
The preliminary versions of this paper appeared in Proceedings of the 2nd ACM ASIA Public-Key Cryptography Work-
shop - ASIAPKC 2014, pp. 49-58, under the title of “Attribute-Based Signatures without Pairings via the Fiat-Shamir
Paradigm”, and Proceedings of the 18th Annual International Conference on Information Security and Cryptology - ICISC
2015, pp. 36-49, Lecture Notes in Computer Science 9558, Springer 2016, under the title of “Attribute-Based Two-Tier
Signatures: Definition and Construction”. This is the full version. The statement on attribute privacy has been corrected.

Proof of Knowledge on Monotone Predicates
and its Application to

Attribute-Based Identifications and Signatures?

Hiroaki Anada1, Seiko Arita2, and Kouichi Sakurai3,4

1 Department of Information Security, University of Nagasaki
W408, 1-1-1, Manabino, Nagayo-cho, Nishisonogi-gun, Nagasaki, 851-2195 JAPAN

anada@sun.ac.jp
2 Institute of Information Security

509, 2-14-1, Tsuruya-cho, Kanagawa-ku, Yokohama, 221-0835 JAPAN
arita@iisec.ac.jp

3 Department of Informatics, Kyushu University
W2-712, 744, Motooka, Nishi-ku, Fukuoka, 819-0395 JAPAN

sakurai@inf.kyushu-u.ac.jp
4 Institute of Systems, Information Technologies and Nanotechnologies

7F, Fukuoka SRP Center Bldg., 2-1-22, Momochihama, Sawara-ku, Fukuoka, 814-0001 JAPAN

May 19, 2016

Abstract. We propose a concrete procedure of a Σ-protocol to prove knowledge that satisfies a monotone
predicate. Inspired by the high-level proposal by Cramer, Damg̊ard and Schoenmakers at CRYPTO ’94, we
construct the procedure by extending the so-called OR-proof. Next, using as a witness a signature-bundle
scheme of the Fiat-Shamir signature, we provide an attribute-based identification scheme (ABID). Then,
applying the Fiat-Shamir transform to our ABID, we obtain an attribute-based signature scheme (ABS).
These generic schemes are constructed from a given Σ-protocol. The latter scheme has a feature of linkable
signatures. Finally, applying the two-tier technique of Bellare et al. to our ABID, we obtain an attribute-
based two-tier signature scheme (ABTTS). The scheme has a feature to attain attribute-privacy paying
expense of the secondary-key issuing. When instantiated in the RSA setting and the Discrete-Logarithm
setting, these schemes are pairing-free.

Keywords: sigma-protocol, proof of knowledge, access structure, Fiat-Shamir transform, two-tier keys

1 Introduction

A Σ-protocol formalized in the doctoral thesis of Cramer [12] is a protocol of a three-round public-coin
interactive proof system with completeness, special soundness and honest-verifier zero-knowledge. It is
one of the simplest protocols of zero-knowledge interactive proof systems. Simple instantiations of a Σ-
protocol have been known as the Schnorr protocol [44] and the Guillou-Quisquater protocol [26]. Also,

? The first and the second authors are partially supported by kakenhi Grant-in-Aid for Scientific Research (C) 15K00029
from Japan Society for the Promotion of Science.

a Σ-protocol is a typical proof-of-knowledge system [5]. Witness-extraction property by the special
soundness enables us to prove that an identification scheme by a Σ-protocol is secure against active
and concurrent attacks via reduction to a number-theoretic assumption [6]. Besides, an identification
scheme by a Σ-protocol can be converted into a signature scheme by the Fiat-Shamir heuristic [19].
The signature scheme can be proved secure against chosen-message attacks in the random oracle model
[41], based on the security of the identification scheme against passive attacks [1]. By virtue of these
features, a Σ-protocol can be adopted into building blocks of various cryptographic primitives such as
anonymous credential systems [11] and group signature schemes [10].

The OR-proof proposed by Cramer, Damg̊ard and Schoenmakers at CRYPTO ’94 [13] is a Σ-
protocol derived from an original Σ-protocol [14]. It is a witness-hiding protocol [18] by which a prover
can convince a verifier that the prover knows one of two (or both) witnesses hiding which witness is
used. The OR-proof is essentially applied in, for example, the construction of a non-malleable proof of
plaintext knowledge [33]. In the paper of Cramer et al. [13], a more general protocol was proposed5 .
Suppose a prover and a verifier are given a monotone boolean predicate f over boolean variables. Here
a monotone boolean predicate means a boolean predicate without negation; that is, boolean variables
connected by AND-gates and OR-gates, but no NOT-gate is used. ‘1’ (True) is substituted into every
variable in f at which the prover knows the corresponding witness, and ‘0’ (False) is substituted into
every remaining variable. The protocol provides a witness hiding protocol in the sense that the prover
knows a satisfying set of witnesses hiding which satisfying pattern is used. We call the protocol a boolean
proof. The boolean proof is an extension of the OR-proof to any monotone boolean predicate, and in
[13] a high-level construction that employed a “semi-smooth” secret-sharing scheme was given. (As is
explained in [13], to remove the restriction of the monotonicity of f looks hard.)

In this paper, we provide a concrete procedure of the boolean proof. We start with a given Σ-
protocol Σ, and derive a Σ-protocol Σf of the boolean proof for any monotone boolean predicate f .
Then we show that our Σf is actually a Σ-protocol.

Then, we will try to apply our procedure of the boolean proof, Σf , to construct an attribute-
based identification scheme (ABID) as well as an attribute-based signature scheme (ABS) obtained by
applying the Fiat-Shamir heuristic to ABID. In ABID, an identification-session is associated with an
access structure, where a prover can make a verifier accept only when the prover’s set of attributes
satisfies the access structure. The access structure is described as a boolean predicate over an attribute
universe.

As for an attribute-based signature scheme (ABS), which has been developed since 2008 [27, 45,
36, 35, 37, 32, 17, 39, 21, 31, 40, 28, 16, 15, 16, 22, 29, 43], almost all the constructions are via the approach
similar to that of attribute-based encryption schemes (ABE) (for instance, [42]), which uses bilinear
maps (that is, pairings) on elliptic curves. Only a few exception are generic constructions by Maji et
al. [37] and Bellare et al. [4], and constructions by Herranz in the RSA setting [28] and in the discrete
logarithm setting [29].

In contrast to the approach by bilinear maps, we work through a different approach in the Fiat-
Shamir paradigm [19], which shares a spirit with [28]. Note that, in this paper, we do not try to attain
the property of (usual) attribute-privacy [37, 39, 28] which means that signatures reveals nothing about
the identity or attributes of the signer beyond what is explicitly revealed by the satisfied boolean
predicate.

5 In the preliminary version [3], the authors could not refer to this previous work. Now we refer to the work with
explanation on the relation.

2

1.1 Our Construction Idea

To provide a concrete procedure for the above boolean proof system from a given Σ-protocol and a
monotone boolean predicate f , we look into the technique employed in the OR-proof [13] and expand
it so that it can treat any monotone boolean predicate, as follows.

First express the boolean predicate f as a binary tree Tf . That is, we put leaves each of which
corresponds to each position of a variable in f . We connect two leaves by an ∧-node or an ∨-node
according to an AND-gate or an OR-gate which is between two corresponding positions in f . Then we
connect the resulting nodes by an ∧-node or an ∨-node in the same way, until we reach to the root
node (which is also an ∧-node or an ∨-node). A verification equation of the Σ-protocol Σ is assigned
to every leaf. If a challenge string Cha of Σ is given, then assign the string Cha to the root node. If
the root node is an ∧-node, then assign the same string Cha to two children. Else if the root node
is an ∨-node, then divide Cha into two random strings ChaL and ChaR under the constraint that
Cha = ChaL ⊕ ChaR, and assign ChaL and ChaR to the left child and the right child, respectively.
Here ⊕ means a bitwise exclusive-OR operation. Then continue to apply this rule at each height, step
by step, until we reach to every leaf. Then, basically, the OR-proof technique assures that we can either
honestly execute the Σ-protocol Σ or execute the simulator of Σ. Only when a set of witnesses satisfies
the binary tree Tf , the above procedure succeeds in satisfying verification equations for all leaves.

1.2 Our Contributions

Our first contribution is to provide a concrete procedure of the boolean proof [13], which is comparable
with the original abstract protocol [13]. That is, given a Σ-protocol Σ and a monotone boolean predicate
f , we construct a concrete procedure Σf in a recursive form that is suitable for implementation. Then
we show that Σf is certainly a Σ-protocol. Especially we show that Σf is a protocol to prove knowledge
of witnesses that satisfy the boolean predicate f .

Our second contribution is to provide a concrete attribute-based identification scheme (ABID) and
a concrete attribute-based signature scheme (ABS), without pairings in both the Discrete-Logarithm
setting and the RSA setting. The constructions are by employing the Schnorr identification scheme and
the GQ identification scheme [44, 6] as Σ, respectively. We again note that signatures of our ABS are
linkable, and attribute privacy only holds as a one-time signature.

1.3 Related Work on ABS

At a high level, our ABS is obtained by the Fiat-Shamir transform of our boolean proof system, where
a set of witnesses is the Fiat-Shamir signature bundle (credential bundle [37]). This construction can
be compared with the generic construction of the ABS scheme by Maji et al. [37]. They started with a
signature bundle (of Boneh-Boyen signatures [9], for instance). Then they employed a non-interactive
witness-indistinguishable proof of knowledge system (NIWIPoK) of Groth and Sahai [25] to prove the
knowledge of a signature bundle which satisfies a given (monotone) access formula, in the standard
model.

Okamoto and Takashima (OT11) [39] gave a scheme of ABS with full-security; security against
adaptive target in the standard model under a non-q-type assumption. It can treat non-monotone
access formula and multi-use of attributes, and possesses attribute privacy in the information-theoretic
sense. The construction is based on their Dual Pairing Vector Space.

Herranz [28] provided the first ABS with both collusion resistance (against collecting private secret
keys) and (computationally secure) attribute privacy without pairings (pairing-free) in the RSA setting.
In the work [28], the concrete procedure was described in detail for threshold-type access formulas. In
contrast, our ABS is without pairings and provide a concrete procedure for any access formulas, but
does not achieve attribute privacy. Recently, Herranz [29] provided an ABS scheme without pairings in

3

Table 1. Technical and Efficiency Comparison on ABS: Security, Functionality and Length of Signature.

Scheme Access Security Assump- Adap. Collu. Att. Pub.Link. Pairing Length of Remark
Formula Model tion Target Resist. Priv. UCL-Link. -Free Signature

Maji et al. q-SDH ∧ X - (2λ)× -
[37] Mono. Std. DLIN ∧ CR X X (info.) - - (51l + 2r + 18λl)

OT Non- DLIN X - -
[39] mono. Std. ∧ CR X X (info.) - - (2λ)(9l + 11)

Herranz q-SRSA ∧ X - λrsa(5 + κ
λrsa

)l -

[28] Mono. R.O. DDH ∧CR X X (comp.) - X +λrsa3− κ(θ − 1)

Herranz DL X - (2λ)l + λ(6l − θ) bounded
[29] Mono. R.O. ∧CR X X (info.) - X +λM(l + 1) num. keys

Kaafarani q-SDH ∧ DDH X (2λ)(3l + r + 3) -
et al. [15] Mono. R.O. ∧DL ∧ CR X X - X - +λ(8l + 4)

Our ABS DL X (2λ)(2l) -
Mono. R.O. ∧ CR X X - - X +λ3l

Our ABTTS DL X - two-tier
(FS-sig.) Mono. R.O. ∧ CR X X (info.) - X λ(3l − 1) keys

Our ABTTS′ q-SDH X - two-tier
(CL-sig.) Mono. Std. ∧ CR X X (info.) - - λ(3l − 1) keys

the discrete-logarithm setting, but it has a constraint that the number of secret keys is bounded in the
set-up phase.

Kaafarani et al. [15] proposed the functionality of “User-Controlled Linkability” (UCL) in the case
of attribute-based signatures. UCL property in the work [15] can be captured as a kind of public
linkability. In general, public linkability is achieved with the expense of loosing attribute privacy in
ABS, and hence the scheme [15] and our ABS do not possess attribute privacy.

1.4 Technical and Efficiency Comparison on ABS: Security, Functionality and Length
of Signature

We compare our scheme with the above previously proposed schemes from the view point of security,
functionality and length of a signature. The comparison is summarized in Table 1 with notations as
follows. A prime of bit length λ (the security parameter) is denoted by p. Though a pairing map e
should be analysed for the asymmetric bilinear groups [24], we simply evaluate for the symmetric case
in which both source groups are Gp of order p. We assume that an element of Gp is represented by 2λ
bits. l and r mean the number of rows and columns of the share-generating matrix for monotone access
formula f (that is, an access structure), respectively. CR means the collision resistance of an employed
hash function. q-SDH means the Strong Diffie-Hellman assumption with q-type input for bilinear groups
[8]. DLIN means the Decisional Linear assumption for bilinear groups [39]. DDH means the Decisional
Diffie-Hellman assumption for a cyclic group [15]. DL means the Discrete-Logarithm assumption for a
cyclic group [15]. q-SRSA means the strong RSA assumption with q-type input [11, 28]. DDH in QR(N)
means the Decisional Diffie-Hellman assumption for quadratic residues modulo N (the RSA modulus)
[28]. In [28, 29], θ is the threshold value of a threshold-type access structure. In [28], κ is a security
parameter. In [29], M = L + N is the sum of the bounded number L of users in the set-up phase
and the number N of all attributes in the attribute universe. “info.” means the information-theoretic
security and “comp.” means the computational security. “FS-sig.” means a scheme that uses the Fiat-
Shamir signatures [19] as a witness and “CL-sig.” means a scheme that uses the Camenisch-Lysyanskaya
signatures [11] as a witness.

The ABS scheme by Maji et al. can be said as the pioneering work. The ABS scheme by Okamoto and
Takashima [39] has advantages in the security-proof model, access formula and information-theoretically
secure attribute privacy. The scheme by Herranz [28] is the only ABS scheme with collusion resistance,

4

(computational) attribute privacy and pairing-free property, in the RSA setting. Our procedure Σf of
the boolean proof [13] for any monotone predicate serves as a building block of (the Σ-protocol of)
the ABS scheme [28]. Note that the security parameter λrsa in the RSA setting ([28], our ABS in RSA,
our ABTTS in RSA and our ABTTS′ in RSA) is almost 9 times longer than λ in the discrete logarithm
setting. For example, λrsa = 2048 is almost equivalent to λ = 224-bit security [47].

Note that the ABS scheme by Herranz [29] which is in the discrete-logarithm setting has a constraint
that the number of secret keys is bounded in the set-up phase. Also, our attribute-based two-tier
signature schemes, ABTTS and ABTTS′, are in the two-tier setting which means that a secondary secret
key and a secondary public key are issued for each signing session and the secondary keys can be used
for only one-time use. Hence we believe that there is still an open problem to construct a pairing-free
efficient ABS scheme in the discrete-logarithm setting.

