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Abstract. Constructing short signatures with tight security from stan-
dard assumptions is a long-standing open problem. We present an adap-
tively secure, short (and stateless) signature scheme, featuring a constant
security loss relative to a conservative hardness assumption, Short Inte-
ger Solution (SIS), and the security of a concretely instantiated pseudo-
random function (PRF). This gives a class of tightly secure short lattice
signature schemes whose security is based on SIS and the underlying
assumption of the instantiated PRF.

Our signature construction further extends to give a class of tightly and
adaptively secure “compact” Identity-Based Encryption (IBE) schemes,
reducible with constant security loss from Regev’s vanilla Learning With
Errors (LWE) hardness assumption and the security of a concretely in-
stantiated PRF. Our approach is a novel combination of a number of
techniques, including Katz and Wang signature, Agrawal et al. lattice-
based secure IBE, and Boneh et al. key-homomorphic encryption.

Our results, at the first time, eliminate the dependency between the
number of adversary’s queries and the security of short signature/IBE
schemes in the context of lattice-based cryptography. They also indi-
cate that tightly secure PRFs (with constant security loss) would imply
tightly, adaptively secure short signature and IBE schemes (with con-
stant security loss).

1 Introduction

Short signatures are useful and desirable for providing data authenticity in low-
bandwidth and/or high-throughput applications where many signatures have to
be processed very quickly. Most digital signature schemes are based on compu-
tationally hard problems on specific algebraic groups, e.g., finite fields, curves,
and lattices. A signature is “short” if the signature consists in a (small) constant
number of group elements (e.g., field elements or lattice points).

Although bare-bones signatures can be obtained from very weak assumptions
(e.g., collision-resistant hash functions), constructing efficient short signatures
satisfying standard security requirements (e.g., existential unforgeability under
adaptively chosen-message attacks), from reasonable assumptions, appears to be
a challenging task. Some of the existing short signature schemes use random or-
acles, e.g., [20,10,46,35,48], or rely on non-standard computational assumptions
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(strong, interactive assumptions, and/or q-type parametric assumptions), e.g.,
[33,29,32,16,25], or require signers to maintain state across signatures, e.g., [43].

The first short signature scheme from a reasonable and non-parametric as-
sumption without random oracles was proposed by Waters [54]. Hohenberger
and Waters later proposed a short signature scheme from standard RSA [44].
Lattice-based short signatures from the very mild SIS assumption in the stan-
dard model were proposed in [21,49]. Recently, the “confined guessing” technique
developed by Böhl et al. [13] has produced short signatures from standard RSA
and bilinear-group CDH assumptions, and also from the ring-SIS/SIS assump-
tion in combination with lattice techniques [31,4] with very loose reductions.

Despite these elegant constructions, signature schemes that are short and
enjoy tight security reductions to standard assumptions in the standard model
(without random oracle), remain unknown. Existing tightly secure signature
schemes either have large signature size, e.g., [41,1,11], or merely have heuristic
security arguments based on random oracles, e.g., [46,38]. We have not been
able to ascertain the earliest occurrence of this long-standing folklore problem
in cryptography, but here [11] is one recent formulation:

Open Problem #1 —Tightly Secure Short Signatures
“Construct a tightly secure and short (in the sense that the signature
contains constant number of group elements or vectors and the security
loss is a constant) signature scheme from standard assumptions.” —
Blazy, Kakvi, Kiltz, Pan (2015)

1.1 Tight Security

The reductionist approach to cryptographic security algorithms seeks to prove
theorems along the lines of: “If a t-time adversary attacks the scheme with suc-
cessful probability ε, then a t′-time algorithm can be constructed to break some
computational problem with success probability ε′ = ε/θ and t′ = k · t+ o(t).”.
The parameters θ ≥ 1 and k ≥ 1, or more simply the product k ·θ, measures how
tightly the security of the cryptographic scheme is related to the hardness of the
underlying computational problem. Alternatively, when k ≈ 1 as is the case in
many reductions, θ measures the security loss of the security reduction of our
cryptographic scheme from the underlying assumption. A cryptographic scheme
is tightly secure if θ is a small constant that in particular does not depend on
parameters under the adversary’s control, such as the adversary’s own success
probability ε, the number of queries it chooses to make, and even the scheme’s
security parameter. The reduction phrases “almost tight security” from the lit-
erature refers to the case where θ only depends on a small polynomial of the
security parameter.

Tight reduction is an elegant notion from a theoretical point of view. A
tight reductionist proof (with respect to a well-defined security model) indicates
that the security of a cryptographic scheme is (extremely) closely related to the
hardness of the underlying hard problem, which is the optimal case we expect
from provable security theory. On the other hand, it is also a determinant factor
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to the practicality of real-world security. Its opposite, loose security, means that
in order to realise a desired “real” target security level, one has to increase the
“apparent” security level inside the construction to compensate for the loose
reduction. This inflates the size of data atoms by some polynomial, with in turn
increases the running time of cryptographic operations by another polynomial,
combining multiplicatively.

1.2 Identity-Based Encryption with Tight Security

Digital signatures and identity-based encryption (IBE) are closely connected,
which suggests that techniques that improve upon the security of signatures
might also improve upon the security of IBE. In this work, we also investigate the
problem of constructing tightly secure IBE from standard assumptions (without
random oracles).

In an IBE system, any random string that uniquely represents a user’s iden-
tity, such as email address or driver license number, can act as a public key
(within a certain domain or realm). Encryption uses this identity, together with
some common domain-specific public parameters, to encrypt messages. Users
are issued private decryption keys corresponding to their public identities, by
a trusted authority (or distributed authorities) called Private Key Generator
(PKG) which hold(s) (shares of) the master secret key for a domain. Decryp-
tion succeeds if the identity associated with the ciphertext matches the identity
associated with the private key, in the same domain.

The strongest, most natural and most widely accepted notion of security for
IBE is the adaptive security model or full security model, formally defined in [18].
In this model, the adversary is able to announce its target (the challenge identity
it wants to attack) at any time during the course of its adaptive interaction with
the system. Without the luxury of random oracles, an easier security model to
achieve was the selective security model, where the adversary must announce its
target identity at the onset of its interaction with the system.

In the last fifteen years, a great many IBE schemes have been proposed, with
varying efficiency, security models, hardness assumptions, and other features. In
the standard model (i.e., without random oracles or other idealised oracles), we
mention several notable IBE schemes which have been constructed from bilinear
maps in the selective model [26,14] and the adaptive model [15,54,34,55,28,12],
and from lattices in the adaptive model [2,27,5]. It is fair to say that, by now, the
art of selectively secure IBE has been well honed. However, adaptively secure IBE
schemes from standard assumptions with tight security (in the sense that the
security loss is a small constant) remain unknown. The best known adaptively
secure IBE schemes in terms of tight reduction are based on linear assumptions
over pairings and achieve almost tight security (e.g., [28,12,6,42]). Waters [54]
states this open problem as follows:

Open Problem #2 —Tight Adaptively Secure IBE
“Construct a tightly, adaptively secure IBE scheme from standard com-
putational hardness assumptions without random oracles.” —Waters
(2005)



4

Furthermore, for all known directly constructed adaptively secure IBE scheme
from standard post-quantum assumption (specifically the LWE assumption), i.e.
[2,27,5], their security loss during reduction depends on the number adversary’s
of queries. That is there is current no even “almost tightly” secure adaptive IBE
scheme based on standard computational problems which are conjectured to be
hard under quantum attacks. The following problem is still open.

Open Problem #3 —“Almost” Tight Adaptively Secure, Post-Quantum
IBE
“Construct an “almost” tightly, adaptively secure IBE scheme from stan-
dard post-quantum assumptions without random oracles.”

1.3 Our Results

Our work uses pseudorandom functions (PRFs) that are efficiently computable
by Boolean circuits with up to polynomial depth in their input length. Recall a
PRF is a function: PRF : K × D → R with the following security property. For

random K
$←− K, PRF(K, ·) is computationally indistinguishable from a random

function Ω : D → R, given oracle access to either PRF(K, ·) or Ω. PRFs can
be constructed from general assumptions (e.g., the existence of pseudo-random
number generators [39]), number-theoretic assumptions (e.g., the DDH/k-LIN
assumption [51,30,45]), and lattice assumptions LWE [9,8].

Our contribution is a construction of a class of adaptively secure short sig-
nature schemes/IBE schemes in the standard model. The schemes’ security is
tightly related to SIS/LWE and the security of an instantiated PRF PRF in
the sense that the security loss is a nearly optimal constant factor. More pre-
cisely, let ε and ε′ be the advantage of an adversary in attacking our signature
and IBE schemes respectively, εSIS and εLWE be the security level of the SIS
and LWE assumptions on which our schemes are based, and εPRF is the secu-
rity level of the PRF instantiation PRF. Our constructions provide the following:
ε ≈ 2(εSIS+εPRF), ε′ ≈ 2(εLWE+εPRF), and the (polynomial) runtime of reduction
is approximately the same as attacker’s runtime.

Note that, depending on the underlying hardness assumption and the reduc-
tion of PRF, underlying assumptions and tightness of our signature/IBE scheme
vary. By instantiating existing lattice-based/number theoretic-based PRFs, we
obtain the following improvements upon known results:

– By instantiating the low-depth LWE-based PRFs by Banerjee et al. [9] or
Banerjee and Peikert [8], we obtain the first “almost” tightly secure short sig-
nature/IBE schemes from LWE (which is stronger than SIS) whose security
does not depend on the number of adversarial queries. Previously, the known
lattice signature schemes either enjoy short signatures but loose reduction
(such as [21,49,31]) or have tight reduction but rather large signatures ([11]),
and the known adaptively secure lattice-based IBE schemes ([2,5]) have loose
reductions. This, at the first time, eliminates the dependency between the
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number of adversary’s queries and the security of lattice-based short signa-
ture scheme/IBE scheme. It also allows us to answer the open problem Open
Problem #3.

– If we relex the requirment of quantum recistance, by instantiating the (black-
box) tightly secure PRF based on DDH or k-LIN, whose security loss is
only O(log2 λ) for security parameter λ, due to Jager [45], we obtain the
IBE scheme with tightest security reduction so far: a factor of O(log2 λ).
Previous IBE schemes with almost tight security [28,12] have a factor of
O(λ) of security loss. This improvement brings us closer again to answering
the Open Problem #1 and #2.

Meanwhile, an interesting and independent contribution of our work is that it
indicates that tightly secure PRFs, which are efficiently computable by Boolean
circuits (with depth from constant (i.e. TC0) up to polynomial), from standard
computational assumptions are sufficient for us to build tightly, adaptively secure
lattice signature/IBE from SIS/LWE (whose average-case hardness is equivalent
to classic worst-case lattice problems with approximation factors from polyno-
mial value up to sub-exponential value).

