
The related version of this paper appeared in Proceedings of the 2nd ACM ASIA Public-Key Cryptography Workshop
- ASIAPKC 2014, pp. 49-58, under the title “Attribute-Based Signatures without Pairings via the Fiat-Shamir
Paradigm”.

A Concrete Procedure of the Σ-protocol on Monotone Predicates?

Hiroaki Anada1, Seiko Arita2, and Kouichi Sakurai3

1 Department of Information Security, University of Nagasaki
W408, 1-1-1, Manabino, Nagayo-cho, Nishisonogi-gun, Nagasaki, 851-2195 Japan

anada@sun.ac.jp
2 Institute of Information Security

509, 2-14-1, Tsuruya-cho, Kanagawa-ku, Yokohama, 221-0835 Japan
arita@iisec.ac.jp

3 Department of Informatics, Kyushu University
W2-712, 744, Motooka, Nishi-ku, Fukuoka, 819-0395 Japan

sakurai@inf.kyushu-u.ac.jp

Feb 26, 2018

Abstract. We propose a concrete procedure of the Σ-protocol introduced by Cramer, Damg̊ard and
Schoenmakers at CRYPTO ’94, which is for proving knowledge that a set of witnesses satisfies a
monotone predicate in witness-indistinguishable way. We provide the concrete procedure by extending
the so-called OR-proof.

Keywords: proof system, sigma-protocol, OR-proof, witness indistinguishability

1 Introduction

A Σ-protocol formalized in the doctoral thesis of Cramer [Cra96] is a protocol of a 3-move public-coin
interactive proof system which satisfies the three requirements of completeness, special soundness and honest-
verifier zero-knowledge. It is one of the simplest protocols of zero-knowledge interactive proof systems with
the easy but special simulator. Also, it is one of the most typical proof of knowledge systems [BG92]; the
knowledge-extraction property by the special soundness enables us to prove that an identification scheme
by a Σ-protocol is secure against active and concurrent attacks via a reduction to a hardness assumption
[BP02]. For example, instantiations of the Σ-protocol have been known as the Schnorr protocol [Sch89]
and the Guillou-Quisquater protocol [GQ88] of identification schemes. The identification schemes can be
converted into digital signature schemes by the Fiat-Shamir heuristic [FS86]. The signature schemes can be
proved secure against chosen-message attacks in the random oracle model [PS96] based on the security of
the identification schemes against passive attacks [AABN02]. By virtue of these features, a Σ-protocol can
be adopted into building blocks of various cryptographic primitives such as anonymous credential systems
[CL02] and group signature schemes [BBS04].

The OR-proof proposed by Cramer, Damg̊ard and Schoenmakers at CRYPTO ’94 [CDS94] is a Σ-protocol
derived from an original Σ-protocol [Dam10]. It is a perfectly witness-indistinguishable protocol [FS90] by
which a prover can convince a verifier that a prover knows one of the two or both witnesses while even

? The first and the second authors are partially supported by kakenhi Grant-in-Aid for Scientific Research (C)
JP15K00029 from Japan Society for the Promotion of Science.

an unbounded distinguisher cannot tell which witness is used. The OR-proof is essentially applied in, for
example, the construction of a non-malleable proof of plaintext knowledge [Kat03]. In the paper [CDS94]1, a
more general protocol was proposed; suppose a prover and a verifier are given a monotone predicate f over
boolean variables. Here a monotone predicate means a boolean-valued function which is a boolean formula
without negation; that is, as a boolean formula, boolean variables of f are connected by AND-gates or OR-
gates, but no NOT-gate is used. ‘1’ (True) is assigned into every variable in f at which the prover knows the
corresponding witness, and ‘0’ (False) is assigned into every remaining variable. The protocol attains the
perfect witness indistinguishability in the sense that the prover knows a satisfying set of witnesses while even
an unbounded distinguisher cannot tell which satisfying set is used. This protocol is an extension of the OR-
proof to any monotone predicate, and in [CDS94] a high-level construction that employed a “semi-smooth”
secret-sharing scheme was given. (As is stated in [CDS94], to remove the restriction of the monotonicity of
f looks impossible.)

1.1 Our Contribution and Related Works

In this paper, we provide a concrete procedure of the Σ-protocol proposed by Cramer, Damg̊ard and Schoen-
makers [CDS94]. We start with a given Σ-protocol Σ, and derive a Σ-protocol Σf for any monotone predicate
f concretely. Then we show that the protocol Σf realized by our procedure is actually a Σ-protocol with
the perfect witness indistinguishability.

Explanation on the relation to attribute-based cryptographic primitives should be in order2. Herranz
[Her14] provided the first attribute-based signature scheme (ABS) with both the collusion resistance (against
collecting private secret keys) and the computational attribute privacy, while the scheme is without pairings
(pairing-free) in the RSA setting. Recently, Herranz [Her16a] provided an ABS scheme without pairings in
the discrete-logarithm setting with a constraint that the number of private secret keys is bounded in the
set-up phase. In the both ABS schemes [Her14,Her16a] Σ-protocols are used and described for the threshold-
type predicate. Our concrete procedure of the Σ-protocol Σf serves as building blocks of their Σ-protocols
for any monotone predicate (including the threshold-type predicate) to yield the pairing-free ABS schemes
[Her14,Her16a].

