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Abstract. The Number Theoretic Transform (NTT) provides efficient algorithms for cyclic
and nega-cyclic convolutions, which have many applications in computer arithmetic, e.g., for
multiplying large integers and large degree polynomials. It is commonly used in cryptographic
schemes that are based on the hardness of the Ring Learning With Errors (R-LWE) problem to
efficiently implement modular polynomial multiplication.
We present a new modular reduction technique that is tailored for the special moduli required
by the NTT. Based on this reduction, we speed up the NTT and propose faster, multi-purpose
algorithms. We present two implementations of these algorithms: a portable C implementation
and a high-speed implementation using assembly with AVX2 instructions. In comparison to
state-of-the-art implementations of the NTT using the same parameters, our C and assembly
implementations achieve factor-1.90 and factor-1.25 speedups, respectively. To demonstrate the
improved efficiency in an application example, we benchmarked the algorithms in the context of
the R-LWE key exchange protocol that has recently been proposed by Alkim, Ducas, Pöppelmann
and Schwabe. In this case, our C and assembly implementations compute the full key exchange
1.40 and 1.34 times faster, respectively. These results are achieved with full protection against
timing attacks.

Keywords: Post-quantum cryptography, number theoretic transform (NTT), ring learning with
errors (R-LWE), fast modular reduction, efficient implementation.

1 Introduction

Fast Fourier Transform (FFT) algorithms to compute the Discrete Fourier Transform (DFT)
have countless applications ranging from digital signal processing to the fast multiplication of
large integers. The cyclic convolution of two integer sequences of length n can be computed
by applying an FFT algorithm to both, then multiplying the resulting DFT sequences of
length n coefficient-wise and transforming the result back via an inverse FFT. This operation
corresponds to the product of the corresponding polynomials modulo Xn − 1, and for large
n, a computation via FFTs as above was suggested to be used in the ring-based encryption
scheme NTRUEncrypt in [14].

When the sequence (or polynomial) coefficients are specialized to come from a finite field,
the DFT is called the Number Theoretic Transform (NTT) [8] and can be computed with
FFT algorithms that work over this specific finite field. Polynomial multiplication over a finite
field is one of the fundamental operations required in cryptographic schemes based on the
Ring Learning With Errors (R-LWE) problem, and the NTT has shown to be a powerful tool
that enables this operation to be computed in quasi-polynomial complexity.

R-LWE-based cryptography. Since its introduction by Regev [27], the Learning With Er-
rors (LWE) problem has been used as the foundation for many new lattice-based constructions
with a variety of cryptographic functionalities. It is currently believed to be sufficiently hard,



even for attackers running a large scale quantum computer. Hence cryptographic schemes
with security based on the hardness of the LWE problem are promising candidates for post-
quantum (or quantum-safe) cryptography.

The Ring LWE (R-LWE) problem, introduced by Lyubashevsky, Peikert and Regev [20], is
a special instance of the LWE problem that is essentially obtained by adding a ring structure
to the underlying lattice. R-LWE-based schemes have been proposed for public-key encryp-
tion [30, 20, 24], digital signatures [18, 9], and key exchange [24, 31, 5, 2]. Furthermore, the most
efficient proposals for (fully) homomorphic encryption are also based on R-LWE, e.g., [6].

The advantage of R-LWE over LWE is a significant increase in efficiency. When working
with vectors of dimension n, it allows a factor n space reduction and the possibility of using
FFT algorithms to compute polynomial products instead of matrix-vector or matrix-matrix
operations; this leads to an improvement from roughly n2 base ring multiplications to roughly
n log n such multiplications.

One particularly efficient parameter instantiation in the context of R-LWE is such that
the dimension n is a power of 2 and polynomial products are taken modulo the 2n-th cyclo-
tomic polynomial Xn + 1 with coefficients modulo a prime q. Here, the polynomial product
corresponds to a nega-cyclic convolution of the coefficient sequences. In this setting, the NTT
is usually computed with a special type of FFT algorithm that can be used efficiently when q
is a prime that satisfies the congruence condition q ≡ 1 mod 2n (cf. [19, §2.1]), which in turn
means that the underlying finite field contains primitive 2n-th roots of unity. Many state-
of-the-art instantiations of R-LWE-based cryptography choose n and q as above in order to
harness the efficiency of the NTT; for example, the BLISS signature implementations (I-IV)
set n = 512 and q = 12289 [9] and the fastest R-LWE-based key exchange implementation to
date sets n = 1024 and q = 12289 [2].

Our contributions. We present a new modular reduction algorithm for the special moduli
that are required to invoke the NTT. While this new routine can be used to replace existing
modular reduction algorithms and give standalone performance improvements, we further
show that calling it inside a modified NTT algorithm can give rise to additional speedups. We
illustrate these improvements by providing and benchmarking both our portable C and AVX2
assembly implementations. When setting n = 1024 and q = 12289, our C and AVX2 imple-
mentations of the NTT are up to 1.86 and 1.21 times faster, respectively, than the previously
fastest, constant-time NTT implementations by Alkim et al. [2] that use the same param-
eters. Similarly, our inverse NTT implementations are 1.90 and 1.25 times faster (respect.)
than similar implementations presented in [2]. Our software is publicly available [17].