Finally, we note that if we instantiate PRF with efficient PRFs within shallow
circuits class TC0 (e.g., the efficient LWE-based PRFs from [9] and DDH-based
PRF from [51,30,45]), the parameter size of instantiated PRFs in our construc-
tions will barely affect the asymptotic efficiency of the signature/IBE scheme
at all. This means compensating the PRFs security by increasing the parameter
size of the instantiated PRFs only incurs small amount of additional overhead to
the original signature/IBE scheme. Although our constructions do not reach the
final goal of getting constant security loss (because of lack of tightly secure PRFs
currently), the tight reductions of our signature/IBE schemes do provide asymp-
totically optimal suggestions for parameter selection (under specific SIS/LWE
assumptions). We discuss this in section 3.2.

Table 1 provides a comparison between our signature scheme with a LWE-
based PRF instantiation (from [9]) and a representative sample of the prominent
lattice-based (quantum-safe) signature schemes from the literature. Note, Katz
and Wang did not propose a SIS-based signature scheme in [46]. The scheme
we refer to is a straightforward application of Katz-Wang’s proof technique to
GPV’08 signature scheme. Table 2 provides a comparison between our signa-
ture scheme with DDH PRF instantiation from [45], which only looses a factor
O(log2 λ) in security proof, and the representative signature schemes from tra-
ditional number-theoretic assumptions, including (strong) RSA, Dlog and linear
assumptions over pairings. All of those assumptions are not conjectured to be
quantum-safe. In each case, the two tables refer to conjectured quantum safe
and quantum-unsafe constructions respectively.

Table 3 gives a comparison between our IBE scheme (with both PRF in-
stantiation from LWE [9] and DDH instantiation from [45]) and a representative
selection of existing IBE schemes from the literature. We note the LWE-based
PRF instantiation from [9] requires a somewhat large modulus which accounts
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for security assumption of PRF. (See the discussion in section 4.2.) But is does
not impact the asymptotic efficiency of our schemes much.

Table 1: Comparison between diverse signature schemes from SIS and Ring-SIS as-
sumptions. Here, λ is the security parameter, n = n(λ) is the lattice hardness param-
eter, qs is the number of signing queries, and β is the SIS parameter. For DM’14,
the ring R = Zq[X]/(f(X)) for some cyclotomic polynomial f of degree n and

q ≥ β
√
nω(
√

logn). For Alperin’15, δ is a value satisfying 2q2s/ε < 2bc
dc for the se-

curity level of the signature scheme in [4] and arbitrary constant c > 1. qhash the
number of random-oracle queries (if applicable)

Scheme
Signature

size
Security

loss
Assumption(s) Standard model?

KW’03 [46] O(1)× Zm O(1) SIS, β = Ω̃(n3/2) ROM

GPV’08 [35] O(1)× Zm O(qhash) SIS, β = Ω̃(n3/2) ROM

Boyen’10 [21] O(1)× Zm O(λqs) SIS, β = Ω̃(n7/2) 4

Lyu’12 [48] O(1)× Zm O(λqs) SIS, Ω̃(n) ROM

MP’12 [49] O(1)× Zm O(λqs) SIS, β = Ω̃(n5/2) 4

BHJKSS’13 [13] O(log λ)× Zm O(λqs) SIS, β = Ω̃(n5/2) 4

DM’14 [31] O(1)×RO(log q)
q O(λqs) Ring-SIS, β = Ω̃(n7/2) 4

BKKP’15 [11] O(λ)× Zm O(1) SIS, β = Ω̃(n3/2) 4

Alperin’15 [4] O(1)× Zm O(λqs) SIS, β = Ω̃(δ2δn11/2) 4

Ours O(1)× Zm O(λ) SIS+LWE, β = Ω̃(nO(1)) ? 4
? The exponent O(1) of parameter n accounts for the constant circuit depth of the
instantiated PRF from [9].

Efficiency Consideration. Though we focus on tightness of reduction in the con-
text of short signature and IBE, we do not hide the inefficiency of our schemes,
particularly with comparison to the adptively secure lattice-based signature/IBE
scheme obained from the “complexity leveraging” [14] of efficient selectively
secure lattice-based signature/IBE scheme such as [2]. Although complexity
leveraing is not very satisfactory from a theoretical perspective, it indeed of-
ten leads to the most practical secure cryptographic schemes. In the context of
IBE, we have seen that the adaptively secure IBE scheme levearaged from selec-
tive DBDH-based IBE scheme in [14] has higher real-world efficiency than the
adaptively secure Waters IBE scheme [54] (as well as the subsequent adaptive
IBE schemes from similar standard pairing assumptions without random oracles)
for the same security level. This may seem counter-intuitive, but to design adap-
tively secure IBE schemes one needs to carefully embed some specially crafted
complex structures into the scheme, to provide enough freedom for the security
reduction. This makes directly constructed adaptive IBE schemes rather bulky.
Therefore, our current results are of more theoretic value. One the other hand,
directly constructing adaptively secure schemes from standard assumptions usu-
ally requires new proof ideas and techniques which advance the state-of art and
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Table 2: Comparison between diverse signature schemes from various quantum-unsafe
assumptions. Here, λ is the security level, n = n(λ) is the lattice hardness parameter,
qs the number of signing queries, N the RSA modulus, m the lattice dimension, k
a non-adversary-query-dependent parameter of the LIN assumption, for the KW’03,
|D| the domain size of the instantiated claw-free permutation, which is abbreviated as
CFP, and D-I hash stands for division-intractable hash.

Scheme Sig. size Sec. loss Assumption(s) Standard model?

GHR’99 [33] O(1)× ZN O(1) Strong-RSA + D-I Hash 4

BLS’01 [20] O(1)×G O(λqs) CDH ROM
KW’03 [46] O(1)× |D| O(1) CFP ROM
BB’04 [16] O(1)×G O(1) qs-SDH 4

Waters’05 [54] O(1)×G O(λqs) CDH 4

HW’09 [44] O(1)× ZN O(λqs) RSA 4

BHJKSS’13 [13] O(1)×G O(λqs) DLog 4

BHJKSS’13 [13] O(1)× ZN O(λqs) RSA 4

ADKMO’13 [1] O(λ)×G O(1) DLIN 4

CW’13 [28] O(k)×G O(λ) k-LIN 4

BKP’14 [12] O(k)×G O(λ) k-LIN 4

BKKP’15 [11] O(λ)×G O(1) DLog 4

BKKP’15 [11] O(λ)× ZN O(1) RSA,FAC 4

Ours O(1)× Zm O(log2 λ) SIS+DDH, β = Ω̃(nO(1)) ? 4
? The exponent O(1) of parameter n accounts for the constant circuit depth of the
instantiated PRF from [9].

lead to further applications. Trying to get tighter reduction for the directly con-
structed adaptively secure schemes should be always welcome as it remains a
very promising way of bridging the efficiency gap.

1.4 Overview of Our Approach

Construction Outline. Our constructions use pseudorandom functions (PRFs).
Recall a pseudorandom function PRF : {0, 1}k×{0, 1}t → {0, 1} takes as input a
truly random secret key from {0, 1}k and a string from {0, 1}t, and deterministi-
cally outputs a bit which is computationally indistinguishable from a random bit.
In our signature scheme, apart from the “left” matrix A typical of all SIS/LWE
based constructions, we set another 4 + k random matrices from Zn×mq , com-
prising: two “signature subspace selection” matrices A0,A1, some “PRF secret
key” matrices {Bi}i∈[k], and two “message representation” matrices C0,C1. The
key generation algorithm further chooses a secure pseudo-random function PRF,
which is expressed as a Boolean circuit, as a part of the public parameters or
perhaps a common reference string. The signing key is a “short” basis TAof A

and a PRF key K
$←− {0, 1}k for PRF.

The signer takes three steps to generate the signature of message M =
x1x2 . . . xt ∈ {0, 1}t. Firstly, it uses the key-homomorphic algorithm from [19]
to compute the unique matrix APRF,M from the circuit of PRF and the k + t
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Table 3: Comparison between adaptively secure IBE schemes from various assumptions
in both standard and random-oracle models. Here, λ is the security level, qid the number
of private key queries and qhash the number of random-oracle queries (if applicable).

Scheme Security loss Assumption Standard model? Quantum-safe

BF’01 [18] O(qid) BDH ROM 7

KW’03 [46] O(1) BDH ROM 7

BB’04a [14] O(2λ) DBDH, qid-BDHI 4 7

BB’04b [15] O(λqid) DBDH 4 7

Waters’05 [54] O(λqid) DBDH 4 7

Gentry’06 [34] O(1) qid-ABDHE 4 7

GPV’08 [35] O(qhash) LWE ROM 4

Waters’09 [55] O(qid) DBDH 4 7

CHKP’10 [27] O(λqid) LWE 4 4

ABB’10 [2] O(λqid) LWE 4 4

LW’12 [47] O(q) DLIN 4 7

CW’13 [28] O(λ) k-LIN 4 7

BKP’14 [12] O(λ) k-LIN 4 7

Ours O(1) LWE 4 4

matrices {Bi}i∈[k],Cx1
,Cx2

, . . . ,Cxt . Then it computes b = PRF(K,M) and
sets the matrix FM,1−b = [A | A1−b −APRF,M] ∈ Zn×2m

q . Finally, it applies the
trapdoor TA to generate the signature: a low-norm non-zero vector dM ∈ Z2m

such that FM,b ·dM = 0 (mod q). The verification algorithm checks whether the
signature is non-zero and has low-norm, and whether FM,b · dM = 0 (mod q) or
FM,1−b · dM = 0 (mod q).

Our IBE scheme works as follows. The public parameters contain matrices
A, A0, A1, {Bi}i∈[k], C0,C1, a Boolean circuit representation of a secure PRF
PRF, and a random syndrome vector u ∈ Znq which is used to hide messages. The
trapdoor basis TA serves as master secret key. The PKG generates the private
key of identity id = x1x2 . . . xt ∈ {0, 1}t through a similar procedure as the
signing algorithm of our signature. It uses the key-homomorphic algorithm to
compute the unique matrix APRF,id from the circuit of PRF and the k+t matrices
{Bi}i∈[k],Cx1 ,Cx2 , . . . ,Cxt . It then sets the “function” matrix to Fid,1−b =

[A | A1−b −APRF,id] ∈ Zn×2m
q for a random fair coin b

$←− {0, 1}, and uses the
master secret key to sample a Gaussian vector did ∈ Z2m as private identity key
such that Fid,b · did = u (mod q).

