements differ substantially.

For instance, in the randomized setting, whenever the decryption algorithm is invoked on a fresh
encryption of a message x or a fresh key for a function f , we would expect that the resulting output is indis-
tinguishable from evaluating f (x) with fresh randomness. Moreover, this property should hold regardless
of the number of ciphertexts and keys one has. To capture this property, the correctness requirement for
an FE scheme supporting randomized functions must consider multiple keys and ciphertexts. In contrast,
in the deterministic setting, correctness for a single key-ciphertext pair implies correctness for multiple.

Definition 3.1 (Correctness). A functional encryption scheme rFE = (Setup,Encrypt,KeyGen,Decrypt)
for a randomized function family F = {Fλ}λ∈N over a message space X = {Xλ}λ∈N and a randomness space
R= {Rλ}λ∈N is correct if for every polynomial n = n(λ), every f ∈Fn

λ
and every x ∈X n

λ
, the following two

distributions are computationally indistinguishable:

1. Real:
{
Decrypt

(
MPK,ski ,ct j

)}
i , j∈[n], where:

9

• (MPK, MSK) ← Setup(1λ);

• ski ←KeyGen(MSK, fi) for i ∈ [n];

• ct j ←Encrypt(MPK, x j) for j ∈ [n].

2. Ideal:
{

fi
(
x j ;ri , j

)}
i , j∈[n] where ri , j

R←−Rλ.

As discussed in Section 1.2, formalizing and achieving security against malicious encrypters in the
randomized setting is considerably harder than in the deterministic case. A decryption oracle that takes a
single ciphertext along with a function f does not suffice in the randomized setting, since an adversary
could still produce a collection of ciphertexts such that when the same key is used for decryption, the
outputs are correlated. We could strengthen the security definition by allowing the adversary to query
with multiple ciphertexts instead of just one, but as noted in Section 1.2, this direct extension is too strong.
In order to obtain a realizable definition, we instead restrict the adversary to submit ciphertexts that do
not behave in the same way. This is formally captured by defining an admissible equivalence relation on
the space of ciphertexts.

Definition 3.2 (Admissible Relation on Ciphertext Space). Let rFE = (Setup,Encrypt,KeyGen,Decrypt)
be an FE scheme for randomized functions with ciphertext space T = {Tλ}λ∈N. Let ∼ be an equivalence
relation on T . We say that ∼ is admissible if ∼ is efficiently checkable and for all λ ∈ N, all (MPK, MSK)
output by Setup(1λ), all secret keys sk output byKeyGen(MSK, ·), and all ciphertexts ct1,ct2 ∈ Tλ, if ct1 ∼ ct2,
then one of the following holds:

• Decrypt(MPK,sk,ct1) = ⊥ OR Decrypt(MPK,sk,ct2) = ⊥.

• Decrypt(MPK,sk,ct1) =Decrypt(MPK,sk,ct2).

We now define our strengthened requirement for security against malicious encrypters in the random-
ized setting. Like [GJKS15], we build on the usual simulation-based definition of security for functional
encryption (Definition 2.5) by providing the adversary access to a decryption oracle. The definition we
present here differs from that by Goyal et al. in two key respects. First, the adversary can submit multiple
ciphertexts to the decryption oracle, and second, the adversary is allowed to choose its challenge messages
adaptively (that is, after seeing the public parameters and making secret key queries).

Definition 3.3 (SIM-security for rFE). Let F = {Fλ}λ∈N be a randomized function family over a domain
X = {Xλ}λ∈N and randomness space R= {Rλ}λ∈N. Let rFE= (Setup,Encrypt,KeyGen,Decrypt) be a ran-
domized functional encryption scheme for F with ciphertext space T . Let ∼ be an admissible equivalence
relation associated with T . Then, we say that rFE is (q1, qc , q2)-SIM-secure against malicious encrypters if
there exists an efficient simulator S = (S1,S2,S3,S4,S5) such that for all efficient adversaries A= (A1,A2)
where A1 makes at most q1 key-generation queries and A2 makes at most q2 key-generation queries, the
outputs of the following experiments are computationally indistinguishable:4

4In the specification of the experiments, the indices i always range over [qc] and the indices j always range over [q1].

10

Experiment RealrFEA (1λ):

(MPK, MSK) ← Setup(1λ)
(x,st) ←AO1(MSK,·),O3(MSK,·,·)

1 (MPK) where x ∈X qc

λ
ct∗i ←Encrypt(MPK, xi) for i ∈ [qc]

α←AO2(MSK,·),O3(MSK,·,·)
2 (MPK,

{
ct∗i

}
,st)

Output (x,
{

f
}

,
{

g
}

,
{

y
}

,α)

Experiment IdealrFEA (1λ):

(MPK,st′) ←S1(1λ)

(x,st) ←AO′
1(st′,·),O′

3(st′,·,·)
1 (MPK) where x ∈X qc

λ• Let f1, . . . , fq1 be A1’s oracle queries to O′
1(st′, ·)

• Pick ri j
R←−Rλ, let yi j = f j (xi ;ri j) for all i ∈ [qc],

j ∈ [q1]
(
{
ct∗i

}
,st′) ←S3(st′,

{
yi j

}
)

α←AO′
2(st′,·),O′

3(st′,·,·)
2 (MPK,

{
ct∗i

}
,st)

Output (x,
{

f ′} ,
{

g ′} ,
{

y ′} ,α)

where the oracles O1(MSK, ·), O′
1(st′, ·), O2(MSK, ·), and O′

2(st′, ·) are the analogs of the key-generation
oracles from Definition 2.5:

• Real experiment: Oracles O1(MSK, ·) and O2(MSK, ·) implement KeyGen(MSK, ·), and
{

f
}

is the
(ordered) set of key queries made to oracles O1(MSK, ·) and O2(MSK, ·).

• Ideal experiment: Oracles O′
1(st′, ·) and O′

2(st′, ·) are the simulator algorithms S2(st′, ·) and S4(st′, ·),
respectively. The simulator S4 is given oracle access to KeyIdeal(x, ·), which on input a function

f ′ ∈Fλ, outputs f ′(xi ;ri) for every xi ∈ x and ri
R←−Rλ. The (ordered) set

{
f ′} consists of the key

queries made to O′
1(st′, ·), and the queries S4 makes to KeyIdeal.

Oracles O3(MSK, ·, ·) and O′
3(st′, ·, ·), are the decryption oracles that take inputs of the form (g ,C) where

g ∈Fλ and C = {cti }i∈[m] is a collection of m = poly(λ) ciphertexts. For queries made in the post-challenge
phase, we additionally require that ct∗i ∉C for all i ∈ [qc]. Without loss of generality, we assume that for all
i , j ∈ [m], if i 6= j , then cti 6∼ ct j . In other words, the set C contains at most one representative from each
equivalence class of ciphertexts.

• Real experiment: On input (g ,C), O3 computes skg ← KeyGen(MSK, g). For i ∈ [m], it sets yi =
Decrypt(skg ,cti) and replies with the ordered set

{
yi

}
i∈[m]. The (ordered) set

{
g
}

denotes the
functions that appear in the decryption queries of A2 and

{
y
}

denotes the set of responses of O3.

• Ideal experiment: On input (g ′,C ′), O′
3 does the following:

1. For each ct′i ∈ C ′, invoke the simulator algorithm S5(st′,ct′i) to obtain a value xi ∈Xλ∪ {⊥}.
Note that S5 is also stateful.

2. For each i ∈ [m], if xi =⊥, then the oracle sets y ′
i =⊥. Otherwise, the oracle choose ri

R←−Rλ

and sets y ′
i = g ′(xi ;ri).

3. Output the ordered set of responses
{

y ′
i

}
i∈[m]

.

The (ordered) set
{

g ′} denotes the functions that appear in the decryption queries of A2 and
{

y ′}
denotes the outputs of O′

3.

Interpreting the admissibility requirement. It might seem that restricting the adversary to submit at
most one ciphertext from each equivalence class weakens our security definition. However, we argue that
this restriction is essentially without loss of generality. Consider an ideal model where the adversary is
allowed to submit equivalent ciphertexts to the decryption oracle. In the extreme case where the adversary

11

submits identical ciphertexts, it does not make sense for the decryption oracle to respond independently
on each of the ciphertexts. Rather, it should respond consistently. In constructions of randomized FE that
provide malicious security, there naturally arise ciphertexts that are not identical as bit-strings, but are
identical from the perspective of the decryption function. In these cases, the expected behavior of the
ideal functionality should again be to provide consistent, rather than independent, responses.

Consider now an adversary that submits a function f and a set C of ciphertexts to the decryption
oracle, where some ciphertexts in C belong to the same equivalence class. To respond, the challenger can
first group these ciphertexts by equivalence class. For each equivalence class C ′ of ciphertexts in C , the
challenger invokes the simulator on C ′. On input the collection C ′, the simulator outputs a single value
x and indicates which ciphertexts in C ′, if any, are valid. If C ′ contains at least one valid ciphertext, the
challenger samples a value z from the output distribution of f (x). It then replies with the same value z on
all ciphertexts marked valid by the simulator, and ⊥ on all ciphertexts marked invalid. This is a natural
generalization of how we would expect the decryption oracle to behave had the adversary submitted
identical ciphertexts to it. Thus, it suffices to just consider adversaries that always submit at most one
representative from each equivalence class of ciphertexts to the decryption oracle.

4 Our Generic Transformation

In this section, we give our generic construction of a functional encryption for randomized functions from
a general-purpose FE scheme for deterministic functions. Fix a security parameter λ ∈N. Let F = {Fλ}λ∈N
be a randomized function class over a domain X = {Xλ}λ∈N, randomness space R= {Rλ}λ∈N and range
Y = {Yλ}λ∈N. Our construction requires the following ingredients:

• A non-interactive zero-knowledge argument systemNIZK= (NIZK.Setup,NIZK.Prove,NIZK.Verify)
that is simulation-sound extractable (Definition A.3).

• AΦ-RKA secure pseudorandom function PRF (Definition 2.2) with key-space K= {Kλ}λ∈N, domain
X , and range Y , whereΦ is group-induced (Definition 2.3). Let ¦ denote the group operation on K.

• A family of one-way permutations OWP= (OWP.Setup,OWP.Eval) over K with associated hard-
core function hc : Kλ → {0,1}ρ (Definition A.5). The number of output bits ρ = ρ(λ) is specified
below.

• For all f ∈Fλ and k ∈Kλ, let g f
k :Xλ×Kλ→Yλ be the derandomized function

g f
k (x,k ′) = f (x;PRF(k ¦k ′, x)). (1)

LetGF ,λ be the derandomized function class
{

g f
k | f ∈Fλ,k ∈Kλ

}
, and letFE= (FE.Setup,FE.Encrypt,

FE.KeyGen,FE.Decrypt) be a functional encryption scheme for the derandomized class GF =
{GF ,λ}λ∈N. By construction, the message space for FE is Xλ ×Kλ. Let ρ = ρ(λ) be a bound on
the number of bits of randomness FE.Encrypt takes.

We now describe our functional encryption scheme rFE= (Setup,Encrypt,KeyGen,Decrypt) for random-
ized functionalities:

• The setup algorithm: On input the security parameter 1λ, the setup algorithm Setup samples
(MPK′, MSK′) ← FE.Setup(1λ), t ←OWP.Setup(1λ), andσ←NIZK.Setup(1λ). It sets ht (·) =OWP.Eval(t , ·),
and outputs the master public key MPK = (MPK′, t ,σ) and master secret key MSK = MSK′.

12

• The encryption algorithm: On input the master public key MPK = (MPK′, t ,σ), the encryption

algorithm Encrypt samples k
R←−Kλ and sets ct′ =FE.Encrypt(MPK′, (x,ht (k));hc(k)). Then, it runs

NIZK.Prove(σ, s, (x,k)) to obtain an argument π on the following statement s:

∃ x,k : ct′ =FE.Encrypt(MPK′, (x,ht (k));hc(k)). (2)

Finally, it outputs the ciphertext ct= (ct′,π).