The ABS scheme by Kaafarani et al. [15] has a feature of the user-controlled linkability. In contrast,
our ABS has only the public linkability. It is notable that the ABS scheme [15] uses pairings and can be
set up in the multi-authorities setting [40, 16, 22].

1.5 Organization of this Paper

In Section 2, we prepare for required tools and notions. In Section 3, we describe a concrete procedure
of the boolean proof system, Σf . In Section 4, by using a signature-bundle scheme of the Fiat-Shamir
signature FS(Σ) as witnesses of our Σf , we obtain our ABID. In Section 5, by applying the Fiat-
Shamir transform to our ABID, we obtain our ABS. In Section 7, by applying the technique of two-tier
signature to our ABID, we obtain our ABTTS. In Section 9, we conclude our work in this paper. In
Appendix A, we summarize the notion of NIWI proof of knowledge system. In Appendix B, we state a
NIWIPoK system that is obtained from our Σf . In Appendix 8 and C, we show concrete instantiations
of our ABID, ABS and ABTTS in the RSA setting and the discrete-logarithm setting.

2 Preliminaries

The security parameter is denoted by λ. Bit length of a string x is denoted as |x|. When an algorithm
A with input a outputs z, we denote it as z ← A(a), or, because of space limitation, A(a)→ z. When a
probabilistic polynomial-time (PPT, for short) algorithm A with a random tape R and input a outputs
z, we denote it as z ← A(a;R) When A with input a and B with input b interact with each other
and B outputs z, we denote it as z ← 〈A(a), B(b)〉. When A has oracle-access to O, we denote it
as AO. When A has concurrent oracle-access to n oracles O1, . . . ,On, we denote it as AOi|

n
i=1 . Here

“concurrent” means that A accesses to oracles in arbitrarily interleaved order of messages. We denote a

concatenation of a string a with a string b as a ‖ b. The expression a
?
= b returns a value 1 (True) when

a = b and 0 (False) otherwise. The expression a
?
∈ S returns a value 1 when a ∈ S and 0 otherwise.

A probability of an event E is denoted by Pr[E]. A probability of an event E on condition that events
E1, . . . ,Em occur in this order is denoted as Pr[E1, . . . ,Em : E].

2.1 Language, Proof of Knowledge and Σ-protocol [5, 13, 14]

Language Let R = {(x,w)} ⊂ {1, 0}∗ × {1, 0}∗ be a binary relation. We say that R is polynomially
bounded if there exists a polynomial poly such that |w| ≤ poly(|x|) for all (x,w) ∈ R. If (x,w) ∈ R
then we call x a statement and w a witness of x. We say that R is an NP relation if it is polynomially
bounded and, in addition, there exists a polynomial-time algorithm for deciding membership in R.

A language for a relation R is defined as:

LR
def
= {x ∈ {1, 0}∗;∃w ∈ {1, 0}∗, (x,w) ∈ R}.

5

LR is called a NP language if R is an NP relation. Hereafter, we assume that R is an NP relation.

We introduce a relation-function R(·, ·) associated with the relation R by:

R(·, ·) : {1, 0}∗ × {1, 0}∗ → {1, 0},
(x,w) 7→ 1 if (x,w) ∈ R, 0 otherwise.

Proof of Knowledge A proof of knowledge system (PoK for short) Π = (P,V) for a language LR is
a protocol between interactive PPT algorithms P and V on initial input (x,w) ∈ R for P and x for V,
where V outputs 1 (accept) or 0 (reject) after finite rounds of interaction. P is called a prover and V is
called a verifier. In general, a prover P has unbounded computational power, but in this paper we only
consider the case that P is PPT.

Π must possess the following two properties.

Completeness. For any statement x ∈ LR and for any witness w such that (x,w) ∈ R, P with the
witness w can make V accept for the statement x with probability 1:

Pr[〈P(x,w),V(x)〉 = 1] = 1.

Knowledge Soundness. There are a PPT algorithm KE called a knowledge extractor, a function κ :
{1, 0}∗ → [1, 0] called a knowledge error function and a constant c > 0 that satisfy the following:
If there exists a PPT algorithm A that satisfies p(x) := Pr[1 ← 〈A(x),V(x)〉] > κ(x), then KE(x),
employing A(x) as a subroutine that allows to be rewinded6, outputs a witness w which satisfies
(x,w) ∈ R within an expected number of steps bounded by: |x|c/(p(x)− κ(x)).

Σ-protocol [12, 14] A Σ-protocol on a relation R is a public coin 3-move protocol between interactive
PPT algorithms P and V on initial input (x,w) ∈ R for P and x for V. P sends the first message called a
commitment Cmt, then V sends a random bit string called a challenge Cha, and P answers with a third
message called a response Res. Then V applies a decision test on (x,Cmt,Cha,Res) to return accept
(1) or reject (0). If V accepts, then the triple (Cmt,Cha,Res) is said to be an accepting conversation.
Cha is chosen uniformly at random from ChaSp(1λ) := {1, 0}l(λ) with l(·) being a super-log function.

This protocol is written by a PPT algorithm Σ as follows. Cmt← Σ1(x,w): the process of selecting
the first message Cmt according to the protocol Σ on input (x,w) ∈ R. Similarly we denote Cha ←
Σ2(1λ), Res← Σ3(x,w,Cmt,Cha) and b← Σvrfy(x,Cmt,Cha,Res).

Σ-protocol must possess the following three properties.

Completeness. A prover P with a witness w can make V accept with probability 1.

Special Soundness. Any PPT algorithm P∗ without any witness, a cheating prover, can only respond
for one possible challenge Cha. In other words, there is a PPT algorithm called a knowledge extractor,
ΣKE, which, given a statement x and using P∗ as a subroutine, can compute a witness w satisfying
(x,w) ∈ R with at most a negligible error probability, from two accepting conversations of the form
(Cmt,Cha,Res) and (Cmt,Cha′,Res′) with Cha 6= Cha′.

Honest-Verifier Zero-Knowledge. Given a statement x and a random challenge Cha← Σ2(1λ), we can
produce in polynomial-time, without knowing the witness w, an accepting conversation (Cmt,Cha,Res)
whose distribution is the same as the real accepting conversation. In other words, there is a PPT algo-
rithm called a simulator, Σsim, such that (Cmt,Res)← Σsim(x,Cha).

As a zero-knowledge proof-of-knowledge system, we denote Σ as ZKPoK[γ : Γ], where γ is a
knowledge to be proved and Γ is the condition that γ should satisfy.

Any Σ-protocol can be proved to be a proof of knowledge system ([14]).

6 In [5], it is described as “oracle-access to Ax” instead of rewinding, which is more general statement but we do not
need the generality in this paper.

6

We will need in this paper a property called unique answer property [7] that for legitimately produced
commitment Cmt and challenge Cha, there exists one and only one response Res =: w′ that is accepted
by a verifier. Known Σ-protocols such as the Schnorr protocol and the Guillou-Quisquater protocol [44,
6] possess this property. For such a unique answer w′ we consider a statement x′ such that (x′, w′) ∈ R.
Then, we further assume that both a prover and a verifier can compute, in polynomial-time, such an
x′ from (x,Cmt,Cha). We denote the PPT algorithm as Σstmtgen. That is;

Σstmtgen(x,Cmt,Cha) :

Compute x′ s.t.
∃1w′ s.t. [(x′, w′) ∈ R ∧ (Cmt,Cha,Res := w′) is an accepting conversation]

Return x′

Known Σ-protocols [44, 6] possess this statement generation property (see Section 8 and Section C).

The OR-proof [14] Consider the following relation for a boolean predicate f(X1, X2) = X1 ∨X2.

ROR ={(x = (x0, x1), w = (w0, w1)) ∈ {1, 0}∗ × {1, 0}∗;
R(x0, w0) ∨R(x1, w1) = 1}.

The corresponding language for the relation ROR is given as follows.

LROR
= {x ∈ {1, 0}∗; ∃w, (x,w) ∈ ROR}.

The OR-proof is defined as an interactive proof system for the language LROR
.

Suppose that a Σ-protocol Σ on a relation R is given. Then we can construct a new protocol,
ΣOR, on a relation ROR as follows. For instance, suppose (x0, w0) ∈ R holds. P computes Cmt0 ←
Σ1(x0, w),Cha1 ← Σ2(1λ), (Cmt1,Res1) ← Σsim(x1,Cha1) and sends (Cmt0,Cmt1) to V. Then V
sends Cha← Σ2(1λ) to P. Then, P computes Cha0 := Cha⊕Cha1,Res0 ← Σ3(x0, w0,Cmt0,Cha0)
answers to V with (Cha0,Cha1) and (Res0,Res1). Here ⊕ denotes a bitwise exclusive-OR operation.
Then both (Cmt0,Cha0,Res0) and
(Cmt1,Cha1,Res1) are accepting conversations and have the same distribution as real accepting con-
versations. This protocol ΣOR can be proved to be a Σ-protocol. We often call this Σ-protocol ΣOR

the OR-proof.

The Fiat-Shamir Transform [1] Suppose that a cryptographic hash function with collision re-
sistance, Hashµ(·) : {1, 0}∗ → {1, 0}l(λ), is given. We fix a hash key µ hereafter. A Σ-protocol Σ
on a relation R can be transformed into a non-interactive zero-knowledge proof of knowledge system
(NIZKPoK) with its knowledge extractor in the random oracle model. Hence a non-interactive witness-
indistinguishable proof of knowledge system (NIWIPoK) can be obtained. When a Σ-protocol Σ is an
identification scheme, the resulting scheme is a digital signature scheme. The transform is described
as follows. (Here, a message m is omitted in the case of a NIWIPoK.) Given a message m ∈ {1, 0}∗,
execute: a ← Σ1(x,w), c ← Hashµ(a ‖ m), z ← Σ3(x,w, a, c). Then σ := (a, z) is a signature on m.
We denote the above signing algorithm as FS(Σ)sign(x,w,m)→ (a, z) =: σ. The verification algorithm
FS(Σ)vrfy(x,m, σ) is given as: c← Hashµ(a ‖ m), Return b← Σvrfy(x, a, c, z).

The signature scheme FS(Σ) = (R,FS(Σ)sign,FS(Σ)vrfy) can be proved, in the random oracle model,
to be existentially unforgeable against chosen-message attacks if and only if the underlying Σ-protocol
Σ is secure against passive attacks as an identification scheme [1]. More precisely, let qH denote the
maximum number of hash queries issued by the adversary on FS(Σ). Then, for any PPT algorithm
F , there exists a PPT algorithm B which satisfies the following inequality (neg(·) means a negligible
function).

Adveuf-cma
FS(Σ),F (λ,U) ≤ qHAdvpa

Σ,B(λ,U) + neg(λ).

7

2.2 Signature-Bundle Scheme (Credential-Bundle Scheme [37])

A signature-bundle scheme SB is an extended notion of signature scheme. It consists of three algorithms:
SB = (SB.KG,SB.Sign,SB.Vrfy). Below n is bounded by a polynomial in λ.
SB.KG(1λ)→ (PK, SK). This PPT algorithm for key generation takes as input 1λ. It returns a public
key PK and a secret key SK.
SB.Sign(PK,SK, (m1, . . . ,mn)) → (τ, (σ1, . . . , σn)). This PPT algorithm for signing takes as input
PK, SK and n messages m1, . . . ,mn. It returns a tag τ and n signatures σ1, . . . , σn.
SB.Vrfy(PK, (m1, . . . ,mn), (τ, (σ1, . . . , σn)))→ 1/0. This deterministic polynomial-time algorithm for
verification takes as input PK, n messages m1, . . . ,mn, a tag τ and n signatures σ1, . . . , σn. It returns
1 or 0.

Suppose that we are given a digital signature scheme (KG, Sign,Vrfy). Then we can construct a
signature-bundle scheme as follows (according to [37]). SB.KG takes as input 1λ and it runs KG(1λ)
to get (PK, SK). it outputs (PK, SK). SB.Sign takes as input PK, SK and a set of messages (mi)1≤i≤n.
It chooses a tag τ of length λ at random. Then it executes Sign on each tagged message (τ ‖ mi), i =
1, . . . , n and outputs signatures σi, i = 1, . . . , n, respectively. SB.Vrfy takes as input PK, (mi)1≤i≤n, τ
and (σi)1≤i≤n. Then it executes Vrfy on each tagged message and signature, ((τ ‖ mi), σi), i = 1, . . . , n.
It returns 1 if and only if Vrfy returns 1 for all i, i = 1, . . . , n.

2.3 Pseudorandom Function Family [34]

A pseudorandom function family, {PRF k}k∈PRFkeysp(λ), is a function family in which each function
PRF k : {1, 0}∗ → {1, 0}∗ is an efficiently-computable function that looks random to any polynomial-
time distinguisher, where k is called a key and PRFkeysp(λ) is called a key space. (See more details in,
for example, the book [34].)

2.4 Access Structure [23]

Let U = {1, . . . , u} be an attribute universe. We must distinguish two cases: the case that U is small
(that is, |U| = u is bounded by a polynomial in λ) and the case that U is large (that is, u is not
necessarily bounded). We assume the small case in this paper.

Let f = f(Xi1 , . . . , Xia) be a boolean predicate over boolean variables U = {X1, . . . , Xu}. That
is, variables Xi1 , . . . , Xia are connected by boolean connectives; AND-gate (∧) and OR-gate (∨). For
example, f = Xi1 ∧ ((Xi2 ∧Xi3)∨Xi4) for some i1, i2, i3, i4, 1 ≤ i1 < i2 < i3 < i4 ≤ u. Note that there
is a bijective map between boolean variables and attributes:

ψ : U → U , ψ(Xi)
def
= i.

For f(Xi1 , . . . , Xia), we denote the set of indices (that is, attributes) {i1, . . . , ia} by Att(f). We note
the arity of f as arity(f). Hereafter we use the symbol ij to mean the following:

ij
def
= the index i of a boolean variable that is the j-th argument of f.

Suppose that we are given an access structure as a boolean predicate f . For S ∈ 2U , we evaluate
the boolean value of f at S as follows:

f(S)
def
= f

(
Xij ← [ψ(Xij)

?
∈ S]; j = 1, . . . , arity(f)

)
∈ {1, 0}.

Under this definition, a boolean predicate f can be seen as a map: f : 2U → {1, 0}. We call a boolean
predicate f with this map an access formula over U . In this paper, we assume that no NOT-gate (¬)
appears in f . In other words, we only consider a monotone access formula f .7

7 This limitation can be removed by adding negation attributes to U for each attribute in the original U though the size
of the attribute universe |U| doubles.