1.2 Our Construction Idea

To construct a concrete procedure for the Σ-protocol Σf with the perfect witness indistinguishability, we
look into the technique employed in the OR-proof [CDS94] and expand it so that it can treat any monotone
predicate, as follows. First express the boolean formula f as a binary tree Tf . That is, we put leaves each
of which corresponds to each position of a variable in f . We connect two leaves by an ∧-node or an ∨-node
according to an AND-gate or an OR-gate which is between the two corresponding positions in f . Then
we connect the resulting nodes by an ∧-node or an ∨-node in the same way until we reach the root node
(which is also an ∧-node or an ∨-node). A verification equation of the given Σ-protocol Σ is assigned to
every leaf. If a challenge string Cha of our Σ-protocol Σf is given by the verifier, then the prover assigns
the string Cha to the root node. If the root node is an ∧-node, then the prover assigns the same string
Cha to the two children. Else if the root node is an ∨-node, then the prover divides Cha into two random
strings ChaL and ChaR under the constraint that Cha = ChaL ⊕ChaR, and assigns ChaL and ChaR to
the left child and the right child, respectively. Here ⊕ means a bitwise exclusive-OR operation. Then the
prover continues to apply this rule at each height, step by step, until she reaches all the leaves. Basically, the
OR-proof technique assures that, at every leaf, we can either honestly execute the Σ-protocol Σ or execute
the simulator of Σ. Only when a set of witnesses satisfies the binary tree Tf , the above procedure succeeds
in satisfying verification equations at all the leaves.

1 In the related paper [AAS14] of this ePrint, the authors could not refer to this previous work [CDS94]. We would
like to refer to the work now.

2 In the related paper [AAS14] of this ePrint, we attained the collusion resistance in the construction of an attribute-
based identification scheme (ABID) and an attribute-based signature scheme (ABS) by a naive application of the
credential bundle technique [MPR11]. But instead, we lost the attribute privacy in the ABID and the ABS schemes
though the attribute privacy was wrongly claimed in [AAS14].

2

1.3 Organization of this Paper

In Section 2, we prepare for required notions and notations. In Section 3, we describe a concrete procedure
of the Σ-protocol Σf . In Section 4, we conclude our work in this paper.

2 Preliminaries

The security parameter is denoted by λ. The bit length of a string a is denoted by |a|. The concatenation of
a string a with a string b is denoted by a ‖ b. A uniform random sampling of an element a from a set S is
denoted as a ∈R S. The expression a =? b returns a value 1 (True) when a = b and 0 (False) otherwise.
The expression a ∈? S returns a value 1 when a ∈ S and 0 otherwise. When an algorithm A with input a
outputs z, we denote it as z ← A(a), or, A(a) → z. When a algorithm A with input a and a algorithm B
with input b interact with each other, we denote the transcript of the messages as 〈A(a), B(b)〉.

Let R = {(x,w)} ⊂ {0, 1}∗×{0, 1}∗ be a binary relation. We say that R is polynomially bounded if there
exists a polynomial `(·) such that |w| ≤ `(|x|) for any (x,w) ∈ R. We say that R is an NP relation if it is
polynomially bounded and there exists a polynomial-time algorithm for deciding membership of (x,w) in R.
For a pair (x,w) ∈ R we call x a statement and w a witness of x. An NP language for an NP relation R is

defined as: L
def
= {x ∈ {0, 1}∗;∃w ∈ {0, 1}∗, (x,w) ∈ R}. We introduce a relation function R(·, ·) associated

with the relation R by: R(·, ·) : {0, 1}∗ × {0, 1}∗ → {0, 1}, (x,w) 7→ 1 if (x,w) ∈ R, and 0 otherwise. The
function R(·, ·) is polynomial-time in |x| as an algorithm. We denote the set of witnesses of a statement x
by W (x).

We denote an interactive proof system on an NP relation R [Bab85,GMR85] as Π = (P,V), where P
and V are a pair of interactive Turing machines, which are called a prover and a verifier, respectively. In this
paper, not only V but also P are assumed to be probabilistic polynomial-time (ppt). That is, Π = (P,V)
is an interactive argument system.

2.1 Witness-Indistinguishable Proof System and Σ-protocol

Witness-Indistinguishable Proof System [FS90,Gol01] Let R be an NP relation. Suppose that an
interactive proof system Π = (P,V) on the relation R is given. We consider the following property.
Witness Indistinguishability . For any ppt algorithm V∗, any sequences W 0 = (w0

x)x∈L and W 1 =

(w1
x)x∈L s.t. w0

x, w
1
x ∈ W (x), any ppt algorithm D, any polynomial poly(·), any sufficiently long string

x ∈ L and any string z ∈ {0, 1}∗,

Pr[D
(
x, z, 〈P(x,w0

x),V∗(x, z)〉
)

= 1]

−Pr[D
(
x, z, 〈P(x,w1

x),V∗(x, z)〉
)

= 1] <
1

poly(|x|)
.