• The key-generation algorithm: On input the master secret key MSK = MSK′, the key-generation

algorithm KeyGen samples a key k
R←−Kλ and outputs the secret key sk f = FE.KeyGen(MSK′, g f

k),

where g f
k is the derandomized function corresponding to f (Eq. (1)).

• The decryption algorithm: On input the master public key MPK = (MPK′, t ,σ), a secret key sk, and
a ciphertext ct = (ct′,π), the decryption algorithm Decrypt first runs NIZK.Verify(σ, s,π) where s
is the statement from Eq. (2). If the argument verifies, the decryption outputs FE.Decrypt(sk,ct′);
otherwise, it outputs ⊥.

Theorem 4.1. If (1) NIZK is a simulation-sound extractable non-interactive zero-knowledge argument, (2)
PRF is aΦ-RKA secure pseudorandom function whereΦ is group-induced, (3) OWP is a family of one-way
permutations with hard-core function hc, and (4) FE is a perfectly-correct (q1, qc , q2)-SIM secure functional
encryption scheme for the derandomized class GF , then rFE is (q1, qc , q2)-SIM secure against malicious
encrypters for the class F of randomized functions.

Before proceeding with the proof of Theorem 4.1, we remark that our strengthened definition of
security against malicious encrypters (Definition 3.3) is indeed stronger than the original definition by
Goyal et al. [GJKS15].

Remark 4.2. A simpler version of our generic transformation (Theorem 4.1) where we only secret share
the RKA-secure PRF key used for derandomization and include a NIZK argument can be shown to satisfy
the Goyal et al. [GJKS15] definition of security against malicious encrypters, but not our strengthened
definition (Definition 3.3). In particular, if the randomness used in the base FE encryption is under the
control of the adversary, a malicious encrypter can construct two fresh encryptions (under the base FE
scheme) of the same (x,k) pair and submit them to the decryption oracle. In the real world, the outputs
are identical (since the ciphertexts encrypt identical messages), but in the ideal world, the oracle replies
with two independent outputs. This is an admissible query because if the underlying FE scheme is secure,
one cannot efficiently decide whether two FE ciphertexts encrypt the same value without knowing any
scheme parameters. But because each individual output is still properly distributed (by RKA-security of
the PRF), security still holds in the Goyal et al. model.

We now proceed to give a proof of Theorem 4.1 in Sections 4.1 and 4.2. Then, in Section 4.3, we show
that our transformed scheme is correct.

4.1 Proof of Theorem 4.1: Description of Simulator

To prove Theorem 4.1, and show that rFE is secure in the sense of Definition 3.3, we first define an
equivalence relation ∼ over the ciphertext space T = {Tλ}λ∈N. Take two ciphertexts ct1,ct2 ∈ Tλ, and write
ct1 = (ct′1,π1) and ct2 = (ct′2,π2). We say that ct1 ∼ ct2 if ct′1 = ct′2.

13

Certainly, ∼ is an efficiently-checkable equivalence relation over Tλ. For the second admissibility
condition, take any (MPK, MSK) output by Setup and any sk output by KeyGen(MSK, ·). Suppose moreover
that Decrypt(MPK,sk,ct1) 6= ⊥ 6=Decrypt(MPK,sk,ct2). Then, by definition of Decrypt(MPK,sk, ·),

Decrypt(MPK,sk,ct1) =FE.Decrypt(MPK′,sk,ct′1)

=FE.Decrypt(MPK′,sk,ct′2) =Decrypt(MPK,sk,ct2),

where MPK′ is the master public key for the underlying FE scheme (included in MPK). The second equiva-
lence follows since ct′1 = ct′2.

We now describe our ideal-world simulator S = (S1,S2,S3,S4,S5). Let S (FE) = (S (FE)
1 ,S (FE)

2 ,S (FE)
3 ,S (FE)

4)

be the simulator for the underlying FE scheme for deterministic functionalities. LetS (NIZK) = (S (NIZK)
1 ,S (NIZK)

2)

and E (NIZK) = (E (NIZK)
1 ,E (NIZK)

2) be the simulation and extraction algorithms, respectively, for the NIZK argu-
ment system.

Algorithm S1(1λ). S1 simulates the setup procedure. On input a security parameter 1λ, it operates as
follows:

1. Invoke S (FE)
1 (1λ) to obtain a master public key MPK′ and some state st(FE).

2. Invoke E (NIZK)
1 (1λ) to obtain a CRS σ, a simulation trapdoor τ, and an extraction trapdoor ξ.

3. Sample a one-way permutation t ←OWP.Setup(1λ) and define ht (·) =OWP.Eval(t , ·).

4. Set MPK ← (MPK′, t ,σ) and st← (st(FE), MPK,τ,ξ). Output (MPK,st).

Algorithm S2(st0, f). S2 simulates the pre-challenge key-generation queries. On input a state st0 =
(st(FE)

0 , MPK,τ,ξ) and a function f ∈Fλ, it operates as follows:

1. Choose a random key k
R←−Kλ and construct the derandomized function g f

k as defined in Eq. (1).

2. Invoke S (FE)
2 (st(FE)

0 , g f
k) to obtain a key sk and an updated state st(FE)

1 .

3. Output the key sk and an updated state st1 = (st(FE)
1 , MPK,τ,ξ).

AlgorithmS3(st0,
{

yi j
}

i∈[qc], j∈[q1]). S3 constructs the challenge ciphertexts. Let x = (x1, x2, . . . , xqc) be the

challenge messages the adversary outputs. On input a state st0 = (st(FE)
0 , MPK,τ,ξ), where MPK = (MPK′, t ,σ),

and a collection of function evaluations
{

yi j
}

i∈[qc], j∈[q1], S3 operates as follows:

1. Invoke S (FE)
3 (st(FE)

0 ,
{

yi j
}

i∈[qc], j∈[q1]) to obtain a set of ciphertexts
{
ct′i

}
i∈[qc]

and an updated state

st(FE)
1 .

2. For i ∈ [qc], let si be the statement

∃x,k : ct′i =FE.Encrypt(MPK′, (x,ht (k));hc(k)). (3)

Using the trapdoor τ in st0, simulate an argument πi ←S (NIZK)
2 (σ,τ, si), and set ct∗i = (ct′i ,πi).

3. Output the challenge ciphertexts
{
ct∗i

}
i∈[qc]

and the updated state st1 = (st(FE)
1 , MPK,τ,ξ).

14

Algorithm S4(st0, f). S4 simulates the post-challenge key-generation queries with help from the ideal
functionality KeyIdeal(x, ·). On input a state st0 = (st(FE)

0 , MPK,τ,ξ) and a function f ∈Fλ, it operates as
follows:

1. Chooses a random key k
R←−K, and construct the derandomized function g f

k as defined in Eq. (1).

2. Invoke S (FE)
4 (st(FE)

0 , g f
k). Here, S4 also simulates the FE.KeyIdeal(x, ·) oracle for S (FE)

4 . Specifically,

when S (FE)
4 makes a query of the form g f ′

k ′ to FE.KeyIdeal(x, ·), S4 queries its own oracle KeyIdeal(x, ·)
on f ′ to obtain values zi for each i ∈ [qc].5 It replies to S (FE)

4 with the value zi for all i ∈ [qc]. Let sk

and st(FE)
1 be the output of S (FE)

4 .

3. Output the key sk and an updated state st1 = (st(FE)
1 , MPK,τ,ξ).

Algorithm S5(st,ct). S5 handles the decryption queries. On input a state st = (st(FE), MPK,τ,ξ) and a
ciphertext ct, it proceeds as follows:6

1. Parse MPK as (MPK′, t ,σ) and ct as (ct′,π). Let s be the statement

∃x,k : ct=FE.Encrypt(MPK′, (x,ht (k));hc(k)).

If NIZK.Verify(σ, s,π) = 0, then stop and output ⊥.

2. Otherwise, invoke the extractor E (NIZK)
2 (σ,ξ, s,π) using the extraction trapdoor ξ to obtain a witness

(x,k) ∈Xλ×Kλ. Output x and state st.

4.2 Proof of Theorem 4.1: Hybrid Argument

To prove security, we proceed via a series of hybrid experiments between an adversary A and a challenger.
Each experiment consists of the following phases:

1. Setup phase. The challenger begins by generating the public parameters of the rFE scheme, and
sends those to the adversary A.

2. Pre-challenge queries. In this phase of the experiment, A can issue key-generation queries of
the form f ∈ Fλ and decryption queries of the form (f ,C) ∈ Fλ×T m

λ
to the challenger. For all

decryption queries (f ,C), we require that for any cti ,ct j ∈C , cti 6∼ ct j if i 6= j . In other words, each
set of ciphertexts C can contain at most one representative from each equivalence class.

3. Challenge phase. The adversary A submits a vector of messages x ∈X qc

λ
to the challenger, who

replies with ciphertexts
{
ct∗i

}
i∈[qc]

.

4. Post-challenge queries. In this phase, A is again allowed to issue key-generation and decryp-
tion queries, with a further restriction that no decryption query can contain any of the challenge
ciphertexts (i.e., for any query (f ,C), ct∗i ∉C for all i ∈ [qc]).

5The underlying FE scheme is for the derandomized class GF , so the only permissible functions S(FE)
4 can issue to FE.KeyIdeal

are of the form g
f ′
k ′ for some k ′ and f ′.

6Recall that in the security definition (Definition 3.3), the decryption oracle accepts multiple ciphertexts, and invokes the
simulator on each one individually. Thus, the simulator algorithm operates on a single ciphertext at a time.

15

5. Output. At the end of the experiment, A outputs a bit b ∈ {0,1}.

We now describe our sequence of hybrid experiments. Note that in defining a new hybrid, we only describe
the phases that differ from the previous one. If one or more of the above phases are omitted, the reader
should assume that they are exactly the same as in the previous hybrid.

Hybrid Hyb0. In this experiment, the challenger responds to A according to the specification of the real

experiment RealrFEA .

• Setup phase. The challenger samples (MPK, MSK) ← Setup(1λ) and sends MPK to A.

• Pre-challenge queries. The challenger responds to each query as follows:

– Key-generation queries. On a key-generation query f ∈ Fλ, the challenger responds with
KeyGen(MSK, f).

– Decryption queries. On a decryption query (f ,C) ∈Fλ×T m
λ

, the challenger samples sk←
KeyGen(MSK, f). For each cti ∈C , the challenger sets yi =Decrypt(sk,cti), and sends

{
yi

}
i∈[m]

to the adversary.

• Challenge phase. When the challenger receives a vector x ∈X qc

λ
, it sets ct∗i =Encrypt(MPK, xi) for

each i ∈ [qc] and replies to A with
{
ct∗i

}
i∈[qc]

.

• Post-challenge queries. This is identical to the pre-challenge phase.

Hybrid Hyb1. This is the same as Hyb0, except the challenger simulates the CRS in the setup phase and

the arguments in the challenge ciphertexts in the challenge phase. Let S (NIZK) = (S (NIZK)
1 ,S (NIZK)

2) be the
simulator for NIZK (Definition A.2). Note that we omit the description of the pre- and post-challenge
phases in the description below because they are identical to those phases in Hyb0.

• Setup phase. The challenger generates the public parameters as in Hyb0, except it uses S (NIZK)
1 to

generate the CRS. Specifically, it does the following:

1. Sample (MPK′, MSK′) ← FE.Setup(1λ).

2. Run S (NIZK)
1 (1λ) to obtain a CRS σ and a simulation trapdoor τ.

3. Sample a one-way permutation t ←OWP.Setup(1λ), and define ht (·) =OWP.Eval(t , ·).

4. Set MPK = (MPK′, t ,σ) and send MPK to A.

• Challenge phase. The challenger constructs the challenge ciphertexts as in Hyb0, except it uses
S (NIZK)

2 to simulate the NIZK arguments. Let x ∈ X qc

λ
be the adversary’s challenge. For i ∈ [qc],

the challenger samples k∗
i

R←−Kλ and sets ct′i ← FE.Encrypt(MPK′, (xi ,ht (k∗
i));hc(k∗

i)). It invokes

S (NIZK)
2 (σ,τ, si) to obtain a simulated argument πi , where si is the statement in Eq. (3). Finally, it

sets ct∗i = (ct′i ,πi) and sends
{
ct∗i

}
i∈[qc]

to A.