8

Access Tree A monotone access formula f can be represented by a finite binary tree Tf . Each inner
node represents a boolean connective, ∧-gate or ∨-gate, in f . Each leaf corresponds to a term Xi (not
a variable Xi) in f in one-to-one way. For a finite binary tree tree T , we denote the set of all nodes, the
root node, the set of all leaves, the set of all inner nodes (that is, all nodes excluding leaves) and the
set of all tree-nodes (that is, all nodes excluding the root node) as Node(T), r(T), Leaf(T), iNode(T)
and tNode(T), respectively. Then an attribute map ρ(·) is defined as:

ρ : Leaf(T)→ U , ρ(l)
def
= (the attribute i that corresponds to l through ψ).

If ρ is not injective, then we call the case multi-use of attributes.

If T is of height greater than 0, T has two subtrees whose root nodes are two children of r(T). We
denote the two subtrees by Lsub(T) and Rsub(T), which mean the left subtree and the right subtree,
respectively.

2.5 Attribute-Based Identification Scheme [2]

An attribute-based identification scheme, ABID, consists of four PPT algorithms [2]: ABID =
(ABID.Setup,ABID.KG,P,V).

ABID.Setup(1λ,U) → (PK,MSK). This PPT algorithm for setting up takes as input the security
parameter 1λ and an attribute universe U . It returns a public key PK and a master secret key MSK.

ABID.KG(PK,MSK, S) → SKS . This PPT algorithm for key-generation takes as input the public
key PK, the master secret key MSK and an attribute set S ⊂ U . It returns an id-key SKS corresponding
to S.

P(PK,SKS , f) and V(PK, f). These interactive PPT algorithms are called a prover and a verifier,
respectively. P takes as input the public key PK, the secret key SKS and an access formula f . Here the
secret key SKS is given to P by an authority that runs ABID.KG(PK,MSK, S). V takes as input the
public key PK and an access formula f . P and V interact with each other for at most constant rounds.
Then, V returns its decision 1 or 0. When it is 1, we say that V accepts P for f . When it is 0, we say
that V rejects P for f .

We demand correctness of ABID that, for any λ, and if f(S) = 1, Pr[(PK,MSK)← ABID.Setup(1λ,U),
SKS ← ABID.KG(PK,MSK, S), b← 〈P(PK,SKS),V(PK, f)〉 : b = 1] = 1.

Passive and Concurrent Attacks on ABID and Security Definition Informally speaking, an
adversary A’s objective is impersonation. A tries to make a verifier V accept with an access formula
f∗.

The following experiment ExprmtpaABID,A(λ,U) of an adversary A defines the game of passive attack
on ABID.

ExprmtpaABID,A(λ,U) :

(PK,MSK)← ABID.Setup(1λ,U)

(f∗, st)← AKG(PK,MSK,·),Transc(P(PK,SK·,·),V(PK,·))(PK,U)

b← 〈A(st),V(PK, f∗)〉
If b = 1 then Return Win else Return Lose

In the experiment, A issues key-extraction queries to its key-generation oracle KG and transcript queries
to its transcript oracle Transc. In a transcript query, giving a pair (Sj , fj) of an attribute set and an
access formula, A queries Transc(P(PK, SK·, ·),V(PK, ·)) for a whole transcript of messages interacted
between P(PK,SKSj , fj) and V(PK, fj).

9

The advantage of A over ABID in the game of a passive attack is defined as

Advpa
ABID,A(λ,U)

def
= Pr[ExprmtpaABID,A(λ,U) returns Win].

ABID is called secure against passive attacks if, for any PPT A and for any U , Advpa
ABID,A(λ,U) is

negligible in λ.

The following experiment ExprmtcaABID,A(λ,U) of an adversary A defines the game of concurrent
attack on ABID.

ExprmtcaABID,A(λ,U) :

(PK,MSK)← ABID.Setup(1λ,U)

(f∗, st)← AKG(PK,MSK,·),Pj(PK,SK·,·)|
qp
j=1(PK,U)

b← 〈A(st),V(PK, f∗)〉
If b = 1 then Return Win else Return Lose

In the experiment, A issues key-extraction queries to its key-generation oracle KG. Giving an at-
tribute set Si, A queries KG(PK,MSK, ·) for the secret key SKSi . In addition, A invokes provers
Pj(PK,SK·, ·), j = 1, . . . , q′p, . . . , qp, by giving a pair (Sj , fj) of an attribute set and an access formula.
Acting as a verifier with an access formula fj , A interacts with each Pj(PK, SKSj , fj) concurrently.

The access formula f∗ declared by A is called a target access formula. Here we consider the adaptive
target in the sense that A is allowed to choose f∗ after seeing PK, issuing key-extraction queries and
interacting with of provers. Two restrictions are imposed on A concerning f∗. In key-extraction queries,
each attribute set Si must satisfy f∗(Si) = 0. In interactions with each prover, f∗(Sj) = 0. The number
of key-extraction queries and the number of invoked provers are at most qk and qp in total, respectively,
which are bounded by a polynomial in λ.

The advantage of A over ABID in the game of a concurrent attack is defined as

Advca
ABID,A(λ,U)

def
= Pr[ExprmtcaABID,A(λ,U) returns Win].

ABID is called secure against concurrent attacks if, for any PPT A and for any U , Advca
ABID,A(λ,U) is

negligible in λ.

The concurrent security means the passive security; for any PPT A, there exists a PPT B that
satisfies the following inequality.

Advpa
ABID,A(λ,U) ≤ Advca

ABID,B(λ,U). (1)

2.6 Attribute-Based Signature Scheme [37, 39]

An attribute-based signature scheme, ABS, consists of four PPT algorithms [39]: ABS =
(ABS.Setup,ABS.KG,ABS.Sign,ABS.Vrfy).

ABS.Setup(1λ,U) → (PK,MSK). This PPT algorithm for setting up takes as input the security
parameter 1λ and an attribute universe U . It returns a public key PK and a master secret key MSK.

ABS.KG(PK,MSK, S)→ SKS . This PPT algorithm for key-generation takes as input the public key
PK, the master secret key MSK and an attribute set S ⊂ U . It returns a signing key SKS corresponding
to S.

ABS.Sign(PK,SKS , (m, f))→ σ. This PPT algorithm for signing takes as input a public key PK, a
private secret key SKS corresponding to an attribute set S, a pair (m, f) of a message ∈ {1, 0}∗ and an
access formula. It returns a signature σ.

10

ABS.Vrfy(PK, (m, f), σ). This deterministic polynomial-time algorithm takes as input a public key
PK, a pair (m, f) of a message and an access formula, and a signature σ. It returns a decision 1 or 0.
When it is 1, we say that ((m, f), σ) is valid. When it is 0, we say that ((m, f), σ) is invalid.

We demand correctness of ABS that, for any λ, any U , any S ⊂ U and any (m, f) such that f(S) = 1,
Pr[(PK,MSK)← ABS.Setup(1λ,U), SKS ← ABS.KG(PK,MSK, S), σ ← ABS.Sign(PK,SKS , (m, f)),
b← ABS.Vrfy(PK, (m, f), σ) : b = 1] = 1.

Chosen-Message Attack on ABS and Security Definition Informally speaking, an adversary
F ’s objective is to make an existential forgery. F tries to make a forgery ((m∗, f∗), σ∗) that consists of
a message, a target access structure and a signature. The following experiment Exprmteuf-cma

ABS,F (λ,U) of
a forger F defines the chosen-message attack on ABS to make an existential forgery.

Exprmteuf-cma
ABS,F (λ,U) :

(PK,MSK)← ABS.Setup(1λ,U)

((m∗, f∗), σ∗)← FKG(PK,MSK,·),SIGN (PK,SK·,(·,·))(PK)

If ABS.Vrfy(PK, (m∗, f∗), σ∗) = 1 then Return Win

else Return Lose

In the experiment, F issues key-extraction queries to its key-generation oracle KG and signing queries to
its signing oracle SIGN . Giving an attribute set Si, F queries KG(PK,MSK, ·) for the secret key SKSi .
In addition, giving an attribute set Sj and a pair (m, f) of a message and an access formula, F queries
SIGN (PK, SK·, (·, ·)) for a signature σ that satisfies ABS.Vrfy(PK, (m, f), σ) = 1 when f(Sj) = 1.

The access formula f∗ declared by F is called a target access formula. Here we consider the adaptive
target in the sense that F is allowed to choose f∗ after seeing PK and issuing some key-extraction queries
and signing queries. Two restrictions are imposed on F concerning f∗. In key-extraction queries, Si
that satisfies f∗(Si) = 1 was never queried. In signing queries, (m∗, f∗) was never queried. The number
of key-extraction queries and the number of signing queries are at most qk and qs in total, respectively,
which are bounded by a polynomial in λ.

The advantage of F over ABS in the game of chosen-message attack to make existential forgery is
defined as

Adveuf-cma
ABS,F (λ,U)

def
= Pr[Exprmteuf-cma

ABS,F (λ,U) returns Win].

ABS is called existentially unforgeable against chosen-message attacks if, for any PPT F and for any U ,
Adveuf-cma

ABS,F (λ,U) is negligible in λ.

Attribute Privacy of ABS Roughly speaking, ABS is called to have attribute privacy if any uncon-
ditional cheating verifier cannot distinguish two distributions of signatures each of which is generated
by different attribute set. The following definition is due to Maji et al. and Okamoto-Takashima.

Definition 1 (Attribute Privacy (Perfect Privacy [37, 39])) ABS is called to have attribute pri-
vacy if, for all (PK,MSK) ← ABS.Setup(1λ,U), for all message m, for all attribute sets S1 and S2,
for all signing keys SKS1 ← ABS.KG(PK,MSK, S1) and SKS2 ← ABS.KG(PK,MSK, S2) and for all
access formula f such that f(S1) = 1 and f(S2) = 1 or f(S1) 6= 1 and f(S2) 6= 1, two distributions
ABS.Sign(PK,SKS1 , (m, f)) and
ABS.Sign(PK,SKS2 , (m, f)) are identical.

11

3 Our Construction of Boolean Proof

In this section, we first construct a proof system Σf from a given Σ-protocol Σ and a boolean predicate
f . Then we prove that our Σf is a Σ-protocol on the relation Rf . That is, we prove that our Σf is
a Σ-protocol that is an boolean proof for the language Lf . In Appendix B, we apply the Fiat-Shamir
transform FS(·) to our Σ-protocol Σf to obtain a non-interactive witness-indistinguishable proof of
knowledge (NIWIPoK) system for the language Lf .

3.1 The Boolean Proof [13, 3]

We revisit the notion of a public coin interactive proof of knowledge system for the language Lf
introduced by Cramer, Damg̊ard and Schoenmakers [13], which we call a boolean proof system. Then
we restate the definitions for the sake of clarity.

Let R be a binary relation. Let f(Xi1 , . . . , Xia) be a boolean predicate over boolean variables
U = {X1, . . . , Xu}.

Definition 2 (Cramer, Damg̊ard and Schoenmakers [13], Our Rewritten Form) A relation Rf
is defined by:

Rf
def
= {(x = (xi1 , . . . , xia), w = (wi1 , . . . , wia)) ∈ {1, 0}∗ × {1, 0}∗;

f(R(xi1 , wi1), . . . , R(xia , wia)) = 1}.

Rf is a generalization of the relation ROR for the OR-proof [13, 14], where f is a boolean predicate
with the single boolean connective: X1 ∨X2. Note that, if R is an NP relation, then Rf is also an NP
relation under the assumption that a, the arity of f , is bounded by a polynomial in λ.

The corresponding language for the relation Rf is given as follows.

Lf = {x ∈ {1, 0}∗; ∃w, (x,w) ∈ Rf}.

Finally, we achieve the following definition.

Definition 3 A boolean proof system is an interactive proof system for the language Lf .

We will provide a concrete procedure Σf of a Σ-protocol of a boolean proof system.

3.2 Our Procedure of Boolean Proof for the Language Lf

Σf is a 3-move protocol between interactive PPT algorithms P and V on input a pair of a statement
and a witness (x,w) for P, and x for V, where (x := (xij)1≤j≤arity(f) and w := (wij)1≤j≤arity(f)) ∈ Rf .

In our prover-algorithm P, there are three PPT subroutines Σeval
f , Σ1

f and Σ3
f . On the other hand,

in our verifier-algorithm V, there are two PPT subroutines Σ2
f and Σvrfy

f . Moreover, Σvrfy
f has two

subroutines VrfyCha and VrfyRes. Fig. 1 shows our construction of boolean proof: Σf .

Evaluation of Satisfiability. The prover P begins with evaluation of whether and how S satisfies f
by running the evaluation algorithm Σeval

f . It labels each node of T with a value v = 1 (True) or 0
(False). For each leaf l, we label l with vl = 1 if ρ(l) ∈ S and vl = 0 otherwise. For each inner node n,
we label n with vn = vnL ∧ vnR or vn = vnL ∨ vnL according to AND/OR evaluation of two labels of its
two children nL, nR. The computation is executed for every node from the root to each leaf, recursively,

12

P(x,w, f) : V(x, f):

Σeval
f (Tf , S)→ (vn)n

If vr(Tf) 6= 1, then abort

else Char(Tf) := ∗

Σ1
f (x,w, Tf , (vn)n,Char(Tf))

→ ((Cmtl)l, (Chan)n, (Resl)l) (Cmtl)l
−→

Char(Tf) := Cha Cha Cha← Σ2
f (1λ)

Σ3
f (x,w, Tf , (vn)n, ←−
(Cmtl)l, (Chan)n, (Resl)l) Σvrfy

f (x, Tf ,Cha,

→ ((Chan)n, (Resl)l) (Chan)n, (Resl)l (Cmtl)l, (Chan)n, (Resl)l)
−→ → b,Return b

Fig. 1. Our Boolean Proof System Σf for the language Lf .

in the following way.

Σeval
f (T , S) :

TL := Lsub(T), TR := Rsub(T)

If r(T) is an ∧ -node, then Return vr(T) := (Σeval
f (TL, S) ∧Σeval

f (TR, S))

else if r(T) is an ∨ -node, then Return vr(T) := (Σeval
f (TL, S) ∨Σeval

f (TR, S))

else if r(T) is a leaf, then Return vr(T) := (ρ(r(T))
?
∈ S)

Commitment. P computes a commitment value for each leaf by running the algorithm Σ1
f described

in Fig. 2. Basically, Σ1
f runs for every node from the root to each leaf, recursively. As a result, Σ1

f

generates for each leaf l a value Cmtl; If vl = 1, then Cmtl is computed honestly according to Σ1. Else
if vl = 0, then Cmtl is computed in the simulated way according to Σsim. Other values, (Chat)t and
(Resl)l), are needed for the simulation. Note that a distinguished symbol ‘∗′ is used for those other
values to indicate the honest computation.

