
Methods for Efficient Homomorphic Integer
Polynomial Evaluation based on GSW FHE

Husen Wang, Qiang Tang

University of Luxembourg
husen.wang@uni.lu, qiang.tang@uni.lu

May 20, 2016

Abstract We introduce new methods to evaluate integer polynomials
with GSW FHE. Our methods cause much slower noise growth and result
in much better efficiency in the evaluation of low-degree large plaintext
space polynomials. One method is about a new encryption procedure and
its application homomorphic integer multiplication. The other is about
an extended version to SIMD by packing more integers diagonally into
a matrix. We show the possibility of combining ciphertext compression
with these techniques, in order to achieve better efficiency for ciphertext
transmission and homomorphic polynomial evaluation.

Keywords: GSW, integer multiplication, packing, ciphertext compression

1 Introduction

Fully Homomorphic encryption (FHE) has received considerable attention ever
since the breakthrough by Gentry in [8], which put forward a paradigm for con-
verting a “somewhat homomorphic” encryption scheme with a limited evaluation
depth to “fully homomorphic” encryption scheme with unlimited depth, by boot-
strapping a noisy ciphertext to less noisy one. Since then, a lot of efforts have
been dedicated to make the scheme more practical by improving the evaluation
performance and reducing the number of bootstrapping times. The second gen-
eration of schemes such as BGV [3], LTV [14](NTRU based), the scale-invariant
version such as FV [7], YASHE [2] utilize techniques such as bit decomposition,
modulus switching, key switching to reduce the noise growth when performing
evaluations, especially the multiplications. However, the unnatural key switching
leads to serious computation overhead. To resolve this problem, the third genera-
tion FHE was proposed by Gentry in [10], which uses a matrix as the ciphertext.
Later, [4] achieved quasi-additive noise growth property by utilizing the asym-
metrical property of the matrix multiplication. [1] improved the bootstrapping
procedure by arithmetically evaluating the decryption circuit and embedding el-
ements in Zq into smaller symmetric groups using Chinese Reminder Theorem.

Recently, [11] enabled packing multiple bits by adopting a new structure for the
ciphertexts, and further improved the bootstrapping procedure in [1]. However,
all the above improvements target at binary plaintexts, since the multiplication
noise growth is related to the plaintext size and the noise in a multiplication
chain is exponential with the size.

In real world application, there are two scenarios for the circuits that are to be
evaluated by FHE. One is large plaintext space, low-degree polynomials [6] [23],
the other scenario is polynomials with binary plaintext space but large circuit
depth [9] [13]. For circuits with both large plaintext space and large depth, the
parameters will be too large to be practical [17]. The existing GSW FHE and
its variants can handle the latter, and can achieve good performances as shown
in [12]. But it’s still an open problem to efficiently deal with circuits in the first
category.

In this paper, we solve this problem with a new evaluation method, by uti-
lizing the asymmetrical matrix multiplication property and some circuit sequen-
tialization technique. We also extend the method to SIMD.

1.1 Our contribution

Firstly, to reduce the noise growth in integer multiplication, we decompose one
integer to binary vectors with known weights, then perform the multiplication
through several multiplications of one integer with a binary number and then
a weight, finally a sum. The first multiplication only increase additive noise,
since one of them is kept always as a fresh ciphertext with binary plaintext. The
second multiplication can be done without increasing the noise by having some
constraints on the modulus and the encoding of weights, because the weights
are all the power of two and encoded with zero noise inside. Finally we achieve
the noise growth of ` times (where ` is the bit width of the plaintext space),
in contrast to 2` if directly using the methods in [4,10]. We do admit that out
method has the disadvantage of ciphertext expansion, ` times more memory
compared to a direct application of the GSW FHE scheme. The homomorphic
multiplication computation cost is also about ` times (the multiplication with
the encoded weights can be ignored since they are all sparse matrixes). Using
this method, we can evaluate an integer polynomial sequentially with the noise
growth equivalent to a multiplication chain, so that we can keep one ciphertext
in every multiplication step be a fresh one. This leads to a circuit depth of
d (which is the degree of the polynomial), in contrast to log d in [10]. Since we
target at large plaintext space, low degree scenario, where d is small, this sacrifice
is acceptable.

Secondly, based on a simple observation that that if the integers are assigned
diagonally in a matrix then the multiplication of two matrixes will be equivalent
to the multiplication of that of the corresponding diagonal integers, we pack
multiple integers as a diagonal matrix. We don’t encrypt the integers directly,
but encrypt their binary decomposed vectors, which will be beneficial to the
evaluation.