Hybrid Hyb2. This is the same as Hyb1, except the challenger uses uniformly sampled randomness when
constructing the challenge ciphertexts.

• Challenge phase. Same as inHyb1, except that for every i ∈ [qc], the challenger sets ct′i =FE.Encrypt

(MPK′, (xi ,ht (k∗
i));ri) for a randomly chosen ri

R←− {0,1}ρ .

16

Hybrid Hyb3. This is the same as Hyb2, except the challenger answers the decryption queries by first
extracting the message-key pair (m,k) from the NIZK argument and then evaluating the derandomized
function on it. Let E (NIZK) = (E (NIZK)

1 ,E (NIZK)
2) be the extraction algorithm for NIZK (Definition A.3).

• Setup phase. Same as in Hyb2 (or Hyb1), except the challenger runs (σ,τ,ξ) ← E (NIZK)
1 (1λ) to obtain

the CRS σ, the simulation trapdoor τ, and the extraction trapdoor ξ.

• Pre-challenge queries. The key-generation queries are handled as in Hyb2, but the decryption
queries are handled as follows.

– Decryption queries. On input (f ,C), where C = {cti }i∈[m],

1. Choose a random key k
R←−Kλ.

2. For i ∈ [m], parse cti as (ct′i ,πi), and let si be the statement in Ea. (3). If NIZK.Verify(σ,

si ,πi) = 0, set yi =⊥. Otherwise, invoke the extractor E (NIZK)
2 (σ,ξ, si ,πi) to obtain a witness

(xi ,ki), and set yi = f (xi ;PRF(k ¦ht (ki), xi)).

3. Send the set
{

yi
}

i∈[m] to A.

• Post-challenge queries. This is identical to the pre-challenge phase.

Hybrid Hyb4. This is the same asHyb3, except the challenger uses the simulatorS (FE) = (S (FE)
1 ,S (FE)

2 ,S (FE)
3 ,S (FE)

4)
for the underlying FE scheme to respond to queries. Let S = (S1,S2,S3,S4,S5) be the simulator described
in Section 4.1.

• Setup phase. Same as inHyb3, except the challenger invokes the base FE simulatorS (FE)
1 to construct

MPK. The resulting setup algorithm corresponds to the simulation algorithm S1. Hence, we can
alternately say that the challenger runs S1(1λ) to obtain MPK = (MPK′, t ,σ) and st= (st(FE), MPK,τ,ξ),
and sends MPK to A.

• Pre-challenge queries. The decryption queries are handled as described inHyb3, but key-generation
queries are handled as follows.

– Key-generation queries. On a key-generation query f ∈Fλ,

1. Sample a key k
R←−Kλ. Let g f

k be the derandomized function corresponding to f .

2. Run S (FE)
2 (st(FE), g f

k) to obtain a secret key sk and an updated state.

3. Update st accordingly and send sk to A.

Note that this is exactly how S2 behaves when given f and st as inputs.

• Challenge phase. The challenger constructs the challenge ciphertexts using the simulation algo-
rithm S3. Specifically, it does the following on receiving x ∈X qc

λ
:

1. For each i ∈ [qc], choose a key k∗
i

R←−Kλ.

2. Let f1, . . . , fq1 ∈Fλ be the pre-challenge key-generation queries made by A and k1, . . . ,kq1 ∈Kλ

be the keys chosen when responding to each query. For all i ∈ [qc] and j ∈ [q1], compute
ri j =PRF(k j ¦ht (k∗

i), xi) and set yi j = f j (xi ;ri j).

3. Invoke the simulator algorithm S3(st,
{

yi j
}

i∈[qc], j∈[q1]) to obtain a collection of ciphertexts{
ct∗i

}
i∈[qc]

and an updated state st.

17

4. Send
{
ct∗i

}
i∈[qc]

to A.

• Post-challenge queries. The decryption queries are handled as in the pre-challenge phase, but
key-generation queries are handled differently as follows.

– Key-generation queries. The first step stays the same: a key k is picked at random and g f
k

is defined. The challenger then invokes S (FE)
4 with inputs st(FE) and g f

k , instead of S (FE)
2 . In

invoking S (FE)
4 , it simulates the FE.KeyIdeal(x, ·) oracle as follows: on input a function of the

form g f ′

k ′ , it computes yi = g f ′

k ′ (xi ,ht (k∗
i)) = f ′(xi ;PRF(k ′ ¦ht (k∗

i), xi)) and replies with the set{
yi

}
i∈[qc]. The function key returned by S (FE)

4 is given to A, and st is updated appropriately.
This is the behavior of S4.

Hybrid Hyb5. This is the same as Hyb4, except the outputs of PRF are replaced by truly random strings.

This matches the specification of the ideal experiment IdealrFEA . We highlight below the differences from
the previous hybrid.

• Pre-challenge queries. While the key queries are handled as before, the decryption queries are
handled as follows.

– Decryption queries. Same as in Hyb4, except the function f is evaluated using uniformly
sampled randomness. In other words, on input f and C = {cti }i∈[m], the challenger does the
following:

1. For every cti ∈C , invoke the simulator algorithm S5(st,cti) to obtain a value xi ∈Xλ∪ {⊥}
and an updated state st.

2. If xi = ⊥, set yi to ⊥, else set it to f (xi ;ri), where ri
R←−Rλ.

3. Send the set of values
{

yi
}

i∈[m] to A.

• Challenge phase. The challenge ciphertexts are constructed as in the ideal experiment. Specifically,
instead of using PRF to generate the randomness for evaluating yi j in the first and second steps of

the challenge phase, the challenger simply computes f j (xi ;ri j) for ri j
R←−Rλ. The remaining two

steps (third and fourth) stay the same.

• Post-challenge queries. The decryption queries are handled as in the pre-challenge phase, but key
queries are handled as follows:

– Key-generation queries. Same as Hyb4, except the oracle FE.KeyIdeal(x, ·) is implemented
using uniformly sampled randomness as in the ideal experiment. Specifically, if S (FE)

4 makes

a query to FE.KeyIdeal(x, ·) with a derandomized function g f ′

k ′ , the challenger chooses an

ri
R←−Rλ for every i ∈ [qc], and replies with

{
f ′(xi ;ri)

}
i∈[qc].

We now state lemmas that each consecutive pair of hybrid experiments is computationally indistinguish-
able, but defer their proofs to Appendix B.

Lemma 4.3. If NIZK is computational zero-knowledge (Definition A.2), then Hyb0 and Hyb1 are computa-
tionally indistinguishable.

18

Lemma 4.4. If OWP is a family of one-way permutations and hc is a hard-core function, then Hyb1 and
Hyb2 are computationally indistinguishable.

Lemma 4.5. If NIZK is simulation-sound extractable (Definition A.3), and FE is perfectly correct, then
Hyb2 and Hyb3 are computationally indistinguishable.

Lemma 4.6. If FE is a (q1, qc , q2)-SIM-secure functional encryption scheme for GF (Definition 2.5), then
Hyb3 and Hyb4 are computationally indistinguishable.

Lemma 4.7. If PRF isΦ¦-RKA secure and FE is a (q1, qc , q2)-SIM-secure functional encryption scheme for
GF ,7 then Hyb4 and Hyb5 are computationally indistinguishable.

Lemmas 4.3 through 4.7 suffice to show that the adversary’s view in the real experiment RealrFEA is compu-
tationally indistinguishable from its view in the ideal experiment IdealrFEA (Definition 3.3). In particular,
this means that the tuple (x,

{
g
}

,
{

y
}

,α) in the real experiment is computationally indistinguishable from
the tuple (x,

{
g ′} ,

{
y ′} ,α) in the ideal experiment.

To complete the security proof, we show that the remaining components
{

f
}

and
{

f ′} in the outputs
of the real and ideal experiments, respectively, are computationally indistinguishable given the other
components of the joint distribution. Assuming thatS (FE) is a valid simulator for the underlying FE scheme,
this follows directly from the specification of S . By definition, the set

{
f ′} consists of the functions the

adversary submits to the key-generation oracle in the pre-challenge phase and the queries S4 makes to the
KeyIdeal oracle. Since the adversary’s view in the two experiments are computationally indistinguishable,
the pre-challenge function queries appearing in

{
f
}

and
{

f ′} are computationally indistinguishable.

Suppose then that S4 is invoked on a function f . Then, S4 constructs the derandomized functionality g f
k

for some k ∈K and invokes the underlying FE simulator S (FE)
4 on g f

k . Assuming that S (FE) is a simulator
for the underlying FE scheme, with overwhelming probability, it will query its oracle FE.KeyIdeal on the

function g f
k . In response, S4 queries KeyIdeal on f . We conclude that the outputs of the real and ideal

experiments are computationally indistinguishable, which proves security.

4.3 Proof of Theorem 4.1: Correctness

The correctness proof for rFE follows from completeness of the NIZK argument system, correctness of the
underlying FE scheme, and RKA-security of the PRF. We give the full proof in Appendix C.

5 Instantiating and Applying the Transformation

In this section, we describe one way to instantiate the primitives (the NIZK argument system, the RKA-
secure PRF, and the one-way permutation) needed to apply the generic transformation from Section 4,
Theorem 4.1. Then, in Section 5.2, we show how to obtain new general-purpose functional encryption
schemes for randomized functionalities with security against malicious encrypters from a wide range of
assumptions by applying our transformation to existing functional encryption schemes.

7The proof of this lemma relies on a concrete property of the simulator for a secure FE scheme, which is why we need SIM security
for the underlying FE scheme. Alternatively, we can impose an admissibility requirement on the queries the FE simulator is
allowed to make to the FE.KeyIdeal oracle, similar to what is done in the security definitions in [GVW12].

19

5.1 Instantiating Primitives

All of the primitives required by our generic transformation can be built from standard number-theoretic
assumptions, namely the decisional Diffie-Hellman (DDH) assumption [Bon98], the hardness of discrete
log in the multiplicative group Z∗

p (for prime p), and the RSA assumption [RSA78, Bon99]. The first two
assumptions can be combined by assuming the DDH assumption holds in a prime-order subgroup of
Z∗

p , such as the subgroup of quadratic residues of Z∗
p , where p is a safe prime (p = 2q +1, where q is also

prime).

Simulation-sound extractable NIZK arguments. The first ingredient we require is a simulation-sound
extractable NIZK argument. De Santis et al. [DDO+01, Theorem 2] give a construction for this from
trapdoor one-way permutations and dense cryptosystems.8 Both of these primitives can be instantiated
using the RSA assumption.

RKA-PRFs. The next ingredient we require is a Φ-RKA-secure PRF where Φ is group-induced. One
candidate construction from the DDH assumption is the Bellare-Cash PRF [BC10, §4].

Theorem 5.1 (Bellare-Cash PRF [BC10, Theorem 4.2], adapted). Let G be a group of prime order p where
the DDH assumption holds. Then, there exists a Φ-RKA secure PRF Fbc : (Z∗

p)n+1 × {0,1}n → G, where Φ

is group-induced and n = poly(λ). The group operation on the key-space (Z∗
p)n+1 is simply element-wise

multiplication modulo p.

One-way permutations. If we instantiate the RKA-secure PRF with the Bellare-Cash PRF, the next ingre-
dient we require is a one-way permutation on the key-space (Z∗

p)n+1. This can be easily constructed from
any one-way permutation overZ∗

p . A well-known one-way permutation onZ∗
p is based on the conjectured

intractability of the discrete log problem (DLP). More precisely, the mapping x 7→ g x (mod p) where g is a
random generator of Z∗

p is a one-way permutation assuming hardness of the DLP in Z∗
p . Next, we review

the Blum-Micali hard-core predicate [BM82] for this family of one-way permutations.

Theorem 5.2 (Blum-Micali Construction [BM82, §3.3]). Fix a prime p and let g be a generator of Z∗
p .

Suppose the DLP is hard in Z∗
p . Then, the following function hc :Z∗

p → {0,1} is hard-core for the mapping
x 7→ g x (mod p):

hc(x) =
{

1 if there exists 0 ≤ y < p/2 such that g y = x

0 otherwise.