The interactive proof system Π with the above property is said to be a witness-indistinguishable proof
system (WI, for short). A stronger notion is the perfect witness indistinguishability. If for any ppt algorithm
V∗, any sequences W 0 = (w0

x)x∈L and W 1 = (w1
x)x∈L s.t. w0

x, w
1
x ∈ W (x), any string x ∈ L and any string

z ∈ {0, 1}∗ the two distributions {(x, z, 〈P(x,w0
x),V∗(x, z)〉)} and {(x, z, 〈P(x,w1

x),V∗(x, z)〉)} are identical,
then the interactive proof system Π is said to be a perfectly witness-indistinguishable proof system.

Σ-protocol [Cra96,Dam10] Let R be an NP relation. A Σ-protocol Σ on a relation R is a 3-move public-
coin protocol of an interactive proof system Π = (P,V) [Cra96,Dam10]. P sends the first message called a
commitment Cmt to V. Then V sends the second message called a challenge Cha to P, which is a public
random string. Then P sends the third message called a response Res to V. Then V applies a decision test to
(x,Cmt,Cha,Res) to return 1 (accept) or 0 (reject). If V accepts, then the triple (Cmt,Cha,Res) is said to
be an accepting transcript on x. The challenge Cha is chosen uniformly at random from the challenge space
ChaSp(1λ) := {0, 1}l(λ) with l(·) being a super-log function. To state the requirements for the Σ-protocol Σ,
we introduce the following six ppt algorithms of Σ: Σ = (Σ1, Σ2, Σ3, Σvrfy, Σke, Σsim). The first algorithm
Σ1 is described as Cmt← Σ1(x,w). That is, on input (x,w) ∈ R, it generates a commitment Cmt. Similarly,

3

the second, the third and the forth algorithms are described as Cha← Σ2(1λ), Res← Σ3(x,w,Cmt,Cha)
and b← Σvrfy(x,Cmt,Cha,Res), respectively. Σ must satisfy the following three requirements.
Completeness. A prover P(x,w) with a witness w ∈W (x) makes V(x) accept with the probability 1.

The fifth algorithm is described as follows.
Special Soundness. There is a ppt algorithm called a knowledge extractor Σke, which, given as input a

statement x and two accepting transcripts (Cmt,Cha,Res) and (Cmt,Cha′,Res′), computes a witness ŵ
satisfying (x, ŵ) ∈ R with an overwhelming probability, where the two challenges Cha and Cha′ are different
(Cha 6= Cha′):

ŵ ← Σke(x,Cmt,Cha,Res,Cha′,Res′).

The sixth algorithm is described as follows.
Honest-Verifier Zero-Knowledge. For any fixed statement x there is a ppt algorithm called a simulator Σsim

such that

(˜Cha, ˜Cmt, R̃es)← Σsim(x),

where the distribution of (simulated) transcripts {(˜Cmt, ˜Cha, R̃es)} is the same as the distribution of (real)
accepting transcripts {(Cmt,Cha,Res)} generated as 〈P(x,w),V(x)〉 for any fixed witness w ∈W (x) and
for the (honest) verifier V.

For a Σ-protocol, the above simulator Σsim(x) is modified as follows. First generate a challenge ˜Cha by
running Σ2(1λ) (i.e. uniform random sampling from ChaSp(1λ)), and then input the challenge ˜Cha to the
modified simulator to generate a commitment ˜Cmt and a response R̃es:

˜Cha← Σ2(1λ), (˜Cmt, R̃es)← Σsim(x, ˜Cha).

We need this modified form of the simulator later.
We note that an interactive proof system Π = (P,V) with a Σ-protocol is known to be a proof of

knowledge system. (For the notion of a proof of knowledge system, see [BG92].)

The OR-proof [Dam10] We consider a Σ-protocol ΣOR on a relation ROR about a boolean formula
f(X0, X1) = X0 ∨X1, where

ROR ={(x = (x0, x1), w = (w0, w1)) ∈ ({0, 1}∗)2 × ({0, 1}∗)2;

f(R(x0, w0), R(x1, w1)) = 1}.

The corresponding language is

LOR = {x ∈ ({0, 1}∗)2;∃w ∈ ({0, 1}∗)2, (x,w) ∈ ROR}.

Suppose that a Σ-protocol Σ on a relation R is given. Then we construct the protocol ΣOR on the relation
ROR as follows. Suppose wolog (x0, w0) ∈ R. P computes Cmt0 ← Σ1(x0, w0), (Cmt1,Cha1,Res1) ←
Σsim(x1) and sends (Cmt0,Cmt1) to V. Then V chooses Cha← Σ2(1λ) and sends it to P. Then P computes
Cha0 := Cha ⊕ Cha1,Res0 ← Σ3(x0, w0,Cmt0,Cha0) and sends (Cha0,Cha1) and (Res0,Res1) to V.
Here ⊕ denotes a bitwise exclusive-OR operation. Then for each i = 0, 1, (Cmti,Chai,Resi) is an accepting
transcript on xi, and furthermore, the distribution of transcripts {(Cmti,Chai,Resi)} is the same as the
distribution of accepting transcripts generated as 〈P(xi, wi),V(xi)〉 for any fixed wi ∈W (xi).