2

Thirdly, we consider the possibility of combining the concepts of ciphertext
compression with integer polynomial evaluation. In our scenario, the integers to
be used in the evaluation can be encrypted with stream ciphers and an untrusted
server can homomorphically decrypt and evaluate. As long as that we can con-
strain the plaintext space to Z2 within the homomorphic decryption, the noise
in the decrypted ciphertext will be small. In this way, we can seamlessly combine
ciphertext compression with the evaluation, which is more efficient than existing
designs that can only evaluate boolean circuit after homomorphic decryption.

1.2 Organization

The rest of the paper is organized as follows. In Section 2 we recall some math-
ematical preliminaries such as subgaussian variables and DLWE. In Section 3,
we introduce the GSW FHE variant from [1] and our modification. In Section
4 we discuss the homomorphic operations for integers and polynomials, then
analyze their noise growth property. In Section 5, we extend the method to
packing GSW FHE and introduce the operations on packed integers. In Section
6, we show combination of our evaluation method with ciphertext compression.
Finally, we make the conclusion.

2 Preliminaries

We denote the set of natural numbers by N, the set of integers by Z, the set of
real numbers by R. Let G be a set, χ be some probability distribution, then we

use a
U←− G to denote that a is chosen from G uniformly at random, and use

b
R←− χ to denote that b is chosen along χ. We take all logarithms log to base 2,

unless otherwise noted.
We assume that column vectors are represented with bold lower case letters,

e.g., x, and the transpose as xt. We also use ()i∈[0,`) to represent a vector with the
length `. Let ⊗ be the tensor product, · be the multiplications between matrices
or scalars. The inner product between two vectors is denoted by < x,y >. We
denote ||x||2 as the Euclidean norm, ||x||∞ as the Maximum norm.

Matrices are represented with bold capital letters, e.g., X, and the i-th
column vector of a matrix is denoted by xi. For matrices A ∈ Zm×n1 and
B ∈ Zm×n2 , [A||B] ∈ Zm×(n1+n2) denotes the column concatenation of A
and B. We denote the n × n identity matrix with In. ` = dlog qe. Let g =
(20, 21, 22, . . . 2`−1) ∈ Z`q. For an integer x ∈ Zq, we use x[i] to denote the i-bit

of x and (x[i])i∈[0,`) ∈ Z`2 to denote the binary representation of x.

2.1 Subgaussian

Alperin-Sheriff and Peikert [1] used a randomized function G−1 : Zn×mq →
Zn`×mq instead of the decomposition procedure to randomize the ciphertexts
and more accurately analyze the resulted noise growth property. Here, we take
the necessary Claims from related papers.

3

Definition 1 ([22]). A real random variable X(or its distribution) is subgaus-
sian with parameter r > 0, if for all t ∈ R, its (scaled) moment-generating
function satisfies E[exp(2πtX)] ≤ exp(πr2t2).

The subgaussain random variables has two properties:

– Homogeneity: If the subgaussian variable X has parameter s, cX is subgaus-
sian with parameter cs.

– Pythagorean additivity: If two independent subgaussian random variables
X1 and X2 with parameters s1 and s2 respectively, X1 +X2 is subgaussian
with parameter

√
s21 + s22.

Claim 1 For a ∈ Zq, there is a randomized, efficiently computable function
g−1 : Zq → Z` such that x ← g−1(a) is subgaussian with parameter O(1) and
always satisfies < g,x >= a.

Claim 2 For X ∈ Zn×mq , there is a randomized, efficiently computable function

G−1 : Zn×mq → Zn`×m such that X ← G−1(A) is subgaussian with parameter
O(1) and always satisfies G ·X = A.

2.2 DLWE

The LWE problem by Regev [20] and its decisional version DLWEn,m,q,χ are
recapped in Definition 2. The reductions from DLWEn,m,q,χ to GapSVPÕ(n/α)

based on quantum algorithm [20] and classical algorithm [19] are illustrated in
Corollary 1, as we rewrite the Corollary in [4]. The GapSVPγ is assumed

to be hard, since the best algorithm requires at least 2Ω̃(n/ log γ) time [21].

Definition 2 (DLWE). For q = q(n) ∈ N and an error distribution χ =
χ(n) over Z,the (average-case) decision learning with errors problem, denoted
DLWEn,m,q,χ, is to distinguish (with non-negligible advantage) m samples cho-

sen according to As,χ (for s
U←− Znq), from m samples chosen according to the

uniform distribution over Znq × Zq. We denote DLWEn,m,q,χ the variant where
the adversary gets oracle access to As,χ, and is not a-priori bounded in the num-
ber of samples.

Corollary 1 (DLWE to GapSVP). Let q = q(n) ∈ N be either a prime
power q = pr or a product of co-prime numbers q =

∏
qi such that for all i,

qi = poly(n), Let α ≥
√
n/q. If there is an efficient algorithm that solves the

(average-case) DLWEn,m,q,χ problem, then:

– There is an efficient quantum algorithm that solves GapSVPÕ(n/α) and
SIVPÕ(n/α) on any n-dimensional lattice.