In our construction, we require a hard-core function that outputs ρ = ρ(λ) number of bits. This is
possible by iterating the Blum-Micali construction.9 In the following, we will write f (i)(x) to denote
successively applying the function f on the input x for i iterations (i.e., f (2)(x) = f (f (x)).) We now state a
corollary to Theorem 5.2.

Corollary 5.3 (Iterated Blum-Micali Construction). Fix a prime p. Let g be a generator of Z∗
p , f :Z∗

p →Z∗
p

be the permutation x 7→ g x (mod p), and hc f be the hard-core predicate of f from Theorem 5.2. For

8Dense cryptosystems were introduced by De Santis and Persiano [DP92] to construct proofs of knowledge. In the same work,
they showed that dense cryptosystems could be constructed from assumptions such as the RSA assumption.

9Note that we can also use more efficient hard-core functions such as [PS98] which outputs multiple hard-core bits on each
input. The Blum-Micali construction is just one example that suffices for our transformation.

20

ρ = ρ(λ), define the permutation g :Z∗
p →Z∗

p to be the mapping x 7→ f (ρ)(x). Then, if hc f is a hard-core
function for f , the function hcg :Z∗

p → {0,1}ρ defined as follows is hard-core for g :

hcg (x) = hc f (x)‖hc f (f (x))‖hc f (f (2)(x)) · · ·‖hc f (f (ρ−1)(x)).

Proof. Follows from Theorem 5.2 by a standard hybrid argument.

Given a one-way permutation g on Z∗
p and an associated hard-core function hcg , it is easy to con-

struct a one-way permutation h on (Z∗
p)n+1 and an associated hard-core function hch that outputs the

same number of bits. We define h to be the function h(x1, . . . , xn+1) = (g (x1), x2, . . . , xn) and hch to be
hch(x1, . . . , xn+1) = hcg (x1).

Thus, we can instantiate the group-induced RKA-PRF and one-way permutation needed by our
generic transformation (Theorem 4.1) assuming only that DDH holds in a group of prime order p and the
hardness of DLP in Z∗

p . In summary, we obtain the following corollary to Theorem 4.1 from Section 4.

Corollary 5.4. Assuming standard number-theoretic assumptions (that is, the DDH assumption in a prime-
order subgroup of Z∗

p and the RSA assumption), and that FE is a perfectly-correct (q1, qc , q2)-SIM secure
functional encryption scheme for the derandomized function class GF , then rFE is (q1, qc , q2)-SIM secure
against malicious encrypters for the class F of randomized functions.

5.2 Applying the Transformation

In this section, we give three examples of how our generic transformation from Section 4 could be applied
to existing functional encryption schemes to obtain schemes that support randomized functionalities.
Our results show that functional encryption for randomized functionalities secure against malicious
encrypters can be constructed from a wide range of assumptions such as public-key encryption, concrete
assumptions over composite-order multilinear maps, or indistinguishability obfuscation, in conjunction
with standard number-theoretic assumptions (Corollary 5.4). The examples we present here do not consti-
tute an exhaustive list of the functional encryption schemes to which we could apply the transformation.
For instance, the construction of single-key-secure, succinct FE from LWE by Goldwasser et al. [GKP+13]
and the recent adaptively-secure construction from iO by Waters [Wat15] are also suitable candidates.

We note that the FE schemes for deterministic functions we consider below are secure (or can be
made secure) under a slightly stronger notion of simulation security compared to Definition 2.5. Un-
der the stronger notion (considered in [GVW12, DIJ+13]), the simulator is not allowed to program the
public-parameters (they are generated by the Setup algorithm) or the pre-challenge key queries (they are
generated using the KeyGen algorithm). Hence, when our transformation is applied to these schemes,
there is a small loss in security. We believe that this loss is inherent because the new schemes are secure
under malleability attacks while the original schemes are not. In particular, the construction of Goyal et
al. [GJKS15] also suffers from this limitation.

The GVW scheme. In [GVW12], Gorbunov et al. give a construction of a general-purpose public-key FE
scheme for a bounded number of secret key queries. More formally, they give both a (q1,1,poly)- and a
(q1,poly,0)-SIM10 secure FE scheme for any class of deterministic functions computable by polynomial-
size circuits based on the existence of semantically-secure public-key encryption and pseudorandom

10We write poly to denotes that the quantity does not have to be a-priori bounded, and can be any polynomial in λ.

21

generators (PRG) computable by low-degree circuits. These assumptions are implied by many concrete
intractability assumptions such as factoring.

The GVW scheme can be made perfectly correct if we have the same guarantee from the two primitives
it is based on: a semantically-secure public-key encryption scheme and a decomposable randomized en-
coding scheme [IK00]. There are many ways to get perfect correctness for the former, like ElGamal [ElG85]
or RSA [RSA78]. For the latter, we can use Applebaum et al.’s construction [AIK06, Theorem 4.14]. We
can now apply our generic transformation (Corollary 5.4) to the GVW scheme to obtain the following
corollary:

Corollary 5.5. Under standard number-theoretic assumptions, for any polynomial q1 = q1(λ), there exists a
(q1,1,poly)-SIM and a (q1,poly,0)-SIM secure FE scheme for any class of randomized functions computable
by polynomial-size circuits with security against malicious encrypters.

The GGHZ scheme. For our second example, we show how to apply our generic transformation to
the recent Garg et al. functional encryption scheme [GGHZ16] based on concrete assumptions over
asymmetric multilinear maps. There are two challenges that arise when trying to directly apply our
transformation to the GGHZ scheme. First, like many FE schemes, the GGHZ scheme only provides
statistical correctness, while our transformation crucially relies on perfect correctness. However, it is easy
to see that we can relax our requirement to only require perfect correctness to hold with overwhelming
probability over the setup algorithm of the underlying FE scheme. This is the notion of “almost-all-keys
perfect correctness” introduced by Dwork et al. [DNR04]. In the same work, Dwork et al. introduce
a randomness sparsification technique to transform any encryption scheme with a sufficiently small
decryption error probability into one that is perfectly correct with overwhelming probability over the
choice of random coins in the setup algorithm. More recently, Bitanski and Vaikuntanathan [BV16,
Section 4] also describe a general method for correcting errors in functional encryption schemes, and
noted that the randomness sparsification technique of Dwork et al. could be applied to FE schemes to
achieve almost-all-keys perfect correctness. Applying the Dwork et al. transformation, the GGHZ scheme
gives an adaptively secure FE scheme that is almost-all-keys perfectly correct for general circuits from
multilinear maps. Note that the Dwork et al. technique does not require any additional assumptions
beyond the existence of one-way functions.

The second obstacle is that the GGHZ scheme was shown to be secure under an indistinguishability-
based notion of security while our transformation applies to an FE scheme secure under a simulation-
based notion of security. This is easily addressed by using the indistinguishability-to-simulation trans-
formation by De Caro et al. [DIJ+13]. Applying this transformation requires a symmetric encryption
scheme with pseudorandom ciphertexts, which is implied by our number-theoretic assumptions. In
addition, as long as the underlying symmetric encryption scheme is perfectly correct, the transformation
preserves the correctness properties of the base FE scheme. Thus, under the GGHZ complexity assump-
tions on composite-order multilinear maps [GGHZ16, Section 2.3], there is a (q1, qc ,poly)-SIM secure FE
scheme that is almost-all-keys perfectly correct, where q1 = q1(λ) and qc = qc (λ). Applying our generic
transformation to the transformed GGHZ scheme, we obtain the following corollary:

Corollary 5.6. Under standard number-theoretic assumptions, and the GGHZ complexity assumptions
on composite-order multilinear maps [GGHZ16, Section 2.3], for any polynomials q1 = q1(λ) and qc =
qc (λ), there exists a (q1, qc ,poly)-SIM secure functional encryption for all polynomial-sized randomized
functionalities with security against malicious encrypters.

22

The GGHRSW scheme. For our final example, we show that starting with the Garg et al. [GGH+13]
functional encryption scheme based on indistinguishability obfuscation, we can also obtain a functional
encryption for randomized functionalities with the same level of security as above. As usual, we first verify
that the the GGHRSW scheme satisfies perfect correctness (alternatively, we could apply the randomness
sparsification technique from [DNR04] to obtain a scheme that is almost-all-keys perfectly correct).
Correctness of the GGHRSW scheme follows immediately from the correctness of the indistinguishability
obfuscator and the underlying public key encryption scheme used in the construction. Thus, instantiating
with a perfectly correct public key encryption scheme yields a selectively-secure, general-purpose, public-
key FE scheme with perfect correctness.

Another challenge in applying our transformation is that the GGHRSW scheme was shown only
to be selectively secure under an indistinguishability-based definition of security. Thus, we cannot
directly invoke the De Caro et al. indistinguishability-to-simulation transformation [DIJ+13]. This can be
addressed, however, by first applying the selective-to-adaptive transformation by Ananth et al. [ABSV15].
The additional primitives required for this transformation are all implied by any selectively-secure public-
key FE scheme, and moreover, each of the primitives can be instantiated with one that provides perfect
correctness. In doing so, the transformation preserves the correctness of the underlying scheme.

To conclude, if we apply the selective-to-adaptive and indistinguishability-to-simulation transfor-
mations by Ananth et al. and De Caro et al., respectively, to the GGHRSW scheme, we obtain a general-
purpose, (q1, qc ,poly)-SIM secure functional encryption scheme from indistinguishability obfuscation
(and one-way functions), where q1 = q1(λ) and qc = qc (λ). Applying our generic transformation to the
resulting scheme, we arrive at the following corollary:

Corollary 5.7. Under standard number-theoretic assumptions, and the existence of an indistinguishability
obfuscator, for any polynomials q1 = q1(λ) and qc = qc (λ), there exists a (q1, qc ,poly)-SIM secure functional
encryption for all polynomial-sized randomized functionalities with security against malicious encrypters.

Comparison with the GJKS scheme. We note that (q1, qc ,poly)-SIM security matches the known lower
bounds for simulation-based security in the standard model [BSW11, AGVW13]. We remark also that
the FE schemes from Corollaries 5.6 and 5.7 provide stronger security than the original FE scheme for
randomized functionalities by Goyal et al. [GJKS15]. Their construction was shown to be selectively rather
than adaptively secure. Specifically, in their security model, the adversary must commit to its challenge
messages before seeing the master public key. On the contrary, when we apply our generic transformation
to both the GGHZ scheme from composite-order multilinear maps as well as the GGHSRW scheme from
indistinguishability obfuscation, we obtain an adaptive-secure FE scheme where the adversary can not
only see the master public key, but also make secret key queries prior to issuing the challenge query.

6 Conclusions

In this work, we developed a generic transformation that converts any general-purpose public-key
functional encryption scheme for deterministic functionalities into a corresponding functional encryption
scheme that supports the richer class of randomized functionalities. Applying our transformation to
existing FE schemes, we obtain the first adaptively-secure FE scheme for randomized functionalities
from public-key encryption (and standard number-theoretic assumptions) in the bounded collusion
setting, as well as the first adaptively-secure FE scheme for randomized functionalities from either
concrete assumptions on multilinear maps or indistinguishability obfuscation. We conclude with several
interesting open questions for further study:

23

• Can we construct an FE scheme for a more restrictive class of randomized functionalities (e.g.,
sampling from a database) without needing to go through our generic transformation? In other
words, for simpler classes of randomized functionalities, can we construct a scheme that does not
require a general-purpose FE scheme for deterministic functionalities?

• Is it possible to generically convert a public-key FE scheme for deterministic functionalities into
one that supports randomized functionalities without making any additional assumptions? Komar-
godski, Segev, and Yogev [KSY15] show that this is possible in the secret-key setting.

Acknowledgments

We thank Venkata Koppula for many helpful conversations and discussions related to this work.

References

[AAB+15] Shashank Agrawal, Shweta Agrawal, Saikrishna Badrinarayanan, Abishek Kumarasubrama-
nian, Manoj Prabhakaran, and Amit Sahai. On the practical security of inner product func-
tional encryption. In PKC 2015, pages 777–798, 2015.