To encrypt a message Msg ∈ {0, 1} with an identity id, the encryptor com-
putes APRF,id and sets two “function” matrices Fid,b = [A | Ab −APRF,id] and
Fid,1−b = [A | A1−b −APRF,id]. It generates two independent GPV-style cipher-
texts [35]. The first one uses Fid,b:

cb,0 = s>b u + νb,0 + Msg · bq/2c

c>b,1 = s>b Fid,b + ν>b,1
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and the second is based on Fid,1−b:
c1−b,0 = s>1−bu + ν1−b,0 + Msg · bq/2c

c>1−b,1 = s>1−bFid,1−b + ν>1−b,1

for random vectors sb, s1−b
$←− Znq , two small noise scalars νb,0, ν1−b,0, and two

low-norm noise vectors νb,1,ν1−b,1.
The decryption algorithm uses did to try both ciphertexts; one of them should

work. Here as a technical caveat, we need some redundant information in the
messages in order to check whether a recovered message is well-formed. To this
end, one option is to apply the standard way of encrypting multiple bits in
GPV-style ciphertexts without affecting the security analysis. That is, instead
of using just a vector u ∈ Znq in the public key, we use a matrix U ∈ Zn×zq

allowing us to encrypt z bits. A second option, which costs nothing if hybrid
encryption is being used, is to use multi-bit GPV-like encryption to encrypt a
symmetric session key without redundancy, again using a matrix Zn×zq and rely
on downstream symmetric integrity checks or MACs to weed out the incorrect
ciphertexts.

Proof Outline. The security reduction of our signature scheme uses an efficient
adversary to solve a of SIS problem instance A ∈ Zn×mq : a short vector e ∈ Z
such that Ae = 0 (mod q). The reduction embeds a randomly picked secret
key K for PRF in verification key. Along with K, PRF is applied to select the
bit value b on M from queries. More specifically, the reduction selects low-norm

matrices RA0
, RA1

, {RBi}i∈[k], RC0
, RC1

$←− {1,−1}m×m, a PRF secret key

K = s1s2 . . . sk
$←− {0, 1}k and sets A0 = ARA0

, A1 = ARA1
+ G, {Bi =

ARBi + siG}i∈[k], C0 = ARC0
and C1 = ARC1

+ G. Here, K is completely
hidden from adversary’s view. For answering a signing query on message M,
the reduction computes APRF,M = AR + PRF(K,M)G for some known low-
norm m×m matrix R that depends on RA0 ,RA1 , {RBi}i∈[k],RC0 ,RC1 , K
and M. Let PRF(K,M) = b, the reduction sets FM,1−b = [A | A1−b−APRF,M] =
[A | AR + (1− 2b)G] and uses the trapdoor from G to compute the decryption
key. Note, we use PRF to select the matrix Ab which is the same as the real
scheme, for the message M∗ of a forgery, since b = PRF(K,M∗) is unpredictable
for the adversary. With essentially probability 1/2 the forged non-zero signature
dM∗ satisfies FM∗,bdM∗ = 0 (mod q) leading to a valid SIS solution.

The security reduction for our IBE scheme is similar to the reduction of the
signature scheme. Basically, the reduction answers key generation queries the
same way as answering signing queries in the signature scheme reduction. To
construct the challenge ciphertext for a challenge identity id∗, the LWE challenge
is embedded in the function matrix Fid∗,b = [A | AR] for which the simulator
cannot produce private key. Another ciphertext based on Fid∗,1−b = [A | AR +
(1−2b)G] is generated as in the real scheme. With half probability, the adversary
will choose the ciphertext under Fid∗,b to attack giving out useful information for
solving the LWE challenge. We refer to the full details in the rest of the paper.
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Related Works. In the related and concurrent work by Brakerski and Vaikun-
tanathan [24], a similar idea of embedding PRFs into encryption schemes has
been used to construct the first semi-adaptively secure attribute-based encryp-
tion scheme from lattices supporting an a priori unbounded number of attributes.
The recent work by Bai et al. [7] addresses the problem of improving efficiency of
lattice-based cryptographic schemes via a different but novel way. Their proposal
is about using Rényi divergence instead of statistical distance in the context of
lattice-based cryptography which leads to (sometimes simpler) security proofs
for more efficient lattice-based schemes.

2 Preliminaries

Notation. ‘PPT’ abbreviates “probabilistic polynomial-time”. If S is a set, we

denote by a
$←− S the uniform sampling of a random element of S. For a positive

integer n, we denote by [n] the set of positive integers no greater than n. We
use bold lowercase letters (e.g. a) to denote vectors and bold capital letters (e.g.
A) to denote the matrices. For a positive integer q ≥ 2, let Zq be the ring of
integers modulo q. We denote the group of n×m matrices in Zq by Zn×mq . Let
Im be the m × m identity matrix. Vectors are treated as column vectors and
the transpose of a matrix A is denoted by A>. For A ∈ Zn×mq and B ∈ Zn×m′q ,

let [A|B] ∈ Zn×(m+m′)
q be the concatenation of A and B. We denote by ‖A‖

or ‖a‖ the Euclidean norm of a matrix ‖A‖ or vector ‖a‖. We denote by Ã
the Gram-Schmidt ordered orthogonalization of ‖A‖, and its Euclidean norm
by ‖Ã‖. The inner product of two vectors x and y is written 〈x,y〉. For a se-
curity parameter λ, a function negl(λ) is negligible in λ if it is smaller than all
polynomial fractions for a sufficiently large λ.

Randomness Extractor. We recall the following generalisation of the left-over
hash lemma.

Lemma 1 ([2], Lemma 4). Suppose that m > (n+ 1) log q+ω(log n) and that
q > 2 is prime. Let R be an m×k matrix chosen uniformly in {1,−1}m×k mod q
where k = k(n) is polynomial in n. Let A and B be matrices chosen uniformly
in Zn×mq and Zn×kq respectively. Then, for all vectors w ∈ Zmq , the distribution

(A,AR,R>w) is statistically close to the distribution (A,B,R>w).

Norm of a Random Matrix. Let Sm be the m-sphere {x ∈ Rm+1 : ‖x‖ = 1}. We

define sR
def
= ‖R‖ = supx∈Rm+1 ‖R · x‖.

Lemma 2 ([2], Lemma 5). Let R be a random chosen matrix from {1,−1}m×m,
then Pr[‖R > 12

√
m‖] < e−m.
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2.1 Lattice Background

Lattice Definitions

Definition 1. Let a basis B = [b1 | . . . |bm] ∈ (Rm)m of linearly independent
vectors. The lattice generated by B is defined as Λ = {y ∈ Rm : ∃si ∈ Z, y =

∑m
i=1 sibi}.

The dual lattice Λ∗ of Λ is defined as Λ∗ = {z ∈ Rm : ∀y ∈ Λ, 〈z,y〉 ∈ Z}.

Definition 2. For q prime, A ∈ Zn×mq and u ∈ Znq , we define the m-dimensional

(full-rank) random integer lattice Λ⊥q (A) = {e ∈ Zm : Ae = 0 (mod q)}, and
the “shifted lattice” as the coset Λu

q (A) = {e ∈ Zm : Ae = u (mod q)}.

Trapdoors of Lattices and Discrete Gaussians It is shown in [3,49] how
to sample a “nearly” uniform random matrix A ∈ Zn×m along with a trapdoor
matrix TA ∈ Zm×m which is a short or low-norm basis of the induced lattice
Λ⊥q (A). We refer to this procedure as TrapGen.

Lemma 3. There is a PPT algorithm TrapGen that takes as input integers n ≥
1, q ≥ 2 and a sufficiently large m = O(n log q), outputs a matrix A ∈ Zn×mq

and a trapdoor matrix TA ∈ Zm×m, such that A · TA = 0, the distribution
of A is statistically close to the uniform distribution over Zn×mq and ‖T̃A‖ =

O(
√
n log q).

Discrete Gaussians. Let m ∈ Z>0 be a positive integer and Λ ⊂ Zm. For any
real vector c ∈ Rm and positive parameter σ ∈ R>0, let the Gaussian function
ρσ,c(x) = exp

(
−π‖x− c‖2/σ2

)
on Rm with center c and parameter σ. Define

the discrete Gaussian distribution over Λ with center c and parameter σ as
DΛ,σ = ρσ,c(y)/ρσ(Λ) for ∀y ∈ Λ, where ρσ(Λ) =

∑
x∈Λ ρσ,c(x). For notational

convenience, ρσ,0 and DΛ,σ,0 are abbreviated as ρσ and DΛ,σ.
The following lemma bounds the length of a discrete Gaussian vector with

sufficiently large Gaussian parameter.

Lemma 4 ([50]). For any lattice Λ of integer dimension m with basis T, c ∈
Rm and Gaussian parameter σ ≥ ‖T̃‖ω(

√
logm), we have Pr[‖x− c‖ > σ

√
m :

x← DΛ,σ,c] ≤ negl(n).

Smoothing Parameter. We recall the very important notion of smoothing param-
eter of a lattice Λ. It is the smallest value of s such that the discrete Gaussian
DΛ,s “behaves” like a continuous Gaussian.

Definition 3 ([50]). For any lattice Λ and positive real tolerance ε > 0, the
smoothing parameter ηε(Λ) is the smallest real s > 0 such that ρ1/s(Λ

∗\{0}) < ε.

We will make use of the following lemma, which is a special case of Corollary
3.10 from [53].

Lemma 5 (special case of Corollary 3.10 of [53]). Let r ∈ Zm be a vector
and r, α > 0 be reals. Assume that 1/

√
1/r2 + (‖r‖/α)2 ≥ ηε(Zm) for some ε <

1/2. Let y be a vector with distribution DZm,r and e be a scalar with distribution
DZ,α. The distribution of 〈r,y〉+ e is statistically close to DZ,

√
(r‖r‖)2+α2 .
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Lattice Sampling Algorithms Our constructions make use of the “two-sided
trapdoor” framework from [2,21] which consists of two sampling algorithms Sam-
pleLeft and SampleRight.

Algorithm SampleLeft(A,B,TA,u, s) (1)

Inputs: a full-rank matrix A ∈ Zn×mq and a short basis TA of Λ⊥q (A), a matrix
B ∈ Zn×m1

q , a vector u ∈ Znq , and a Gaussian parameter s.

Output: Let F =
[
A | B

]
. The algorithm outputs a vector d ∈ Zm+m1 in the

set Λu
q (F).

Theorem 1 ([2,27]). Let q > 2, m > n and s > ‖T̃A‖ · ω(
√

log(m+m1)).
Then SampleLeft(A,B,TA,u, s) taking inputs as in (1), outputs a vector d ∈
Zm+m1 distributed statistically close to DΛu

q (F),s.

Algorithm SampleRight(A,B,R,TB,u, s) (2)

Inputs: matrices A ∈ Zn×kq and R ∈ Zk×m, a full-rank matrix B ∈ Zn×mq , a

short basis TB of Λ⊥q (B), a vector u ∈ Znq , and a Gaussian parameter s.

Output: Let F =
[
A | AR + B

]
; the algorithm outputs a vector d ∈ Zm+m1

in the set Λu
q (F)

Theorem 2 ([2], Theorem 19). Let q > 2, m > n. Let sR := ‖R‖ and
s > ‖T̃B‖ · sR · ω(

√
logm). Then SampleRight(A,B,R,TB,u, s) taking inputs

as in (2), outputs a vector d ∈ Zm+k distributed statistically close to DΛu
q (F),s.