Given the ubiquity of the NTT in (both the existing and foreseeable) high-speed instan-
tiations of R-LWE-based primitives, we emphasize that an improved NTT simultaneously
improves a large portion of all lattice-based cryptographic proposals. While our algorithm
will give a solid speedup to signature schemes like Lyubashevsky’s [18] and BLISS [9], it will
give a more drastic overall improvement in common encryption and key exchange schemes.
In these scenarios, there are different ways of removing the need for obtaining high-precision
samples from a Gaussian distribution [21], for example, the number of R-LWE samples per
secret can be bounded, or one can use the Kullback-Leibler or Renyi divergences [3]. Sub-
sequently, the cost of sampling the error distribution decreases dramatically, and the NTT
becomes the bottleneck of the overall computation.
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To highlight the practical benefits of the new approach in an example of a cryptographic
protocol, we implemented the recent instantiation of Peikert’s key exchange [24] due to Alkim,
Ducas, Pöppelmann and Schwabe [2], and show that the overall key exchange is approximately
1.40 times faster (portable C implementation) and 1.34 times faster (AVX2 assembly imple-
mentation) using our improved NTT. Beyond the faster modular reduction itself, the specific
improvements over the approach in [2] that have led to this speedup are as follows:

– The new modular reduction algorithm allows coefficients to grow up to 32 bits in size,
which eliminates the need for modular reductions after any addition during the NTT. As
a consequence, reductions are only carried out after multiplications.

– The new modular reduction is very flexible and enables efficient implementations using
either integer arithmetic or floating point arithmetic. Since it minimizes the use of mul-
tiplications, using the higher throughput of floating point instructions on the latest Intel
processors does not have as big an impact as for more multiplication-heavy methods like
Montgomery reduction. Hence, the method is especially attractive for implementations
with a focus on simplicity, particularly in plain C.

– Related to the previous point, our implementation uses signed integer arithmetic in the
NTT. This allows for signed integers to represent error polynomials and secret keys, which
saves conversions from negative to positive integers (e.g., this reduces the number of
additions during error sampling and before modular reductions in the NTT).

– We show how to merge the scaling by n−1 with our conversion from redundant to standard
integer representation at the end of the inverse NTT. In addition, by pulling this conversion
into the last stage of the inverse NTT, we eliminate n/2 multiplications and reductions,
all at the cost of precomputing only two integers.

Organization. Section 2 gives the background on R-LWE and the NTT. Section 3 contains
our two main contributions: the improved modular reduction and NTT algorithms. Section 4
revises the details in the R-LWE key exchange scheme from [2], which is used as a case study
to give a practical instance where our improved NTT gives rise to faster cryptography. Finally,
Section 5 provides a performance analysis and benchmarks.

2 Preliminaries

This section provides details about the ring structure in the R-LWE setting, the NTT, and
the FFT algorithm to compute the NTT and its inverse. The original proposal of R-LWE [20]
restricts to cyclotomic rings, i.e. rings generated over the integers by primitive roots of unity.
We immediately focus on 2-power cyclotomic rings as this is the most commonly used case
and seems to provide the most efficient arithmetic. It is also the most natural application for
the NTT within the class of cyclotomic rings and we describe the NTT algorithm for this
specific choice. As is often done in the literature, in this paper we use the term NTT simulta-
neously for naming the number theoretic transform as well as an FFT algorithm to compute it.

2.1 The Ring Learning With Errors (R-LWE) setting

Let N = 2d, d > 1 be a power of two and let n = ϕ(N) = 2d−1 = N/2. Then the N -
th cyclotomic polynomial is given by ΦN (X) = Xn + 1. Let R be the ring of cyclotomic
integers, i.e. R = Z[X]/(ΦN (X)) = Z[X]/(Xn + 1). We identify the elements of R with their
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representatives of minimal degree. Thus, any element a ∈ R is a polynomial of degree at most
n− 1 with integer coefficients, written as a =

∑n−1
i=0 aiX

i, ai ∈ Z. Furthermore, let q ∈ Z be
a positive integer modulus such that q ≡ 1 (mod N). The quotient ring R/(q), obtained by
taking the elements of R modulo q, is isomorphic to the ring Rq = Zq[X]/(Xn + 1). With
the above identification, the ring Rq consists of all polynomials of degree at most n− 1 with
coefficients from the ring Zq, i.e., for any a ∈ Rq, we write a =

∑n−1
i=0 aiX

i, ai ∈ Zq. We use
the same symbol a to denote both the coefficient vector a = (a0, a1, . . . , an−1) ∈ Znq and the
sequence a = (a[0], a[1], . . . , a[n− 1]) ∈ Znq .

2.2 The Number Theoretic Transform (NTT)

The NTT is a specialized version of the discrete Fourier transform, in which the coefficient
ring is taken to be a finite field (or ring) containing the right roots of unity. It can be viewed
as an exact version of the complex DFT, avoiding round-off errors for exact convolutions of
integer sequences. While Gauss apparently used similar techniques already in [11], laying the
ground work for modern FFT algorithms to compute the DFT and therefore the NTT is
usually attributed to Cooley and Tukey’s seminal paper [8].

Notation and background. With parameters as above, i.e. n being a power of 2 and q a
prime with q ≡ 1 (mod 2n), let a = (a[0], ..., a[n−1]) ∈ Znq , and let ω be a primitive n-th root
of unity in Zq, which means that ωn ≡ 1 (mod q). The forward transformation ã = NTT(a)
is defined as ã[i] =

∑n−1
j=0 a[j]ωij mod q for i = 0, 1, ..., n − 1. The inverse transformation is

given by b = INTT(ã), where b[i] = n−1
∑n−1

j=0 ã[j]ω−ij mod q for i = 0, 1, ..., n − 1, and we
have INTT(NTT(a)) = a.