[AAP15] Shashank Agrawal, Shweta Agrawal, and Manoj Prabhakaran. Cryptographic agents: Towards
a unified theory of computing on encrypted data. In EUROCRYPT 2015, pages 501–531, 2015.

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order graded
encoding. In TCC, pages 528–556, 2015.

[ABF+13] Joël Alwen, Manuel Barbosa, Pooya Farshim, Rosario Gennaro, S. Dov Gordon, Stefano Tessaro,
and David A. Wilson. On the relationship between functional encryption, obfuscation, and
fully homomorphic encryption. In IMA International Conference on Cryptography and Coding,
pages 65–84, 2013.

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry. Differing-
inputs obfuscation and applications. Cryptology ePrint Archive, Report 2013/689, 2013.
http://eprint.iacr.org/2013/689.

[ABP15] Michel Abdalla, Fabrice Benhamouda, and Alain Passelègue. An algebraic framework for
pseudorandom functions and applications to related-key security. In CRYPTO, pages 388–409,
2015.

[ABPP14] Michel Abdalla, Fabrice Benhamouda, Alain Passelègue, and Kenneth G. Paterson. Related-
key security for pseudorandom functions beyond the linear barrier. In CRYPTO, pages 77–94,
2014.

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From selective to
adaptive security in functional encryption. In CRYPTO, pages 657–677, 2015.

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional
encryption: New perspectives and lower bounds. In CRYPTO, pages 500–518, 2013.

24

http://eprint.iacr.org/2013/689

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private randomizing
polynomials and their applications. Computational Complexity, 15(2):115–162, 2006.

[AS15] Prabhanjan Ananth and Amit Sahai. Functional encryption for turing machines. Cryptology
ePrint Archive, Report 2015/776, 2015. http://eprint.iacr.org/2015/776.

[BBO07] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and efficiently search-
able encryption. In CRYPTO, pages 535–552, 2007.

[BC10] Mihir Bellare and David Cash. Pseudorandom functions and permutations provably secure
against related-key attacks. In CRYPTO, pages 666–684, 2010.

[BCM11] Mihir Bellare, David Cash, and Rachel Miller. Cryptography secure against related-key attacks
and tampering. In ASIACRYPT, pages 486–503, 2011.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In
CRYPTO, pages 213–229, 2001.

[BF13] Manuel Barbosa and Pooya Farshim. On the semantic security of functional encryption
schemes. In PKC 2013, pages 143–161, 2013.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its
applications (extended abstract). In ACM STOC, pages 103–112, 1988.

[BFOR08] Mihir Bellare, Marc Fischlin, Adam O’Neill, and Thomas Ristenpart. Deterministic encryption:
Definitional equivalences and constructions without random oracles. In CRYPTO, pages
360–378, 2008.

[BG93] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In CRYPTO, pages
390–420, 1993.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1–18, 2001.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protecting
obfuscation against algebraic attacks. In EUROCRYPT, pages 221–238, 2014.

[Bih94] Eli Biham. New types of cryptoanalytic attacks using related keys (extended abstract). In
EUROCRYPT, pages 398–409, 1994.

[BK03] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In EUROCRYPT, pages 491–506, 2003.

[BLR+15] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe Zimmerman.
Semantically secure order-revealing encryption: Multi-input functional encryption without
obfuscation. In EUROCRYPT 2015, pages 563–594, 2015.

[BM82] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of
pseudo random bits. In FOCS, pages 112–117, 1982.

25

http://eprint.iacr.org/2015/776

[BO13] Mihir Bellare and Adam O’Neill. Semantically-secure functional encryption: Possibility
results, impossibility results and the quest for a general definition. In CANS, pages 218–234,
2013.

[Bon98] Dan Boneh. The decision Diffie-Hellman problem. In Third Algorithmic Number Theory
Symposium (ANTS), volume 1423, 1998. Invited paper.

[Bon99] Dan Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of the American
Mathematical Society, 46(2):203–213, 1999.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits via generic
graded encoding. In TCC, pages 1–25, 2014.

[BRS13] Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private subspace-membership
encryption and its applications. In ASIACRYPT 2013, pages 255–275, 2013.

[BS02] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography. IACR
Cryptology ePrint Archive, 2002:80, 2002.

[BS11] Zvika Brakerski and Gil Segev. Better security for deterministic public-key encryption: The
auxiliary-input setting. In CRYPTO, pages 543–560, 2011.

[BS15a] Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-key
setting. In TCC, pages 306–324, 2015.

[BS15b] Zvika Brakerski and Gil Segev. Hierarchical functional encryption. IACR Cryptology ePrint
Archive, 2015:1011, 2015.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryp-
tion. In IEEE Symposium on Security and Privacy, pages 321–334, 2007.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges.
In TCC, pages 253–273, 2011.

[BV16] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation: From approximate
to exact. In TCC 2016-A, pages 67–95, 2016.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In
TCC, pages 535–554, 2007.

[BWZ14] Dan Boneh, David J. Wu, and Joe Zimmerman. Immunizing multilinear maps against zeroiz-
ing attacks. Cryptology ePrint Archive, Report 2014/930, 2014. http://eprint.iacr.org/
2014/930.

[CFL+16] Jung Hee Cheon, Pierre-Alain Fouque, Changmin Lee, Brice Minaud, and Hansol Ryu. Crypt-
analysis of the new CLT multilinear map over the integers. In EUROCRYPT, 2016.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K. Maji, Eric
Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without low-level zeroes:
New MMAP attacks and their limitations. In CRYPTO, pages 247–266, 2015.

26

http://eprint.iacr.org/2014/930
http://eprint.iacr.org/2014/930

[CGJS15] Nishanth Chandran, Vipul Goyal, Aayush Jain, and Amit Sahai. Functional encryption:
Decentralised and delegatable. IACR Cryptology ePrint Archive, 2015:1017, 2015.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Crypt-
analysis of the multilinear map over the integers. In EUROCRYPT 2015, pages 3–12, 2015.

[CJL16] Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm for NTRU problems
and cryptanalysis of the GGH multilinear map without a low level encoding of zero. IACR
Cryptology ePrint Archive, 2016:139, 2016.

[CLLT15] Jean-Sebastien Coron, Moon Sung Lee, Tancrede Lepoint, and Mehdi Tibouchi. Cryptanalysis
of GGH15 multilinear maps. Cryptology ePrint Archive, Report 2015/1037, 2015. http:

//eprint.iacr.org/2015/1037.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps
over the integers. In CRYPTO, pages 476–493, 2013.

[CLT15] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New multilinear maps over
the integers. In CRYPTO, pages 267–286, 2015.

[CM16] Michael Clear and Ciaran McGoldrick. Attribute-based fully homomorphic encryption with a
bounded number of inputs. IACR Cryptology ePrint Archive, 2016:099, 2016.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In Bahram
Honary, editor, Cryptography and Coding, 8th IMA International Conference, volume 2260,
pages 360–363, Cirencester, UK, December 17–19, 2001.

[DDO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit
Sahai. Robust non-interactive zero knowledge. In CRYPTO, pages 566–598, 2001.

[DIJ+13] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and Giuseppe
Persiano. On the achievability of simulation-based security for functional encryption. In
CRYPTO, pages 519–535, 2013.

[DNR04] Cynthia Dwork, Moni Naor, and Omer Reingold. Immunizing encryption schemes from
decryption errors. In EUROCRYPT, pages 342–360, 2004.

[DP92] Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowledge without
interaction (extended abstract). In FOCS, pages 427–436, 1992.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. IEEE Transactions on Information Theory, 31:469–472, 1985.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In FOCS, pages 308–317, 1990.

[FOR12] Benjamin Fuller, Adam O’Neill, and Leonid Reyzin. A unified approach to deterministic
encryption: New constructions and a connection to computational entropy. In TCC, pages
582–599, 2012.

27

http://eprint.iacr.org/2015/1037
http://eprint.iacr.org/2015/1037

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao
Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In
EUROCRYPT, pages 578–602, 2014.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In FOCS,
pages 40–49, 2013.

[GGHZ16] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryption without
obfuscation. In TCC 2016-A, pages 480–511, 2016.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic applications of
random functions. In CRYPTO, pages 276–288, 1984.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its applica-
tions. In ACM STOC, pages 467–476, 2013.

[GJKS15] Vipul Goyal, Abhishek Jain, Venkata Koppula, and Amit Sahai. Functional encryption for
randomized functionalities. In TCC, pages 325–351, 2015.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. Reusable garbled circuits and succinct functional encryption. In ACM STOC, pages
555–564, 2013.

[GLSW15] Craig Gentry, Allison Bishop Lewko, Amit Sahai, and Brent Waters. Indistinguishability
obfuscation from the multilinear subgroup elimination assumption. In FOCS, pages 151–170,
2015.

[GLW14] Craig Gentry, Allison B. Lewko, and Brent Waters. Witness encryption from instance indepen-
dent assumptions. In CRYPTO, pages 426–443, 2014.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques. Cambridge
University Press, 2001.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP.
In EUROCRYPT, pages 339–358, 2006.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In ACM CCS, pages 89–98, 2006. Available as
Cryptology ePrint Archive Report 2006/309.

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group
signatures. In ASIACRYPT, pages 444–459, 2006.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In CRYPTO, pages 162–179, 2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for
circuits. In ACM STOC, pages 545–554, 2013.

[HJ16] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. In EUROCRYPT, 2016.

28

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In FOCS, pages 294–304, 2000.

[Knu93] Lars R. Knudsen. Cryptanalysis of LOKI91. In AUSCRYPT, pages 196–208, 1993.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In EUROCRYPT, pages 146–162, 2008.

[KSY15] Ilan Komargodski, Gil Segev, and Eylon Yogev. Functional encryption for randomized func-
tionalities in the private-key setting from minimal assumptions. In TCC, pages 352–377,
2015.

[LMR14] Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Improved constructions of
PRFs secure against related-key attacks. In ACNS, pages 44–61, 2014.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully
secure functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In EUROCRYPT, pages 62–91, 2010.

[Luc04] Stefan Lucks. Ciphers secure against related-key attacks. In FSE, pages 359–370, 2004.

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps: Crypt-
analysis of indistinguishability obfuscation over GGH13. IACR Cryptology ePrint Archive,
2016:147, 2016.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive, Report
2010/556, 2010. http://eprint.iacr.org/2010/556.

[OPWW15] Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New realizations of
somewhere statistically binding hashing and positional accumulators. In ASIACRYPT 2015,
pages 121–145, 2015.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general
relations from the decisional linear assumption. In CRYPTO, pages 191–208, 2010.

[PS98] Sarvar Patel and Ganapathy S. Sundaram. An efficient discrete log pseudo random generator.
In CRYPTO, pages 304–317, 1998.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In CRYPTO, pages 500–517, 2014.

[RS92] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In CRYPTO, pages 433–444, 1992.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signature and public-key cryptosystems. Communications of the Association for Computing
Machinery, 21(2):120–126, 1978.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext
security. In FOCS, pages 543–553, 1999.

29

http://eprint.iacr.org/2010/556

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages 47–53,
1984.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with public
keys. In ACM CCS, pages 463–472, 2010.

[SSW09] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems. In TCC,
pages 457–473, 2009.

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages
457–473, 2005.

[Wat15] Brent Waters. A punctured programming approach to adaptively secure functional encryption.
In CRYPTO, pages 678–697, 2015.

[Zim15] Joe Zimmerman. How to obfuscate programs directly. In EUROCRYPT 2015, pages 439–467,
2015.

A Additional Preliminaries

In this section, we review the standard definitions of two additional primitives we use in our construction:
non-interactive zero-knowledge (NIZK) arguments of knowledge [BFM88, FLS90, Gro06, GOS06] and
one-way permutations.

A.1 Non-Interactive Zero-Knowledge Arguments of Knowledge

Let R be an efficiently computable binary relation. For pairs (s, w) ∈ R, we refer to s as the statement and
w as the witness. Let L be the language of statements in R.

Definition A.1 (Non-Interactive Arguments [BFM88, FLS90]). A non-interactive argument system for a
relation R is a tuple of three efficient algorithms NIZK= (Setup,Prove,Verify) defined as follows:

• Setup(1λ) takes as input the security parameter λ and outputs a common reference string (CRS) σ
of lengthΩ(λ).