Σ1
f (x,w, T , (vn)n,Cha) :
TL := Lsub(T), TR := Rsub(T)
If r(T) is ∧-node, then Char(TL) := Cha,Char(TR) := Cha

Return(Char(TL),Σ
1
f (x,w, TL, (vn)n,Char(TL)),Char(TR),Σ

1
f (x,w, TR, (vn)n,Char(TR)))

else if r(T) is ∨-node, then
If vr(TL) = 1 ∧ vr(TR) = 1, then Char(TL) := ∗, Char(TR) := ∗
else if vr(TL) = 1 ∧ vr(TR) = 0, then Char(TL) := ∗, Char(TR) ← Σ2(1λ)

else if vr(TL) = 0 ∧ vr(TR) = 1, then Char(TL) ← Σ2(1λ),Char(TR) := ∗
else if vr(TL) = 0 ∧ vr(TR) = 0, then Char(TL) ← Σ2(1λ),Char(TR) := Cha⊕Char(TL)

Return(Char(TL),Σ
1
f (x,w, TL, (vn)n,Char(TL)),Char(TR),Σ

1
f (x,w, TR, (vn)n,Char(TR)))

else if r(T) is a leaf, then
If vr(T) = 1, then Cmtr(T) ← Σ1(xρ(r(T)), wρ(r(T))),Resr(T) := ∗
else if vr(T) = 0, then (Cmtr(T),Resr(T))← Σsim(xρ(r(T)),Cha)
Return(Cmtr(T),Resr(T))

Fig. 2. The subroutine Σ1
f of our Σf .

Challenge. V chooses a challenge value (that is, a public coin) by Σ2.

Σ2
f (1λ) : Cha← Σ2(1λ),Return(Cha)

13

Response. P computes a response value for each leaf by running the algorithm Σ3
f described in Fig.

3. Basically, the algorithm Σ3
f runs for every node from the root to each leaf, recursively. As a result,

Σ3
f generates values, (Chat)t and (Resl)l). Note that the computations of all challenge values (Chat)t

are completed (according to the “division rule” described in Section 1.1).

Σ3
f (x,w, T , (vn)n, (Cmtl)l, (Chan)n, (Resl)l) :
TL := Lsub(T), TR := Rsub(T)
If r(T) is ∧-node, then Char(TL) := Char(T),Char(TR) := Char(T)

Return(Char(TL),Σ
3
f (x,w, TL, (vn)n, (Cmtl)l, (Chan)n, (Resl)l),

Char(TR),Σ
3
f (x,w, TR, (vn)n, (Cmtl)l, (Chan)n, (Resl)l))

else if r(T) is ∨-node, then

If vr(TL) = 1 ∧ vr(TR) = 1, then Char(TL) ← Σ2(1λ), Char(TR) := Char(T) ⊕Char(TL)

else if vr(TL) = 1 ∧ vr(TR) = 0, then Char(TL) := Cha⊕Char(TR),Char(TR) := Char(TR)

else if vr(TL) = 0 ∧ vr(TR) = 1, then Char(TL) := Char(TL), Char(TR) := Char(T) ⊕Char(TL)

else if vr(TL) = 0 ∧ vr(TR) = 0, then Char(TL) := Char(TL), Char(TR) := Char(TR)

Return(Char(TL),Σ
3
f (x,w, TL, (vn)n, (Cmtl)l, (Chan)n, (Resl)l),

Char(TR),Σ
3
f (x,w, TR, (vn)n, (Cmtl)l, (Chan)n, (Resl)l))

else if r(T) is a leaf, then
If vr(T) = 1, then Resr(T) ← Σ3(xρ(r(T)), wρ(r(T)),Cmtr(T),Char(T))
else if vr(T) = 0, then Resr(T) ← Resr(T)

Return(Resr(T))

Fig. 3. The subroutine Σ3
f of our Σf .

Verification. V computes a decision by running from the root to each leaf, recursively, the algorithm
Σvrfy
f described below.

Σvrfy
f (x, T ,Cha, (Cmtl)l, (Chan)n, (Resl)l) :

Return(VrfyCha(T ,Cha, (Chan)n) ∧VrfyRes(x, T , (Cmtl,Chal,Resl)l))

VrfyCha(T ,Cha, (Chan)n) :

TL := Lsub(T), TR := Rsub(T)

If r(T) is an ∧ -node

then Return ((Cha
?
= Char(TL)) ∧ (Cha

?
= Char(TR))

∧VrfyCha(TL,Char(TL), (Chan)n) ∧VrfyCha(TR,Char(TR), (Chan)n))

else if r(T) is an ∨ -node,

then Return ((Cha
?
= Char(TL) ⊕Char(TR))

∧VrfyCha(TL,Char(TL), (Chan)n) ∧VrfyCha(TR,Char(TR), (Chan)n))

else if r(T) is a leaf,

then Return (Cha
?
∈ ChaSp(1λ))

VrfyRes(x, T , (Cmtl,Chal,Resl)l) :

For l ∈ Leaf(T) : If Σvrfy(xρ(l),Cmtl,Chal,Resl) = 0, then Return (0)

Return (1)

Now we have to check that Σf is certainly a Σ-protocol for the language Lf .

14

Proposition 1 (Completeness) Completeness holds for our Σf . More precisely, Suppose that vr(Tf) =

1. Then, for every node in Node(Tf), either vn = 1 or Chan 6= ∗ holds after executing Σ1
f .

Proof. Induction on the height of Tf . The case of height 0 follows from vr(Tf) = 1 and the completeness
of Σ. Suppose that the case of height k holds and consider the case of height k + 1. The construction
of Σ1

f assures the case of height k + 1. �

Proposition 2 (Special Soundness) Special soundness holds for our Σf .

We can construct a knowledge extractor ΣKE
f from a knowledge extractor ΣKE of the underlying Σ-

protocol Σ as follows.

ΣKE
f (x, (Cmtl,Chal,Resl)l, (Cmtl,Cha′l,Res′l)l) :

For 1 ≤ j ≤ arity(f) : w∗ij := ∗
For l ∈ Leaf(Tf)

If Chal 6= Cha′l, then w∗ρ(l) ← ΣKE(xρ(l), (Cmtl,Chal,Resl), (Cmtl,Cha′l,Res′l))

else If w∗ρ(l) = ∗, then w∗ρ(l) ← {1, 0}
∗

Return (w∗ := (w∗ij)1≤j≤arity(f))

Then Lemma 1 assures the proposition.

Lemma 1 (Witness Extraction) The set w∗ output by ΣKE
f satisfies (x,w∗) ∈ Rf .

Proof. Induction on the number of all ∨-nodes in iNode(Tf). First remark that Cha 6= Cha′.

Suppose that all nodes in iNode(Tf) are ∧-nodes. Then the above claim follows immediately because
Chal 6= Cha′l holds for all leaves.

Suppose that the case of k ∨-nodes holds and consider the case of k + 1 ∨-nodes. Look at one
of the lowest height ∨-node and name the height and the node as h∗ and n∗, respectively. Then
Chan∗ 6= Cha′n∗ because all nodes with height less than h∗ are ∧-nodes. So at least one of children of
n∗, say n∗L, satisfies Chan∗L 6= Cha′n∗L

. Divide the tree Tf into two subtrees by cutting the branch right
above n∗, and the induction hypothesis assures the claim. �

Proposition 3 (Honest-Verifier Zero-Knowledge) Honest-verifier zero-knowledge property holds
for our Σf .

Proof. This is the immediate consequence of honest-verifier zero-knowledge property of Σ. That is, we
can construct a polynomial-time simulator Σsim

f which, on input (PK,Cha), outputs commitment and
response message of Σf . �

We summarize the above results into the following theorem and corollary.

Theorem 1 (Σf is a Σ-protocol) Our procedure Σf obtained from a Σ-protocol Σ on the relation
R and a boolean predicate f is a Σ-protocol on the relation Rf .

Corollary 1 Our procedure Σf is a boolean proof system for the language Lf .

It is notable that our Σ-protocol of boolean proof, Σf , can be considered as a proto-type of an
attribute-based identification scheme (and also, FS(Σf) can be considered a proto-type of an attribute-
based signature scheme [13]) without collusion resistance on secret keys.

15

4 Our Attribute-Based Identification Scheme

In this section, we provide an attribute-based identification scheme (ABID) by combining our Σ-
protocol Σf of a boolean proof system in Section 3 with a signature bundle of the Fiat-Shamir signa-
tures. Our ABID is verifier-policy scheme. Our ABID has a feature that it can be constructed without
pairings when it is instantiated in, for example, the RSA setting or the discrete-logarithm setting (see
Section 8 and Appendix C).

4.1 Our ABID

By combining our Σf in Section 3 with a signature-bundle scheme FS(Σ), we obtain a scheme of
VP-ABID, ABID. Our ABID is collusion resistant against collecting private secret keys. Our ABID

has a feature that it can be constructed without pairings. Fig. 4 shows our construction: ABID =
(ABID.Setup,ABID.KG,P,V).
ABID.Setup takes as input 1λ and U . It chooses a pair (xmst, wmst) at random from R = {(x,w)}
by running InstanceR(1λ), where |x| and |w| are bounded by a polynomial in λ. It also chooses a hash
key µ at random from a hash-key space Hashkeysp(λ). It returns a public key PK = (xmst,U , µ) and a
master secret key MSK = (wmst).

ABID.Setup(1λ,U) :

(xmst, wmst)← InstanceR(1λ), µ← Hashkeysp(λ)

PK := (xmst,U , µ),MSK := (wmst)

Return(PK,MSK)

ABID.KG takes as input PK,MSK, S. It chooses a PRF key k from PRFkeysp(λ) at random and a
random string τ from {1, 0}λ at random. Then it applies the signature-bundle technique [37] for each
message mi := (τ ‖ i), i ∈ S. Here we employ the Fiat-Shamir signing algorithm FS(Σ)sign (see 2.1). It
returns SKS .

ABID.KG(PK,MSK, S) :

k ← PRFkeysp(λ), τ ← {1, 0}λ

For i ∈ S :

mi := (τ ‖ i), ai ← Σ2(xmst, wmst)

ci ← Hashµ(ai ‖ mi), wi ← Σ3(xmst, wmst, ai, ci)

SKS := (k, τ, (ai, wi)i∈S),Return SKS .

P and V takes as input (PK,SKS , f) and (PK, f), respectively. Then P and V execute the following
interaction.

First, P uses the following supplementary algorithm Supp and a statement-generator algorithm
StmtGen.

Supp runs for j, 1 ≤ j ∈ arity(f), and generates simulated keys (aij , wij) for ij /∈ S.

Supp(PK,SKS , f) :

For j = 1 to arity(f) :

If ij /∈ S, then

mij := (τ ‖ ij), cij ← PRF k(mij ‖ 0)

(aij , wij)← Σsim(xmst, cij ;PRF k(mij ‖ 1))

Return (aij , wij)1≤j≤arity(f)

16

StmtGen generates, for each j, 1 ≤ j ∈ arity(f), a statement xij . Note that we employ here the
algorithm Σstmtgen which is associated with Σ, and whose existence is assured by our assumption (see
Section 2.1).

StmtGen(PK, τ, (aij)1≤j≤arity(f)) :

For j = 1 to arity(f) :

mij := (τ ‖ ij), cij ← Hashµ(aij ‖ mij)

xij ← Σstmtgen(xmst, aij , cij)

Return (xij)1≤j≤arity(f)

Note that (xi, wi) ∈ R for i ∈ S but Pr[(xi, wi) ∈ R] = neg(λ) for i /∈ S.

The above procedures are needed to input a pair of statement and witness, (x = (xij)1≤j≤arity(f), w =
(wij)1≤j≤arity(f)), to Σ1

f , into the prover of our boolean proof system Σf . Note here that (xij , wij) ∈ R
for any ij ∈ S. On the other hand, (xij , wij) /∈ R for any ij /∈ S, without a negligible probability,
neg(λ). Note also that P has to send a string τ and elements (aij)1≤j≤arity(f) to the verifier V.

Second, V runs StmtGen on input PK, τ and (aij)1≤j≤arity(f) to generate the statement x. Note
that τ and (aij)1≤j≤arity(f) can be sent as a part of the message on the first move.

Finally, P and V of our ABID execute the prover and the verifier of our boolean proof system Σf ,
respectively. V returns 1 or 0 according to the return of the verifier of Σf .

ABID.Setup(1λ,U): ABID.KG(PK,MSK, S):

(xmst, wmst)← InstanceR(1λ) k ← PRFkeysp(λ), τ ← {1, 0}λ
µ← Hashkeysp(λ) For i ∈ S
PK := (xmst,U , µ),MSK := (wmst) mi := (τ ‖ i), ai ← Σ1(xmst, wmst)
Return(PK,MSK) ci ← Hashµ(ai ‖ mi), wi ← Σ3(xmst, wmst, ai, ci)

SKS := (k, τ, (ai, wi)i∈S)
Return SKS

P(PK, SKS , f): V(PK, f):
Supp(PK, SKS , f)→ (aij , wij)j
w := (wij)j
StmtGen(PK, τ, (aij)j)

→ (xij)j =: x

Σeval
f (Tf , S)→ (vn)n

If vr(Tf) 6= 1, then abort

else Char(Tf) := ∗

Σ1
f (x,w, Tf , (vn)n,Char(Tf))

→ ((Cmtl)l, (Chan)n, (Resl)l) τ, (aij)j , (Cmtl)l StmtGen(PK, τ, (aij)j)
−→ → (xij)j =: x

Char(Tf) := Cha Cha Cha← Σ2
f (1λ)

←−
Σ3
f (x,w, Tf , (vn)n,

(Cmtl)l, (Chan)n, (Resl)l) Σvrfy
f (x, Tf ,Cha,

→ ((Chan)n, (Resl)l) (Chan)n, (Resl)l (Cmtl)l, (Chan)n, (Resl)l)
−→ → b, Return b

Fig. 4. The scheme of our ABID.

17

4.2 Security of Our ABID

Theorem 2 (Concurrent Security) If the employed signature scheme FS(Σ) is existentially un-
forgeable against chosen-message attacks, then our ABID is secure against concurrent attacks. More
precisely, for any PPT algorithm A, there exists a PPT algorithm F which satisfies the following in-
equality (neg(·) means a negligible function).

Advca
ABID,A(λ,U) ≤ (Adveuf-cma

FS(Σ),F (λ,U))1/2 + neg(λ).