– If in addition q ≥ Õ(2n/2), there is an efficient classical algorithm for
GapSVPÕ(n/α) on any n-dimensional lattice.

4

3 New Evaluation Method for GSW

3.1 GSW Variant and Method

We first describe the GSW FHE variant in [1], which is identical to original GSW
FHE scheme [10] except for some syntactical difference.

Setup(λ, L) : Choose a modulus q = q(λ, L), the lattice dimension n = n(λ, L).
` = dlog qe. The distribution χ as subgaussian over Z. Let G = gt⊗In.
Output params = (n, q, χ, `,G).

KeyGen(params) : sample s̄
R←− χn−1, output secret key s = [s̄||1] ∈ Zn.

Enc(params, s̄, µ ∈ Zq) : C̄
U←− Z(n−1)×n`

q , e
R←− χn`. Let bt = [et − s̄tC̄]q.

Output the ciphertext

C =

(
C̄

bt

)
+ µG

Dec(params, s,C) : For q = 2`−1, select the last `− 1 columns of C as C(`−1).

Then stC(`−1) = µ ·gt+e′. Recover LSB(µ) from µ ·2`−2 +e′`−2, then

the next-LSB from (µ − LSB(µ)) · 2l−3 + e′`−3, etc. (See [16] for the
general q case).

With respect to the decryption algorithm Dec, we introduce an different
procedure BEnc which basically decomposes the input into binary vector and
encrypts every bit.

BEnc(params, s̄, µ ∈ Zq) : For an integer µ ∈ Zq, decompose it into binary rep-
resentation (µ[i])i∈[0,l) ∈ Z`2, then encrypt every bit respectively to
C[i] = Enc(params, s̄, µ[i] ∈ Z2). The final ciphertext is (C[i])i∈[0,l),
together with a weight 2i for every C[i].

For a known constant α ∈ Zq, we define Mα = [αG]q.

3.2 Correctness and Security

Definition 3. For a ciphertext C ∈ Zn×n`q , it’s designed to encrypt µ ∈ Z under

the secret key s, if there is an error vector et ∈ Zn`, and

stC− µ · stG = et mod q

From [16] Sec 4.1, if ||et||∞ < q/8, Dec(params, s,C) can correctly output µ.
It also works the general case q ([16] Sec 4.2). This bound will set a limit to
the final ciphertext noise, which can be estimated according to the evaluated
function and the noise growth by performing basic homomorphic operations
such as addition and multiplication. These basic homomorphic operation noise
bound will be given in the section 4.

Since the GSW FHE variant in [1] is IND-CPA secure based on the DLWEn,m,q,χ

assumption, it is clear that adopting the new encryption procedure BEnc will
keep the same security property.

5

4 Homomorphic Operations

In this section, we introduce our new homomorphic polynomial evaluation method
based on the encryption procedure BEnc, which has a noise growth rate O(`d)
for a degree d polynomial, compared with the original GSW method [10] with
(N+T ′)log dB ≈ (N+2`)log dB and the BV method [4] with T d−1B+T d−2Õκ(αq·√
n log q), where T ′ is the max intermediate value, B is the noise in the fresh

ciphertext and T is the max input value. But our method also has disadvan-
tages, such as ciphertext expansion and some limits to the modulus q. We also
explain the noise growth analysis in detail about homomorphic multiplication.
As to homomorphic addition, the noise growth is small and the same as in other
schemes.

4.1 Homomorphic Addition

The addition is performed in the same way as in [10] [4],we take the subgaussian
analysis in [1].

Lemma 1. For two ciphertexts C1,C2 ∈ Zn×n`q which encrypt µ1, µ2 ∈ Z re-
spectively with error vectors e1, e2, the homomorphic addition is:

Add(C1,C2) = [C1 + C2]q (1)

The result has a error vector e1 + e2.

4.2 Homomorphic Multiplication

About the homomorphic multiplication, we firstly take the subgaussian analysis
method in [1].

Lemma 2. For two ciphertexts C1,C2 ∈ Zn×n`q which encrypt µ1, µ2 ∈ Z re-
spectively with error vectors e1, e2, the homomorphic multiplication is:

Mult(C1,C2) = [C1 ·G−1(C2)]q. (2)

This is a randomized procedure as shown in the Claim 2, because G−1 is ran-
domized. The result has a error vector et + µ1e

t
2, where the entries of e are

independent and subgaussian with the parameter O(||e1||).

Now we consider computing the multiplication of two integers µ1, µ2 ∈ Zq.