• Prove(σ, s, w) takes as input a CRS σ, a statement s, and a witness w , and outputs an argument π.

• Verify(σ, s,π) takes as input a CRS σ, a statement s, and an argument π, and outputs a bit b ∈ {0,1}.

We say that (Setup,Prove,Verify) is a non-interactive argument system for a relation R if it satisfies the
following two properties:

• Perfect Completeness: An argument system is perfectly complete if for all adversaries A,

Pr
[
σ← Setup(1λ); (s, w) ←A(σ);π←Prove(σ, s, w) :Verify(σ, s,π) = 1 if (s, w) ∈ R

]= 1.

• Computational Soundness: An argument system is computationally sound if for all efficient adver-
saries A,

Pr
[
σ← Setup(1λ); (s,π) ←A(σ) :Verify(σ, s,π) = 1 if s ∉ L

]
= negl(λ).

30

Definition A.2 (Zero-Knowledge [FLS90, Gro06]). Let NIZK= (Setup,Prove,Verify) be a non-interactive
argument system for a relation R, and let L be the language of statements for R. We say that NIZK is
computational zero-knowledge if there exists an efficient simulator S = (S1,S2) such that for all efficient
non-uniform adversaries A,∣∣∣Pr

[
σ← Setup(1λ) :AO(σ,·,·)(σ) = 1

]
−Pr

[
(σ,τ) ←S1(1λ) :AO′(σ,τ,·,·)(σ) = 1

]∣∣∣= negl(λ),

where the oracles O and O′ are defined as follows:

• O(σ, ·, ·) is the prover algorithm. On input (s, w), O outputs Prove(σ, s, w) if (s, w) ∈ R, and ⊥
otherwise.

• O′(σ,τ, ·, ·) is the simulator algorithm. On input (s, w), O′ outputs S2(σ,τ, s) if (s, w) ∈ R, and ⊥
otherwise.

In addition to the usual notions of completeness, soundness, and zero-knowledge, we also require our
argument system to satisfy a stronger property known as simulation-sound extractability. Simulation
soundness [Sah99] is the property that an argument (or proof) system remains sound even if the adversary
sees “simulated” arguments (that is, arguments constructed by the zero-knowledge simulator). Next, in
an argument of knowledge [DDO+01, BG93], there is the additional requirement of an efficient knowledge
extractor that on input a valid argument π of some statement s, is able to extract a witness w such that
(s, w) ∈ R. An argument system is simulation-sound extractable if it is both simulation-sound and an
argument of knowledge. More formally, we have:

Definition A.3 (Simulation-Sound Extractability [DDO+01, Gro06]). Let NIZK = (Setup,Prove,Verify)
be a NIZK argument system for a relation R. Let S = (S1,S2) be the simulator associated with NIZK
(Definition A.2). Then, NIZK satisfies the notion of simulation-sound extractability if there exists an
extraction algorithm E = (E1,E2) such that the following holds:

• The output of E1(1λ) is identically distributed as S1(1λ) when restricted to the first two components
(σ,τ).

• For all non-uniform polynomial-time adversaries A,

Pr
[

(σ,τ,ξ) ← E1(1λ); (s,π) ←AS2(σ,τ,·)(σ); w ← E2(σ,ξ, s,π) :

(s,π) ∉Q and (s, w) ∉ R and Verify(σ, s,π) = 1
]
= negl(λ),

where Q is the set containing the queries A makes to S2 and their responses, in the form of (query,
response) pairs.

A.2 One-Way Permutations

We review the standard definition of one-way permutations (OWP) and hard-core functions.

Definition A.4 (One-Way Permutations [Gol01]). A family of one-way permutations OWP over a space
X = {Xλ}λ∈N is a pair of efficient algorithms (Setup,Eval) with the following properties:

• Correctness: On input 1λ, the setup algorithm Setup(1λ) outputs a string t , such that the algorithm
Eval(t , ·) computes a permutation over Xλ. We denote this permutation by ht (·).

31

• One-Wayness: For all efficient, non-uniform adversaries A,

Pr
[

t ← Setup(1λ); x
R←−Xλ :A(t ,ht (x)) = x

]
= negl(λ).

Definition A.5 (Hard-Core Functions [Gol01]). Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be two collections of
finite sets. Let OWP= (Setup,Eval) be a family of one-way permutations over X . Let hc be a polynomial-
time computable function from Xλ to Yλ. Then, hc is a hard-core function for OWP if for all efficient

non-uniform adversaries A, t ← Setup(1λ), and x
R←−Xλ,∣∣∣Pr[A(t ,ht (x),hc(x)) = 1]−Pr

[
y

R←−Yλ :A(t ,ht (x), y) = 1
]∣∣∣= negl(λ),

where ht (·) =Eval(t , ·).

B Hybrid Argument Proofs from Section 4.2

B.1 Proof of Lemma 4.3

The only difference between hybrids Hyb0 and Hyb1 is that in the latter case, the challenger uses the NIZK
simulator to construct the CRS in the master public key and the arguments in the ciphertexts. Thus, the
claim follows directly from computational zero-knowledge of the NIZK scheme (Definition A.2).

Concretely, let A be an efficient distinguisher for hybrid experiments Hyb0 and Hyb1. We use A to
construct an adversary B to distinguish between the real and simulated distributions in Definition A.2.
Algorithm B is given as input a CRS σ and has access to an oracle O(·, ·) that generates arguments for
statements in the language. In the security reduction, algorithm B simulates a challenger for A as follows.

• Setup phase. B runs FE.Setup(1λ) to obtain (MPK′, MSK′), samples a one-way permutation t ←
OWP.Setup(1λ), and defines ht (·) = OWP.Eval(t , ·). Finally, B sets MPK = (MPK′, t ,σ) and MSK =
MSK′. It sends MPK to A.

• Challenge phase. When B receives a challenge vector x ∈X qc

λ
from A, it samples a key k∗

i
R←−Kλ,

and sets ct′i ← FE.Encrypt(MPK′, (xi ,ht (k∗
i));hc(k∗

i)) for each i ∈ [qc]. Let si be the statement in
Eq. (3). B queries its oracle O on statement si and witness (xi ,k∗

i) to obtain an argument πi . Finally
it sets cti = (ct′i ,πi) and sends {cti }i∈[qc] to A.

The key-generation and decryption queries before and after the challenge phase are handled in the same
way as in Hyb0 and Hyb1. At the end of the experiment, B outputs whatever A outputs. By construction,
if the CRS and NIZK arguments are generated honestly, then B has perfectly simulated Hyb0. If instead
they were constructed by the NIZK simulator S = (S1,S2), then B has perfectly simulated Hyb1. Thus, the
distinguishing advantage of B in the computational zero-knowledge experiment is equal to the advantage
of A in distinguishing Hyb0 from Hyb1. The lemma follows.

B.2 Proof of Lemma 4.4

By construction, the only difference between Hyb1 and Hyb2 is how the challenge ciphertexts ct∗1 , . . . ,ct∗qc

are constructed. We introduce qc = poly(λ) intermediate hybrids Hyb1,i for 0 ≤ i ≤ qc . In Hyb1,i , the
first qc − i ciphertexts ct∗1 , . . . ,ct∗qc−i are constructed as in hybrid Hyb1 (with randomness derived from
the hard-core function), and the remaining i ciphertexts ct∗qc−i+1, . . . ,ct∗qc

are generated as in Hyb2 (with

32

randomness drawn uniformly at random). By construction, Hyb1,0 is identical to Hyb1 and Hyb1,qc
is

identical to Hyb2.
We show that if OWP is one-way and hc is a hard-core function for it, hybrids Hyb1,i and Hyb1,i+1 are

computationally indistinguishable for 0 ≤ i < qc . Specifically, we show that if there exists a PPT distin-
guisher A for Hyb1,i and Hyb1,i+1, then there exists a PPT adversary B that can distinguish the output of
the hard-core function from uniform. B is given a challenge (t , z,T) where z = ht (k) =OWP.Eval(t ,k) for

some t ←OWP.Setup(1λ) and k
R←−K, and must decide whether T = hc(k) or T is uniformly random. In

the reduction, algorithm B plays the role of the challenger to A. In the setup phase, the behavior of B is
identical to the behavior of the challenger in Hyb1 and Hyb2, except it uses the t from the challenge to
construct the public parameters. The pre- and post-challenge phases are identical in Hyb1 and Hyb2 and
can be perfectly simulated given ht (·). The challenge phase is simulated as follows:

• Challenge phase. Let x ∈X qc

λ
be the vector of challenge messages from A. Adversary B constructs

the challenge ciphertexts as follows:

1. For all j < qc − i , construct ct∗j as described in hybrid Hyb1.

2. For all qc − i < j ≤ qc , construct ct∗j as described in hybrid Hyb2.

3. Let ct′qc−i =FE.Encrypt(MPK′, (xqc−i , z);T) be an encryption of (xqc−i , z) using randomness T

(where z,T are from the challenge). Simulate an argumentπqc−i by invoking S (NIZK)
2 (σ,τ, sqc−i),

where sqc−i is the statement from Eq. (3). Set ct∗qc−i = (ct′qc−i ,πqc−i) and send
{
ct∗i

}
i∈[qc]

to A.

At the end of the experiment, B outputs whateverA outputs. When T = hc(k), the first qc−i ciphertexts are
constructed as described in Hyb1, while the rest are constructed as described in Hyb2. This corresponds to
hybrid Hyb1,i . Conversely, if T is uniform, then B perfectly simulates Hyb1,i+1. Thus, if A can distinguish
Hyb1,i from Hyb1,i+1 with non-negligible probability, B can distinguish the output of the hard-core
function from uniform with the same probability.

B.3 Proof of Lemma 4.5

Hybrids Hyb2 and Hyb3 are identical except in how the challenger responds to decryption queries, but
assuming simulation-sound extractability of NIZK and perfect-correctness of FE, we can show that they
are computationally indistinguishable. Let (f ,C) be a decryption query, where C = {cti }i∈[m]. Write each
cti as (ct′i ,πi).

There are two cases. If the argument πi does not verify, the challenger sets yi = ⊥ in both Hyb2 and
Hyb3. Otherwise, we know that the adversary cannot submit any of its challenge ciphertexts in one of its
decryption queries. Thus, the pair (ct′i ,πi) was not generated by the challenger using S (NIZK). Hence, by

simulation-sound extractability, with probability at least 1−negl(λ), the extraction algorithm E (NIZK)
2 on

ct′i and πi will produce a witness (xi ,ki) such that ct′i = FE.Encrypt(MPK′, (xi ,ht (ki));hc(ki)). Moreover,
by perfect correctness of the underlying FE scheme, (xi ,ht (ki)) is the only pair that encrypts to ct′i .

In both Hyb2 and Hyb3, the challenger first samples a key k
R←− Kλ. In Hyb2, it computes sk ←

FE.KeyGen(MSK, g f
k), and then sets yi to be FE.Decrypt(sk,ct′i). Again, by perfect correctness of the

underlying FE scheme,

yi = g f
k (xi ,ht (ki)) = f (xi ;PRF(k ¦ht (ki), xi)),

which is exactly what is output in Hyb3 after (xi ,ki) is extracted. We conclude that with probability
1−negl(λ), the response to each decryption query in Hyb2 and Hyb3 is identically distributed.

33

B.4 Proof of Lemma 4.6

Suppose A is a distinguisher for Hyb3 and Hyb4. We use A to construct an adversary B = (B1,B2) that
distinguishes between the experiments RealFEB and IdealFEB . In the reduction, B will simulate the role of
the challenger in Hyb3 and Hyb4 to A. Moreover, it has access to the following oracles:

• B1 has access to a pre-challenge key-generation oracle O(pre)
KeyGen(·) that corresponds to O1(MSK, ·) in

the real experiment and O′
1(st′, ·) in the ideal one.

• B2 has access to a post-challenge key-generation oracle O(post)
KeyGen(·) that corresponds to O2(MSK, ·)

in the real experiment and O′
2(st′, ·) in the ideal one.