Note that FS(Σ) is only known to be secure in the random oracle model.
Proof. Employing any given adversary A as subroutine, we construct a signature forger F on FS(Σ)
as follows. F can answer to A’s key-extraction queries for a secret key SKS because F can query his
signing oracle about (mi := τ ‖ i; i ∈ S), where F chooses τ at random. F can simulate any concurrent
prover with SKS which A invokes because F can generate SKS in the above way. After the learning
phase, A begins the impersonation phase. F simulates a verifier with which A interacts as a prover.
After a completion of a verification, F rewinds A to the timing right after receiving a commitment.
By running ΣKE

f , F obtains a witness w∗, a set of attributes S∗ and a target access formula f∗ with
f∗(S∗) = 1, Finally, F succeeds in making at least one valid signature (ai, wi) for i ∈ S∗ due to
f∗(S∗) = 1 and the special soundness. By the Reset Lemma [6], the advantage Advca

ABID,A(λ,U) is

reduced to Adveuf-cma
FS(Σ),F (λ,U) with a loss of exponent by 1/2. �

Corollary 2 (Passive Security) If the employed signature scheme FS(Σ) is existentially unforgeable
against chosen-message attacks, then our ABID is secure against passive attacks. More precisely, for any
PPT algorithm A, there exists a PPT algorithm F which satisfies the following inequality (neg(·) means
a negligible function).

Advpa
ABID,A(λ,U) ≤ (Adveuf-cma

FS(Σ),F (λ,U))1/2 + neg(λ).

Proof. This is deduced by the observation that Advpa
ABID,A(λ,U) ≤ Advca

ABID,A(λ,U), which is from the
definitions of both attacks in Section 2.5.

More on Reduction of Concurrent Security We mean by “a number theoretic problem” the
discrete-logarithm problem or the RSA-inverse problem ([6]). There exists the following security reduc-
tion to a number theoretic problem.

Advca
ABID,A(λ,U) ≤ q1/2H (Advnum.prob.

Grp,S (λ,U))1/4 + neg(λ). (2)

Here we denote qH as the maximum number of hash queries issued by forger F on FS(Σ) in the random
oracle model.
Proof. As is discussed in Section 2.1, we can reduce the advantage Adveuf-cma

FS(Σ),F (λ,U) to the advan-

tage Advpa
Σ,B(λ,U) of passive security of the underlying Σ-protocol, in the random oracle model,

with a loss factor qH . Applying the Reset Lemma [6], we can reduce Advpa
Σ,B(λ,U) to the advan-

tage Advnum.prob.
Grp,S (λ,U) of a PPT solver S of a number theoretic problem, with a loss of exponent by

1/2. �

5 Our Attribute-Based Signature Scheme

In this section, we provide an attribute-based signature scheme (ABS) by applying the Fiat-Shamir
transform (Section 2.1) to our ABID in Section 4.1. Our ABS is collusion resistant against collecting
private secret keys, and EUF-CMA secure in the random oracle model. We note that our ABS has
attribute privacy only as one-time signature because of its linkability.

18

5.1 Our ABS

By applying FS(·) to our ABID in Section 4.1, we obtain an ABS scheme, ABS. Fig. 5 shows our con-
struction: ABS = (ABS.Setup,ABS.KG,ABS.Sign,ABS.Vrfy).

ABS.Setup and ABS.KG are the same as ABID.Setup and ABID.KG, respectively.

ABS.Sign takes as input PK, SKS and (m, f). It runs Supp(PK, SKS , f), StmtGen and the prover of
our boolean proof system Σf with a challenge string Cha obtained by hashing the string (x ‖ (Cmtl)l ‖
m). It returns a signature

σ = (τ, (aij)j , (Cmtl)l, (Chan)n, (Resl)l).

ABS.Vrfy takes as input PK, (m, f) and σ. It utilizes StmtGen and Σvrfy
f to check validity of the

pair (m, f) and the signature σ under the public key PK.

ABS.Setup(1λ,U): ABS.KG(PK,MSK, S):

(xmst, wmst)← InstanceR(1λ) k ← PRFkeysp(λ), τ ← {1, 0}λ
µ← Hashkeysp(λ) For i ∈ S
PK := (xmst,U , µ),MSK := (wmst) mi := (τ ‖ i), ai ← Σ1(xmst, wmst)
Return(PK,MSK) ci ← Hashµ(ai ‖ mi), wi ← Σ3(xmst, wmst, ai, ci)

SKS := (k, τ, (ai, wi)i∈S)
Return SKS

ABS.Sign(PK, SKS , (m, f)): ABS.Vrfy(PK, (m, f), σ := (τ, (aij)j ,
Supp(PK, SKS , f)→ (aij , wij)j (Cmtl)l, (Chan)n, (Resl)l)) :
w := (wij)j
StmtGen(PK, τ, (aij)j) StmtGen(PK, τ, (aij)j)

→ (xij)j =: x → (xij)j =: x

Σeval
f (Tf , S)→ (vn)n Cha← Hashµ(x ‖ (Cmtl)l ‖ m)

If vr(Tf) 6= 1, then abort

else Char(Tf) := ∗ Σvrfy
f (x, Tf ,Cha,

(Cmtl)l, (Chan)n, (Resl)l)
Σ1
f (x,w, Tf , (vn)n,Char(Tf)) → b, Return b

→ ((Cmtl)l, (Chan)n, (Resl)l)

Cha← Hashµ(x ‖ (Cmtl)l ‖ m)
Char(Tf) := Cha

Σ3
f (x,w, Tf , (vn)n,

(Cmtl)l, (Chan)n, (Resl)l)
→ ((Chan)n, (Resl)l)

Return σ := (τ, (aij)j ,
(Cmtl)l, (Chan)n, (Resl)l)

Fig. 5. The scheme of our ABS.

5.2 Security of Our ABS

Applying the standard technique in the work of Abdalla et al. [1] shows that the security of our ABS

is equivalent to the security of an attribute-based identification scheme, ABID, against passive attacks,
where our ABID is obtained by combining our Σ-protocol Σf with the signature-bundle scheme of the
Fiat-Shamir signature FS(Σ) in the same way as ABS (See Appendix 4 for our ABID).

19

Theorem 3 (Unforgeability) Our attribute-based signature scheme ABS is existentially unforgeable
against chosen-message attacks in the random oracle model, based on the passive security of ABID. More
precisely, let qH denote the maximum number of hash queries issued by a forger F on ABS. Then, for
any PPT algorithm F , there exists a PPT algorithm B which satisfies the following inequality (neg(·)
means a negligible function).

Adveuf-cma
ABS,F (λ,U) ≤ qHAdvpa

ABID,B(λ,U) + neg(λ). (3)

Proof. First, our ABS is considered to be obtained by applying the Fiat-Shamir transform to our ABID.
This is because, in the first message of our ABID, the tag τ and the elements (aij)1≤j≤arity(f) are fixed
even when the 3-move protocol is repeated between the prover P with a secret key SKS and the verifier
V with an access structure f . So ABS = FS(ABID).

As is discussed in Section 2.1, we can reduce the advantage Adveuf-cma
ABS,F (λ,U) to the advantage

Advpa
ABID,B(λ,U) of passive security of the underlying ABID, in the random oracle model, with a loss

factor qH . This is because B can simulate key-extraction queries of F perfectly with the aid of the
key-generation oracle of B. �

More on Reduction of Unforgeability Let qH denote the maximum number of hash queries issued
by a forger F on ABS and a forger F ′ on FS(Σ). Combining the inequality (3) with the inequalities (1)
and (2) in Section 2.5 and Section 4, we obtain the following security reduction of advantages.

Adveuf-cma
ABS,F (λ,U) ≤ q3/2H (Advnum.prob.

Grp,S (λ,U))1/4 + neg(λ).

Attribute Privacy Our ABS does not have attribute privacy defined in Section 2.6 because of its
linkability; that is, the constant components τ, (aij)j make two signatures linkable (especially, τ is a
component of a private secret key SKS). Hence, our ABS merely has attribute privacy as a one-time
signature.

6 Attribute-Based Two-Tier Signature: Syntax

In this section, we define a syntax of attribute-based two-tier signature scheme (ABTTS). Then, we
define a chosen-message attack (CMA) on ABTTS by which an adversary makes an existential forgery,
and define the existential unforgeability (EUF) security against CMA.

An attribute-based two-tier signature scheme, ABTTS, consists of five PPT algorithms: ABTTS =
(ABTTS.Setup, ABTTS.PKG, ABTTS.SKG, ABTTS.Sign, ABTTS.Vrfy).

ABTTS.Setup(1λ,U) → (MSK,PK). This PPT algorithm for setting up takes as input the security
parameter 1λ and the attribute universe U . It returns a master secret key MSK and a public key PK.

ABTTS.PKG(MSK,PK, S) → SKS . This PPT algorithm for primary-key generation takes as input
the master secret key MSK, the public key PK and an attribute set S ⊂ U . It returns a secret key SKS

that corresponds to S.

ABTTS.SKG(MSK,PK,SKS , f) → (SSKS,f ,SPKf). This PPT algorithm for secondary-key genera-
tion takes as input the master secret key MSK, the public key PK, a secret key SKS and an access
formula f . It returns a pair (SSKS,f ,SPKf) of a secondary secret key and a secondary public key.

ABTTS.Sign(PK,SKS ,SSKS,f ,SPKf , (m, f)) → σ. This PPT algorithm for signing takes as input
the public key PK, a secret key SKS , a secondary secret key SSKS,f , a secondary public key SPKf and
a pair (m, f) of a message m ∈ {1, 0}∗ and an access formula f . It returns a signature σ.

ABTTS.Vrfy(PK,SPKf , (m, f), σ)→ 1/0. This deterministic polynomial-time algorithm for verifica-
tion takes as input the public key PK, a secondary public key SPKf , a pair (m, f) of a message and an

20

access formula and a signature σ. It returns a decision 1 or 0. When it is 1, we say that ((m, f), σ) is
valid. When it is 0, we say that ((m, f), σ) is invalid.

We demand correctness of ABTTS that, for any λ, any U , any S ⊂ U and any (m, f) such that f(S) =
1, Pr[(MSK,PK) ← ABTTS.Setup(1λ,U), SKS ← ABTTS.PKG(MSK,PK, S), (SSKS,f , SPKf)
← ABTTS.SKG(MSK,PK, SKS , f), σ ← ABTTS.Sign(SKS ,PK,SSKS,f , SPKf , (m, f)),
b← ABS.Vrfy(PK,SPKf , (m, f), σ) : b = 1] = 1.

6.1 Chosen-Message Attack on ABTTS and Security Definition

A PPT adversary F tries to make a forgery ((m∗, f∗), σ∗) that consists of a message, a target access
formula and a signature. The following experiment Expreuf-cma

ABTTS,F (1λ,U) of a forger F defines the chosen-
message attack on ABTTS making an existential forgery.

Expreuf-cma
ABTTS,F (1λ,U) :

(PK,MSK)← ABTTS.Setup(1λ,U)

((m∗, f∗), σ∗)← FPKG(MSK,PK,·),SPKG(·,·),SIGN (PK,SK·,SSKS,f ,SPKf (·,·))(PK)

If ABTTS.Vrfy(PK, SPKf , (m
∗, f∗), σ∗) = 1

then Return Win else Return Lose

In the experiment, F issues key-extraction queries to its oracle PKG, secondary public key queries
to its oracle SPKG and signing queries to its oracle SIGN . Giving an attribute set Si, F queries
PKG(MSK,PK, ·) for a secret key SKSi . Giving an attribute set S and an access formula f , F queries
SPKG(·, ·) for a secondary public key SPKf . Giving an attribute set Sj and a pair (mj , fj) of a message
and an access formula, F queries SIGN (PK,SK·, SSK·,·, SPK·, (·, ·)) for a valid signature σ when f(Sj) =
1. As a rule of the two-tier signature, each published secondary public key SPKf can be used only once
to obtain a signature from SIGN [7].

f∗ is called a target access formula of F . Here we consider the adaptive target case in the sense that
F is allowed to choose f∗ after seeing PK and issuing three queries. Two restrictions are imposed on
F : 1) f∗(Si) = 0 for all Si in key-extraction queries; 2) (m∗, f∗) was never queried in signing queries.
The numbers of key-extraction queries and signing queries are at most qk and qs, respectively, which

are bounded by a polynomial in λ. The advantage of F over ABTTS is defined as Adveuf-cma
ABTTS,F (λ,U)

def
=

Pr[Expreuf-cma
ABTTS,F (1λ,U) returns Win].

Definition 4 (EUF-CMA of ABTTS) ABTTS is called existentially unforgeable against chosen-message

attacks if, for any PPT F and any U , Adveuf-cma
ABTTS,F (λ,U) is negligible in λ.

Then we define attribute privacy of ABTTS.

Definition 5 (Attribute Privacy of ABTTS) ABTTS is called to have attribute privacy if, for all
(PK,MSK)← ABTTS.Setup(1λ,U),
for all message m, for all attribute sets S1 and S2,
for all primary secret keys SKS1 ← ABTTS.PKG(PK,MSK, S1) and
SKS2 ← ABTTS.PKG(PK,MSK, S2),
for all secondary secret keys (SSKS1,f ,SPKf)← ABTTS.SKG(MSK,PK,SKS , f) and
(SSKS2,f ,SPKf)← ABTTS.SKG(MSK,PK,SKS , f)
and for all access formula f such that [f(S1) = 1∧f(S2) = 1]∨[f(S1) 6= 1∧f(S2) 6= 1], two distributions
σ1 ← ABTTS.Sign(PK,SKS1 ,SSKS1,f ,SPKf , (m, f)) and
σ2 ← ABTTS.Sign(PK,SKS2 ,SSKS2,f ,SPKf , (m, f)) are identical.

21

7 Our Attribute-Based Two-Tier Signature Scheme

In this section, we provide an attribute-based two-tier signature scheme (ABTTS) by applying the
two-tier framework in Section 6 to our ABID in Section 4.1. Our ABTTS is collusion resistant against
collecting private secret keys, and EUF-CMA secure in the standard model. We note that our ABTTS
has attribute privacy.

7.1 Our ABTTS

By applying the two-tier framework in Section 6 to our ABID in Section 4.1, we obtain the ABTTS
scheme. Our ABTTS enjoys EUF-CMA, collusion resistance and attribute privacy, in the standard
model. The critical point is that the secondary key generator ABTTS.SKG can issue a legitimate
statement x for the boolean proof system Σf . Hence our ABTTS can avoid collusion attacks on secret
keys.

Fig. 6 shows our construction: ABTTS = (ABTTS.Setup,ABTTS.PKG,ABTTS.SKG,
ABTTS.Sign,ABTTS.Vrfy).

ABTTS.Setup and ABTTS.PKG are the same as ABID.Setup and ABID.KG in Section 4,
respectively.

ABTTS.SKG(MSK,PK,SKS , f) takes as input MSK, PK, SKS and f . It uses a supplementary al-
gorithm Supp and a statement-generator algorithm StmtGen to generate a statement x and a cor-
responding witness w. The usage is the same as in our ABID in Section 4. Then, it runs the prover P
according to Σf to generate the first message as

((Cmtl)l, st)← Σ1
f (x,w, Tf , (vn)n,Char(Tf)).

Then it puts SSKS,f := (w, (Cmtl)l ‖ st) and SPKf := (x, (Cmtl)l). Here st denotes the inner state
of P. It returns SSKS,f and SPKf . Note that the secondary public key SPKf should be issued by a
key-issuing center [7].