The protocol ΣOR is actually a Σ-protocol [CDS94,Dam10]. We often call ΣOR the OR-proof. A proof
system Π with the OR-proof is, as we see, perfectly witness-indistinguishable [CDS94,Dam10]. Thus, a proof
system Π with the OR-proof is a perfectly witness-indistinguishable proof of knowledge system (WIPoK).

2.2 Access Formula

Let U = {1, . . . , u} be an attribute universe [GPSW06]. We must distinguish two cases: the case that U is
small (that is, |U| = u is bounded by a polynomial in λ) and the case that U is large (that is, u is not
necessarily bounded). We assume the small case in this paper.

4

Let f = f(Xi1 , . . . , Xia) be a boolean formula over boolean variables U = {X1, . . . , Xu}. Here we denote
the arity of f as a(f), and two variables among Xi1 , . . . , Xia are connected by a boolean connective, an
AND-gate (∧) or an OR-gate (∨). For example, f = Xi1 ∧ ((Xi2 ∧Xi3)∨Xi4) for some i1, i2, i3, i4 ∈ U . Note
that there is a bijective map ψ between boolean variables and attributes:

ψ : U → U , ψ(Xi)
def
= i.

For f(Xi1 , . . . , Xia), we denote the set of indices of f (that is, attributes), {i1, . . . , ia}, by Att(f). Hereafter
we use the symbol ij to mean the following:

ij
def
= the index i of a boolean variable that is the j-th argument of f.

Suppose that we are given an access structure as a boolean formula f . For S ∈ 2U , we evaluate the
boolean value of f at S as follows:

f(S)
def
= f

(
Xij ← [ψ(Xij) ∈? S]; j = 1, . . . , a(f)

)
∈ {0, 1}.

Under this definition, a boolean formula f can be seen as a map: f : 2U → {0, 1}. We call a boolean formula
f with this map an access formula over U . In this paper, we assume that no NOT-gate (¬) appears in f . In
other words, we consider only monotone predicates and monotone access formulas.

Access Tree A monotone access formula f can be represented by a finite binary tree Tf . Each inner node
represents a boolean connective, an ∧-gate or an ∨-gate, in f . Each leaf corresponds to a position Xi (not a
variable Xi) in f in one-to-one way. For a finite binary tree tree T , we denote the set of all nodes, the root
node, the set of all leaves, the set of all inner nodes (that is, all nodes excluding leaves) and the set of all
tree-nodes (that is, all nodes excluding the root node) as Node(T), r(T), Leaf(T), iNode(T) and tNode(T),
respectively. Then the attribute map ρ(·) is defined as:

ρ : Leaf(T)→ U , ρ(l)
def
= (ψ(Xi) where l corresponds to the position Xi).

If ρ is not injective, then we call the case multi-use of attributes.
If T is of height greater than 0, T has two subtrees whose root nodes are two children of r(T). We denote

the two subtrees by Lsub(T) and Rsub(T), which mean the left subtree and the right subtree, respectively.

3 Our Procedure of Σ-protocol on Monotone Predicate

In this section, we construct a Σ-protocol Σf of a perfectly witness-indistinguishable proof of knowledge
system from a given Σ-protocol Σ and a monotone predicate f , so that Σf will be an extension of the
OR-proof ΣOR.

We revisit first the notion introduced by Cramer, Damg̊ard and Schoenmakers [CDS94]; a Σ-protocol
of a perfectly witness-indistinguishable proof of knowledge system. Let R be a binary relation. Let
f(Xi1 , . . . , Xia(f)) be a boolean formula over boolean variables U = {X1, . . . , Xu}.

Definition 1 (Cramer, Damg̊ard and Schoenmakers [CDS94], our Rewritten Form) A relation
Rf is defined by:

Rf
def
= {(x = (xi1 , . . . , xia(f)), w = (wi1 , . . . , wia(f))) ∈ ({0, 1}∗)a(f) × ({0, 1}∗)a(f);

f(R(xi1 , wi1), . . . , R(xia(f) , wia(f))) = 1}.

Rf is a generalization of the relation ROR [CDS94,Dam10] where f was a boolean formula with a single
boolean connective OR, i.e. f = Xi1 ∨Xi2 . Note that, if R is an NP relation, then Rf is also an NP relation
under the assumption that the number of leaves of Tf is bounded by `(|x|) The corresponding language is

Lf
def
= {x ∈ ({0, 1}∗)a(f);∃w ∈ ({0, 1}∗)a(f), (x,w) ∈ Rf}.