We now specify the operation of B = (B1,B2):

Algorithm B1(MPK′). On input a public key MPK′ for FE, the setup and pre-challenge query phases are
simulated as follows:

• Setup phase. B1 runs E (NIZK)
1 (1λ) to obtain a simulated CRS σ, a simulation trapdoor τ, and an

extraction trapdoor ξ. It then samples a one-way permutation t ←OWP.Setup(1λ) and defines
ht (·) =OWP.Eval(t , ·). Finally, it sets MPK = (MPK′, t ,σ) and sends MPK to A.

• Pre-challenge queries. Decryption queries are handled exactly as described in Hyb3 and Hyb4.

– Key-generation queries. On input f ∈Fλ, B1 samples a key k
R←−K, and queries O(pre)

KeyGen on

g f
k to obtain a key sk. It gives sk to A.

When A outputs its challenge vector x′ ∈X qc

λ
, B1 saves the current execution state stA of A. Then for each

i ∈ [qc], B1 samples a key k∗
i

R←−Kλ and sets xi = (x ′
i ,ht (k∗

i)). It also sets st= (stA,
{
k∗

i

}
i∈[qc]

) and outputs

x = (x1, . . . , xqc) along with st.

AlgorithmB2(MPK′,
{
ct′i

}
i∈[qc]

,st). On input the master public key MPK′ and challenge ciphertexts
{
ct′i

}
i∈[qc]

for FE, and a state st= (stA,
{
k∗

i

}
i∈[qc]

), B2 first resumes the execution of A using stA. Then, it simulates

the challenge phase and post-challenge queries as follows:

• Challenge phase. For each i ∈ [qc], B2 runs S (NIZK)
2 (σ,τ, si) to obtain an argument πi and sets

ct∗i = (ct′i ,πi). (As in Hyb3 and Hyb4, si is the statement from Eq. (3).) It sends
{
ct∗i

}
i∈[qc]

to A.

• Post-challenge queries. They are handled in the same way as pre-challenge ones, except that B2

queries O(post)
KeyGen whenever B1 queried O(pre)

KeyGen.

At the end of the experiment, A outputs a bit b ∈ {0,1}, which B2 simply echoes. We now show that
if B is interacting in the real experiment RealFEB , then the view it simulates for A is computationally
indistinguishable from Hyb3. Conversely, if B is in the ideal experiment IdealFEB , then the view it simulates
for A is computationally indistinguishable from Hyb4. The claim then follows from the assumption that
FE is (q1, qc , q2)-SIM-secure. We consider each case separately:

34

Real experiment. Suppose B is interacting in the real experiment RealFEB . We show that in this case, B
simulates Hyb3 for A.

• Setup phase. In the real experiment, the master public key MPK′ is generated by calling FE.Setup.
This is the how MPK′ is obtained in Hyb3. The remainder of the setup procedure is identical to that
in Hyb3.

• Pre-challenge queries. We consider the two types of queries separately.

– Key-generation queries. In the real experiment, on input a function g f
k , the key-generation

oracle O1(MSK, ·) returns FE.KeyGen(MSK, g f
k). In Hyb3, when the adversary makes a query

with a randomized function f ∈Fλ, it receives the output of KeyGen(MSK, f), which is nothing

but FE.KeyGen(MSK, g f
k) for k

R←−Kλ.

– Decryption queries. We note that B knows all the quantities needed to respond to decryption
queries as specified in Hyb3.

• Challenge phase. In the reduction, B1 chooses k∗
i

R←− Kλ and outputs xi = (x ′
i ,ht (k∗

i)) for each

i ∈ [qc]. In RealFEB , B2 is given the set of ciphertexts ct′i = FE.Encrypt(MPK′, xi), and it outputs{
(ct′i ,πi)

}
i∈[qc]

by computing πi using the NIZK simulator. This is exactly how the challenge cipher-

texts are produced in Hyb3.

• Post-challenge queries. Using the same argument as in the pre-challenge phase, we conclude that
the queries in the post-challenge phase are correctly simulated.

Ideal experiment. Suppose B is interacting in the ideal experiment IdealFEB . We show that in this case, B
simulates Hyb4 for A.

• Setup phase. In the ideal experiment, the master public key MPK′ is generated by calling S (FE)
1 . This

is the how MPK′ is obtained in Hyb4. The remainder of the setup procedure is identical to that in
Hyb4.

• Pre-challenge queries. We consider the two types of queries separately.

– Key-generation queries. When A makes a query f ∈ Fλ, B1 forwards g f
k to O(pre)

KeyGen in the

reduction, where k
R←−Kλ. In IdealFEB , B1 receives the output of S (FE)

2 (st′, g f
k), which it then

forwards to A. This is precisely the behavior in Hyb4.

– Decryption queries. B1 answers the decryption queries exactly as prescribed in Hyb4.

• Challenge phase. In the reduction, B1 constructs the challenge vector x = (x1, . . . , xqc) where xi =
(x ′

i ,ht (k∗
i)) and k∗

i
R←−Kλ for all i ∈ [qc]. Let f1, . . . , fq1 ∈ Fλ be the pre-challenge key-generation

queries submitted by A, and k1, . . . ,kq1 ∈Kλ be the keys sampled by B1 when responding to them.

Thus, B1 queried O(pre)
KeyGen on the derandomized functions g f1

k1
, . . . , g

fq1

kq1
. In IdealFEB , the ciphertexts{

ct′i
}

i∈[qc]
are constructed by invoking the simulator algorithm S (FE)

3 on the state st′ and function

evaluations
{

yi j
}

i∈[qc], j∈[q1]. Here, for i ∈ [qc] and j ∈ [q1], we have that

yi j = g
f j

k j
(xi) = g

f j

k j
(x ′

i ,ht (k∗
i)) = f j (x ′

i ;PRF(k j ¦ht (k∗
i), x ′

i)).

35

This is precisely how the values yi j are constructed in Hyb4. Then, B2 is given the simulated

ciphertexts
{
ct′i

}
i∈[qc]

produced by S (FE)
3 , and it outputs

{
(ct′i ,πi)

}
i∈[qc]

by computing πi using the

NIZK simulator. This is exactly how S3 behaves in Hyb4.

• Post-challenge queries. We consider the two types of queries separately.

– Key-generation queries. When A makes a query f ∈Fλ, B2 forwards g f
k to O(post)

KeyGen, where

k
R←−Kλ. In IdealFEB , B2 receives the output of S (FE)

4 (st′, g f
k), which it then forwards to A. Lastly

we note that the FE.KeyIdeal oracle in Hyb4 is simulated exactly as in IdealFEB .

– Decryption queries. B2 answers the decryption queries exactly as prescribed in Hyb4.

B.5 Proof of Lemma 4.7

Let qd be the number of decryption queries the adversary makes (across both the pre-challenge and
post-challenge phases of the experiment). We define some intermediate hybrids:

Hybrid Hyb4,i . For each 0 ≤ i ≤ qd , the challenger responds to the first i decryption queries as specified
in Hyb5, and the remaining decryption queries as specified in Hyb4. Rest of the hybrid remains same as
Hyb4.

Hybrid Hyb′4, j . For 0 ≤ j ≤ qc , Hyb′4, j is identical to Hyb4,qd
, except the challenger proceeds as follows in

the challenge phase and when responding to a post-challenge key-generation query:

• Challenge phase. Let f1, . . . , fq1 ∈Fλ be the pre-challenge key-generation queries A makes, and
let k1, . . . ,kq1 ∈Kλ be the keys the challenger used to respond to each query. For each i ∈ [qc] and

` ∈ [q1], the challenger chooses ri`
R←−Rλ and k∗

i
R←−Kλ and sets

yi` =
{

f`(xi ;ri`) if i ≤ j

f`(xi ;PRF(k` ¦ht (k∗
i), xi)) otherwise,

It then carries out the third and fourth steps of the challenge phase of Hyb4, which are same as that
of Hyb5.

• Post-challenge queries. The challenger replies to decryption queries as described in Hyb4,qd
. For a

key-generation query, we only describe how the oracle FE.KeyIdeal(x, ·) is implemented. The rest of
the procedure is identical to that in Hyb4 and Hyb5. On an input g k ′

f ′ to the FE.KeyIdeal(x, ·) oracle,

the challenger chooses ri
R←−Rλ for each i ∈ [qc]. Then, it sets

yi =
{

f ′(xi ;ri) if i ≤ j

f ′(xi ;PRF(k ′ ¦ht (k∗
i), xi)) otherwise.

As usual, it replies with the set
{

yi
}

i∈[qc].

By construction, hybrids Hyb4 and Hyb4,0 are identical to each other; and so are Hyb4,qd
and Hyb′4,0 as

well as Hyb′4,qc
and Hyb5.

36

Claim B.1. IfPRF isΦ¦-RKA secure, then for all 0 ≤ i < qd , hybridsHyb4,i andHyb4,i+1 are computationally
indistinguishable.

Proof. Let A be a distinguisher for hybrids Hyb4,i and Hyb4,i+1. We use A to construct an adversary B that
distinguishes between the real and ideal distributions in theΦ¦-RKA security game, where it has access
to an evaluation oracle OEval(·, ·). In the reduction, B simulates the role of the challenger for A. Since
the setup, challenge, pre- and post-challenge key-generation phases stay the same across the hybrids
Hyb4,0, . . . ,Hyb4,qd

, B simulates them in the same way. The decryption queries are handled differently as
shown below.

• Decryption queries. Let (f ,C = {
ct j

}
j∈[m]) be A’s decryption query. Let q be the total number of

queries A has made so far. If q < i , then B replies as described in Hyb4, and if q > i , it replies as in
Hyb5. If q = i , then B does the following for each j ∈ [m]:

1. Parse ct j as (ct′j ,π j), and let s j be the statement from Eq. (3). If π j is not a valid argument

for s j , then set y j = ⊥. Otherwise, invoke the extractor E (NIZK)
2 (σ,ξ, s j ,π j) to obtain a witness

(x j ,k j).

2. Define a key-transformation function φ j : Kλ→Kλ where φ j (k) = k ¦ht (k j). Then, let r j ←
OEval(φ j , x j), and set y j = f (x j ;r j).

Finally, algorithm B outputs the ordered set
{

y j
}

j∈[m].

At the end of the experiment, B outputs whatever A outputs. We claim that if B is interacting in the
real experiment ofΦ¦-RKA security game, then it perfectly simulates Hyb4,i for A. Conversely, if B is in
the ideal experiment, then it perfectly simulates Hyb4,i+1 for A. We consider both cases in detail:

• In the real world, OEval(φ, x) = PRF(φ(k), x) for a randomly chosen key k ∈Kλ. Then, on the i th

decryption query, for all j ∈ [m], r j =PRF(k ¦ht (k j), x j). This is exactly how randomness is sampled
in Hyb4,i .

• In the ideal world, OEval(φ, x) = F (φ, x) for F
R←−Funs[Φ×Xλ,Yλ]. Since we require that ct j 6∼ ct` for

all j 6= ` in a decryption query, it must be the case that if ct j and ct` are valid ciphertexts (i.e., π j

and π` are valid arguments of their respective statements s j and s`), then either k j 6= k` or x j 6= x`.
This latter fact follows from the fact that an efficient adversary can only find a single valid ciphertext
for each pair (x,k). Since F is a truly random function fromΦ×Xλ to Rλ, r j must be uniform over
Rλ for all j ∈ [m]. This corresponds to the distribution in Hyb4,i+1.

We conclude that if A can distinguish hybrids Hyb4,i from Hyb4,i+1 for any 0 ≤ i < qd , then B can break
theΦ¦-RKA security of PRF with the same advantage. The claim follows.

Claim B.2. If PRF isΦ¦-RKA secure and FE is a (q1, qc , q2)-SIM-secure functional encryption scheme for
GF , then for all 0 ≤ i < qc , hybrids Hyb′4, j and Hyb′4, j+1 are computationally indistinguishable.

Proof. The proof of this claim is similar to the previous one. Specifically, if A is a distinguisher for hybrids
Hyb′4, j and Hyb′4, j+1, then we can construct an adversary B that breaks the Φ¦-RKA security of PRF. As
before, B has access to an evaluation oracle OEval(·, ·). We only focus on the challenge and post-challenge
phases below; the rest are carried out in the same way as in Hyb′4, j or Hyb′4, j+1.