Gadget Matrix In our construction, instead of using a random matrix B in
the algorithm SampleRight, we will use the “gadget matrix” G defined in [49].
We recall the following two facts.

Lemma 6 ([49], Theorem 1). Let q be a prime, and n, m be integers with
m = n log q. There is a fixed full-rank matrix G ∈ Zn×mq such that the lattice

Λ⊥q (G) has a publicly known trapdoor matrix TG ∈ Zn×m with ‖T̃G‖ ≤
√

5.

Lemma 7 ([19], Lemma 2.1). There is a deterministic algorithm, denoted
G−1(·) : Zn×mq → Zm×m, that takes any matrix A ∈ Zn×mq as input, and
outputs the preimage G−1(A) of A such that G ·G−1(A) = A (mod q) and
‖G−1(A)‖ ≤ 2

√
m ≤ m.

Computational Assumptions We recall the two most mainstream and con-
servative average-case computational assumptions for lattice problems.
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The Learning with Errors (LWE) Assumption. The learning with errors problem

was first proposed by Regev [53]. For a vector s
$←− Znq and a noise distribution χ

over Zq, let As,χ be the distribution over Znq ×Zq by taking a
$←− Znq and x← χ,

and outputting (a, s>a+x) (mod q). Usually, χ is a discrete Gaussian DZ,αq for
some α < 1, reduced modulo q. We refer to [53] for further details.

Definition 4. For a security parameter Λ, let a positive integer n = n(λ), a
prime q = q(λ), and a distribution χ over Zq. The learning with errors prob-
lem LWEn,q,χ is to distinguish the oracle Os, which outputs samples from the
distribution As,χ, from the oracle O$, which outputs samples from the uniform
distribution over Znq × Zq, for an unspecified polynomial number of queries. We
define the advantage (in the security parameter λ) of an algorithm A in solving
the LWEn,q,χ problem as

Adv
LWEn,q,χ
A (λ) =

∣∣Pr[AOs(1λ) = 1]− Pr[AO$(1λ) = 1]
∣∣

We say that the (t, εLWE)-LWEn,q,χ assumption holds if no t-time algorithm A
that has advantage at least εLWE in solving the LWEn,q,χ problem.

For polynomial size q in λ, there are known quantum [53] and classical [22]
reductions from the average-case LWEn,q,χ assumption to many standard worst-
case lattice problems (e.g., GapSVP). 1 This further strengthens the appeal of
the LWE assumption. Peikert [52] also gave a classic reduction that applies (only)
for exponential moduli q in λ.

The Short Integer Solution (SIS) Assumption. The security of our adaptively
secure signature scheme is based on the SIS problem, which can be seen as an
average-case approximate shortest vector problem on random integer lattices,
or also as the decoding problem for random linear codes. In a sense, SIS is the
computational counterpart to the decisional LWE.

Definition 5. For a security parameter λ, let n = n(λ), m = m(λ), and β =
β(λ). Let q be a prime integer. The short integer solution problem SISn,q,β,m

is as follows. Given a uniform random matrix A
$←− Zn×mq , find a non-zero

vector e ∈ Zm such that Ae = 0 (mod q) and ‖e‖ ≤ β. We define the advantage
(function of the security parameter λ) of an algorithm A in solving the SISn,q,β,m
problem as

Adv
SISn,q,β,m
A (λ) =

Ae = 0 (mod q)
and ‖e‖ ≤ β,

and e 6= 0.
: A

$←− Zn×mq

e← A(1λ,A)


We say the (t, εSIS)-SISn,q,β,m assumption holds if no t-time algorithm A that
has advantage at least εSIS in solving the SISn,q,β,m problem.

1 Equivalently, this is to say that many classic worst-case lattice problems reduce to
the average-case LWE problem, for suitable parameters.
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It has been shown in [50] that solving the average-case instances of the
SISn,q,β,m problem for certain parameters is as hard as solving worst-case in-
stances of the approximate Shortest Independent Vector Problem (SIVP).

2.2 Key-Homomorphic Evaluation Algorithm

We recall the key-homomorphic algorithm Eval developed by Gentry et al. [37]
and Boneh et al. [19]. The deterministic algorithm Eval takes as input a Boolean
circuit C : {0, 1}k → {0, 1} with k input wires which have matrix encoding
A1,A2, . . . ,Ak ∈ Zn×mq , and outputs a matrix AC ∈ Zn×mq encoding the out-
put wire of C. Without loss of generality, assume the Boolean circuit C is a
composition of NAND gates. For every NAND gate g(u, v;w) with input wires
u, v and output wire w, assume we have already computed the matrices Au

and Av encoding the wires u and v respectively. The algorithm Eval defines
Aw = G−Au ·G−1(Av) ∈ Zn×mq to be the matrix encoding of output wire w.
Following this computation Eval finally obtains the matrix AC . 2

In the simulation, we will assign actual inputs to C by constructing Ai =
ARi + xiG for i-th binary input xi ∈ {0, 1} and random low-norm matrices

Ri
$←− {1,−1}m×m. For a NAND gate g(u, v;w) where the input wires take

input bits xu, xv, we let Au = ARu + xuG and Av = ARv + xvG be two
matrices according to u and v. We have

Aw = G−Au ·G−1(Av)

= G− (ARu + xuG) ·G−1(ARv + xvG)

= G−A
(
Ru ·G−1(Av) + xuRv

)
− xuxvG

= A
(
−Ru ·G−1(Av)− xuRv

)
+ (1− xuxv)G

= ARg + (1− xuxv)G

where 1 − xuxv
def
= NAND(xu, xv), and Rg = −Ru ·G−1(Av) − xuRv has low-

norm if Ru,Rv have low-norm. Inductively applying above procedure, given k
input matrices Ai = ARi+xiG where {xi}i∈[k] are actual inputs of the Boolean
circuit C, we can deterministically compute AC = ARC+C(x1, . . . , xk)G where
C(x1, . . . , xk) is the output bit of C on the arguments x1, . . . , xk.

Noise Growth. Let dmax be the depth of circuit C. Consider the computation on
the NAND gate g(u, v;w) above. We have

‖Rg‖ ≤ ‖Ru‖ · ‖G−1(Av)‖+ |xu| · ‖Rv‖
≤ max(‖Ru‖, ‖Rv‖) · (1 +m)

2 Note, for random Au, Av, and A′v where Av 6= A′v, G −Au ·G−1(Av) = Aw =
A′w = G − Au ·G−1(A′v) with negligible probability. Finding such Av and A′v is
equivalent to solving SIS on random Au since G−1(·) outputs matrices with small
entries.
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The second inequality holds due to the Lemma 7. Thus, starting from the noise
level of the inputs of C, by induction the output noise will be ‖RC‖ ≤ (m +
1)dmax ·max(‖R1‖ , . . . , ‖Rk‖); therefore by Lemma 2 we get the bound ‖RC‖ ≤
mO(dmax). (This translates into O(dmax logm) bits of noise.)

2.3 Pseudorandom Functions

Definition 6 (Pseudorandom Functions). Let λ > 0 be the security pa-
rameter, and let k = k(λ), t = t(λ) and ` = `(λ). A pseudorandom function
PRF : {0, 1}k × {0, 1}t → {0, 1}` is an efficiently computable, deterministic two-
input function where the first input, denoted by K, is the key. Let Ω be the set
of all functions that map t bits strings to ` bits strings. We define the advantage
(in the security parameter λ) of an adversary A in attacking the PRF as

AdvPRF,A(λ) =
∣∣∣Pr[APRF(K,·)(1λ) = 1]− Pr[AF (·)(1λ) = 1]

∣∣∣
where the probability is taken over a uniform choice of key K

$←− {0, 1}k and

F
$←− Ω, and the randomness of A. We say that PRF is (tPRF, εPRF)-secure if for

all tPRF-time adversaries A, AdvPRF,A(λ) ≤ εPRF.

2.4 Digital Signatures

A digital signature scheme consists of three PPT algorithms: KeyGen, Sign, and
Ver. The algorithm KeyGen takes as input a security parameter and generates a
public verification key Vk and a private signing key Sk. The signing algorithm
Sign takes as input the signing key Vk and a massage M, and outputs the signa-
ture Sig of M. The verification algorithm Ver takes as input a signature-message
pair (Sig,M) as well as the verification key Vk. It outputs 1 if Sig is valid, or 0
if Sig is invalid.

We review the standard security notion of digital signature schemes. The
existential unforgeability under chosen-message attack (EUF-CMA) of a digital
signature scheme Π is defined through the following security game between an
adversary A and a challenger B.

Setup. B runs Setup(1λ)→ (Sk,Vk), and passes Vk to A.
Query. A adaptively selects messages M1, . . . ,Mqs to ask for the corresponding

signatures under Vk from B. For the query Mi, B responds with a signature
Sigi ← Sign(Sk,Mi).

Forge. A outputs a pair (Sig∗,M∗) and wins if
1. M∗ /∈ {M1, . . . ,Mqs}, and
2. Ver(Vk,Sig∗,M∗)→ 1.

We refer to such an adversaryA as EUF-CMA adversary. We define the advantage
(in the security parameter λ) AdvΠ,A(λ) of A in attacking a digital signature
scheme Π to be the probability that A wins above game.



16

Definition 7. For a security parameter λ, let t = t(λ), qs = qs(λ) and ε = ε(λ).
We say that a digital signature scheme Π is (t, qs, ε)-EUF-CMA secure if for any
t time EUF-CMA adversary A that makes at most qs signing queries and has
AdvΠ,A(λ) ≤ ε.

2.5 Identity-Based Encryption

An Identity-Based Encryption system (IBE) consists of four PPT algorithms:
Setup, KeyGen, Encrypt, and Decrypt. The algorithm Setup takes as input a se-
curity parameter and generates public parameters Pub and a master secret key
Msk. The algorithm KeyGen uses the master secret key Msk to produce an iden-
tity private key Skid corresponding to an identity id. The algorithm Encrypt
takes the public parameters Pub to encrypt messages for any given identity id.
The algorithm Decrypt decrypts ciphertexts using the identity private key if the
identity of the ciphertext matches the identity of the private key.

We review the security model of IBE proposed in [18], which defines the indis-
tinguishability of ciphertexts under an adaptive chosen-ciphertext and adaptive
chosen-identity attack (IND-ID-CCA2). The IND-ID-CCA2 security of IBE is de-
fined through the following game between an adversaryA and a challenger B. For
a security parameter λ, let Mλ be the message space, and Cλ be the ciphertext
space.

Setup. B runs Setup(1λ)→ (Pub,Msk), passes the public parameters Pub to A,
and keeps the master secret Msk.