As mentioned above, the NTT can be used directly to perform the main operation in
R-LWE-based cryptography, that is, polynomial multiplication in Rq = Zq[X]/(Xn + 1).
However, since applying the NTT transform as described above provides a cyclic convolution,
computing c = a · b mod (Xn + 1) with two polynomials a and b would require applying the
NTT of length 2n and thus n zeros to be appended to each input; this effectively doubles
the length of the inputs and also requires the computation of an explicit reduction modulo
Xn + 1. To avoid these issues, one can exploit the negative wrapped convolution: let ψ be
a primitive 2n-th root of unity in Zq such that ψ2 = ω, and let a = (a[0], ..., a[n − 1]),
b = (b[0], ..., b[n − 1]) ∈ Znq be two vectors. Also, define â = (a[0], ψa[1]..., ψn−1a[n − 1]) and

b̂ = (b[0], ψb[1]..., ψn−1b[n − 1]). The negative wrapped convolution of a and b is defined as
c = (1, ψ−1, ψ−2, ..., ψ−(n−1)) ◦ INTT(NTT(â) ◦ NTT(b̂)), where ◦ denotes component-wise
multiplication. This operation satisfies c = a · b in Rq, and thus it allows us to compute a
full polynomial multiplication that implicitly includes the reduction modulo Xn + 1, without
increasing the length of the inputs.

Previous optimizations. Some additional optimizations are available to the NTT-based
polynomial multiplication. Previous works explain how to merge multiplications by the powers
of ω with the powers of ψ and ψ−1 inside the NTT. Consequently, important savings can be
achieved by precomputing and storing in memory the values related to these parameters. In
particular, Roy et al. [28] showed how to merge the powers of ψ with the powers of ω in the
forward transformation. This merging did not pose any difficulty in the case of the well-known
decimation-in-time NTT, which is based on the Cooley-Tukey butterfly [8] that was used in
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the first implementations of R-LWE-based schemes. Similarly, Pöppelmann et al. [26] showed
how to merge the powers of ψ−1 with the powers of ω in the inverse transformation. In this
case, however, it was necessary to switch from a decimation-in-time NTT to a decimation-in-
frequency NTT [12], which is based on the Gentleman-Sade (GS) butterfly. In this work we
exploit the combination of both transformations for optimal performance.

Other optimizations focus on the NTT’s butterfly computation. Relevant examples are
the use of precomputed quotients, as exploited in Shoup’s butterfly algorithm [29], and the
use of redundant representations that enable the elimination of several conditional modular
corrections, as shown by Harvey [13]. In particular, Harvey showed how to apply the latter
technique on Shoup’s butterfly and on a butterfly variant based on Montgomery arithmetic. In
Section 5, we compare our improved NTT algorithms with the approaches by Melchor et al. [1]
and Alkim et al. [2], both of which adopted and specialized Harvey’s butterfly algorithms.

Several works in the literature (e.g., [25, 28, 16, 2]) have applied a relatively expensive re-
ordering or bit-reversal step before or after the NTT computation. This is due to the restrictive
nature of certain forward and inverse algorithms that only accept inputs in standard ordering
and produce results in bit-reversed ordering. However, Chu and George [7] showed how to
also derive forward and inverse FFT algorithms working for the reversed case, i.e., accepting
inputs in bit-reversed ordering and producing outputs in standard ordering. Accordingly, [26]
adapted and suitably combined the algorithms in the context of NTTs in order to eliminate
the need of the bit-reversal step.

From hereon, we denote by NTT := NTTCT,Ψrev an algorithm that computes the forward
transformation based on the Cooley-Tukey butterfly that absorbs the powers of ψ in bit-
reversed ordering. This function receives the inputs in standard ordering and produces a
result in bit-reversed ordering. Similarly, we denote by INTT := INTTGS,Ψ−1

rev
an algorithm

computing the inverse transformation based on the Gentleman-Sade butterfly that absorbs
the powers of ψ−1 in the bit-reversed ordering. This function receives the inputs in bit-
reversed ordering and produces an output in standard ordering. Following Pöppelmann et
al. [26], the combination of these two functions eliminates any need for a bit-reversal step.
Optimized algorithms for the forward and inverse NTT are presented in Algorithms 1 and 2,
respectively. These algorithms are based on the ones detailed in [26, App. A.1]. Note that we
have applied a few modifications and corrected some typos.

Pöppelmann et al. [26] avoid the final scaling by n−1 during the inverse NTT by shifting
the computation to a polynomial transformation that is (in their target application of BLISS
signatures) assumedly performed offline. In general, however, that assumption does not nec-
essarily hold; for example, in [2], all of the polynomials to be multiplied are generated fresh
per key exchange connection. Accordingly, Algorithm 2 includes scaling by n−1.

3 Modular Reduction and Speeding up the NTT

Most FFT algorithms to compute the NTT over a finite field or ring need certain roots of unity.
In the specific setting discussed in the previous section, one needs primitive 2n-th roots of
unity to exist1 modulo q, which imposes a congruence condition on q, namely q ≡ 1 (mod 2n).
The parameters for R-LWE-based cryptosystems tend to have relatively large dimension n

1 For an algorithm that does not require such roots, but has the disadvantage of needing to pad the inputs
to double length to compute nega-cyclic convolutions, see Nussbaumers algorithm ([23] and [15, Exer-
cise 4.6.4.59]).
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Algorithm 1 Function NTT based on the Cooley-Tukey (CT) butterfly.

Input: A vector a = (a[0], a[1], ..., a[n − 1]) ∈ Zn
q in standard ordering, where q is a prime such that q ≡

1 mod 2n and n is a power of two, and a precomputed table Ψrev ∈ Zn
q storing powers of ψ in bit-reversed

order.
Output: a← NTT(a) in bit-reversed ordering.