5

P(x,w, f) : V(x, f):

(vn)n ← Σeval
f (Tf , S)

If vr(Tf) 6= 1, then abort

else
Σ1
f (x,w, Tf , (vn)n, ?)
→ ((Cmtl)l, (Chan)n, (Resl)l) (Cmtl)l

−→

Cha Cha← Σ2
f (1λ)

Σ3
f (x,w, Tf , (vn)n, (Cmtl)l, ←−
Cha, (Chan)n, (Resl)l) Σvrfy

f (x, Tf , (Cmtl)l,

→ ((Chan)n, (Resl)l) (Chan)n, (Resl)l Cha, (Chan)n, (Resl)l)
−→ → b,Return b

Fig. 1. Overview of our procedure of the Σ-protocol Σf on the relation Rf .

In [CDS94], a 3-move public-coin honest-verifier zero-knowledge proof of knowledge system for the language
Lf was defined as a witness-indistinguishable proof system on any monotone predicate f (satisfied by a set
of witnesses). Then, in [CDS94], a Σ-protocol of the WIPoK system on the relation Rf was studied at a
high level by using the notion of the dual access structure of the access structure determined by f .

3.1 Our Procedure

Now we construct a concrete procedure of a protocol Σf of a WIPoK system on the relation Rf . Σf is a
3-move public-coin protocol of a proof of knowledge system Π = (P,V) between interactive ppt algorithms

P and V, and it consists of seven algorithms: Σf = (Σeval
f , Σ1

f , Σ
2
f , Σ

3
f , Σ

vrfy
f , Σke

f , Σ
sim
f). In our prover

algorithm P, there are four ppt subroutines Σeval
f , Σ1

f , Σ3
f and Σsim

f . On the other hand, in our verifier

algorithm V, there are two ppt subroutines Σ2
f and Σvrfy

f . Moreover, Σvrfy
f has two subroutines VrfyCha

and VrfyRes. Fig. 1 shows the construction of our procedure Σf . (For the tree expression of a boolean
formula f , see Section 2.2.)

Evaluation of Satisfiability. The prover P begins with evaluation of whether and how S satisfies f by
running the evaluation algorithm Σeval

f . It labels each node of Tf with a value v = 1 (True) or 0 (False).
For each leaf l, we label l with vl = 1 if ρ(l) ∈ S and vl = 0 otherwise. (For the definition of the function
ρ, see Section 2.2.) For each inner node n, we label n with vn = vnL

∧ vnR
or vn = vnL

∨ vnL
according to

AND/OR evaluation of two labels of its two children, nL and nR. The computation is executed for every
node from the root to each leaf, recursively, as in Fig. 2.

Σeval
f (T , S) :
TL := Lsub(T), TR := Rsub(T)

If r(T) is ∧-node n, then vn := Σeval
f (TL, S) ∧Σeval

f (TR, S),

Return (vn, Σ
eval
f (TL, S), Σeval

f (TR, S))

else if r(T) is ∨-node n, then vn := Σeval
f (TL, S) ∨Σeval

f (TR, S),

Return (vn, Σ
eval
f (TL, S), Σeval

f (TR, S))
else if r(T) is a leaf l, then vl := (ρ(l) ∈? S)

Return (vl)

Fig. 2. The subroutine Σeval
f of our Σf .

Commitment. The prover P computes a commitment for each leaf by running the algorithm Σ1
f described

in Fig. 3. Basically, Σ1
f runs for every node from the root to each leaf, recursively. As a result, Σ1

f generates

for each leaf l a value Cmtl; If vl = 1, then Cmtl is computed honestly according to Σ1. Else if vl = 0, then
Cmtl is computed in the simulated way according to Σsim. Other strings, (Chan)n and (Resl)l, are needed

6

for the simulation. Note that the distinguished symbol ? is used to indicate “it is under computation”. P
sends (Cmtl)l to V.

Σ1
f (x,w, T , (vn)n,Cha) :
TL := Lsub(T), TR := Rsub(T)
If r(T) is ∧-node n, then Chan := Char(TL) := Char(TR) := Cha

Return (Chan, Σ
1
f (x,w, TL, (vn)n,Char(TL)),

Σ1
f (x,w, TR, (vn)n,Char(TR)))

else if r(T) is ∨-node n, then Chan := Cha
If vr(TL) = 1 and vr(TR) = 1, then Char(TL) := ?, Char(TR) := ?

else if vr(TL) = 1 and vr(TR) = 0, then Char(TL) := ?, Char(TR) ← Σ2(1λ)

else if vr(TL) = 0 and vr(TR) = 1, then Char(TL) ← Σ2(1λ),Char(TR) := ?

else if vr(TL) = 0 and vr(TR) = 0, then Char(TL) ← Σ2(1λ),Char(TR) := Cha⊕Char(TL)

Return (Chan, Σ
1
f (x,w, TL, (vn)n,Char(TL)),

Σ1
f (x,w, TR, (vn)n,Char(TR)))

else if r(T) is a leaf l, then Chal := Cha
If vl = 1, then Cmtl ← Σ1(xρ(l), wρ(l)),Resl := ?
else if vl = 0, then (Cmtl,Resl)← Σsim(xρ(l),Cha)
Return(Cmtl,Chal,Resl)

Fig. 3. The subroutine Σ1
f of our Σf .