Phase 1. A adaptively issues queries q1, . . . , qm where each query qi is one of:
– Private key query for identity idi. B runs KeyGen to generate Skidi and

sends it to A.
– Decryption query for a ciphertext Ctxidi under identity idi. B runs KeyGen

to generate Skidi . Then, B runs the decryption algorithm to decrypt Ctxidi
and returns the message to A.

Challenge. When A decides the Phase 1 is over, it outputs a challenge identity
id∗, which is not been queried during Phase 1, and two equal length mes-

sages Msg0,Msg1 ∈ Mλ. B flips a fair coin γ
$←− {0, 1} and sets Ctxid∗ ←

Encrypt(Pub,Msgγ , id
∗). Finally A passes Ctxid∗ to A.

Phase 2. A adaptively issues more queries qm+1, . . . , qn where qi is one of
– Private key query for identity idi 6= id∗.
– Decryption query for a ciphertext Ctxidi 6= Ctxid∗ .

In both cases, B responds as in Phase 1.
Guess. A outputs γ′ ∈ {0, 1} and it wins if γ′ = γ.

We refer to such an adversary A as an IND-ID-CCA2 adversary. We define the
advantage (in the security parameter λ) of A in attacking an IBE scheme E as
AdvE,A(λ) = |Pr[γ′ = γ]− 1/2|.

Definition 8. For a security parameter λ, let t = t(λ), qid = qid(λ), qCtx =
qCtx(λ), and ε = ε(λ). We say that an IBE system E is (t, qid, qCtx, ε)-IND-ID-
CCA2 secure if for any t-time IND-ID-CCA2 adversary A that makes at most qid
private key queries and at most qCtx decryption queries, we have AdvE,A(λ) ≤ ε.
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Chosen-Plaintext Security. We define the chosen-plaintext security (IND-ID-
CPA) for IBE systems as in above security game, except the adversary is not
allowed to issue decryption queries. The adversary is still able to adaptively
make private key queries.

Definition 9. We say that an IBE system E is (t, qid, ε)-IND-ID-CPA secure if
E is (t, qid, 0, ε)-IND-ID-CCA2 secure.

Selective Security. A weaker and less realistic security model of IBE system,
introduced in [26], is the selective security model in which adversary is required
to commit to the challenge identity even before seeing the public parameters.
We note that under computational assumptions with sub-exponential hardness,
a selectively secure IBE is also adaptively secure through a standard “complexity
leveraging” argument from [14]; however, complexity leveraging incurs a rather
severe loss of tightness in the security reduction, causing the resulting scheme to
suffer from a possibly large loss of efficiency per a similar argument as discussed
in the introduction.

3 Signature Scheme with Tight Security

3.1 Constructions

KeyGen(1λ) The key generation algorithm does the following.

1. Sample a matrix A along with a trapdoor basis of lattice Λ⊥q (A) by TrapGen.
2. Select matrices A0, A1, “PRF key” matrices B1, . . . , Bk, and “PRF input”

matrices C0, C1 from Zn×mq uniformly at random.

3. Select a secure pseudorandom function PRF : {0, 1}k × {0, 1}t → {0, 1},
which is expressed as a Boolean circuit with depth d = d(λ), and a PRF key

K = s1s2 . . . sk
$←− {0, 1}k.

4. Output the verification key and signing key as:

Vk =
(
A, {A0,A1}, {Bi}i∈[k], {C0,C1},PRF, β

)
, Sk = (TA,K)

Sign(Vk,Sk,M) The signing algorithm takes as input the public verification key
Vk, the signing key Sk and a message M = m1m2 . . .mt ∈ {0, 1}t. It does:

1. Compute APRF,M = Eval(PRF, {Bi}i∈[k],Cm1 ,Cm2 , . . . ,Cmt) ∈ Zn×mq .

2. Compute bit value b = PRF(K,M) and set FM,1−b =
[
A | A1−b −APRF,M

]
.

3. Run SampleLeft to sample dM ∈ Z2m with distribution DΛ⊥q (FM,1−b),s.
4. Output the signature Sig = dM.

Ver(Vk,M,Sig) The verification algorithm takes as input the verification key Vk,
message M and the signature of M, verifies as follows:

1. Assume Sig = d. It checks if d 6= 0 and ‖d‖ ≤ s
√

2m.
2. Check if FM,bd =

[
A | Ab −APRF,M

]
d = 0 (mod q) for b = 0 or 1.

If all above verifications pass, accept the signature; otherwise, reject.
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3.2 Parameters Selection and Discussion

Let λ be the security parameter, we set n = n(λ), let the message length be
t = t(λ), and let the circuit depth of PRF be d. To ensure we can run TrapGen
in the Lemma 3, we set m = O(n log q). To run SampleLeft and SampleRight
in the real scheme and simulation per Theorem 2, we set s sufficiently large
such that s > ‖T̃G‖ · mO(d) · ω(

√
logm). So we set s = O(mO(d)). To ensure

the applicability of the average-case to worst-case reduction for SIS, we need
q ≥ β · Õ(

√
n). So we set q = O(n3/2 log n)O(d).

Note that the internal parameter d is the depth of the circuit which is used
to compute the PRF in our constructions. Let l be the length of input of the
PRF. If we instantiate our scheme by using efficient LWE-based PRFs from [9,8]
and DDH-based PRFs from [51,30,45], then we are dealing with circuits in class
TC0 (which consists of polynomial-size circuits of constant depth O(1)). With
such instantiations, we end up with a polynomial modulus q.

We also note that for the efficient PRFs instantiations within class TC0 (such
as the the ones from [9,30,45]), increasing the parameter size (length of input)
of PRFs barely increases the asymptotic complexity of our scheme. Consider a
instantiated PRF PRF : {0, 1}k × {0, 1}t → {0, 1} where k is the bit length of
the secret key. We use k + 2 matrices to encode k + t = l bits input of PRF,
leading to O(k) matrices over Zn×mq . These O(k) matrices can be expressed by

O(kn2 log2 q) = O(kn2 log2 (n3/2 log n)) bits where the exponent that accounts
for constant depth is absorbed by the big O symbol (recall m = O(n log q)
and q = O(n3/2 log n)O(1)). Increasing k linearly will exponentially increase the
security of PRF, compensating for any security loss in the PRF reduction very
fast. If the circuit depth of PRF is constant, increasing k linearly only increases
the bit length of public matrices linearly and does not affect q. Therefore, the
tight reduction we obtain, from the schemes to SIS assumption and the security
of PRFs does provide optimal parameter selection. This discussion applies also
to our IBE scheme.

3.3 Security of the Signature Scheme

The security of our signature scheme is stated by the following theorem.

Theorem 3. If the (tSIS, εSIS)-SISn,q,β,m assumption holds and the PRF used in
the signature scheme is (tPRF, εPRF)-secure, the signature scheme is (t, qs, ε)-EUF-
CMA secure where εSIS ≥ ε/2−εPRF−negl(λ), for some negligible statistical error
negl(λ), and max(tPRF, tLWE) ≤ t+O(qs ·(TS+N ·TM )) where qs is the number of
signing query, TS is the maximum running time of sampling a Gaussian vector
in Zm, N is the number of circuit gate of PRF, and TM is the time of computing
the multiplication between a n-by-m matrix and a m-by-m matrix in Zq.

Proof. Consider the following security game between an adversary A and a sim-
ulator B. Upon receiving a SISn,q,β,m challenge A ∈ Zn×mq , the challenger B
prepares Vk as follows:
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1. Select k + 4 matrices RA0 , RA1 , {RBi}i∈[k], RC0 , RC1

$←− {1,−1}m×m.

2. Select a secure pseudorandom function PRF : {0, 1}k×{0, 1}t → {0, 1} which
is expressed as a Boolean circuit with depth d.

3. Select a PRF key K = s1s2 . . . sk
$←− {0, 1}k.

4. Set Ab = ARAb
+ bG and Cb = ARCb + bG for b = 0, 1.

5. Set Bi = ARBi + siG for i ∈ [k].
6. Publish Vk =

(
A, {A0,A1}, {Bi}i∈[k], {C0,C1},PRF

)
.

In the query phase, the adversary A adaptively issues messages for inquiring
the corresponding signatures. Consider a message M = m1m2 . . .mt ∈ {0, 1}t. B
does the following to prepare the signature:

1. Compute APRF = ARPRF,M+PRF(K,M)G ∈ Zn×mq by Eval(PRF, {Bi}i∈[k],Cm1
,Cm2

, . . . ,Cmt).
2. Let b = PRF(K,M), it sets

FM,1−b =
[
A | A1−b −APRF,M

]
=
[
A | A(RA1 −RPRF,M) + (1− 2b)G

]
and runs SampleRight to generate the signature Sig = dM ∼ DΛ⊥q (FM,1−b),s.

Finally, A output a forgery (d∗,M∗). Let PRF(K,M∗) = b. If ‖d‖ > s
√

2m or[
A | A1−b −APRF,M∗

]
d∗ = 0 (mod q), B aborts. Otherwise, we have

[
A | Ab −APRF,M∗

]
d∗ =

0 (mod q). Let d∗ = [d>1 | d>2 ]> ∈ Z2m. B outputs e = d1 + (RAb
−RPRF,M∗)d2

as a solution for the SISn,q,β,m problem instance.
We show that Vk output by B has the correct distribution. In the real scheme,

the matrix A is generated by TrapGen. In the simulation, A is has uniform distri-
bution in Zn×mq as it comes from the SIS challenge. By the Lemma 3, A generated
in the simulation has right distribution except a negligibly small statistical error
negl(λ). Secondly, the matrices A, {A0,A1}, {Bi}i∈[k], and {C0,C1} computed
in the simulation have the distribution that is statistically close to uniform distri-
bution in Zn×mq by the special case (no leakage of the low-norm matrices) of the
Lemma 1. In particular, the PRF secret key {si}i∈[k] is information-theoretically
concealed by {Bi}i∈[k].

In the query phase, for any message, instead of randomly picking the bit
value b to select matrix A1−b, B computes b by PRF depending on the message
and the secret PRF key. By the definition of PRFs, A has advantage εPRF in
detecting this change. Meanwhile, the signatures replied to A have the correct
distribution under the predefined conditions. Indeed, by the Theorem 2, for
sufficient large Gaussian parameter s, the the distribution of signatures generated
in the simulation by SampleRight is statistically close to DΛ⊥q (FM),s where the
distribution of signatures generated in the real scheme by SampleLeft is also
statistically close to DΛ⊥q (FM),s.