1: k = n
2: for (m = 1; m < n; m = 2m) do
3: k = k/2
4: for (i = 0; i < m; i++) do
5: j1 = 2 · i · k
6: j2 = j1 + k − 1
7: S = Ψrev[m+ i]
8: for (j = j1; j ≤ j2; j++) do
9: U = a[j]

10: V = a[j + k] · S
11: a[j] = U + V mod q
12: a[j + k] = U − V mod q
13: end for
14: end for
15: end for
16: return a

Algorithm 2 Function INTT based on the Gentleman-Sade (GS) butterfly.

Input: A vector a = (a[0], a[1], ..., a[n − 1]) ∈ Zn
q in bit-reversed ordering, where q is a prime such that

q ≡ 1 mod 2n and n is a power of two, and a precomputed table Ψ−1
rev ∈ Zn

q storing powers of ψ−1 in bit-
reversed order.
Output: a← INTT(a) in standard ordering.

1: k = 1
2: for (m = n; m > 1; m = m/2) do
3: j1 = 0
4: h = m/2
5: for (i = 0; i < h; i++) do
6: j2 = j1 + k − 1
7: S = Ψ−1

rev[h+ i]
8: for (j = j1; j ≤ j2; j++) do
9: U = a[j]

10: V = a[j + k]
11: a[j] = U + V mod q
12: a[j + k] = (U − V ) · S mod q
13: end for
14: j1 = j1 + 2k
15: end for
16: k = 2k
17: end for
18: for (j = 0; j < n; j++) do
19: a[j] = a[j] · n−1 mod q
20: end for
21: return a

and relatively small moduli q, which means that moduli satisfying the congruence have the
form q = k · 2m + 1, where 2n | 2m and k ≥ 3 is a very small integer.
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Modular reduction. In this section, we introduce a new modular reduction method for
moduli of this special shape. We note that it works similarly for any modulus of the form
k · 2m ± l, where k and l are small positive integers such that k ≥ 3 and l ≥ 1. However, for
ease of exposition and to focus on the case most relevant in the context of the NTT, we only
treat the case q = k · 2m + 1.

Let 0 ≤ a, b < q be two integers modulo q and let C = a · b be their integer product.
Then 0 ≤ C < q2 = k222m + k2m+1 + 1. The goal is to reduce C modulo q using the special
shape of q, namely using the fact that k2m ≡ −1 (mod q). Write C = C0 + 2mC1, where
0 ≤ C0 < 2m. Then 0 ≤ C1 = (C − C0)/2

m < k22m + 2k + 1/2m = kq + k + 1/2m. We
have that kC ≡ kC0 − C1 (mod q), and given the above bounds for C0 and C1, it follows
that the integer kC0 − C1 has absolute value bounded by |kC0 − C1| < (k + 1/2m)q. As
k is a small integer, the value kC0 − C1 can be brought into the range [0, q) by adding or
subtracting a small multiple of q. The maximal value for C is (q− 1)2 = k222m, in which case
C0 = 0 and C1 = k22m = k(q− 1), meaning that (k− 1)q must be added to kC0−C1 to fully
reduce the result. In our application to the NTT, however, we do not intend to perform this
final reduction into [0, q) throughout the computation, but rather only at the very end of the
algorithm. We are therefore content with the output of the function K-RED defined as follows:

function K-RED(C)
C0 ← C mod 2m

C1 ← C/2m

return kC0 − C1

end function

The function K-RED can take any integer C as input. It then returns an integer D such that
D ≡ kC (mod q) and |D| < q + |C|/2m. Although this function alone does not properly
reduce the value C modulo q, we still call it a reduction because it brings D close to the
desired range; note that for |C| > (2m/(2m − 1))q, we have |D| < |K-RED(C)|, i.e. it reduces
the size of C. As a specific example, take q = 12289 = 3 · 212 + 1. Then k = 3 and K-RED
returns 3C0 − C1 ≡ 3C (mod q) using the equivalence 3 · 212 ≡ −1 (mod q).

In the context of a specific, longer computation, and depending on the parameter n and
the target platform, we note that additional reductions might need to be applied to a limited
number of intermediate values, for which overflow may occur. In this case, as an optimization,
two successive reductions can be merged as follows. Let the input operand C be decomposed
as C = C0 +C1 · 2m +C22

2m with 0 ≤ C0, C1 < 2m. Then we can reduce C via the following
function K-RED-2x.

function K-RED-2x(C)
C0 ← C mod 2m

C1 ← C/2m mod 2m

C2 ← C/22m

return k2C0 − kC1 + C2

end function

A remark on residue classes. Note that K-RED outputs a value that is congruent to a
multiple of the input, i.e., it changes the input’s residue class modulo q. This is reminiscent
of Montgomery reduction [22]. Indeed, one way to deal with this fact is to use a system of
representatives for the residue classes, similar to the Montgomery representation. Namely,
define a system of representatives by setting ĩ = i · k−1 mod q for 0 ≤ i < q. Note that k
is coprime to q by construction. Then, modular multiplication proceeds as follows: given two
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integers x, y ∈ [0, p), let x̃ = x ·k−1 mod p and ỹ = y ·k−1 mod p. After applying the reduction
procedure to the product of x̃ and ỹ, we obtain K-RED(x̃ · ỹ) ≡ x̃ỹk ≡ xy · k−1 (mod q), which
is a representative of the product of x and y.

Speeding up the NTT. In the context of the NTT algorithm, we use a redundant repre-
sentation of integers modulo q by allowing them to grow up to 32 bits and, when necessary,
apply the reduction function K-RED to reduce the sizes of coefficients. We keep track of the
factors of k that are implicitly multiplied to the result by an invocation of K-RED. For the
sake of illustration, consider Algorithm 1. The main idea is to apply the function K-RED only
after multiplications, i.e., one reduction per iteration in the inner loop, letting intermediate
coefficient values grow such that the final coefficient values become congruent to K ·a[·] mod q
for a fixed factor K. This factor can then be used at the end of the NTT-based polynomial
multiplication to correct the result to the desired value.