Challenge. The verifier V computes a challenge Cha by running the algorithm Σ2
f described in Fig. 4. V

sends Cha to P.

Σ2
f (1λ) : Cha← Σ2(1λ),Return(Cha)

Fig. 4. The subroutine Σ2
f of our Σf .

Response. The prover P computes a response for each leaf by running the algorithm Σ3
f described in Fig.

5. Basically, the algorithm Σ3
f runs for every node from the root to each leaf, recursively. As a result, Σ3

f

generates the challenge strings (Chan)n for all the nodes n ∈ Node(Tf) and the response strings (Resl)l
for all the leaves l ∈ Leaf(Tf). Note that the computations of all challenge strings (Chan)n are completed
(according to the “division rule” described in Section 1.2). P sends (Chan)n and (Resl)l to V.

Verification. The verifier V computes a decision boolean by running the following algorithm Σvrfy
f from

the root to each leaf, recursively.
Now we have to check that Σf is certainly a Σ-protocol on the relation Rf .

Proposition 1 (Completeness) The completeness holds for our Σf .

Proof. Suppose that vr(Tf) = 1. We show that, for every node in Node(Tf), either vn = 1 or Chan 6= ∗
holds after executing Σ1

f . The proof is by induction on the height of Tf . The case of height 0 follows from
vr(Tf) = 1 and the completeness of Σ. Suppose that the case of height k holds and consider the case of height
k + 1. The construction of Σ1

f assures the case of height k + 1. �

Proposition 2 (Special Soundness) The special soundness holds for our Σf .

We construct a knowledge extractor Σke
f by employing the knowledge extractor Σke of the underlying Σ-

protocol Σ as in Fig. 7. Then Lemma 1 assures the above proposition.

Lemma 1 (Knowledge Extraction) The string ŵ output by Σke
f satisfies (x, ŵ) ∈ Rf .

Proof. We prove the lemma by induction on the number of all ∨-nodes in iNode(Tf). First remark that
Cha 6= Cha′.

7

Σ3
f (x,w, T , (vn)n, (Cmtl)l,Cha, (Chan)n, (Resl)l) :
TL := Lsub(T), TR := Rsub(T)
If r(T) is ∧-node n, then Chan := Char(TL) := Char(TR) := Cha

Return(Chan, Σ
3
f (x,w, TL, (vn)n, (Cmtl)l,Char(TL), (Chan)n, (Resl)l),

Σ3
f (x,w, TR, (vn)n, (Cmtl)l,Char(TR), (Chan)n, (Resl)l))

else if r(T) is ∨-node n, then Chan := Cha

If vr(TL) = 1 and vr(TR) = 1, then Char(TL) ← Σ2(1λ),Char(TR) := Cha⊕Char(TL)

else if vr(TL) = 1 and vr(TR) = 0, then Char(TL) := Cha⊕Char(TR)

else if vr(TL) = 0 and vr(TR) = 1, then Char(TR) := Cha⊕Char(TL)

else if vr(TL) = 0 and vr(TR) = 0, then do nothing
Return(Chan, Σ

3
f (x,w, TL, (vn)n, (Cmtl)l,Char(TL), (Chan)n, (Resl)l),

Σ3
f (x,w, TR, (vn)n, (Cmtl)l,Char(TR), (Chan)n, (Resl)l))

else if r(T) is a leaf l, then Chal := Cha
If vl = 1, then Resl ← Σ3(xρ(l), wρ(l),Cmtl,Cha)
else if vl = 0, then do nothing
Return(Chal,Resl)

Fig. 5. The subroutine Σ3
f of our Σf .

Σvrfy
f (x, T , (Cmtl)l,Cha, (Chan)n, (Resl)l) :

Return(VrfyCha(T ,Cha, (Chan)n) ∧VrfyRes(x, T , (Cmtl)l, (Chal)l, (Resl)l)

VrfyCha(T ,Cha, (Chan)n) :
TL := Lsub(T), TR := Rsub(T)
If r(T) is ∧-node n, then

Return ((Cha =? Char(TL)) ∧ (Cha =? Char(TR))
∧VrfyCha(TL,Char(TL), (Chan)n) ∧VrfyCha(TR,Char(TR), (Chan)n))

else if r(T) is ∨-node n, then
Return ((Cha =? Char(TL) ⊕Char(TR))
∧VrfyCha(TL,Char(TL), (Chan)n) ∧VrfyCha(TR,Char(TR), (Chan)n))

else if r(T) is a leaf l, then

Return (Cha ∈? ChaSp(1λ))

VrfyRes(x, T , (Cmtl)l, (Chal)l, (Resl)l) :

For l ∈ Leaf(T) : If Σvrfy(xρ(l),Cmtl,Chal,Resl) = 0, then Return (0)
Return (1)

Fig. 6. The subroutine Σvrfy
f of our Σf .