In the forge phase, A will have at most εPRF advantage in predicting the
bit value b based on its forgery. Therefore, if A can not distinguish PRF from
random functions, it will randomly pick either of the matrices A0 or A1 to make
a forgery. With 1

2 chance it will pick the one that B will be able to use to solve
the SIS problem. So we have εSIS ≥ ε/2− εPRF − negl(λ).
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To argue that e = d1+(RA1
−RPRF,M∗)d2 is a valid solution of the SISn,q,β,m

problem instance, we need to show e is sufficiently short, and non-zero except
with negligible probability. First of all, we have[

A | Ab −APRF,M∗
]
d∗ =

[
A | A(RAb

−RPRF,M∗)
]
d∗

= Ad1 + A(RAb
−RPRF,M∗)d2

= A (d1 + (RAb
−RPRF,M∗)d2)

= 0 (mod q)

By the Lemma 2, we have ‖RAb
‖ ≤ 12

√
m. By the analysis of noise growth of

the key homomorphic computation, we have ‖RPRF,M∗‖ ≤ mO(d). So ‖RPRF,M∗−
RAb
‖ is still less than mO(d) by absorbing the constant by the big O nota-

tion. Since d1,d2 have distribution DZm,s with condition d ∈ Λ⊥q (FM,b), by the
Lemma 4, d1,d2 ≤ s

√
m. So ‖e‖ ≤ ‖d1‖ + (‖RPRF,M∗‖ + ‖RAb

‖) · ‖d2‖ ≤
O(m)O(d). Let β = O(m)O(d) is sufficient.

Let R = RPRF,M∗ −RAb
(note R = 0 happens with only negligible probabil-

ity), we show d1 6= R ·d2 with all but negligible probability. Suppose d2 6= 0, we
have e 6= 0 since d 6= 0. On the other hand, we have d2 = (d1, . . . , dm)> 6= 0 and,
thus, at least one coordinate of d2, say dj , is not 0. We write R = (r1, . . . , rm)
and so

R · d2 = rj · dj +

m∑
i=1,i6=j

ri · di

Observe that for the fixed message M∗ on which Amade the forgery, R (therefore
rj) depends on the low-norm matrices RA0

,RA1
, {RBi}i∈[k],RC0

,RC1
and the

secret key of PRF. The only information about rj for A is from the public
matrices in Vk, i.e. {A0,A1}, {Bi}i∈[k], {C0,C1}. So by the pigeonhole principle
there is a (exponentially) large freedom to pick a value to rj which is compatible
with A’s view, i.e. Ar′j = Ar′′j (mod q) for admissible (low-norm) r′j , r

′′
j where

r′j 6= r′′j . (In fact, here we have more freedom than the case in [21] where R is
picked from {1,−1}m×m).

Finally, to answer one signing query, B’s running time is bounded by O(TS +
N ·TM ). So the total running time of B in the simulation is bounded by O(Q(TS+
N · TM )) This concludes the proof.

4 IBE with Tight Security

4.1 Construction with CPA Security

Setup(1λ) The setup algorithm takes as input a security parameter λ. It does
the following:

1. Sample a random matrix A along with a trapdoor basis TA of lattice Λ⊥q (A)
by running TrapGen.

2. Select random matrices A0, A1, random “PRF key” matrices B1, . . . , Bk,
and random “PRF input” matrices C0, C1 from Zn×mq uniformly at random.
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3. Select a random vector u
$←− Znq .

4. Select a secure pseudorandom function PRF : {0, 1}k × {0, 1}t → {0, 1},
which is expressed as a Boolean circuit with depth d = d(λ), and a PRF key

K = s1s2 . . . sk
$←− {0, 1}k.

5. Output the public parameters

Pub =
(
A, {A0,A1}, {Bi}i∈[k], {C0,C1},u,PRF

)
and the master secret key Msk = (TA).

KeyGen(Pub,Msk, id) Upon an input identity id=x1x2 . . . xt ∈ {0, 1}t, the key
generation algorithm does the following:

1. Compute b = PRF(K, id).
2. Deterministically compute APRF,id ∈ Zn×mq as

APRF,id = Eval(PRF, {B}i∈[k],Cx1
,Cx2

, . . . ,Cxt)

3. Set Fid,1−b =
[
A | A1−b −APRF,id

]
∈ Zn×2m

q .
4. Run SampleLeft to sample did from the discrete Gaussian distributionDΛu

q (Fid,1−b),s

hence Fid,1−bdid = u (mod q). Output Skid = did.

Encrypt(Pub, id,Msg) To encrypt a message Msg ∈ {0, 1} with respect to an
identity id = x1x2 . . . xt ∈ {0, 1}t:
1. Compute APRF,id ∈ Zn×mq as

APRF,id = Eval(PRF, {Bi}i∈[k],Cx1
,Cx2

, . . . ,Cxt)

2. Set Fid,b =
[
A | Ab −APRF,id

]
∈ Zn×2m

q for b = 0, 1.

3. Select two random vectors s0, s1
$←− Znq .

4. Select two noise scalars ν0,0, ν1,0 ← DZ,σLWE
and four noise vectors ν̂0,1, ν̂1,1 ←

DZm,
√

2σLWE
and ν̌0,1, ν̌1,1 ← DZm,σ for sufficiently large σLWE and σ such that

σ > O(mO(d)) · σLWE.
5. Compute the ciphertext Ctxid = (c0,0, c0,1, c1,0, c1,1) as:

c0,0 =
(
s>0 u + ν0,0 + Msgbq/2c

)
mod q

c>0,1 =
(
s>0 Fid,0 + [ν̂>0,1 | ν̌>0,1]

)
mod q

c1,0 =
(
s>1 u + ν1,0 + Msgbq/2c

)
mod q

c>1,1 =
(
s>1 Fid,1 + [ν̂>1,1 | ν̌>1,1]

)
mod q

Decrypt(Pub,Skid,Ctxid) The decryption algorithm uses the key did to try to
decrypt both (c0,0, c0,1) and (c1,0, c1,1) 3. W.l.o.g., assume that (cb,0, cb,1) is the
correct ciphertext. The decryption algorithm computes

τ =
(
cb,0 − c>b,1did

)
mod q

View τ as an integer in (−q/2, q/2]. If τ is closer to 0 than ±q/2, the output is
Msg = 0. Otherwise, it is Msg = 1.

3 To ensure correct decryption, the message should contain some redundancy to weed
out the incorrect ciphertext. It is a standard technique to encrypt multiple bits in



22

4.2 Correctness and Parameters Selection

Following the decryption algorithm, let did = [d>1 | d>2 ]>. We have

τ =
(
cb,0 − c>b,1did

)
mod q

=
(
Msgbq/2c+ νb,0 − ν̂>0,1d1 − ν̌>0,1d2

)
mod q

Recall, the norm of d1 and d2 is bounded by s
√
m, and the norm of ν̂b,1 and

ν̌b,1 is bounded by σLWE

√
2m and σ

√
m respectively, by Lemma 4. To ensure

correctness of decryption, we need

|τ | = |cb,0 − ν̂>b,1d1 − ν̌>0,1d2|
≤ |cb,0|+ ‖ν̂0,1‖ · ‖d1‖+ ‖ν̂0,1‖ · ‖d2‖
≤ O(s · σLWE ·mO(d))

≤ q/4

Accordingly, it is enough to set q such that O(s · σLWE ·mO(d)) ≤ q/4.

Parameter Selection. We now discuss a consistent parameter instantiation that
achieves both correctness and security. We set the LWE dimension n = n(d). To
ensure we can run TrapGen in the Lemma 3, we set m = O(n log q). To make sure
SampleLeft and SampleRight have the same distribution per Theorem 2, we need
a sufficiently large Gaussian parameter s > ‖T̃G‖·mO(d) ·ω(

√
logm). We can set

s = O(mO(d)) = O(n log q)O(d). To ensure the applicability of Regev’s [53] LWE
reductions from worst-case lattice problems, we set the Gaussian parameter of
LWE noise distribution to be σLWE =

√
n, therefore the LWE noise distribution

is (DZ,
√
n) mod q. (Here we may also wish to consider Peikert’s [52] LWE re-

duction, although this may require to pick an unnecessarily large modulus q, to
the detriment of size and efficiency.) Finally, to ensure correctness condition of
decryption, we set q = O(n3/2 log n)O(d).

Tight Reduction and Hardness of LWE. One feature of our IBE scheme (and
the signature scheme it induces) is that depending on different PRFs circuits
instantiations, the LWE assumption we use for our tight reduction may vary.
More precisely, let B be the maximum magnitude of the LWE noise added to
the ciphertext. We have seen the LWE modulus q depends on the circuit depth
d of instantiated PRF. The hardness of the LWE problem depends on the ratio
q/B. The LWE problem becomes easier when this ratio grows. In this regard,
the appeal of our tight reduction varies: tight reduction to harder LWE problem
is more preferable than tight reduction to easier LWE problem. This is true

Regev-like encryption, by replacing u with a matrix U ∈ Zn×zq in Pub with which we
can now independently encrypt z > 1 bits without change to the security analysis.
If hybrid encryption is used, the multiple bits can be used to encrypt a symmetric
key without redundancy, deferring the integrity check to the symmetric realm where
it can be performed at minimal cost.
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particularly when one considers the average-case hardness of LWE to worst-case
hardness of classic lattice problems, e.g. GapSVP and SIVP, reduction [53,52,22]
where ratio q/B is smaller, the solutions for classic lattice problems are better.
This fact indicates using lower depth PRFs is desirable, not only for better
efficiency, but also for higher security.

In our case, thanks to the constant circuit-depth PRFs from [9,51,30,45], the
LWE modulus q in our scheme is a polynomial, in the asymptotic sense (It could
be actually large since the hidden constant of circuit depth could be large.).
As a consequence, we are dealing with asymptotically small ratios q/B. On the
other hand, we believe, however, that our tight reduction is still very valuable
even for large ratio q/B. Firstly, it shows that, at the first time, we actually can
eliminate the dependency between the number of adversary’s queries and the
security of lattice-based IBE scheme (as well as short lattice signature scheme).
This is very important since the number of adversary’s queries can be quite
large, which will negatively impact the schemes’ security seriously. Secondly, the
average-case to worst-case reduction does provide some security confidence for
the LWE assumption, but this is not the whole story. For certain parameters,
many classic lattice problems are NP-hard. However, those parameters have no
direct connection to lattice-based cryptography. (There is even evidence that
the classic lattice problems with parameters relevant cryptography are not NP-
hard.) On the other hand, the LWE problem (with various parameters) may be
assured to be a hard problem in its own right. It has shown robustness against
various attacks in a relatively long-term period. This has made LWE widely ac-
cepted as standard assumption and for use in cryptography. For instance, even
for sub-exponentially large ratios q/B = 2O(nc) where n is the LWE dimension
and 0 < c < 1/2, the LWE problem is still believed to be hard and leads to pow-
erful cryptographic schemes which we were not able to obtain by other means,
including fully homomorphic encryption, e.g. [23], attribute-based encryption for
circuits, e.g. [36,19,24], and predicate encryption for circuits [40].

4.3 Proof of Security

The security of our IBE scheme with respect to the Definition 9 can be stated
by the following theorem.