Next, we specify the details of the method for n ∈ {256, 512, 1024} for the prime q = 12289.
We limit the analysis to platforms with native 32 (or higher)-bit multipliers, but note that
the presented algorithms can be easily modified to cover other settings.

The case q = 12289. The modified NTT algorithms using K-RED and K-RED-2x are shown
in Algorithm 3 and Algorithm 4 for the modulus q = 12289, which in practice is used with
n = 512 (for BLISS signatures [9]) or 1024 (for key exchange [2]). In Step 7 of both algorithms,
we are using the precomputed values scaled by k−1, i.e. we use precomputed tables Ψrev,k−1 [·] =

k−1 · Ψrev[·] and Ψ−1
rev,k−1 [·] = k−1 · Ψ−1rev[·]. We denote these modified algorithms by NTTK :=

NTTK
CT,ψrev,k−1

and INTTK := INTTK
GS,Ψ−1

rev,k−1
, respectively.

Given two input vectors a and b, let c = INTT(NTT(a) ◦ NTT(b)) be computed using Algo-
rithms 1 and 2. It is easy to see that the resulting coefficients after applying Algorithms 3
and 4, i.e., after computing INTTK(NTTK(a) ◦ NTTK(b)), are congruent to K · c[·] modulo q
for a certain fixed integer K = ks and an integer s. Note that by scaling the precomputed
twiddle factors by k−1 mod q, we can limit the growth of the power of k introduced by the
reduction steps. For example in Line 10 of Algorithm 3 the value S carries a factor k−1 which
then cancels with the factor k introduced by K-RED in Step 15. Only additional reductions
such as those in Steps 12 and 13 increase the power of k in the final result.

At the end of the computation, the final results can be converted back to the standard
representation by multiplying with the inverse of the factor K. Moreover, this conversion can
be obtained for free if the computation is merged with the scaling by n−1 during the inverse
transformation, that is, if scaling is performed by multiplying the resulting vector with the
value n−1 ·K−1. However, we can do even better: by merging the second entry of the table
Ψrev,k−1 with the fixed value n−1 ·K−1, we eliminate an additional n/2 multiplications and
modular reductions. This is shown in Steps 24–29 of Algorithm 4.

4 Case Study: R-LWE Key Exchange

This section explains how we apply our new modular reduction and the improved NTT
algorithms, together with a simplified message encoding, to the instantiation of Peikert’s
key exchange [24] that was proposed by Alkim, Ducas, Pöppelmann and Schwabe in [2]; the
protocol is depicted in Figure 1. Accordingly, from hereon we fix n = 1024 and q = 12289
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Algorithm 3 Modified function NTTK using K-RED and K-RED-2x for reduction modulo q =
12289 (32 or 64-bit platform).

Input: A vector a = (a[0], a[1], ..., a[n − 1]) ∈ Zn
q in standard ordering, where q = 12289 and n ∈

{256, 512, 1024}, and a precomputed table Ψrev,k−1 ∈ Zn
q storing scaled powers of ψ in bit-reversed order.

Output: a← NTTK(a) in bit-reversed ordering.

1: k = n
2: for (m = 1; m < n; m = 2m) do
3: k = k/2
4: for (i = 0; i < m; i++) do
5: j1 = 2 · i · k
6: j2 = j1 + k − 1
7: S = Ψrev,k−1 [m+ i]
8: for (j = j1; j ≤ j2; j++) do
9: U = a[j]

10: V = a[j + k] · S
11: if m = 128 then
12: U = K-RED(U)
13: V = K-RED-2x(V )
14: else
15: V = K-RED(V )
16: end if
17: a[j] = U + V
18: a[j + k] = U − V
19: end for
20: end for
21: end for
22: return a

and the error distribution is defined to be the centered binomial distribution ψ12, from which
one samples by computing

∑12
i=1(bi − b′i), where the bi, b

′
i ∈ {0, 1} are uniform independent

bits. The functions HelpRec and Rec are modified instantiations of Peikert’s reconciliation
functions [24, §3] that essentially turn approximate key agreement into exact key agreement –
see [2]. The function SHAKE-128 is the extended output function (XOF) based on Keccak [4],
which is also used to derive the 256-bit shared secret key in both Alice and Bob’s final steps.
Following [2], the random value a is generated directly in the NTT domain.

Viewing Figure 1, we identify the following NTT-based computations:

Alice Bob

b← a ◦NTT(s) + NTT(e) u← a ◦NTT(s′) + NTT(e′)
v′ ← INTT (u ◦NTT(s)) v ← INTT (b ◦NTT(s′) + NTT(e′′))

The sequence of NTT and INTT operations above are used to determine the value of
K that results from our target parameters; note that q = 3 · 212 + 1 and thus k = 3. For
determining K, Alice’s and Bob’s NTT/INTT computations can be seen as two polynomial
operations: (1) the first operation begins with the computation of b on Alice’s side, who then
transmits it in the NTT domain to Bob for computing v and giving the result back in the
standard domain; and similarly (2) the second operation consists of the computation of u on
Bob’s side followed by the computation of v′ on Alice’s side.

We first point out that if we include two extra reductions at stage m = 128 and m = 32 of
the NTT and INTT algorithms, respectively, then intermediate values never grow beyond 32
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Algorithm 4 Modified function INTTK using K-RED and K-RED-2x for reduction modulo q =
12289 (32 or 64-bit platform).