Σke
f (x, f, (Cmtl)l, Cha, (Chan)n, (Resl)l, Cha′, (Cha′n)n, (Res′l)l) :
If Cha = Cha′ then Return TheSameCha

else if Σvrfy
f (x, Tf ,Cha, (Cmtl)l, (Chan)n, (Resl)l) = 0

or Σvrfy
f (x, Tf ,Cha′, (Cmtl)l, (Cha′n)n, (Res′l)l) = 0, then Return ⊥

else
For l ∈ Leaf(Tf):

If Chal = Cha′l, then ŵρ(l) ∈R {0, 1}`(|xρ(l)|)
else ŵρ(l) ← Σke(xρ(l),Cmtl,Chal,Resl,Cha′l,Res′l)

Return (ŵ := (ŵij)1≤j≤a(f))

Fig. 7. The knowledge-extractor Σke
f of our Σf .

8

Suppose that all nodes in iNode(Tf) are ∧-nodes. Then the above claim follows immediately because
Chal 6= Cha′l holds for all leaves.

Suppose that the case of k ∨-nodes holds and consider the case of k + 1 ∨-nodes. Look at one of the
lowest height ∨-node and name the height and the node as h∗ and n∗, respectively. Then Chan∗ 6= Cha′n∗

because all nodes with their heights less than h∗ are ∧-nodes. So at least one of children of n∗, say n∗L,
satisfies Chan∗

L
6= Cha′n∗

L
. Divide the tree Tf into two subtrees by cutting the branch right above n∗, and

the induction hypothesis assures the claim. �

Proposition 3 (HVZK) The honest-verifier zero-knowledge property holds for our Σf .

Proof. We construct a polynomial-time simulator Σsim
f , which on input a statement x ∈ Lf and a predicate

f returns an accepting transcript ((Cmtl)l,Cha, (Chan)n, (Resl)l), as in Fig. 8.

Σsim
f (x, f) :

˜Cha← Σ2
f (1λ), w ∈R {0, 1}`(|xρ(l)|), For n ∈ Node(Tf) : vn := 0

((˜Cmtl)l, (˜Chan)n, (R̃esl)l)← Σ1
f (x,w, Tf , (vn)n, ˜Cha)

Return((˜Cmtl)l, ˜Cha, (˜Chan)n, (R̃esl)l)

Fig. 8. The simulator Σsim
f of our Σf .

�
We summarize the above results into the following theorem and corollary.

Theorem 1 (Σf is a Σ-protocol) If a given protocol Σ on a relation R is a Σ-protocol, and if an access
formula f is monotone and the number of leaves of Tf is bounded by `(|x|), then the protocol Σf with our
procedure is a Σ-protocol on the relation Rf .

Theorem 2 (Σf is a perfectly WIPoK system) If a given protocol Σ on a relation R is a Σ-protocol,
and if an access formula f is monotone and the number of leaves of Tf is bounded by `(|x|), then the protocol
Σf with our procedure is the protocol of a perfectly witness-indistinguishable proof of knowledge system on
the relation Rf .

Proof. For any statement x and any two witnesses w1 and w2 satisfying Rf (x,w1) = Rf (x,w2) = 1, the
distribution of the transcript P(x,w1) and V(x) of Σf and the distribution of the transcript P(x,w2) and
V(x) of Σf are identical. �

3.2 Non-interactive Version

The Fiat-Shamir transform FS(·) can be applied to any Σ-protocol Σ ([FS86,AABN02]). Therefore, the
non-interactive version of our procedure Σf is obtained.

Theorem 3 (FS(Σf) is a non-interactive perfectly WIPoK system) If a given protocol Σ on a rela-
tion R is a Σ-protocol, and if an access formula f is monotone and the number of leaves of Tf is bounded by
`(|x|), then the protocol FS(Σf) is the protocol of a non-interactive perfectly witness-indistinguishable proof
of knowledge system on the relation Rf . A knowledge extractor is constructed in the random oracle model.

3.3 Discussion

As is mentioned in [CDS94], the Σ-protocol Σf can be considered as a proto-type of an attribute-based
identification scheme [AAHI13]. Also, the non-interactive version FS(Σf) can be considered a proto-type of
an attribute-based signature scheme [MPR11]. That is, Σf and FS(Σf) are an attribute-based identification
scheme and an attribute-based signature scheme without the collusion resistance against collecting private
secret keys, respectively.

9

4 Conclusion

We provided a concrete procedure of a Σ-protocol Σf , which is of a perfectly witness-indistinguishable proof
of knowledge system on an NP relation Rf , where f is an input monotone predicate. Our concrete procedure
is for any monotone predicate f on condition that the number of leaves of Tf is bounded by `(|x|), and it
serves as building blocks of the Σ-protocols in the pairing-free ABS schemes of [Her14,Her16a].