Theorem 4. Suppose there exists a t-time IND-ID-CPA adversary A who makes
qid private key queries against our IBE scheme with advantage ε, there exists
adversaries B1 with running time tPRF, B2 with running time tLWE respectively
against the PRF PRF, and LWEn,q,χ (where χ is the distribution (DZ,σLWE

) mod q)
with respective advantages εPRF and εLWE, such that ε ≤ 2(εPRF + εLWE) + negl(λ)
for some negligible function negl(λ) and max(tPRF, tLWE) ≤ t+O (qid · (TS +N · TM ))
where TS is the maximum time of sampling a Gaussian vector from Zm, N is
the number of circuit gate of PRF, and TM is the time of computing the multi-
plication between a n-by-m matrix and a m-by-m matrix in Zq.

We prove above theorem through a sequence of indistinguishable security
games. The first game is identical to the IND-ID-CPA game. In the last game,
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the adversary has no advantage. We will show that a PPT adversary will not be
able to distinguish the neighboring games which will prove that the adversary
has only negligibly small advantage in wining the first (real) game.

Firstly, we define the following simulation algorithms Sim.Setup, Sim.KeyGen
and Sim.Encrypt.

Sim.Setup(1λ) On input of the security parameter λ, the algorithm does the
following:

1. Select matrix A
$←− Zn×mq .

2. Select k+4 low-norm matrices RA0
, RA1

, {RBi}i∈[k], RC0
, RC1

$←− {1,−1}m×m.

3. Select a secure pseudorandom function PRF : {0, 1}k×{0, 1}t → {0, 1} which
is expressed as a Boolean circuit with depth d = d(λ).

4. Select a uniformly random string K = s1s2 . . . sk
$←− {0, 1}k.

5. Set Ab = ARAb
+ bG and Cb = ARCb + bG for b = 0, 1.

6. Set Bi = ARBi + siG for i ∈ [k].

7. Select vector u
$←− Znq .

8. Publish Pub = ( A, {A0,A1}, {Bi}i∈[k], {C0,C1}, u,PRF)

Sim.KeyGen(Pub,Msk, id) Upon an input identity id = x1x2 . . . xt ∈ {0, 1}t, the
algorithm uses the parameters generated from Sim.Setup to do the following:

1. Compute APRF,id = ARPRF,id+PRF(K, id)G← Eval(PRF, {Bi}i∈[k],Cx1 , . . . ,Cxt).
2. Let PRF(K, id) = b ∈ {0, 1}. Set

Fid,1−b =
[
A | A1−b −APRF,id∗

]
=
[
A | A(RA1−b −RPRF,id∗) + (1− 2b)G

]
.

3. Run SampleRight to sample did ∈ DΛu
q (Fid,1−b),s as the private key Skid.

Sim.Encrypt(Pub, id∗,Msg) To encrypt a message Msg∗ ∈ {0, 1} with respect to
an identity id∗:

1. Compute b = PRF(K, id∗).
2. Set

Fid∗,b =
[
A | Ab −APRF,id∗

]
=
[
A | A(RAb

−RPRF,id∗)
]

and

Fid∗,1−b =
[
A | A1−b −APRF,id∗

]
=
[
A | A(RA1−b −RPRF,id∗) + (1− 2b)G

]
.

3. Select random vectors sb, s1−b
$←− Znq .

4. Select noise scalars νb,0, ν1−b,0 ← DZ,σLWE
.
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5. Sample noise vectors x,y← DZm,σLWE
for sufficiently large Gaussian param-

eter σLWE (σLWE ≥ ηε(Zm) for some small ε > 0). Set ν̂b,1 = x + y. By the
Lemma 5, ν̂b,1 has distribution which is statistically close to DZm,

√
2σLWE

.
6. Let R = Rb − RPRF,id∗ and ri be the i-th column of R. We sample the

noise vector z = (z1, z2, . . . , zm) ∈ Zm with zi ← DZ,σ1,i for the Gaussian

parameter σ1,i =
√
σ2 − 2(‖ri‖ · σLWE)2. Set ν̌b,1 = R> · (x−y) + z. By the

Lemma 5, for sufficiently large σ1,i and σLWE, ν̌b,1 has distribution which is
statistically close to DZm,σ.

7. Select noise vectors ν̂1−b,1 ← DZm,
√

2σLWE
, ν̌1−b,1 ← DZm,σ.

8. Set the challenge ciphertext Ctxid∗ = (cb,0, cb,1, c1−b,0, c1−b,1) as:
cb,0 =

(
s>b u + νb,0 + Msgbq/2c

)
mod q

c>b,1 =
(
s>b Fid∗,b + [ν̂>b,1 | ν̌>b,1]

)
mod q

c1−b,0 =
(
s>1 u + ν1−b,0 + Msgbq/2c

)
mod q

c>1−b,1 =
(
s>1−bFid∗,1−b + [ν̂>1−b,1 | ν̌>1−b,1]

)
mod q

Now we define a series of games and prove that the neighboring games are
either statistically indistinguishable, or computationally indistinguishable.

Game 0 This is the real IND-ID-CPA game from the definition. All the algo-
rithms are the same as the real scheme.

Game 1 This game is the same as Game 0 except it runs Sim.Setup and
Sim.KeyGen instead of Setup and KeyGen.

Game 2 This game is the same as Game 1 except that the challenge ciphertext
is generated by Sim.Encrypt instead of Encrypt.

Game 3 This game is the same as Game 2 except that during preparation of
the challenge ciphertext for identity id∗, it samples (cb,0, cb,1) uniformly random
from Zq × Z2m

q for b = PRF(K, id∗). Another part of the challenge ciphertext
(c1−b,0, c1−b,1) is computed by Sim.Encrypt as in Game 2.

Game 4 This game is the same as Game 3 except for b = PRF(K, id∗) it runs
real encryption algorithm Encrypt to generate (c1−b,0, c1−b,1) of the challenge
ciphertext instead of using Sim.Encrypt.

Game 5 This game is the same as Game 4 except it runs Setup and KeyGen
to generate Pub and private identity keys.

Game 6 This game is the same as Game 5 except that for b = PRF(K, id∗), the
challenge ciphertext part (cb,0, cb,1) is generated by Encrypt instead of choosing
it randomly, and (c1−b,0, c1−b,1) is chosen randomly.
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Game 7 This game is the same as Game 6 except that it runs Sim.Setup and
Sim.KeyGen to generate Pub and private identity keys.

Game 8 This game is the same as Game 7 except that for the bit value
b = PRF(K, id∗), it computes the challenge ciphertext (cb,0, cb,1) by Sim.Encrypt.

Game 9 This game is the same as Game 8 except that the whole challenge
ciphertext is sampled uniformly at random from the ciphertext space. Therefore,
in Game 5 the adversary has no advantage in wining the game.

In Game i, we let Si be the event that γ′ = γ at the end of the game. The
adversary’s advantage in Game i is |Pr[Si]− 1

2 |. We prove the following lemmas
to prove the Theorem 4.

Lemma 8. Game 1 and Game 0 are statistically indistinguishable, so |Pr[S0]−
Pr[S1]| ≤ negl(λ) for some negligible function negl(λ).

Proof. See Appendix A.1

Lemma 9. Game 2 and Game 1 are statistically indistinguishable, so |Pr[S1]−
Pr[S2]| ≤ negl(λ) for some negligible function negl(λ).

Proof. See Appendix A.2

Lemma 10. If (t, εLWE)-LWEn,q,χ assumption holds where χ stands for the dis-
tribution DZ,σLWE

reduced modulo q, then |Pr[S2]− Pr[S3]| ≤ εLWE.

Proof. See Appendix A.3

Lemma 11. |Pr[S3]− Pr[S4]| = 0.

Proof. See Appendix A.4

Lemma 12. Game 5 and Game 4 are statistically indistinguishable, so |Pr[S4]−
Pr[S5]| ≤ negl(λ) for some negligible function negl(λ).

Proof. See Appendix A.5

Lemma 13. If the PRF PRF is (t, εPRF)-secure, then |Pr[S5]−Pr[S6]| ≤ 2εPRF.

Proof. See Appendix A.6

Lemma 14. Game 7 and Game 6 are statistically indistinguishable, so |Pr[S6]−
Pr[S7]| ≤ negl(λ) for some negligible function negl(λ).

Proof. See Appendix A.7

Lemma 15. Game 8 and Game 7 are statistically indistinguishable, so |Pr[S7]−
Pr[S8]| ≤ negl(λ) for some negligible function negl(λ).

Proof. See Appendix A.8
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Lemma 16. If (t, εLWE)-LWEn,q,χ assumption holds where χ stands for the dis-
tribution DZ,σLWE

reduced modulo q, then |Pr[S8]− Pr[S9]| ≤ εLWE.

Proof. See Appendix A.9

Now we prove the Theorem 4 by the established lemmas.

Proof. Based on the lemmas that show the difference between the sequence of
games, we have ε = |Pr[S0]−1/2| ≤ 2(εPRF + εLWE) +negl(λ) for some negligibly
small statistical error negl(λ). The running time of B is dominated by answering
qid, A’s private key generation queries. For answering one such query, B needs to
apply the key-homomorphic algorithm on the circuit of PRF. Each gate requires
a matrix multiplication and a addition over Zq. Besides that, B needs to sample
Gaussian vectors for constructing the private keys (for private key queries) and
constructing the challenge ciphertext (in the challenge phase). Therefore, for one
query, B roughly runs O(TS +N · TM ) time. For all qid queries and constructing
the challenge ciphertext, the total time is bounded by O (qid · (TS +N · TM )). So
if an adversary A has running time t, max(tLWE, tPRF) ≤ t+O(qid ·(TS+N ·TM )).

4.4 Adaptively CCA-Secure IBE and CCA-Secure PKE

The extension to tightly CCA-secure IBE and CCA-secure PKE scheme from
our IBE construction is discussed in Appedix B.

5 Conclusions

In this paper, we propose a short adaptively secure lattice signature scheme and
a “compact” adaptively secure IBE scheme in the standard model. Our construc-
tions make use of PRFs in a novel way by combining several recent techniques
in the area of lattice-based cryptography. The security of our signature and IBE
scheme is tightly related to the conservative lattice assumptions SIS and LWE,
respectively, and the security of an instantiated PRF, with a constant loss factor.
By instantiating the existing efficient PRFs from lattice and number-theoretic
assumptions which can be implemented by very shallow circuits, we obtain the
first “almost” tightly secure lattice-based short signature/IBE scheme (relies on
lattice assumptions only), and an adaptively secure IBE scheme with the tight-
est security reduction so far, i.e. with only O(log2 λ) factor of security loss for
the security parameter λ, based on a novel combination of lattice and number-
theoretic assumptions.