ABTTS.Sign(PK,SKS ,SSKS,f ,SPKf , (m, f))→ σ. Given PK, SKS , the secondary secret key SSKS,f ,
the secondary public key SPKf , and a pair (m, f) of a message and an access formula f , it computes
a challenge Cha by hashing the string (Cmtl)l ‖ m. Then, it runs the prover P according to Σf as

((Chan)n, (Resl)l)← Σ3
f (x,w, Tf , (vn)n, (Cmtl)l, (Chan)n, (Resl)l; st)

Finally, it returns a signature

σ := ((Chan)n, (Resl)l).

ABTTS.Vrfy(PK,SPKf , (m, f), σ) → 1/0. Given PK, the secondary public key SPKf , a pair (m, f)
and a signature σ, it computes a challenge Cha by hashing the string (Cmtl)l ‖ m. Then, it runs the
verifier V according to Σf as

1 or 0← Σvrfy
f (x, Tf ,Cha, (Cmtl)l, (Chan)n, (Resl)l).

It returns 1 or 0 accordingly.

7.2 Security of Our ABTTS

The security of our ABTTS is derived from the security of the underlying attribute-based identification
scheme, ABID, against concurrent attacks [7].

22

ABTTS.Setup(1λ,U): ABTTS.PKG(PK,MSK, S):

(xmst, wmst)← InstanceR(1λ) k ← PRFkeysp(λ), τ ← {1, 0}λ
µ← Hashkeysp(λ) For i ∈ S
PK := (xmst,U , µ),MSK := (wmst) mi := (τ ‖ i), ai ← Σ1(xmst, wmst)
Return(PK,MSK) ci ← Hashµ(ai ‖ mi), wi ← Σ3(xmst, wmst, ai, ci)

SKS := (k, τ, (ai, wi)i∈S)
Return SKS

ABTTS.SKG(MSK,PK, SKS , f)→ (SSKS,f , SPKf):
Supp(PK,SKS , f)→ (aij , wij)j
w := (wij)j
StmtGen(PK, τ, (aij)j)

→ (xij)j =: x

Σeval
f (Tf , S)→ (vn)n

If vr(Tf) 6= 1, then abort

else Char(Tf) := ∗

Σ1
f (x,w, Tf , (vn)n,Char(Tf))

→ ((Cmtl)l, (Chan)n, (Resl)l; st)

SSKS,f := (w, (Cmtl)l ‖ st)
SPKf := (x, (Cmtl)l)
Return(SSKS,f , SPKf)

ABTTS.Sign(PK,SKS , SSKS,f , SPKf , (m, f)): ABTTS.Vrfy(PK, SPKf , (m, f),
Cha← Hashµ((Cmtl)l ‖ m) σ := ((Chan)n, (Resl)l)) :
Char(Tf) := Cha

Cha← Hashµ((Cmtl)l ‖ m)
Σ3
f (x,w, Tf , (vn)n,

(Cmtl)l, (Chan)n, (Resl)l; st) Σvrfy
f (x, Tf ,Cha,

→ ((Chan)n, (Resl)l) (Cmtl)l, (Chan)n, (Resl)l)
Return σ := ((Chan)n, (Resl)l) → b, Return b

Fig. 6. The scheme of our ABTTS.

23

Theorem 4 (Unforgeability) Our attribute-based two-tier signature scheme ABTTS is existentially
unforgeable against chosen-message attacks in the standard model, based on the concurrent security of
ABID. More precisely, let qH denote the maximum number of hash queries issued by a forger F on
ABTTS. Then, for any PPT algorithm F , there exists a PPT algorithm B which satisfies the following
inequality (neg(·) means a negligible function).

Adveuf-cma
ABTTS,F (λ,U) ≤ qHAdvca

ABID,B(λ,U) + neg(λ). (4)

Proof. We just note that the same argument in [7] is applied to our ABTTS. �

Theorem 5 (Attribute Privacy) Our attribute-based two-tier signature scheme ABTTS has attribute
privacy. More precisely,

Proof. A valid signature of ABTTS, σ := ((Chan)n, (Resl)l), is a valid boolean proof of Σf . Therefore,
(Cmtl,Chal,Resl) is a valid transcript of Σ for all leaves l ∈ Leaf(Tf). Then the definition 5 is satisfied.
�

8 Instantiation Using Fiat-Shamir Signature-Bundle as Witness

In this section, we provide instantiations of our boolean proof system Σf and ABID using the Fiat-Shamir
signatures [19] as a witness. We give two instantiations in the RSA setting and the discrete-logarithm
setting.

8.1 Our ABID in RSA Using FS Signature-Bundle as Witness

An RSA modulus of bit length λ is denoted by N . An RSA exponent of odd prime is denoted by e.
ABID.Setup takes as input (1λ,U). Let Rλ := {(β, α) ∈ ZN × ZN ;β = αe}. Then InstanceR(1λ)
chooses an element (β, α) ∈ Rλ at random. ABID.Setup returns a public key and a master secret key:
PK = ((N, e, β),U , µ),MSK = α.
ABID.KG returns SKS with signatures, for i ∈ S, σ = (ai = rei , wi = riα

ci). Here we use a key k
obtained by k ← Hashµ(α ‖ τ), put mi = τ ‖ i, and ri ∈ ZN is chosen at random according to a
random tape: PRF k(mi), and ci is obtained by ci ← Hashµ(ai ‖ mi). Σstmtgen(β, ai, ci) is an algorithm
that computes xi := aiβ

ci ∈ ZN .
The rest of protocol is executed according to Σf on input (x,w) and with the following setting.

Cmtl = rl
e,Res

l
= rl(wρ(l))

Chal ,

Verification Equation : Res
l

e ?
= Cmtl (xρ(l))

Chal .

8.2 Our ABID in Discrete Log Using FS Signature-Bundle as Witness

A prime of bit length λ is denoted by p. A multiplicative cyclic group of order p is denoted by Gp. We
fix a base g ∈ Gp, 〈g〉 = Gp. The ring of the exponent domain of Gp, which consists of integers from 0
to p− 1 with modulo p operation, is denoted by Zp.
ABID.Setup takes as input (1λ,U). Let Rλ := {(β, α) ∈ Gp × Zp;β = gα}. Then InstanceR(1λ)
chooses an element (β, α) ∈ Rλ at random. ABID.Setup returns a public key and a master secret key:
PK = ((g, β),U , µ),MSK = α.
ABID.KG returns SKS with signatures, for i ∈ S, σi = (ai = gri , wi = ri + ciα). Here we use a key
k obtained by k ← Hashµ(α ‖ τ), put mi = τ ‖ i, and ri ∈ Zp is chosen at random according to a
random tape: PRF k(mi), and ci is obtained by ci ← Hashµ(ai ‖ mi). Σstmtgen(β, ai, ci) is an algorithm
that computes xi := aiβ

ci ∈ Gp.

24

The rest of protocol is executed according to Σf on input (x,w) and with the following setting.

Cmtl = grl ,Resl = rl + Chal wρ(l),

Verification Equation : gRes
l

?
= Cmtl (xρ(l))

Chal .

9 Conclusions

We provided a concrete procedure Σf of a Σ-protocol of the high-level construction of the boolean proof
system [13]. Our Σf can be considered as a proto-type of an attribute-based identification scheme (and
also, FS(Σf) can be considered a proto-type of an attribute-based signature scheme [13]) without
collusion resistance on secret keys.

Then we provided a generic construction of an attribute-based identification scheme ABID, an
attribute-based signature scheme ABS, and an attribute-based two-tier signature scheme ABTTS. Pairing-
free instantiations are provided in both the RSA setting and the discrete-logarithm setting by employing
the Schnorr identification scheme and the GQ identification scheme [44, 6] as Σ, respectively. It must
be noted that our ABS does not possess attribute-privacy and our ABTTS assumes the secondary public
key in the two-tier framework [7].

The scheme by Herranz [28] is the only ABS scheme with collusion resistance, (computational)
attribute privacy and pairing-free property, in the RSA setting. Our procedure Σf of the boolean proof
[13] for any monotone predicate serves as a building block of (the Σ-protocol of) the ABS scheme [28].
We believe that there is still an open problem to construct a pairing-free efficient ABS scheme in the
discrete-logarithm setting.

Acknowledgements We appreciate sincere comments from Javier Herranz in Universitat Politècnica
de Catalunya, Barcelona, Spain via e-mail communication [30] on the topic in this paper. We would
like to thank to Keita Emura in National Institute of Information and Communications Technology
(NICT), Tokyo, Japan and Takahiro Matsuda in National Institute of Advanced Industrial Science and
Technology (AIST), Tokyo, Japan for their sincere comments and encouragements on the construction
of attribute-based signature schemes. We would like to thank to Shingo Hasegawa in Tohoku University,
Sendai, Japan and Masayuki Fukumitsu in Hokkaido Information University, Sapporo, Japan for their
sincere comments on the construction of the Σ-protocol on monotone predicates.

References

1. M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification to signatures via the fiat-shamir transform:
Minimizing assumptions for security and forward-security. In EUROCRYPT 2002, volume 2332 of LNCS, pages 418–
433. Springer, 2002.

2. H. Anada, S. Arita, S. Handa, and Y. Iwabuchi. Attribute-based identification: Definitions and efficient constructions.
In ACISP 2013, volume 7959 of LNCS, pages 168–186. Springer, 2013.

3. H. Anada, S. Arita, and K. Sakurai. Attribute-based signatures without pairings via the fiat-shamir paradigm. In
ASIAPKC2014, volume 2 of ACM-ASIAPKC, pages 49–58. ACM, 2014.

4. M. Bellare and G. Fuchsbauer. Policy-based signatures. In Public-Key Cryptography - PKC 2014 - 17th Interna-
tional Conference on Practice and Theory in Public-Key Cryptography, Buenos Aires, Argentina, March 26-28, 2014.
Proceedings, pages 520–537, 2014.

5. M. Bellare and O. Goldreich. On defining proofs of knowledge. In CRYPTO ’92, volume 740 of LNCS, pages 390–420.
Springer, 1992.

6. M. Bellare and A. Palacio. Gq and schnorr identification schemes: Proofs of security against impersonation under
active and concurrent attacks. In CRYPTO 2002, volume 2442 of LNCS, pages 162–177. Springer, 2002.

7. M. Bellare and S. Shoup. Two-tier signatures, strongly unforgeable signatures, and fiat-shamir without random
oracles. In Public Key Cryptography - PKC 2007, 10th International Conference on Practice and Theory in Public-
Key Cryptography, Beijing, China, April 16-20, 2007, Proceedings, pages 201–216, 2007.

8. D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption without random oracles. In EURO-
CRYPT 2004, volume 3027 of LNCS, pages 223–238. Springer, 2004.

25

9. D. Boneh and X. Boyen. Short signatures without random oracles. In Advances in Cryptology - EUROCRYPT 2004,
International Conference on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, May
2-6, 2004, Proceedings, pages 56–73, 2004.

10. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Advances in Cryptology - CRYPTO 2004, 24th
Annual International CryptologyConference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings, pages
41–55, 2004.

11. J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In Security in Communication
Networks, Third International Conference, SCN 2002, Amalfi, Italy, September 11-13, 2002. Revised Papers, pages
268–289, 2002.

12. R. Cramer. Modular Designs of Secure, yet Practical Cyptographic Protocols. PhD thesis, University of Amsterdam,
Amsterdam, the Netherlands, 1996.

13. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and simplified design of witness hiding
protocols. In CRYPTO ’94, pages 174–187. Springer-Verlag, 1994.

14. I. Damg̊ard. On σ-protocols. In Course Notes, http://www.cs.au.dk/ ivan/Sigma.pdf, 2011.
15. A. El Kaafarani, L. Chen, E. Ghadafi, and J. H. Davenport. Attribute-based signatures with user-controlled linkability.

In Cryptology and Network Security - 13th International Conference, CANS 2014, Heraklion, Crete, Greece, October
22-24, 2014. Proceedings, pages 256–269, 2014.

16. A. El Kaafarani, E. Ghadafi, and D. Khader. Decentralized traceable attribute-based signatures. In Topics in
Cryptology - CT-RSA 2014 - The Cryptographer’s Track at the RSA Conference 2014, San Francisco, CA, USA,
February 25-28, 2014. Proceedings, pages 327–348, 2014.

17. A. Escala, J. Herranz, and P. Morillo. Revocable attribute-based signatures with adaptive security in the standard
model. In Progress in Cryptology - AFRICACRYPT 2011 - 4th International Conference on Cryptology in Africa,
Dakar, Senegal, July 5-7, 2011. Proceedings, pages 224–241, 2011.

18. U. Feige and A. Shamir. Witness indistinguishable and witness hiding protocols. In Proceedings of the 22nd Annual
ACM Symposium on Theory of Computing, STOC ’90, pages 416–426, New York, NY, USA, 1990. ACM.

19. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems. In
CRYPTO ’86, volume 263 of LNCS, pages 186–194. Springer, 1987.

20. J. Furukawa and H. Imai. An efficient group signature scheme from bilinear maps. In Information Security and
Privacy, 10th Australasian Conference, ACISP 2005, Brisbane, Australia, July 4-6, 2005, Proceedings, pages 455–467,
2005.

21. M. Gagné, S. Narayan, and R. Safavi-Naini. Short pairing-efficient threshold-attribute-based signature. In Pairing-
Based Cryptography - Pairing 2012 - 5th International Conference, Cologne, Germany, May 16-18, 2012, Revised
Selected Papers, pages 295–313, 2012.

22. E. Ghadafi. Stronger security notions for decentralized traceable attribute-based signatures and more efficient con-
structions. In Topics in Cryptology - CT-RSA 2015, The Cryptographer’s Track at the RSA Conference 2015, San
Francisco, CA, USA, April 20-24, 2015. Proceedings, pages 391–409, 2015.

23. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access control of encrypted
data. In ACM-CCS ’06, volume 263, pages 89–98. ACM, 2006.

24. R. Granger, T. Kleinjung, and J. Zumbrägel. Breaking ’128-bit secure’ supersingular binary curves - (or how to solve
discrete logarithms in f

24 1223 and f
212 367). In Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology

Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II, pages 126–145, 2014.
25. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In Proceedings of the Theory

and Applications of Cryptographic Techniques 27th Annual International Conference on Advances in Cryptology,
EUROCRYPT’08, pages 415–432, Berlin, Heidelberg, 2008. Springer-Verlag.

26. L. C. Guillou and J. Quisquater. A ”paradoxical” indentity-based signature scheme resulting from zero-knowledge. In
Advances in Cryptology - CRYPTO ’88, 8th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 21-25, 1988, Proceedings, pages 216–231, 1988.