Input: A vector a = (a[0], a[1], ..., a[n − 1]) ∈ Zn
q in bit-reversed ordering, where q = 12289 and n ∈

{256, 512, 1024}, a precomputed table Ψ−1
rev,k−1 ∈ Zn

q storing scaled powers of ψ−1 in bit-reversed order, and

the constants n−1
K = n−1 · k−11, Ψ−1

K = n−1 · k−10 · Ψ−1
rev,k−1 [1] ∈ Zq, where k = 3.

Output: a← INTTK(a) in standard ordering.

1: k = 1
2: for (m = n; m > 2; m = m/2) do
3: j1 = 0
4: h = m/2
5: for (i = 0; i < h; i++) do
6: j2 = j1 + k − 1
7: S = Ψ−1

rev,k−1 [h+ i]

8: for (j = j1; j ≤ j2; j++) do
9: U = a[j]

10: V = a[j + k]
11: a[j] = U + V
12: a[j + k] = (U − V ) · S
13: if m = 32 then
14: a[j] = K-RED(a[j])
15: a[j + k] = K-RED-2x(a[j + k])
16: else
17: a[j + k] = K-RED(a[j + k])
18: end if
19: end for
20: j1 = j1 + 2k
21: end for
22: k = 2k
23: end for
24: for (j = 0; j < k; j++) do
25: U = a[j]
26: V = a[j + k]
27: a[j] = K-RED((U + V ) · n−1

K )
28: a[j + k] = K-RED((U − V ) · Ψ−1

K )
29: end for
30: return a

bits during a full NTT or INTT computation (see steps 11–13 of Algorithm 3 and steps 13–15
of Algorithm 4). Following Section 3, the factor k introduced by every invocation of K-RED is
canceled out by the corresponding multiplication with an entry from the Ψrev,k−1 and Ψ−1

rev,k−1

tables. Hence, only the extra reductions above introduce a factor k to the intermediate results
of the NTT and INTT.

Secondly, we point out that after performing component-wise multiplications of polyno-
mials in the NTT domain, the individual factors get compounded. The results after these
multiplications require two additional reductions and a conditional subtraction per coefficient
to fully reduce them modulo q (this is required to avoid overflows and, when applicable, to
transmit messages and derive shared keys in fully reduced form). It is important to keep
track of these factors and to (i) ensure that they are balanced (i.e., the same) before, e.g.,
adding two summands that are the result of different NTT operations, and (ii) ensure that
they are corrected at the end of the computation. Careful analysis of the above sequence of
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Public parameters

n = 1024, q = 12289, error distribution ψ12

Alice (server) Bob (client)

seed
$← {0, 1}256

a← SHAKE-128(seed)

s, e
$← ψn

12 s′, e′, e′′
$← ψn

12

b← as+ e
mA=(b,seed)−→ a← SHAKE-128(seed)

u← as′ + e′

v ← bs′ + e′′

v′ ← us
mB=(u,r)←− r

$← HelpRec(v)
ν ← Rec(v′, r) ν ← Rec(v, r)

µ← SHA3-256(ν) µ← SHA3-256(ν)

Fig. 1. The instantiation of Peikert’s key exchange [24] from [2].

NTT operations reveals that the final factor is K = k10 = 310 for the two full polynomial
operations mentioned before.

Message encoding and decoding. The messages exchanged between Alice and Bob need to
be encoded efficiently to minimize encoding/decoding costs and network delays. In particular,
we want to reduce the size of the messages in order to alleviate the network overhead, which
can often be expensive. Internally, polynomials are encoded as 1024-element little-endian
arrays, where each element or coefficient is represented either by a 32-bit signed integer
(for secret keys and error polynomials) or a 32-bit unsigned integer (for everything else).
Each coefficient that is part of a message is fully reduced modulo q before transmission and
therefore only uses a fraction of the integer size (i.e., 14 bits). We simply encode messages
in little endian format as a concatenation of these 1024 14-bit coefficients (for b and u; see
Figure 1) immediately followed by the 256-bit seed in Alice’s message and the 1024 2-bit array
r in Bob’s message. Accordingly, mA and mB consist of 1824 and 2048 bytes, respectively2.

5 Cost analysis of the new NTT and Implementation Results

In this section, we carry out a theoretical analysis of the expected performance of the proposed
reduction method inside the NTT and compare it with other efficient methods in the literature:
Harvey’s modified Shoup butterfly algorithm [13], the method by Aguilar-Melchor et al. [1],
which adapts Harvey’s variant of the Shoup butterfly for certain special-form primes, and the
method by Alkim et al. [2], which adapts Harvey’s variant of the Montgomery butterfly to
q = 12289. We then present implementation results showcasing the performance of the new
NTT algorithms and, in particular, benchmark them in the context of the Ring-LWE key
exchange by Alkim et al. [2].

First, we carry out a basic operation count for the different approaches for the NTT.

2 Adam Langley also mentions a compact encoding without giving the exact details in a blog post, see
https://www.imperialviolet.org/2015/12/24/rlwe.html. We assume that the implied encoding is similar
to the method described here, but seems to differ for Bob’s message.
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5.1 Basic operation count

Let us assume an x64 CPU as the targeted platform, and the use of a 14-bit modulus. Accord-
ingly, the operations in the following analysis can be interpreted as 32 or 64-bit instructions.