µ1 · µ2 = µ1 · µ2[0] · 20 + µ1 · µ2[1] · 21 + . . .+ µ1 · µ2[`− 1] · 2`−1 (3)

=

`−1∑
i=0

µ1 · µ2[i] · 2i (4)

=

`−1∑
i=0

µ2[i] · µ1 · 2i (5)

6

Where µ2 = (µ2[0], . . . , µ2[` − 1]) ∈ Z`2 is the binary representation of µ2. Cor-
respondingly, we can homomorphically evaluating the above process:

Enc(µ1 · µ2) = Enc(
`−1∑
i=0

µ2[i] · µ1 · 2i) (6)

=

`−1∑
i=0

Enc(µ2[i]) · Enc(µ1) · Enc(2i) (7)

Clearly we need the BEnc to encrypt µ2, we derive two Corollaries 2 and 3
for special q to show the noise growth property. Firstly, we show the limit on
the selection of q.

Proposition 1. There exists such q and a procedure G∗−1 : Zn×n`q → Zn`×n`

that for any i ∈ [0, `), M2i = 2i ·G ∈ Zn×n`q , if X = G∗−1(M2i), then G ·X =

M2i . For any e ∈ Zn`q , ea = e ·X, ||ea|| ≈ ||e||.

Proof. Here we don’t need the procedure to be randomize. It’s easy to find
such pair of q and G∗−1. Take q = 2`−1 as an example, G∗−1 is the bit
decomposition for every element in the matrix to a column vector Z`×1, ie,
23 → (0, 0, 0, 1, 0, . . . , 0)t︸ ︷︷ ︸

`

∈ Z`×1. It can be verified that G · X = M. Then

X = G∗−1(2i · G) ∈ Zn`×n` has no more than one non-zero element in every
column, so for any e ∈ Zn`q , ||ea|| ≈ ||e||. Here we use “≈” if the difference is
much smaller than the value ||e||. ut

The constraint on q will not influence the efficiency or security. The reason
is that given a security level, for any bit length `, we can always find such q.

Corollary 2. For such q and G∗−1 that satisfies the Proposition 1, for two
ciphertexts C1,C2 ∈ Zn×n`q which encrypt µ1, µ2 ∈ Z respectively with error

vectors e1, e2, and a constant M2i = 2i ·G, the homomorphic multiplication is:

Mult(C1,C2,M2i) = [([C1 ·G−1(C2)]q) ·G∗−1(M2i)]q. (8)

The result has a error vector (et +µ1e
t
2), where the entries of e are independent

and subgaussian with the parameter O(||e1||).

Proof. The correctness is straightforward, since this is the homomorphic eval-
uation process of the Equation (3). The multiplication result [C1 ·G−1(C2)]q
has the noise vector (et + µ1e

t
2), where the entries of e are independent and

subgaussian with the parameter O(||e1||). According to the Proposition 1, the
multiplication with G∗−1(M2i)] will not add extra noise, so the final noise is
still (et + µ1e

t
2). ut

Now we use the Corollary 2 to get the noise growth of the homomorphic
evaluation of the Equation (3).

7

Corollary 3. For such q and G∗−1 that satisfies the Proposition 1, for a ci-
phertexts C1 ∈ Zn×n`q which encrypt µ1 ∈ Z with the error vector e1, and a vector

of ciphertexts (C2[i])i∈[`] encrypting (µ2[i])i∈[`] ∈ Z`2 respectively with the noise
vector (et2[i])i∈[`], and a vector of (M2i)i∈[`] = (2i ·G)i∈[`]. The homomorphic
evaluation of the Equation (3) is:

C1 � (C2[i])i∈[`] =

[
`−1∑
i=0

(C2[i] ·G−1(C1)) ·G∗−1(M2i)

]
q

. (9)

Here, we define the symbol � as the operation of one ciphertext with a vector
of ciphertexts. The result has an error vector whose entries are independent and
subgaussian with the parameter O(||e||), where

et = [et1|| . . . et1︸ ︷︷ ︸
`

||et2[0]||et2[1]|| . . . ||et2[`− 1]] ∈ Z2n`2 .

Proof. Considering every (C2[i] ·G−1(C1)) ·G∗−1(M2i), the result has a error
vector (et[i] + µ2[i]et1), where the entries of et[i] are fresh independent and sub-
gaussian with the parameter O(||e2[i]||). Since all the noise e2[i] is independent,
the final result has the error vector of the sum of (et[i] + µ2[i]et1) for all i. ut

4.3 Homomorphic Polynomial Evaluation

For any integer monic polynomial

F(x) = p0 + p1 · x+ . . .+ xd (10)

= p0 + (p1 + (p2 + (. . . (pd−1 + x) · x . . .) · x) · x︸ ︷︷ ︸
d

(11)

To perform the calculation sequentially rather than as a tree will allow the right
operand to be fresh ciphertext all the time , so that all the integer multiplication
can be performed in the way as mentioned in Section 4.2.