27. S. Guo and Y. Zeng. Attribute-based signature scheme. In ISA ’08, pages 509–511. IEEE, 2008.
28. J. Herranz. Attribute-based signatures from rsa. Theoretical Computer Science, 527:73–82, 2014.
29. J. Herranz. Attribute-based versions of schnorr and elgamal. Appl. Algebra Eng. Commun. Comput., 27(1):17–57,

2016.
30. J. Herranz. Private communication via e-mail, dept. matemàtica aplicada iv, universitat politècnica de catalunya,

July 2014, Sept 2015 and May 2016.
31. J. Herranz, F. Laguillaumie, B. Libert, and C. Ràfols. Short attribute-based signatures for threshold predicates. In

Topics in Cryptology - CT-RSA 2012 - The Cryptographers’ Track at the RSA Conference 2012, San Francisco, CA,
USA, February 27 - March 2, 2012. Proceedings, pages 51–67, 2012.

32. J. Herranz, F. Laguillaumie, and C. Ràfols. Constant size ciphertexts in threshold attribute-based encryption. In Public
Key Cryptography - PKC 2010, 13th International Conference on Practice and Theory in Public Key Cryptography,
Paris, France, May 26-28, 2010. Proceedings, pages 19–34, 2010.

33. J. Katz. Efficient and non-malleable proofs of plaintext knowledge and applications. In Advances in Cryptology -
EUROCRYPT 2003, International Conference on the Theory and Applications of Cryptographic Techniques, Warsaw,
Poland, May 4-8, 2003, Proceedings, pages 211–228, 2003.

26

34. J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman and Hall/CRC, 2008.

35. S. Kumar, S. Agrawal, S. Balaraman, and C. P. Rangan. Attribute based signatures for bounded multi-level threshold
circuits. In Public Key Infrastructures, Services and Applications - 7th European Workshop, EuroPKI 2010, Athens,
Greece, September 23-24, 2010. Revised Selected Papers, pages 141–154, 2010.

36. J. Li, M. H. Au, W. Susilo, D. Xie, and R. K. Attribute-based signature and its applications. In ASIA-CCS ’10,
volume 5, pages 60–69. ACM, 2010.

37. H. K. Maji, M. Prabhakaran, and M. Rosulek. Attribute-based signatures. In CT-RSA 2011, volume 6558
of LNCS, pages 376–392. Springer, 2011. Full version available at IACR Cryptology ePrint Archive, 2010/595,
http://eprint.iacr.org/.

38. T. Okamoto. Efficient blind and partially blind signatures without random oracles. In Theory of Cryptography, Third
Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings, pages 80–99,
2006.

39. T. Okamoto and K. Takashima. Efficient attribute-based signatures for non-monotone predicates in the Standard
Model. In PKC 2011, volume 6571 of LNCS, pages 35–52. Springer, 2011.

40. T. Okamoto and K. Takashima. Decentralized attribute-based signatures. In Public-Key Cryptography - PKC 2013
- 16th International Conference on Practice and Theory in Public-Key Cryptography, Nara, Japan, February 26 -
March 1, 2013. Proceedings, pages 125–142, 2013.

41. D. Pointcheval and J. Stern. Security proofs for signature schemes. In Advances in Cryptology - EUROCRYPT ’96,
International Conference on the Theory and Application of Cryptographic Techniques, Saragossa, Spain, May 12-16,
1996, Proceeding, pages 387–398, 1996.

42. A. Sahai and B. Waters. Fuzzy identity based encryption. Cryptology ePrint Archive, Report 2004/086, 2004.
http://eprint.iacr.org/.

43. Y. Sakai, N. Attrapadung, and G. Hanaoka. Attribute-based signatures for circuits from bilinear map. In Public-Key
Cryptography - PKC 2016 - 19th IACR International Conference on Practice and Theory in Public-Key Cryptography,
Taipei, Taiwan, March 6-9, 2016, Proceedings, Part I, pages 283–300, 2016.

44. C. P. Schnorr. Efficient identification and signatures for smart cards. In CRYPTO ’89, volume 435 of LNCS, pages
239–252. Springer, 1990.

45. S. F. Shahandashti and R. Safavi-Naini. Threshold attribute-based signatures and their application to anonymous
credential systems. In Progress in Cryptology - AFRICACRYPT 2009, Second International Conference on Cryptology
in Africa, Gammarth, Tunisia, June 21-25, 2009. Proceedings, pages 198–216, 2009.

46. I. Teranishi and J. Furukawa. Anonymous credential with attributes certification after registration. IEICE Transac-
tions, 95-A(1):125–137, 2012.

47. M. Yasuda, T. Shimoyama, J. Kogure, and T. Izu. On the strength comparison of the ECDLP and the IFP. In
Security and Cryptography for Networks - 8th International Conference, SCN 2012, Amalfi, Italy, September 5-7,
2012. Proceedings, pages 302–325, 2012.

A Non-interactive Witness-Indistinguishable Proof of Knowledge [25]

In this appendix, we summarize the notion of non-interactive witness-indistinguishable proof of knowl-
edge system (NIWIPoK, for short).

A NIWIPoK Π = (K,P,V) for a language LR is a protocol, where a PPT algorithm K, on input
1λ, outputs crs called a common reference string ; a PPT algorithm P, on input (x,w) ∈ R and crs,
outputs π called a proof ; and a PPT algorithm V , on input (x, π) and crs, outputs 1 (accept) or 0
(reject).

Π must possess the following three properties.

Completeness. For any statement x ∈ LR and for any witness w such that (x,w) ∈ R, P with the
witness w can make V accept on the statement x with probability 1:

Pr[π ← P(x,w) : V(x, π) = 1] = 1.

Knowledge Soundness. There are an algorithm KE called a knowledge extractor, a function κ : {1, 0}∗ →
[1, 0] called a knowledge error function and a constant c > 0 that satisfy the following:
If there exists a PPT algorithm A that satisfies p(x) := Pr[crs ← K(1λ), π ← A(crs) : V(x, π) = 1] >
κ(x), then KE(x), employing A(x) as a subroutine that allows to be rewinded, outputs a witness w
which satisfies (x,w) ∈ R within an expected number of steps bounded by: |x|c/(p(x)− κ(x)).

27

Witness-Indistinguishability. There is a polynomial-time algorithm S called a simulator, such that for
any non-uniform polynomial-time algorithm A we have

Pr[crs← K(1λ) : A(crs) = 1] ≈Pr[crs← S(1λ) : A(crs) = 1]

(computationally indistinguishable)

and for any unbounded algorithm A, we have

Pr[crs← S(1λ), (x,w0, w1)← A(crs), π ← P(crs, x, w0) : A(π) = 1]

=Pr[crs← S(1λ), (x,w0, w1)← A(crs), π ← P(crs, x, w1) : A(π) = 1]

where
(
R(x,w0) = 1 ∧R(x,w1) = 1

)
∨
(
R(x,w0) = 0 ∧R(x,w1) = 0

)
holds.

B Our Non-interactive Witness-Indistinguishable Proof of Knowledge on
Monotone Predicates

In this appendix, we provide our NIWIPoK by applying the Fiat-Shamir transform (Section 2.1) to our
boolean proof system Σf in Section 3.

The Fiat-Shamir transform FS(·) can be applied to any Σ-protocol Σ ([19, 1], see Section 2.1) to
obtain a NIZKPoK system.

The generator K of common reference strings is becomes as follows.

K(1λ) : µ← Hashkeysp(λ), crs := µ, Return crs

Hence we obtain the following theorem.

Theorem 6 (FS(Σf) is NIWIPoK) FS(Σf) is a non-interactive witness-indistinguishable proof of
knowledge system for the language Lf . A knowledge extractor is constructed in the random oracle model.

C Instantiations Using Camenisch-Lysyanskaya Signature-Bundle as Witness

In this section, we provide another type of instantiations of our boolean proof system Σf , ABID and
ABTTS using the Camenisch-Lysyanskaya Signatures as a witness. We give two instantiations in the
RSA setting [11] and the discrete-logarithm setting [46, 20, 38].

C.1 Our Σ-protocol Σf in the Case of CL Signature-Bundle

Our Σ-protocol Σf is a zero-knowledge proof-of-knowledge ZKPoK[w = (wρ(l))l := (eρ(l), sρ(l))l, l ∈
Leaf(Tf) : x = (equations)] for the language Lf , where the equations are:

Zρ(l) = Z
eρ(l)
ρ(l),1Z

sρ(l)
ρ(l),2, l ∈ Leaf(Tf). (5)

In the above equation, Zρ(l) is represented by (eρ(l), sρ(l)) to the base (Zρ(l),1, Zρ(l),2). A prover P(x,w, f)
and a verifier V(x, f) execute Σf in the following way.
P(x,w, f). To prove the knowledge of those representations (eρ(l), sρ(l)), P computes the first message,

a commitment (Cmtl)l, as follows. Let Z̄ be the exponent domain for the above expression. To do the

computation honestly at a leaf l, P chooses ηe,l, ηs,n
$← Z̄, and puts Cmtl := Z

ηe,l
ρ(l),1Z

ηs,n
ρ(l),2. To simulate

the honest computation at a leaf l, P chooses ηe,l, θs,l
$← Z̄, and in addition, the divided challenge

strings (Chan)n,Chan ∈ Z̄, which are in accordance with the boolean proof system Σf . Then P puts,

28

for each leaf l, θe,l := ηe,l + Chaleρ(l), and Cmtl := Z−Chal
ρ(l) Z

θe,l
ρ(l),1Z

θs,l
ρ(l),2. P sends (Cmtl)l to a verifier

V.
V(x, f). Receiving (Cmtl)l, V(x, f) chooses the second message: a challenge Cha

$← Z̄, uniformly at
random, and sends Cha to P.
P(x,w, f). Receiving Cha, P completes to compute the third message; that is, P completes the
division (Chan)n such that Char(Tf) = Cha, and a response (Resl := (θe,l, θs,l))l with θe,l :=
ηe,l + Chaleρ(l), θs,l := ηs,l + Chalvl. P sends (Chal)l and (Resl)l to V.
V(x, f). Receiving (Chal)l and (Resl)l, V checks the integrity of the division (Chal)l. Then V verifies:

Cmtl
?
= Z−Chal

ρ(l) Z
θe,l
ρ(l),1Z

θs,l
ρ(l),2, l ∈ Leaf(Tf). (6)

According to the division rule of the boolean proof system Σf , the integrity of (Chal = Chal)l can be
checked as follows: From the leaves to the root, and at every inner node n ∈ iNode(Tf) as well as its
two children chd1, chd2;

• If n is an AND node (∧), then verify Chachd1
?
= Chachd2 . If so, put Chan := Chachd1 .

• Else if n is an OR node (∨), then just put Chan := Chachd1 + Chachd2 .

• If n is the root node, then verify Chan
?
= Cha.

• Repeat until all n ∈ iNode(Tf) are verified.

The above procedure, Σf , can be shown to possess the three requirements of Σ-protocol: complete-
ness, special soundness and honest-verifier zero-knowledge.

C.2 Our ABID and ABTTS in RSA Using CL Signature-Bundle as Witness

Strong RSA Assumption [11] Let p = 2p′+1 denote a safe prime (p′ is also a prime). Let N denote
the special RSA modulus; that is, N = pq where p = 2p′ + 1 and q = 2q′ + 1 are two safe primes such
that |p′| = |q′| = λ − 1. We denote the probabilistic algorithm that generates such N at random on
input 1λ as RSAmod. Let QRN ⊂ Z∗N denote the set of quadratic residues modulo N ; that is, elements
a ∈ Z∗N such that a ≡ x2 mod N for some x ∈ Z∗N . The strong RSA assumption [11] states that for

any PPT A, the following advantage is negligible in λ: Advsrsa
RSAmod,S(λ,U) := Pr[N ← RSAmod(1λ), g

$←
QRN , (V, e)← A(N, g) : e > 1 ∧ V e ≡ g mod N].

CL Signature-Bundle in RSA
Our signature-bundle scheme SB = (SB.KG,SB.Sign,SB.Vrfy) is described as follows. Let lM be a
parameter. The message space M consists of all binary strings of length lM. Let n = n(λ) denote the
maximum number of messages made into a bundle, which is a polynomial in λ.
SB.KG(1λ)→ (PK, SK). Given 1λ, it chooses a special RSA modulus N = pq of length lN = λ, where

p = 2p′ + 1 and q = 2q′ + 1 are safe primes. For i = 1 to n, it chooses gi,0, gi,1, gi,2
$← QRN . It puts

PK := (N, (gi,0, gi,1, gi,2)
n
i=1) and SK = p, and returns (PK,SK).

SB.Sign(PK,SK, (mi)
n
i=1) → (τ, (σi)

n
i=1). Given PK, SK and messages (mi)

n
i=1 each of which is of

length lM, it chooses a prime e of length le = lM + 2 at random. For i = 1 to n, it chooses an integer
si of length ls = lN + lM+ l at random, where l is a security parameter, and it computes the value Ai:

Ai := (gi,0g
mi
i,1 g

si
i,2)

1
e . (7)

It puts τ = e and σi = (si, Ai) for each i and returns (τ, (σi)
n
i=1).

SB.Vrfy(PK, (mi)
n
i=1, (τ, (σi)

n
i=1)) → 1/0. Given PK, (mi)

n
i=1 and a signature bundle (τ, (σi)

n
i=1), it

verifies whether the following holds:

e := τ is of length le and Aei = gi,0g
mi
i,1 g

si
i,2, i = 1, . . . , n. (8)

29

Theorem 7 (Unforgeability of Our SB) Our signature-bundle scheme SB is existentially unforge-
able against chosen-message attacks under the Strong RSA assumption.

Proof. Basically the proof goes in the same way as the Camenisch-Lysyanskaya signature scheme [11].
The difference only arises in the case that the simulation of the signature-bundle oracle needs precom-
putation.

Let F be a given PPT forger on our SB. We construct a PPT solver S of any instance (N, g) of
the Strong RSA problem. To describe three cases of F ’s behavior, suppose that F issues at most q
signature-bundle queries. Suppose that the signature-bundle oracle SBSIGN replies the tags (that is,
exponents) e1, . . . , eq according to F ’s queries, which are primes of length le. Suppose that F ’s forgery
is (m∗i)

n∗
i=1, τ

∗ = e∗, (σ∗i = (s∗i , A
∗
i))

n∗
i=1. Let us distinguish three types of forgeries.

1. e∗ is relatively prime to any of {ej}j .
2. e∗ is not relatively prime to some of {ej}j , and g

m∗i
i,1 g

s∗i
i,2 ≡ g

mj,i
i,1 g

sj,i
i,2 for at least one j s.t. gcd(e∗, ej) 6=

1 and at least one i.

3. e∗ is not relatively prime to some of {ej}j , and g
m∗i
i,1 g

s∗i
i,2 6≡ g

mj,i
i,1 g

sj,i
i,2 for any j s.t. gcd(e∗, ej) 6= 1 and

any i.