A basic operation count reveals that the reduction method by Aguilar-Melchor et al. re-
quires 3 multiplications, 4 additions/subtractions, 3 shifts, and 1 conditional subtraction in
the inner loop of the NTT computation (see [1, Alg. 2]). It appears that the conditional
subtraction is implemented in variable-time in the NFLlib software that accompanies [1].
A constant-time implementation of a conditional subtraction can be implemented with 1
subtraction, 1 shift, and 3 logical and/xor operations, which brings the total to 3 multiplica-
tions, 5 additions/subtractions, 4 shifts, and 3 logical and/xor operations. Harvey’s modified
Shoup butterfly appears to have a slightly lower cost with a count of 3 multiplications, 5
additions/subtractions, 2 shifts, and 3 logical and/xor operations to perform the same com-
putation [13, Alg. 3] (also considering the same conversion for the variable-time conditional
subtraction). Alkim et al.’s approach improves the efficiency of the previous methods by re-
quiring 3 multiplications, 4 additions/subtractions, 1 shift, and 1 logical and operation. In
contrast, the method proposed here only requires 1 multiplication, 4 additions/subtractions,
2 shifts and 1 logical and operation. In some cases (e.g., for q = 12289), the technique allows
to trade 1 addition and 1 shift for 1 multiplication. Then, the cost would be 2 multiplications,
3 additions/subtractions, 1 shift and 1 logical and operation. In either case, the new method
introduces reductions in the number of multiplications and other operations in comparison
with all of the approaches above.

Next, we carry out an analysis of the proposed method on an Intel Haswell CPU. Following
the analysis above, we include Alkim et al.’s approach in our comparisons since it appears to
offer the lowest cost among the previous methods.

5.2 Analysis on a Haswell processor

We focus the analysis on the case of n = 1024 with q = 12289 and assume an Intel Haswell
processor as the targeted platform. We use notation as defined in Section 3.

As hinted above, given a prime q = k · 2m + 1, there are two ways to compute kC0 in
the function K-RED: using additions (if the value k is relatively small) or 1 multiplication. We
begin by focusing on the first option.

The main loop of Algorithm 3 consists of 1 multiplication, 1 addition and 1 subtraction
(outside of the reduction) and 1 logical and, 2 shifts, 1 subtraction and 1 addition (during
the reduction). On Haswell, the execution of these operations has a theoretical latency of
approximately 7 cycles3. With n = 1024 and assuming that the software is not unrolled (e.g.,
it is based on a compact C implementation), then we can expect a theoretical performance of
approximately 10×512×7 = 35840 cycles for computing the forward NTT. The inverse NTT
should have a slightly higher latency since it requires a scaling at the end (see Algorithm 4).

In comparison, the Montgomery-based method used in [2] requires more multiplications
which are expected to increase the computing cost on many platforms (see [2, §7.2] for details).
A similar analysis to the above yields that an inner loop using Montgomery reductions achieves
a theoretical latency of approximately 14 cycles on a Haswell processor. This translates to a

3 We assume that integer multiplications have a latency of 3 cycles [10] while other operations have one-cycle
latencies. Note that with the exception of the multiplication and one of the additions, instructions can be
paired and executed in one single cycle.
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total estimate of 10× 512× 14 = 71680 cycles for the full NTT. Thus, in theory the proposed
method provides a factor-2 speedup.

On some modern CPUs, implementers can exploit powerful SIMD instructions to gain
an extra performance boost. For example, the AVX2 instruction set permits to operate on
256-bit wide vectors. In this case a cost estimate for the NTT’s inner loop using the new
reduction method with vector integer instructions is about 10 × 512/4 × 9 = 11520 cycles
(the division by 4 is because each vector instruction is capable of operating on four 32-bit
values per instruction). It is possible to further reduce the cost by applying optimizations such
as loop unrolling, which facilitates hiding latencies arising from multiplications (sometimes
via the use of assembly). In this case, if we assume that the processor is able to hide most
latencies, the theoretical lower bound is about 10× 512/4× 5 = 6400 cycles.

In contrast, Alkim et al.’s AVX2 implementation [2] uses vector floating-point arithmetic.
They mention that, in their case, the use of these instructions provides better performance
than with the use of vector integer instructions. This complies with the expected performance
on Haswell; using Montgomery reduction requires many more multiplication instructions, and
vector floating-point multiplications have the same latency (5 cycles) than their vector integer
counterparts, but have twice the reciprocal throughput (0.5 cycles versus 1 cycle). Using
floating-point arithmetic, the Montgomery approach achieves an estimate of 10×512/4×23 =
29440 cycles. This can be reduced significantly by carrying out an aggressive unrolling and
instruction scheduling in assembly to hide most multiplication and addition latencies. A lower
bound in this case is given by 10×512/4× (5.5 + 6.5)/2 = 8320 cycles (we estimate 6.5 cycles
for iterations containing Barrett reductions and 5.5 cycles for the other case). Thus, in theory
the proposed NTT provides a 1.3x speedup over the NTT from [2]. Furthermore, we note that
even when employing floating-point arithmetic in our approach, the expected performance is
still better than that in [2]: 10× 512/4× 18 = 23040 cycles, or 10× 512/4× 5.5 = 7040 cycles
(assuming the use of unrolling and optimal instruction scheduling).

We now summarize the second option mentioned at the beginning of this section: the use
of a multiplication to compute kC0. In the case of q = 12289, one substitutes 1 multiplication
by k for 1 shift and 1 addition in the main loop of Algorithm 3. Under this assumption, the
lower bound using vector integer instructions is given by 10× 512/4× 13 = 16640 cycles, or
10× 512/4× 5 = 6400 cycles, if we assume unrolling and optimal instruction scheduling (the
same result is also achieved if we assume the use of vector floating-point arithmetic). Thus,
without considering other practical factors, the analysis suggests that this approach provides
similar performance to the case based on additions.

This analysis highlights the flexibility and the expected performance of the proposed
method, which can be accommodated to different requirements and design goals.