Acknowledgements We appreciate sincere comments from Javier Herranz via e-mail communication
[Her16b] on the topic in this paper. We would like to thank to Keita Emura and Takahiro Matsuda for
their sincere comments and encouragements on the construction of attribute-based signature schemes. We
would like to thank to Shingo Hasegawa and Masayuki Fukumitsu for their sincere comments on the con-
struction of the Σ-protocol on monotone predicates.

References

[AABN02] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From identification to signatures
via the fiat-shamir transform: Minimizing assumptions for security and forward-security. In Advances in
Cryptology - EUROCRYPT 2002, International Conference on the Theory and Applications of Crypto-
graphic Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002, Proceedings, pages 418–433,
2002.

[AAHI13] Hiroaki Anada, Seiko Arita, Sari Handa, and Yosuke Iwabuchi. Attribute-based identification: Definitions
and efficient constructions. In Information Security and Privacy - 18th Australasian Conference, ACISP
2013, Brisbane, Australia, July 1-3, 2013. Proceedings, pages 168–186, 2013.

[AAS14] Hiroaki Anada, Seiko Arita, and Kouichi Sakurai. Attribute-based signatures without pairings via the
fiat-shamir paradigm. In ASIAPKC2014, volume 2 of ACM-ASIAPKC, pages 49–58. ACM, 2014.

[Bab85] László Babai. Trading group theory for randomness. In Proceedings of the 17th Annual ACM Symposium
on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA, pages 421–429, 1985.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Advances in Cryptology -
CRYPTO 2004, 24th Annual International CryptologyConference, Santa Barbara, California, USA, August
15-19, 2004, Proceedings, pages 41–55, 2004.

[BG92] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Advances in Cryptology - CRYPTO
’92, 12th Annual International Cryptology Conference, Santa Barbara, California, USA, August 16-20,
1992, Proceedings, pages 390–420, 1992.

[BP02] Mihir Bellare and Adriana Palacio. GQ and Schnorr identification schemes: Proofs of security against
impersonation under active and concurrent attacks. In Advances in Cryptology - CRYPTO 2002, 22nd
Annual International Cryptology Conference, Santa Barbara, California, USA, August 18-22, 2002, Pro-
ceedings, pages 162–177, 2002.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge and simplified
design of witness hiding protocols. In CRYPTO ’94, pages 174–187. Springer-Verlag, 1994.

[CL02] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. In Security in
Communication Networks, Third International Conference, SCN 2002, Amalfi, Italy, September 11-13,
2002. Revised Papers, pages 268–289, 2002.

[Cra96] Ronald Cramer. Modular Designs of Secure, yet Practical Cyptographic Protocols. PhD thesis, University
of Amsterdam, Amsterdam, the Netherlands, 1996.

[Dam10] Ivan Damg̊ard. On σ-protocols. In Course Notes, http://cs.au.dk/ ivan/CPT.html, 2010.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Advances in Cryptology - CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings,
pages 186–194, 1986.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In Proceedings of the
22nd Annual ACM Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA,
pages 416–426, 1990.

[GMR85] S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of interactive proof-systems. In
Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, STOC ’85, pages 291–
304, New York, NY, USA, 1985. ACM.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques. Cambridge University
Press, 2001.

10

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In Proceedings of the 13th ACM Conference on Computer and Com-
munications Security, CCS 2006, Alexandria, VA, USA, Ioctober 30 - November 3, 2006, pages 89–98,
2006.

[GQ88] Louis C. Guillou and Jean-Jacques Quisquater. A ”paradoxical” indentity-based signature scheme resulting
from zero-knowledge. In Advances in Cryptology - CRYPTO ’88, 8th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 21-25, 1988, Proceedings, pages 216–231, 1988.

[Her14] Javier Herranz. Attribute-based signatures from rsa. Theoretical Computer Science, 527:73–82, 2014.
[Her16a] Javier Herranz. Attribute-based versions of schnorr and elgamal. Appl. Algebra Eng. Commun. Comput.,

27(1):17–57, 2016.
[Her16b] Javier Herranz. Private communication via e-mail, dept. matemàtica aplicada iv, universitat politècnica

de catalunya, July 2014, Sept 2015 and May 2016.
[Kat03] Jonathan Katz. Efficient and non-malleable proofs of plaintext knowledge and applications. In Advances

in Cryptology - EUROCRYPT 2003, International Conference on the Theory and Applications of Cryp-
tographic Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings, pages 211–228, 2003.

[MPR11] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based signatures. In Topics in
Cryptology - CT-RSA 2011 - The Cryptographers’ Track at the RSA Conference 2011, San Francisco,
CA, USA, February 14-18, 2011. Proceedings, pages 376–392, 2011.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Advances in Cryptology -
EUROCRYPT ’96, International Conference on the Theory and Application of Cryptographic Techniques,
Saragossa, Spain, May 12-16, 1996, Proceeding, pages 387–398, 1996.

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Advances in Cryptology -
CRYPTO ’89, 9th Annual International Cryptology Conference, Santa Barbara, California, USA, August
20-24, 1989, Proceedings, pages 239–252, 1989.

11