By F1,F2 and F3 let us denote the forger who runs F but then only returns its forgery if it is of
Type 1, Type 2 and Type 3, respectively. On input an instance (N, g) of the Strong RSA problem, S
first guesses one of the three types at random (hence the advantage of S reduces by the factor of 1/3
here).

When F is of Type 1 or Type 2, simulations of F ’s signature-bundle oracle SBSIGN and the ex-
traction of an answer of an instance (N, g) go in the same way as the Camenisch-Lysyanskaya signature
scheme [11].

When F is of Type 3, the simulation of SBSIGN needs slight enhancement. S chooses q primes
{ej}qj=1 of length le. Then S chooses j∗ ∈ {1, . . . , q} at random, and for each i = 1 to n, puts E :=∏

1≤j≤q,j 6=j∗ ej . Then, for each i = 1 to n, S chooses ri, ti, ui, ᾱi ∈ Z of length ls at random, where

gcd(ᾱi, ej∗) = 1, and puts Ei := Eᾱi, and puts gi,2 :≡ gEi , gi,1 :≡ grii,2, gi,0 :≡ g
ej∗ ti−ui
i,2 . S sets PK :=

(N, (gi,0, gi,1, gi,2)
n
i=1) and give PK to F .

For j 6= j∗, the simulation of SBSIGN for a query (mj,i)i issued by F goes in the same way as in
[11].

For j∗, S puts si := ui − rimj∗,i and Ai := gtii,2 for each i. Note that the following holds.

A
ej∗
i = (gtii,2)

ej∗ = g
ej∗ ti−ui+ui
i,2 = g

ej∗ ti−ui+ui
i,2 = gi,0g

rimj∗,i+si
i,2 = gi,0g

mj∗,i
i,1 gsii,2.

When F returns a forgery (m∗i)
n∗
i=1, (τ

∗ = e∗, (σ∗i = (s∗i , A
∗
i))

n∗
i=1), the extraction of an answer of

an instance goes in the same way as in [11]. Note that e∗ = ej∗ holds with at least a non-negligible
probability 1/q. �

Our ABID in RSA Using CL-SB as Witness
ABID.Setup(1λ,U) → (MSK,PK). Given the security parameter 1λ and an attribute universe U , it
chooses a special RSA modulus N = pq, p = 2p′+ 1, q = 2q′+ 1 of length lN = 2λ. For i ∈ U , it chooses

gi,0, gi,1, gi,2
$← QRN and a hash key µ

$← Hashkeysp(λ) of a hash function Hashµ with the value in
Zφ(N). It puts PK := (N, (gi,0, gi,1, gi,2)i∈U , µ,U) and MSK := p. It returns PK and MSK.

ABID.KG(MSK,PK, S) → SKS . Given PK, MSK and an attribute subset S, it chooses a prime e

of length le. For i ∈ S, it computes ai ← Hashµ(i), si
$← Z of length le, Ai := (gi,0g

ai
i,1g
−si
i,2)

1
e . It puts

SKS := (e, (si, Ai)i∈S).

30

P(SKS ,PK, f) and V(PK, f) execute Σf with the following precomputation. For i ∈ Att(f), P chooses

ri
$← Z of length le. If i ∈ S then s′i := si + eri, A

′
i := Aig

−ri
i,2 . Else s′i

$← Z of length le, A
′
i

$← Z∗N . P
puts

Zi := gi,0g
ai
i,1, Zi,1 := A′i, Zi,2 := gi,2.

Then the statement for Σf is x := (xi := (Zi, Zi,1, Zi,2))i and the witness is w := (τ := e, (wi := s′i)i),
where i ∈ Att(f) for x and w. P sends the re-randomized values (A′i)i to V for V to be able to compute
the statement x.

After the above precomputation, P and V can execute Σf for the language Lf . In other words, P
and V execute ZKPoK[(eρ(l), s

′
ρ(l))l, l ∈ Leaf(Tf) : equations], for the language Lf , where the equations

are:

Zρ(l) = Z
eρ(l)
ρ(l),1Z

s′
ρ(l)

ρ(l),2, l ∈ Leaf(Tf). (9)

Note that V verifies whether or not the verification equations hold for all the leaves:

Cmtl
?
= Z−Chal

ρ(l) Z
θe,l
ρ(l),1Z

θs′,l
ρ(l),2, l ∈ Leaf(Tf). (10)

V returns 1 or 0 accordingly.

Security of Our ABID

Claim 1 (Concurrent Security under a Single Tag) Our ABID is secure against concurrent at-
tacks if our signature-bundle scheme SB is existentially unforgeable against chosen-message attacks and
if the extracted values e by the extractor of the underlying Σ-protocol Σf is a common single value.

Proof. All the answers of the oracles to queries of a PPT adversary A on ABID can be perfectly simulated
by using the oracles in SB. As for the extraction of a signature bundle, we can do it under the condition
that the same e is answered. �

Note that Claim 1 is needed only as an intermediate result. That is, the assumption that the
extracted value e is a common single value is assured by the two-tier key-issuer, ABTTS.SKG, in the
next section.

Our ABTTS in RSA Using CL-SB as Witness
ABTTS.Setup and ABTTS.PKG are the same as ABID.Setup and ABID.KG in Section C.2,
respectively.
ABTTS.SKG, ABTTS.Sign and ABTTS.Vrfy are obtained along the design principle of two-
tier signature schemes for the canonical identification schemes [7]. That is, on input MSK, PK, a
primary secret key SKS and an access formula f , ABTTS.SKG first computes a statement x and a
corresponding witness w. Then, on input (x,w), the prover P is executed in ABTTS.SKG to obtain
the commitment (Cmtl)l, and the inner state st of P with the commitment is included in the secondary
secret key; SSKS,f := (w, (Cmtl)l ‖ st), SPKf := (x, (Cmtl)l). ABTTS.Sign and ABTTS.Vrfy run
the remaining protocol of our ABID in the two-tier framework [7] as in Section 7. The signature is:

σ := ((Chan)n, (Resl)l).

31

Security of Our ABTTS in RSA Using CL-SB

Theorem 8 (Unforgeability) Our attribute-based two-tier signature scheme ABTTS′ is existentially
unforgeable against chosen-message attacks under the Strong RSA assumption in the standard model.

Proof. According to the same discussion in Bellare et al. [7] as well as Theorem 7 and Claim 1, we
deduce the claim. �

Theorem 9 (Attribute Privacy) Our attribute-based two-tier signature scheme ABTTS′ has attribute
privacy.

Proof. The witness-hiding property assures the attribute privacy. �

C.3 Our ABID and ABTTS in Discrete Log Using CL Signature-Bundle as Witness

Strong Diffie-Hellman Assumption [8] Let p denote a prime of bit length λ. Let e : G1×G2 → GT

denote bilinear groups of order p, where G1 is generated by g, G2 is generated by h and GT is
generated by e(g, h) 6= 1GT . We denote the probabilistic algorithm that generates such parameters
params := (p,G1,G2,GT , e) on input 1λ as BlGrp. Let q denote a number that is less than a fixed
polynomial in λ. The strong Diffie-Hellman assumption [8] states that for any PPT A, the follow-

ing advantage is negligible in λ: Advsdh
BlGrp,S(λ,U) := Pr[params ← BlGrp(1λ), α

$← Zp, (u, e) ←
A(params, (g, gα, gα

2
, . . . , gα

q
, h, hα)) : uα+e = g].

CL Signature-Bundle in DL
We propose a signature-bundle scheme in the discrete-logarithm setting by modifying the pairing-based
CL signature scheme [46, 20, 38]. Our pairing-based signature-bundle scheme, SB =
(SB.KG,SB.Sign,SB.Vrfy), is described as follows.
SB.KG(1λ)→ (PK, SK). Given 1λ as input, it runs a group generator BlGrp(1λ) to get (p,G1,G2,GT , e(·, ·)).
For i = 1 to n, it chooses gi,0, gi,1, gi,2

$← G1, h0
$← G2, α

$← Zp and it puts h1 := hα0 . It puts
PK := ((gi,0, gi,1, gi,2)

n
i=1, h0, h1) and SK := α, and returns (PK,SK).

SB.Sign(PK, SK, (mi)
n
i=1) → (τ, (σi)

n
i=1). Given PK, SK and messages (mi)

n
i=1 each of which is of

length lM, it chooses e
$← Zp. For i = 1 to n, it chooses si

$← Zp, and it computes the value Ai:

Ai := (gi,0g
mi
i,1 g

si
i,2)

1
α+e . (11)

It puts τ = e and σi = (si, Ai) for each i and returns (τ, (σi)
n
i=1).

SB.Vrfy(PK, (mi)
n
i=1, (τ, (σi)

n
i=1)) → 1/0. Given PK, (mi)

n
i=1 and (τ, (σi)

n
i=1), it verifies whether the

following holds:

e(Ai, h
e
0h1) = e(gi,0g

mi
i,1 g

si
i,2, h0), i = 1, . . . , n. (12)

Theorem 10 (Unforgeability of Our SB) Our signature-bundle scheme SB is existentially unforge-
able against chosen-message attack under the Strong Diffie-Hellman assumption.

Proof. Everything can be done as in [38] except the following slight enhancement.
S chooses q elements ej ∈ Zp, j = 1, . . . , q, at random. Then S chooses j∗ ∈ {1, . . . , q} at random

and puts:

f(X) :=
∏
j∈S

(X + ej), fj∗(X) := f(X)/(X + ej∗).

32

Then, for each i = 1 to n, S chooses ri, ti, ui, ᾱi ← Zp and implicitly puts αi := ᾱiα, and puts

gi,2 := gfj∗ (αi), gi,1 := grii,2, gi,0 := g
(αi+ei∗)ti−ui
i,2 = (gfj∗ (αi))(αi+ej∗)ti−ui = gf(αi)tig−uifj∗ (αi), si∗ :=

ui − rmi∗ , Ai∗ := gtii,2. Then,

A
αi+ej∗
j∗ = (gtii,2)

αi+ej∗ = g
(αi+ej∗)ti−ui+ui
2 = gi0g

ui
i2

= gi0g
rimj∗+sj∗
i2

= gi0g
mj∗
i1

g
sj∗
2 .

This completes the simulation of the signature-bundle oracle SBSIGN .
The extraction of the answer to an instance of the Strong Diffie-Hellman assumption can be done

in the same way as [38] with division by ᾱi. �

Our ABID in DL Using CL-SB as Witness
ABID.Setup(1λ,U) → (MSK,PK). Given the security parameter 1λ and an attribute universe U , it

executes a group generator BlGrp(1λ) to get (p,G1,G2,GT , e(·, ·)). For i ∈ U , it chooses gi,0, gi,1, gi,2
$←

G1, h0
$← G2, α

$← Zp, h1 := hα0 and a hash key µ
$← Hashkeysp(λ) of a hash function Hashµ with the

value in Zp. It puts PK := ((gi,0, gi,1, gi,2)i∈U , h0, h1, µ,U) and MSK := α. It returns PK and MSK.

ABID.KG(MSK,PK, S) → SKS . Given PK, MSK and an attribute subset S, it chooses e
$← Zp. For

i ∈ S, it computes ai ← Hashµ(i), si
$← Zp, Ai := (gi,0g

ai
i,1g
−si
i,2)

1
α+e ∈ G1. It puts SKS := (e, (si, Ai)i∈S).

P(SKS ,PK, f) and V(PK, f) execute Σf with the following precomputation. For i ∈ Att(f), P chooses

ri
$← Zp. If i ∈ S then s′i := si + eri, A

′
i := Aig

−ri
i,2 ∈ G1. Else s′i

$← Zp, A′i
$← G1. P puts

Zi := e(gi,0g
ai
i,1, h0)e(A

′
i, h1)

−1, Zi,1 := e(A′i, h0), Zi,2 := e(gi,2, h0), Zi,3 := e(gi,2, h1).

Then the statement for Σf is x := (xi := (Zi, Zi,1, Zi,2))i and the witness is w := (τ := e, (wi := s′i)i),
where i ∈ Att(f) for x and w. P sends the re-randomized values (A′i)i to V for V to be able to compute
the statement x.

After the above precomputation, P and V can execute Σf for the language Lf . In other words, P
and V execute ZKPoK[(eρ(l), s

′
ρ(l))l, l ∈ Leaf(Tf) : equations], for the language Lf , where the equations

are:

Zρ(l) = Z
eρ(l)
ρ(l),1Z

s′
ρ(l)

ρ(l),2Z
rρ(l)
ρ(l),3, l ∈ Leaf(Tf). (13)

Note that V verifies whether or not the verification equations hold for all the leaves:

Cmtl
?
= Z−Chal

ρ(l) Z
θe,l
ρ(l),1Z

θs′,l
ρ(l),2Z

θr,l
ρ(l),3, l ∈ Leaf(Tf). (14)

V returns 1 or 0 accordingly.

Security of Our ABID

Claim 2 (Concurrent Security under a Single Tag) Our ABID is secure against concurrent at-
tacks if our signature-bundle scheme SB is existentially unforgeable against chosen-message attacks and
if the extracted values e by the extractor of the underlying Σ-protocol Σf is a common single value.

Proof. All the answers of the oracles to queries of a PPT adversary A on ABID can be perfectly simulated
by using the oracles for SB. As for the extraction of a signature bundle, we can do it under the condition
that the same e is answered. �

Note that Claim 2 is needed only as an intermediate result. That is, the assumption that the
extracted value e is a common single value is assured by the two-tier key-issuer, ABTTS.SKG, in the
next section.

33

Our ABTTS in DL Using CL-SB as Witness
ABTTS.Setup and ABTTS.PKG are the same as ABID.Setup and ABID.KG in Section C.2,
respectively.
ABTTS.SKG, ABTTS.Sign and ABTTS.Vrfy are obtained along the design principle of two-
tier signature schemes for the canonical identification schemes [7]. That is, on input MSK, PK, a
primary secret key SKS and an access formula f , ABTTS.SKG first computes a statement x and a
corresponding witness w. Then, on input (x,w), the prover P is executed in ABTTS.SKG to obtain
the commitment (Cmtl)l, and the inner state st of P with the commitment is included in the secondary
secret key; SSKS,f := (w, (Cmtl)l ‖ st), SPKf := (x, (Cmtl)l). ABTTS.Sign and ABTTS.Vrfy run
the remaining protocol of our ABID in the two-tier framework [7] as in Section 7. The signature is:

σ := ((Chan)n, (Resl)l).

Security of Our ABTTS in DL Using CL-SB

Theorem 11 (Unforgeability) Our attribute-based two-tier signature scheme ABTTS′ is existentially
unforgeable against chosen-message attacks under the Strong Diffie-Hellman assumption in the standard
model.

Proof. According to the same discussion in Bellare et al. [7] as well as Theorem 10 and Claim 2, we
deduce the claim. �

Theorem 12 (Attribute Privacy) Our attribute-based two-tier signature scheme ABTTS′ has attribute
privacy.

Proof. The witness-hiding property assures the attribute privacy. �

34