5.3 Performance benchmarks

To ease the comparison with the state-of-the-art NTT implementation, we followed [2] and
implemented two versions of the proposed NTT algorithms [17]: a portable and compact
implementation written in the C language, and a high-speed implementation written in x64
assembly and exploiting AVX2 instructions. Based on the analysis from the previous section,
for the AVX2 implementation we decided to use vector integer instructions, which are easier
to work with and are expected to provide similar performance to a version using vector
floating-point instructions.
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The benchmarking results of our implementations are shown at the top of Table 1. These
results were obtained by running the implementations on a 3.4GHz Intel Core i7-4770 Haswell
processor with TurboBoost disabled. For compilation we used gcc v4.9.2 for the C implemen-
tation and clang v3.6.0 for the AVX2 implementation.

As one can see, for the C version, the new forward and inverse NTT implementations
are 1.86 and 1.90 times faster than the corresponding implementations from Alkim et al. [2].
Our results confirm the cost estimates in §5.2. We achieve slightly better performance than
expected, and this is probably due to some clever rescheduling done by the compiler (or
the out-of-order processor) that hides the latency of the integer multiplier. Our prediction
of the speedup over Alkim et al.’s implementation is also precise. The small error in the
estimate might be due to Alkim et al.’s partitioning of the computation in “even” and “odd”
iterations, which could facilitate the compiler’s optimization work. The same approach could
also be applied to our implementations to gain an additional speedup.

For the AVX2 version, the new algorithms achieve factor-1.21 and 1.25 speedups in com-
parison to Alkim et al.’s results. These results closely follow the cost estimates in the analysis
from §5.2, meaning that the results are close to optimal. In this case, the extra overhead is
mainly due to the cost of the additional instructions that are required to manipulate data (this
relates to those instructions which the compiler/processor is not able to schedule perfectly).
We also checked that implementing the two versions of the reduction (i.e., using additions or
multiplying by k) achieve similar performance, as predicted by our analysis.

The faster performance of our algorithms is mainly due to the cheaper reduction technique,
which in turn eliminates all of the corrections required after the NTT’s internal additions
and enables the efficient use of signed arithmetic (this has an overall positive effect at the
protocol level as we discuss below). For example, using signed arithmetic avoids the correction
of intermediate values to positive before reductions. In addition, we eliminate the need for
the bit-reversal step by applying an efficient combination of NTT algorithms, and minimize
the cost of additional overhead by merging operations; e.g., we merge the scaling by n−1

with the twiddle factors and then absorb this computation into the last stage of the inverse
NTT (see §3). We note that the direct comparison of NTT implementations in Table 1 does
not account for the additional benefits of our technique that are not observable at the NTT
level. This includes the elimination of costly conversion routines required by the Montgomery
arithmetic (as used in [2]) that are performed outside of the NTT.

To illustrate the overall performance benefits of the new reduction and NTT algorithms,
we implemented the full key-exchange instantiation proposed by Alkim et al. [2]. To ease the
comparison, we reuse the same routines for HelpRec and Rec (for error reconciliation) available
in the software accompanying [2], and also reuse the same implementations of ChaCha20 and
SHAKE-128 used in Alkim et al.’s software for the seed expansion during the generation of a
and for the polynomial error sampling, respectively.

Our results for the key exchange are summarized in Table 1. The C and AVX2 implemen-
tations are roughly 1.40x and 1.34x faster, respectively, than the corresponding C and AVX2
implementations by Alkim et al. These improvements are due to the the new NTT algorithms
with faster reduction and the faster and compact message encodings. Part of the speedup
is also the result of avoiding costly conversions when working with Montgomery arithmetic.
In addition, using signed arithmetic makes computations more efficient because corrections
from negative to positive values are not required in several of the key exchange routines. We
remark that these performance improvements are obtained with significantly simpler integer
arithmetic.
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Table 1. Benchmarking results (in terms of 103 cycles) of our C and AVX2 implementations of the NTT and
the key-exchange instantiation proposed by Alkim et al. [2] on a 3.4GHz Intel Core i7-4770 Haswell processor
with TurboBoost disabled. Results are compared with Alkim et al.’s implementation results. At the bottom of
the table, we show the total cost of a key-exchange, including Alice’s and Bob’s computations.

C implementation AVX2 implementation

ADPS [2] This work ADPS [2] This work

NTT 55.9 30.1 11.0 9.1

INTT 60.3 31.8 12.1 9.7

Generating a 57.0 39.5 57.3 37.8

Error sampling 33.8 31.4 6.2 4.8

HelpRec 14.9 12.9 3.4 2.4

Rec 10.1 7.2 2.8 1.2

Key gen (server) 271.7 194.8 115.4 92.1

Key gen + shared key (client) 402.1 298.9 144.8 105.0

Shared key (server) 86.6 49.7 24.0 15.7

Total (key exchange) 760.4 543.4 284.2 212.8

A different Ring-LWE based kex-exchange implementation has been recently reported by
Aguilar-Melchor et al. [1]. Direct comparisons with this work are especially difficult because
they use different parameters and the most recent version of their implementation appears
not to be protected against timing and cache attacks. As a point of reference, we mention
that [1, Table2] reports that their NTT implementation using N = 512 and a 30-bit modulus
runs in 13K cycles on a 2.9GHz Intel Haswell machine (scaled from 4.5 microseconds). This
is more than 1.4x slower than our NTT using N = 1024 and a 14-bit modulus.

6 Conclusion

We describe a new modular reduction technique and improved FFT algorithms to compute
the NTT. The improved NTT algorithms were applied to a recent key exchange proposal and
showed significant improvements in performance using both a plain C implementation and a
vectorized implementation that does not require floating-point arithmetic.

Although both the modular reduction and the improved NTT were motivated by (and
are somewhat tailored towards) applications in R-LWE cryptography that use power-of-2
cyclotomic fields, our improvements should be of independent interest and might be applicable
to other scenarios. Our method offers flexibility for implementations with different design goals
without sacrificing performance.
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