The problem of constructing a tightly and adaptively secure IBE scheme
from standard assumptions (in the sense that the security loss of reduction is
a constant) remains open. Our work suggests that constructing tightly secure
PRFs, which is another important open problem left by [30,45], would solve it.
We leave as a fascinating open problem the question of employing similar (or
different) techniques to construct compact and (almost) tightly secure signature
and encryption schemes with increased expressiveness, such as hierarchical and
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attribute-based encryption scheme, or homomorphic signatures. Another inter-
esting open question is to construct an almost tightly secure IBE scheme from
LWE in the multi-user setting.
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A Supplemental Proofs

A.1 Proof of Lemma 8

Proof (Proof of Lemma 8). We analyse the differences between Game 0 and
Game 1:

1. In Game 0, the matrix A is generated by TrapGen, and in Game 2, the
matrix A is chosen uniformly random. By the Lemma 3, the distributions
of these two ways of constructing the matrix A are statistically close.

2. In Game 0, the matrices {A0,A1}, {Bi}i∈[k], {C0,C1} are chosen uni-
formly at random from Zn×mq . In Game 2, They are computed as Ab =
ARAb

+bG, Cb = ARCb +bG for b = 0, 1, and Bi = ARBi +siG for i ∈ [k]
for random and secret low-norm matrices RA0

, RA1
, {RBi}i∈[k], RC0

,RC1

from {1,−1}m×m. By the special case (no leakage of the low-norm matrices)
of the Lemma 1, the distributions of these two ways of generating these pub-
lic matrices are statistically close. In particular, the PRF secret key {si}i∈[k]

is information-theoretically concealed by {Bi}i∈[k].
3. We note that in both Game 0 and Game 1, the use of A0 or A1 of the key

generation algorithms is decided by b = PRF(K, id). For a private key query
on id in Game 2, let

Fid,1−b =
[
A | A1−b −APRF,id

]
=
[
A | A(RA1−b −RPRF,id) + (1− 2b)G

]
.

Note that the publicly known trapdoor of Λ⊥q (G) is also a trapdoor of

Λ⊥q ((1 − 2b)G). In Game 1, the identity key did ∈ Λu
q (Fid,1−b) is gener-

ated by SampleLeft with the trapdoor basis TA of Λ⊥q (A). In Game 2, did

is generated by SampleRight with the trapdoor of Λ⊥q ((1 − 2b)G). By the
Theorems 1 and 2, for sufficient large Gaussian parameter s, the identity
key did will have the same distribution DΛu

q (Fid,1−b),s up to a negligibly small
statistical difference.

Summing up, the distributions of Game 0 and Game 1 are statistically
close, and thus |Pr[S0]− Pr[S1]| ≤ negl(λ) for some negligible function negl(λ).

A.2 Proof of Lemma 9

Proof (Proof of Lemma 9). Let R = RAb
−RPRF,id∗ in the Sim.Encrypt algorithm.

The difference between Game 1 and Game 2 is the way of generating the chal-
lenge ciphertext. In Game 1, the challenge ciphertext is generated by Encrypt,
and the noise vectors are sampled from some discrete Gaussian distributions
that are independent of Pub. In Game 2 the challenge ciphertext is generated by
Sim.Encrypt, and R, where R is computed from RA0 ,RA1 , {RBi}i∈[k],RC0 ,RC1 ,
PRF’s key K, and id∗.
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Firstly, we note by the construction of the challenge ciphertext in Game 2,

c>b,1 =
(
s>b Fid∗,b + [ν̂>b,1 | ν̌>b,1]

)
mod q

= s>0
[
A|A(RAb

−RPRF,id∗)
]

+[(x + y)> | R(x− y)> + z>]
)

mod q

=
(
s>0
[
A|AR

]
+ [(x + y)>|R(x− y)> + z>]

)
mod q

By the Lemma 1 (the generalised left-over hash lemma), with R appearing in
the challenge ciphertext, the public matrices A0,A1, {Bi}i∈[k],C0,C1 still have
distribution which is statistically close to the uniform distribution on Zn×mq .

Secondly, we argue that the noise vectors have correct distributions. Since
the Gaussian vectors x,y have distribution DZm,σLWE

, for sufficiently large σLWE,
ν̂b,1 = x+y and x−y essentially have distribution DZm,

√
2σLWE

by the Lemma 5.
Again, by the Lemma 5, with adding the “smoothing” error z, the distribution
of ν̌b,1 = R> ·(x−y)+z is statistically close to the Gaussian distribution DZm,σ.

Finally, we note that by the constructions, the noise vectors ν̂b,1 and ν̌b,1 are
statistically uncorrelated. Since the covariance of two random variables according
to the Gaussian distributions of ν̂b,1, ν̌b,1 is set to be 0 by the simulation.

Summing up, Game 1 and Game 2 are statistically indistinguishable and
the lemma follows.

A.3 Proof of Lemma 10

Proof (Proof of Lemma 10). We show a simulation algorithm B that uses its
LWE challenge to simulate either Game 2 or Game 3 for an adversary A. At
the beginning, B receives its LWE challenge (W,v) ∈ Zn×mq × Zmq and (w, v) ∈
Znq × Zq which is either from O$ or Os.

Setup. B prepares the public parameters for A as follows:
1. Set A←W and u← v. We note A,u have uniform distribution.
2. Set other public parameters as Game 2.

Phase 1. B answers private key queries like Game 2.
Challenge. B prepares the challenge ciphertext of identity id∗ as follows.

1. Let b = PRF(K, id∗). B sets

Fid∗,1−b =
[
A | A1−b −APRF,id∗

]
=
[
A | A(RA1−b −RPRF,id∗) + (1− 2b)G

]
2. Let R = RA0

− RPRF,id∗ . To construct (cb,0, cb,1), B samples y ←
DZm,σLWE

and z like Sim.Encrypt. Then it sets
cb,0 = (v + Msg∗bq/2c) mod q

c>b,1 =
(
[v>|v>R] + [y>| − y>R + z>]

)
mod q

3. B sets (c1−b,0, c1−b,1) the same as Game 2.
Phase 2. B replies the private key queries as in Game 2.
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Guess. Finally, A outputs whether it is interacting with Game 2 or Game 3.
If A says Game 2, B decides its LWE challenge is from Os. Otherwise, B
decides the LWE challenge is from O$.

If B gets the LWE challenge from the oracle Os, there exists a secret vector
s ∈ Znq , a noise scalar x with distribution DZ,σLWE

, a noise vector x ∈ Zm with

distribution DZm,σLWE
such that v> = s>A + x> and v = s>w + x. Rewrite the

ciphertext we have

cb,0 = (v + Msg∗bq/2c) mod q

=
(
s>w + x+ Msg∗bq/2c

)
mod q

=
(
s>b u + νb,0 + Msg∗bq/2c

)
mod q

and

c>b,1 =
(
[v>|v>R] + [y>| − y>R + z>]

)
mod q

=
(
[s>A + x>|(s>A + x>)R] + [y>| − y>R + z>]

)
mod q

=
(
s>[A|AR] + [x> + y>|(x> − y>)R + z>]

)
mod q

=
(
s>b Fid∗,b + [ν̂>b,1|ν̌>b,1]

)
mod q

They are valid challenge ciphertext parts in Game 2. Therefore, in this case
B simulates Game 2 for A. On the other hand, if B gets samples from O$,
(cb,0, cb,1) constructed above will be random, which is the case of Game 3, and
B simulates Game 3. |Pr[S2]− Pr[S3]| ≤ εLWE follows.

A.4 Proof of Lemma 11

Proof (Proof of Lemma 11). Note for generating (c1−b,0, c1−b,1) of the challenge
ciphertext, Encrypt and Sim.Encrypt behave the same. So Game 4 and Game
3 are the same.

A.5 Proof of Lemma 12

Proof (Proof of Lemma 12). The proof is essentially the same as the proof for
the Lemma 8. We omit the details.

A.6 Proof of Lemma 13

Proof (Proof of Lemma 13). We recall the difference between Game 6 and
Game 5. let b = PRF(K, id∗) for the challenge identity id∗. In Game 5, the
ciphertext component (cb,0, cb,1) is uniformly random and (c1−b,0, c1−b,1) is com-
puted by Encrypt. In Game 6, the ciphertext component (cb,0, cb,1) is computed
by Encrypt and (c1−b,0, c1−b,1) is uniformly random. To prove the indistinguish-
ably between Game 6 and Game 5, three additional security games are added.
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Firstly we define Game 5.1 which is same as Game 5 except that it sam-

ples b
$←− {0, 1} to select matrix Ab for generating private keys and challenge

ciphertext instead of using PRF to compute it. Also, if same identity is queried
multiple times, the same bit b will be used (For simulation, we simply let the
simulator keep a state remembering the bit for each identity.). Obviously, a dis-
tinguisher between Game 5 and Game 5.1 leads to a attacker for PRF. So
|Pr[S5]− Pr[S5.1]| ≤ εPRF.

Secondly, we define Game 5.2 which is the same as Game 5.1 except for
randomly sampled bit b for id∗, it runs Encrypt to produce (cb,0, cb,1) and samples
(c1−b,0, c1−b,1) uniformly random from Zq × Z2m

q . While here b is uniformly
random, we must have |Pr[S5.1]− Pr[S5.2]| = 0.

Finally, as Game 6 is the same as Game 5.2 except the bit value b is
computed via PRF in key generation query phase and challenge phase, so we
have |Pr[S5.2]− Pr[S6]| ≤ εPRF.
|Pr[S5]− Pr[S6]| ≤ 2εPRF follows.

A.7 Proof of Lemma 14

Proof (Proof of Lemma 14). The proof is essentially the same as the proof for
Lemma 8. We omit the details.

A.8 Proof of Lemma 15

Proof (Proof of Lemma 15). The proof is essentially the same as the proof for
Lemma 9. We omit the details.

A.9 Proof of Lemma 16

Proof (Proof of Lemma 16). The proof is essentially the same as the proof for
Lemma 10. We omit the details.

B Adaptively CCA-Secure IBE and CCA-Secure PKE

Boneh at al. [17] showed a ` + 1-depth CPA-secure Hierarchical IBE (HIBE)
scheme (` ≥ 0) can be tightly transferred into an `-depth CCA-secure HIBE
scheme with small additional overhead (known as the BCHK transformation).
In particularly, a 1-depth HIBE scheme is an IBE scheme and a 0-depth HIBE
scheme is a public-key encryption scheme PKE. Generally, in HIBE, identities
are arranged in a directed tree. A user with identity of a father node can issue
private keys for the users with identities of children nodes. This process is called
delegation. Ideally, we would like to have HIBE schemes supporting identity
trees with polynomial depth. Unfortunately, directly applying our technique will
result in an HIBE scheme with only log-depth identity tree. On the other hand,
our technique particularly works for 2-depth HIBE scheme. So by applying the
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BCHK transformation, we obtain a IND-ID-CCA2 secure IBE scheme from the
2-depth IND-ID-CPA HIBE scheme and a IND-CCA2 secure PKE scheme from
our IND-ID-CPA secure IBE scheme4.

4 This transformation does not require us to add new computational assumptions. The
SIS assumption, which is weaker than the LWE assumption, is enough.
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