Corollary 4. For a polynomial F (x) = p0 + p1 · x+ . . .+ xd with all its coeffi-
cients pi ∈ Zq, for such q and G∗−1 that satisfies the Proposition 1, a vector
of ciphertexts (C[i])i∈[0,`) encrypting (µ[i])i∈[0,`) ∈ Z`2 respectively with the noise

vector (e[i])i∈[0,`) ∈ Z`2, and a vector (Mpj)j∈[0,d) encoding the constant coeffi-
cient (pj)j∈[0,d). The homomorphic evaluation of F(µ) is:

Eval((C[i])i∈[0,`),F) =Mp0 + (Mp1 + (. . . (Mpd−1
+

G � (C[i])i∈[0,`)) � (C[i])i∈[0,`)) . . .) � (C[i])i∈[0,`))︸ ︷︷ ︸
d

Here the multiplication �(C[i])i∈[0,`) is performed as said in the Corollary 3.
The result has an error vector whose entries are independent and subgaussian
with the parameter O(||e′||), where

(e′)t = [etp|| . . . ||etp︸ ︷︷ ︸
(`d−1−1)/(`−1)

], etp = [et[0]||et[1]|| . . . ||et[`− 1]] ∈ Zn`
2

.

8

Proof. Considering the addition with Mpi , which has no noise, we can see the
polynomial as an integer multiplication chain, which is xd = x · . . . · x︸ ︷︷ ︸

d

. For every

integer multiplication of one intermediate ciphertext(with the noise vector e1)
with encrypted (µ[i])i∈[0,`)(with the noise vector (e[i])i∈[0,`)), the noise growth

is
∑`−1
i=0(et[i] + µ[i]et), the noise e1 and (e[i]) are independent of each other

because of the randomized procedure G−1, so iteratively we can calculate that

the overall noise growth is
∑j<(`d−1−1)/(`−1)
j=0

∑`−1
i=0(et[i]). ut

4.4 Comparison to Other Methods

Here, we briefly compare our method with existing methods for the homomor-
phically evaluating integer polynomials of degree d:

– In [10], when all the intermediate values are bounded by T ′, the depth of
the evaluated circuit is L = log d, and the fresh ciphertext noise is B, the
final ciphertext’s noise will be bounded by (N +T ′)log d ·B, which is propor-
tional to T ′ log d ≈ 2`·log d = d`. Our scheme has the noise growth of O(`d),
so compared with the original GSW, ours has an advantage over low de-
gree, large plaintext space application. But we also have a disadvantage of
ciphertext expansion, ` times memory compared with the GSW scheme. The
homomorphic multiplication computation cost is also about ` times.

– In [4], it’s suggested to evaluate the circuit sequentially rather than as a
binary tree, so the circuit depth L = d rather than L = log d. The benefit is
that the multiplication chain have smaller additive noise, suppose the right
side is always a fresh binary ciphertext. But if we directly use this method
to evaluate an integer polynomial, the size of plaintext in a fresh ciphertext
is not binary any more, suppose T , which cause the noise growth to be

T d−1B + T d−2Õκ(αq ·
√
n log q)

which is proportional to T d−1 ≈ (2`·d)� `d.

5 New Method to Pack GSW FHE

5.1 Packed GSW FHE and the Method

We explore the possibility of packing more integers into a ciphertext by modify-
ing the scheme from [11] which only deal with binary messages, and try to allow
SIMD operations. First, we recap the scheme from [11].

Let λ be the security parameter, r be the number of integers to be encrypted,
L be the depth of evaluated circuit.

Setup(λ, L, r) : Choose a modulus q = q(λ, L), lattice dimension n = n(λ, L). ` =

dlog qe. N = (n+r)`. G = gt⊗ In+r ∈ Z(n+r)×(n+r)`
q . The distribution

χ as subgaussian over Z. m = O((n + r) log q). Output params =
(r,m, n, q,N, χ,G).

9

KeyGen(params) : A
U←− Zn×mq , S′

R←− χr×n, E
R←− χr×m. Let S = [I|| − S′] ∈

Zr×(n+r)q . Set

B =

(
S′A + E

A

)
∈ Z(n+r)×m

q

Let M(i,j) ∈ Zr×r2 (i, j = 1, . . . , r) be the matrix with 1 in the (i, j)-
th position and 0 in the other. For all i, j = 1, . . . , r, first sample
R(i,j) ∈ Zm×N2 , and set

P(i,j) = BR(i,j) +

(
M(i,j)S

0

)
G ∈ Z(n+r)×N

q

Output pk = ({P(i,j)}i,j∈[r],B) and sk = S.