• Challenge phase. When B receives a vector x ∈X qc

λ
from A, it proceeds as follows:

37

1. Let f1, . . . , fq1 be the pre-challenge key-generation queries made by A, and let k1, . . . ,kq1 ∈Kλ

be the keys B used to responds to each such query.

2. For each i ∈ [qc], choose k∗
i

R←−Kλ.

3. For all i ≤ j and ` ∈ [q1], choose ri`
R←−Rλ. For all i > j +1 and ` ∈ [q1], set ri` = PRF(k` ¦

ht (k∗
i), xi).

4. For ` ∈ [q1], define the key-transformation function φ` :Kλ→Kλ where φ`(k) = k ¦k`. For all
` ∈ [q1], let r j+1,` =OEval(φ`, x j+1).

5. For all i ∈ [qc] and` ∈ [q1], let yi` = f`(xi ;ri`). Invoke the simulator theoremS3(st,
{

yi j
}

i∈[qc], j∈[q1])

to obtain a collection of ciphertexts
{
ct∗i

}
i∈[qc]

and an updated state st. Send
{
ct∗i

}
i∈[qc]

to A.

• Post-challenge queries. Algorithm B responds to each query as follows:

– Key-generation queries. Let f ∈Fλ be the key-generation query. Algorithm B then does the
following:

1. Choose a random key k
R←−Kλ, and define the derandomized functionality g f

k as in Eq. (1).

2. Invoke S (FE)
4 (st(FE), g f

k). Algorithm B simulates the FE.KeyIdeal(x, ·) oracle in the following

way. On input a derandomized functionality of the form g f ′

k ′ , the challenger does the
following for each i ∈ [qc].

* If i ≤ j , choose ri
R←−Rλ. If i > j +1, let ri =PRF(k ′ ¦ht (k∗

i), xi).

* If i = j +1, define the key-transformation function φ : Kλ →Kλ where φ(k) = k ¦k ′.
Let ri ←OEval(φ, xi).

3. Output
{

f ′(xi ;ri)
}

i∈[qc] .

– Decryption queries. Same as in Hyb5.

At the end of the experiment, B outputs whatever A outputs. We claim that if B is interacting in the
real experiment, then B perfectly simulates Hyb′4, j and if B is interacting in the ideal experiment, then B
perfectly simulates Hyb′4, j+1 for A. We consider both cases:

• SupposeB is interacting in the real world, in which caseOEval(φ, x) =PRF(φ(k), x), where k ∈Kλ is a
uniformly random PRF key. In the challenge phase, for all ` ∈ [q1], r j+1,` =OEval(φ`, x j+1) =PRF(k¦
k`, x j+1). When responding to the post-challenge key-generation queries, r j+1 =OEval(φ, x j+1) =
PRF(k ¦k ′, x j+1). The PRF key k plays the role of ht (k∗

j+1) in the simulation. Note that since ht is a
permutation and k∗

j+1 is sampled uniformly from Kλ, ht (k∗
j+1) is uniformly distributed in the real

scheme. We conclude that B has perfectly simulated Hyb′4, j .

• Suppose B is interacting in the ideal world, in which case OEval(φ, x) = F (φ, x) where F
R←−Funs[Φ×

Xλ,Yλ]. Let q1 be the number of pre-challenge key-generation queries A makes and let q2 be the
number of post-challenge key-generation queries A makes. Let m = q1 +q2, and k1, . . . ,km ∈Kλ be
the keys algorithm B samples in response to each key-generation query (across both phases). Since
all of the keys k1, . . . ,km are sampled independently and m = poly(λ), with probability 1−negl(λ), all
of the keys k1, . . . ,km are distinct. For ` ∈ [m], let φ` :Kλ→Kλ be the key-transformation function
φ`(k) = k ¦k`.

38

For 1 ≤ `≤ q1, let r` = r j+1,` =OEval(φ`, x j+1) be the randomness B uses in the challenge phase of
the simulation to compute the value y j+1,` = f`(x j+1;r j+1,`). Similarly, for q1 +1 ≤ `≤ q1 +q2, let
r` =OEval(φ`, x j+1) be the randomness used to evaluate f` on x j+1 when simulating theFE.KeyIdeal
oracle on the `th key-generation query (equivalently, the (`−q1)th post-challenge key-generation
query). Note that since S (FE) is a simulator for an FE scheme and S (FE)

4 is only invoked on the

derandomized functionalities g
fq1+1

kq1+1
, . . . , g

fq2

kq1+q2
, these derandomized functionalities are the only

legal queries that S (FE)
4 can make to FE.KeyIdeal. Here, we rely on the fact that S (FE) is a simulator

for a (q1, qc , q2)-secure functional encryption scheme (Definition 2.5). Specifically, Definition 2.5
requires that the (ordered) set of key-generation queries

{
f
}

the simulator S (FE) is invoked on is
computationally indistinguishable from the (ordered) set of functions

{
f ′} the simulator submits to

the FE.KeyIdeal oracle.

Since k1, . . . ,km are distinct with probability 1−negl(λ), the functions φ1, . . . ,φm are distinct with
the same probability. Finally, since F is uniform over Funs[Φ¦×Xλ,Rλ], we have that r1, . . . ,rm are
uniform in Rλ. This is precisely the distribution Hyb′4, j+1.

Thus, we conclude that if A can distinguish Hyb′4, j from Hyb′4, j+1 for any 0 ≤ j < qc , then B can break the
Φ¦-RKA security of PRF with the same advantage. The claim follows.

Combining Claims B.1 and B.2, we conclude that if PRF is Φ¦-RKA secure, then hybrids Hyb4 and
Hyb5 are computationally indistinguishable.

C Correctness Proof

The correctness proof follows from completeness of the NIZK argument system, correctness of the
underlying FE scheme, and related-key security of the PRF. Take any collection of n = n(λ) functions
f1, . . . , fn ∈Fλ and n points x1, . . . , xn ∈Xλ. We now proceed via a hybrid argument.

Hybrid Hyb0. This is the real distribution (Definition 3.1).

Hybrid Hyb1. Same as Hyb0, except on input MPK, sk, and ct= (ct′,π), the decryption algorithm Decrypt

simply outputs FE.Decrypt(sk,ct′) without verifying the argument π.

Hybrid Hyb2. This is the ideal distribution, except the functions are evaluated using pseudorandom

strings rather than truly random strings. More precisely, this is the distribution
{

fi (x j ;ri , j)
}

i , j∈[n] where

1. For all i , j ∈ [n], ki
R←−Kλ and k ′

j
R←−Kλ.

2. For all i , j ∈ [n], ri , j ←PRF(ki ¦k ′
j , x j)

Hybrid Hyb3. This is the ideal distribution (Definition 3.1).

Lemma C.1. If NIZK is perfectly complete (Definition A.1), then hybrids Hyb0 and Hyb1 are identical.

39

Proof. Since the CRSσ and the argumentsπ are all generated honestly, by perfect completeness, whenever
the decryption algorithm invokes NIZK.Verify in Hyb0, the output is always 1. Thus, Hyb0 and Hyb1 are
identical.

Lemma C.2. If FE is a perfectly-correct functional encryption scheme (Definition 2.4), then hybrids Hyb1

and Hyb2 are identical.

Proof. This follows from correctness of the underlying FE scheme for deterministic functionalities. Con-
sider the distribution in Hyb1. Write MPK = (MPK′, t ,σ) and for each j ∈ [n], write ct j = (ct′j ,π j). By

construction, ski is a secret key forFE corresponding to the deterministic function g fi

ki
where ki

R←−Kλ. Sim-

ilarly, ct j is some FE encryption of the message (x j ,ht (k ′
j)) where k ′

j
R←−Kλ. Since Decrypt(MPK,ski ,ct j)

simply outputs FE.Decrypt(ski ,ct j), we have, by perfect correctness of FE,{
Decrypt(MPK,sk fi ,ct j)

}
i , j∈[n] ≡

{
g fi

ki
(x j ,ht (k ′

j))
}

i , j∈[n]
.

By definition of g f
k from Eq. (1),{

g fi

ki
(x j ,ht (k ′

j))
}

i , j∈[n]
≡

{
fi (x j ;PRF(ki ¦ht (k ′

j), x j))
}

i , j∈[n]
,

where ki ,k ′
j are uniformly random over Kλ for all i , j ∈ [n]. Finally, since ht is a permutation and k ′

j is

uniform over Kλ, ht (k ′
j) is correspondingly uniform over Kλ. This yields the distribution in Hyb2.

Lemma C.3. If PRF isΦ¦-RKA secure, then hybrids Hyb2 and Hyb3 are computationally indistinguishable.

Proof. We introduce n = poly(λ) intermediate hybrids Hyb2,i for 0 ≤ i ≤ n. Hybrid Hyb2,i is identical

to Hyb2, except for all ` ≤ i and j ∈ [n], r`, j
R←−Rλ. For all ` > i and j ∈ [n], r`, j = PRF(k` ¦ k ′

j , x j). By
construction, Hyb2 ≡Hyb2,0 and Hyb3 ≡Hyb2,n . We now show that if PRF isΦ¦-RKA-secure, then Hyb2,i

is computationally indistinguishable from Hyb2,i+1 for all 0 ≤ i < n.
Let A be a distinguisher for Hyb2,i and Hyb2,i+1. We use A to construct an adversary B the distin-

guishes the real and ideal distributions in theΦ¦-RKA security game. In theΦ¦-RKA security game, B is
given access to an oracle O′. Adversary B operates as follows:

1. For all `> i +1, choose k`
R←−Kλ. For all j ∈ [n], choose k ′

j
R←−Kλ.

2. For all `≤ i and j ∈ [n], choose ri , j
R←−Rλ. For all `> i +1 and j ∈ [n], set ri , j ←PRF(k` ¦k ′

j , x j).

3. Let φ j :Kλ→Kλ be the function k 7→ k ¦k ′
j . For j ∈ [n], set ri+1, j ←O′(φ j , x j).

4. Invoke A on the set
{

fi (x j ;ri , j)
}

i , j∈[n]. Output whatever A outputs.

In the real experiment, the oracle O′ = O(k, ·, ·) where k ← Kλ. In this case, for all j ∈ [n], ri+1, j =
PRF(φ j (k), x j) =PRF(k ¦k ′

j , x j). Thus, B perfectly simulated Hyb2,i for A. In the ideal experiment, the

oracle O′ =G(·, ·) where G
R←− Funs[Φ¦×Xλ,Rλ]. Since for all j ∈ [n], the k ′

j are drawn independently and

randomly from Kλ and n = poly(λ), with probability 1−negl(λ), all of the k ′
j are unique. This means that

with the same overwhelming probability, all of the φ j are also unique. Thus, we conclude that for all
j ∈ [n], ri+1, j is uniform in Rλ, in which case B has perfectly simulated Hyb2,i+1 for A. We conclude that
if there exists a distinguisher for Hyb2,i and Hyb2,i+1, there exists an adversary that breaks the theΦ¦-RKA
security of PRF.

40

Combining Lemmas C.1 through C.3, we conclude that rFE is a correct functional encryption scheme for
randomized functionalities (Definition 3.1).

41

	Introduction
	Our Contributions
	Security Against Malicious Encrypters
	Overview of Our Generic Transformation

	Preliminaries
	RKA-Secure PRFs
	Functional Encryption

	Functional Encryption for Randomized Functionalities
	Our Generic Transformation
	Proof of Theorem 4.1: Description of Simulator
	Proof of Theorem 4.1: Hybrid Argument
	Proof of Theorem 4.1: Correctness

	Instantiating and Applying the Transformation
	Instantiating Primitives
	Applying the Transformation

	Conclusions
	Additional Preliminaries
	Non-Interactive Zero-Knowledge Arguments of Knowledge
	One-Way Permutations

	Hybrid Argument Proofs from Section 4.2
	Proof of Lemma 4.3
	Proof of Lemma 4.4
	Proof of Lemma 4.5
	Proof of Lemma 4.6
	Proof of Lemma 4.7

	Correctness Proof