Enc(params, pk,M ∈ Zr×r) : R(i,j)
U←− Zm×N2 , output the ciphertext

C = BR +
∑

i,j∈[r]:M[i,j]=1

P(i,j) ∈ Z(n+r)×N
q

Where M[i, j] is the (i, j)-th element of M.
Dec(params, sk,C) : For q = 2`−1, to decode M ∈ Zr×rq , we calculate SC =

MSG + E. For the integer µ in the position (i, i) of M, select the i
row, i · `+ 1 to (i+ 1) · `− 1 columns of SC as Ci. Then Ci = µ ·g + e,
where g = (1, 2, . . . , 2l−2). Recover LSB(µ) from µ · 2`−2 + e`−2, then
the next-LSB from (µ− LSB(µ)) · 2l−3 + e`−3, etc.

The scheme from [11] uses matrix plaintexts, ciphertexts and keys in order
to realize the packing, so we put the integers here diagonally to achieve parallel
homomorphic multiplications. We introduce a new encryption procedure PBEnc.

PBEnc(params, pk, (µj)j∈[1,r] ∈ Zrq) : For r input integers (µj)j∈[1,r] ∈ Zrq, de-
compose them into binary representations, which include ` vectors,
such that for i ∈ [0, `), the weight is 2i and the corresponding plaintext
matrix is M[i] = diag(µ1[i], . . . , µr[i]) ∈ Zr×r2 , then encrypt the matrix
with C[i] = Enc(params, pk,M[i]). The final ciphertext is (C[i])i∈[1,`),
together with a weight 2i for every (C[i])i∈[1,`).

For a known constant scalar α ∈ Zq, we define Mα = [αG]q.

5.2 Correctness and Security

The correctness analysis is about the same with the unpacked scheme,

Definition 4. For a ciphertext C ∈ Z(n+r)×N
q , it’s designed to encrypt M with

(µi)i∈[1,r] ∈ Zrq in the diagnal, under the secret key S, if there is an error matrix

Et ∈ Zn`, and

StC−MSG = E mod q

10

This naturally comes from the proof in [11] and from [16], if ||E||∞ < q/8,
Dec(params, s,C) can correctly output µ.

Since the packed GSW FHE variant in [11] is IND-CPA secure based on the
DLWEn,m,q,χ assumption, it is clear that adopting the new encryption proce-
dure BEnc will keep the same security property.

5.3 Homomorphic operations

For homomorphic addition and multiplication, we can easily extend the proof in
[11] to the Zq field.

Corollary 5. For two ciphertexts C1,C2 ∈ Z(n+r)×N
q which encrypt M1,M2 ∈

Zr×rq respectively with error matrixes E1,E2, the homomorphic addition is:

Add(C1,C2) = [C1 + C2]q. (12)

The homomorphic multiplication is:

Mult(C1,C2) = [C1 ·G−1(C2)]q (13)

This is a randomized procedure, because G−1 is randomized. The result has a
error matrix E+M1E2, where the entries of E has in the i-th row the independent
and subgaussian entries with the parameter O(||e1,i||), e1,i is the i-th row of E1.

We then consider the packed integer matrix multiplication

M1 ·M2 = diag(µ1,1, . . . , µ1,r) · diag(µ2,1, . . . , µ2,r)

=

`−1∑
i=0

diag(µ2,1[i], . . . , µ2,r[i]) · diag(µ1,1, . . . , µ1,r) · diag(2i, . . . , 2i)

(14)

where µ2,j = (µ2,j [0], µ2,j [1], . . . , µ2,j [`− 1]) ∈ Z`2 is the binary representation of
the element µ2,j in the matrix M2, for j ∈ [1, r].

In the evaluation, if we always keep the M2 as a fresh ciphertext vector
encrypted with our encryption procedure PBEnc, then the noise growth rate
can be calculated as follows. It’s straightforward that we can get q and G∗−1

that satisfies the Proposition 1, the randomized procedure from the Claim 2,
because the only difference is that n is changed to n+ r.

Corollary 6. For such q and G∗−1 that satisfies the Proposition 1 , for a cipher-

texts C1 ∈ Z(n+r)×N
q which encrypt M1 ∈ Zr×rq with the error matrix E1, and

a vector of ciphertexts (C2[i])i∈[`] encrypting (M2[i])i∈[`] respectively with the
noise matrix (E2[i])i∈[`], and a vector of ciphertexts (M2i)i∈[0,`) = (2i ·G)i∈[0,`).
the homomorphic evaluation of the Equation (14) is:

C1 � (C2[i])i∈[`] = [

`−1∑
i=0

(C2[i] ·G−1(C1)) ·G∗−1(M2i)]q. (15)

11

This is a randomized procedure, because G−1 is randomized. Let e2,j [i], e1,j, ej
be the j-th row vector of E2[i], E1 and the final ciphertext noise respectively,
then ej has independent and subgaussian entries with the parameter O(||ej ||),
where

ej = [e1,j || . . . ||e1,j︸ ︷︷ ︸
`

||e2,j [0]||e2,j [1]|| . . . ||et2,j [`− 1]] ∈ Z2n`2 .

The proof can be done similar to the Corollary 3, while the only difference is
that we treat the error in every row in the ciphertext independently. We skip
the details here.

For the polynomial evaluation, we can perform noise growth analysis sim-
ilar to the Corollary 4. Considering every polynomial evaluation as a ma-
trix multiplication chain, which is Md = M · . . . ·M︸ ︷︷ ︸

d

. The input is a vector of

ciphertexts (C[i])i∈[`] with the noise (E[i])i∈[`]. For every multiplication, the
noise of the two ciphertexts is independent of each other because of the ran-
domized procedure with G−1, so iteratively we can calculate that the overall

noise growth is
∑j<(`d−1−1)/(`−1)
j=0

∑`−1
i=0(E[i]). For the j-th row in the final ci-

phertext noise, it has independent subgaussian with parameters O(||e′j ||), where

e′j =
∑j<(`d−1−1)/(`−1)
j=0

∑`−1
i=0(ej [i]), ej [i] being the j-th row of E[i].

6 Integration with Ciphertext Compression

Traditionally, to securely evaluate a specific function with an untrusted server,
the user needs to homomorphically encrypt the data, then upload the ciphertest
to the server who can then do perform the computations. Usually, the ciphertext
size is very large compared with the original plaintext, and it is referred to
as the ciphertext expansion problem. To avoid this problem, [18] proposed to
send the data encrypted with a block cipher such as AES (can be symmetrical
ciphers) to the cloud, so that the server can homomorphically decrypt them and
perform evaluation afterwards. However, existing symmetrical ciphers encrypt
the data with non-linear functions and boolean circuits such as XOR, AND,
which require the plaintext to be encrypted as binary vectors. This forces the
underlying homomorphic scheme to have a binary plaintext space too, which is
quite inefficient in dealing with the integer polynomial evaluation. For example,
for two numbers with the bit length `, the homomorphic integer multiplication
needs O(`2) multiplications, with the depth O(`).

Next, we first choose the optimal(low-depth) symmetrical cipher for the ci-
phertext compression , then show how to combine it with our evaluation meth-
ods.

For symmetrical ciphers, the depth of the decryption circuit need to be small
enough to allow further homomorphic evaluations. It is because, for somewhat
homomorphic encryption, the total depth for a specific parameters set is fixed.
To minimize the overhead of the decryption circuit, different block ciphers and

12

stream ciphers have been investigated, e.g. in [5,15]. The block ciphers such as
AES, Simon-32/64, have a lot of rounds to guarantee the security level, which
results a high decryption depth such as 32 for Simon-32/64, 44 for Simon-64/128,
40 for AES-128. The stream ciphers, on the other hand, has increasing noise with
the number of decrypted ciphertext blocks, since the homomorphic pseudoran-
dom keystream generation will add noise to the encrypted secret key. To tackle
this problem, [15] proposed the stream cipher FLIP based on filter permutator,
which has such property that the non-linear filtering function always acts on the
key bits, rather than the previous output of some function, so the noise level of
every decrypted ciphertext is constant. Combined with the additive noise prop-
erty of the multiplicative chain in GSW, the decryption noise can be restrict to
a small number. As shown in [15], for 80-bit and 128-bit security level, FLIP
has a multiplicative depth of 4.

Here we propose to concatenate the symmetrical ciphertext decryption with
the integer polynomial evaluation circuit. The homomorphic symmetric key de-
cryption needs NAND which will restrict the message space to Z2 and main-
tain small noise increase, while the polynomial evaluation needs Add and Mult.
What’s more, we can integrate the batching method. A high-level workflow is as
follows.

– On the user side, for plaintext integers (µ1, µ2, . . . , µr), decompose every
integer into binary representations

(µ1[0], . . . , µ1[`− 1], µ2[0], . . . , µ2[`− 1], . . . , µr[0], . . . , µr[`− 1])

then aggregate the same weight into the same block such as

(µ1[0], µ2[0], . . . , µt[0]), (µ1[1], µ2[1], . . . , µr[1]), · · ·

For every block, encrypt it with symmetrical encryption, send it to the server
together with the corresponding weight.

– On the server side, homomorphically decrypt all blocks into ciphertexts (of
the FHE), then homomorphically evaluate the integer polynomial and send
the encrypted result back to the user.

– After receiving the encrypted result, the user can decrypt it to get the eval-
uated result.

With our method, an integer multiplication needs O(`) homomorphic multi-
plications and a depth of 1, which is more efficient than the original O(`2) and
O(`) complexity. Besides, in GSW scheme, we observe that the parameters (n, q)
are only related to the noise growth and the security level, and for homomorphic
symmetrical cipher decryption which is mainly boolean operations, the noise
growth is small, so the overhead can be acceptable. Even if it’s impossible to get
fresh ciphertexts for the integer polynomial evaluation, it can be regarded that
the homomorphically symmetrical decrypted ciphertext is the “fresh” ciphertext
with a larger noise.

13

7 Conclusion

In this paper, we have proposed some methods to improve the integer poly-
nomial evaluation based on GSW FHE scheme. In fact, these methods can be
further extended to multi-variant polynomials and Ring-GSW, or a combination
with other optimizations such as Chinese Remainder Theorem. To make a fair
comparison with the state-of-art HE schemes such as YASHE, detailed securi-
ty/parameters/homomorphic operations analysis remain to be a future work.

References

1. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Advances in Cryptology–CRYPTO 2014, pp. 297–314. Springer (2014)

2. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Cryptography and Coding, pp. 45–64.
Springer (2013)

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference. pp. 309–325. ACM (2012)

4. Brakerski, Z., Vaikuntanathan, V.: Lattice-based fhe as secure as pke. In: Proceed-
ings of the 5th conference on Innovations in theoretical computer science. pp. 1–12.
ACM (2014)

5. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Pail-
lier, P., Sirdey, R.: Stream ciphers: A practical solution for efficient homomorphic-
ciphertext compression. In: FSE 2016. p. to appear in (2016)

6. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Werns-
ing, J.: Cryptonets: Applying neural networks to encrypted data with high
throughput and accuracy (2016), research.microsoft.com/pubs/260989/

CryptonetsTechReport.pdf

7. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive 2012, 144 (2012)

8. Gentry, C.: A fully homomorphic encryption scheme. Thesis, Stanford University
(2009)

9. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the aes circuit. In:
Advances in Cryptology–CRYPTO 2012, pp. 850–867. Springer (2012)

10. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Advances
in Cryptology–CRYPTO 2013, pp. 75–92. Springer (2013)

11. Hiromasa, R., Masayuki, A., Okamoto, T.: Packing messages and optimizing boot-
strapping in gsw-fhe. IEICE TRANSACTIONS on Fundamentals of Electronics,
Communications and Computer Sciences 99(1), 73–82 (2016)

12. Khedr, A., Gulak, G., Vaikuntanathan, V.: Shield: Scalable homomorphic imple-
mentation of encrypted data-classifiers. IEEE Transactions on Computers PP(99),
to appear (2015)

13. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes
fv and yashe. In: Progress in Cryptology–AFRICACRYPT 2014, pp. 318–335.
Springer (2014)

14

research.microsoft.com/pubs/260989/CryptonetsTechReport.pdf
research.microsoft.com/pubs/260989/CryptonetsTechReport.pdf

14. Lpez-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
forty-fourth annual ACM symposium on Theory of computing. pp. 1219–1234.
ACM (2012)

15. Maux, P., Journault, A., Standaert, F.X., Carlet, C.: Towards stream ciphers for
efficient fhe with low-noise ciphertexts. In: Advances in Cryptology-EUROCRYPT.
p. to appear (2016)

16. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
Advances in Cryptology-EUROCRYPT 2012 pp. 700–718 (2012)

17. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM workshop on Cloud computing security
workshop. pp. 113–124. ACM (2011)

18. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM workshop on Cloud computing security
workshop. pp. 113–124. ACM (2011)

19. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: Proceedings of the forty-first annual ACM symposium on Theory of computing.
pp. 333–342. ACM (2009)

20. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM 56(6), 1–40 (2009)

21. Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theoretical computer science 53(2), 201–224 (1987)

22. Vershynin, R.: Compressed sensing (2012), www-personal.umich.edu/~romanv/

papers/non-asymptotic-rmt-plain.pdf

23. Wang, S., Zhang, Y., Dai, W., Lauter, K., Kim, M., Tang, Y., Xiong, H., Jiang,
X.: Healer: homomorphic computation of exact logistic regression for secure rare
disease variants analysis in gwas. Bioinformatics 32(2), 211–8 (2016), http://www.
ncbi.nlm.nih.gov/pubmed/26446135

15

www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf
www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf
http://www.ncbi.nlm.nih.gov/pubmed/26446135
http://www.ncbi.nlm.nih.gov/pubmed/26446135

	Methods for Efficient Homomorphic Integer Polynomial Evaluation based on GSW FHE
	Introduction
	Our contribution
	Organization

	Preliminaries
	Subgaussian
	DLWE

	New Evaluation Method for GSW
	GSW Variant and Method
	Correctness and Security

	Homomorphic Operations
	Homomorphic Addition
	Homomorphic Multiplication
	Homomorphic Polynomial Evaluation
	Comparison to Other Methods

	New Method to Pack GSW FHE
	Packed GSW FHE and the Method
	Correctness and Security
	Homomorphic operations

	Integration with Ciphertext Compression
	Conclusion

