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Abstract

We consider the task of secure multi-party computation of arithmetic circuits over a finite field.
Unlike Boolean circuits, arithmetic circuits allow natural computations on integers to be expressed
easily and efficiently. In the strongest setting of malicious security with a dishonest majority —
where any number of parties may deviate arbitrarily from the protocol — most existing protocols
require expensive public-key cryptography for each multiplication in the preprocessing stage of the
protocol, which leads to a high total cost.

We present a new protocol that overcomes this limitation by using oblivious transfer to perform
secure multiplications in general finite fields with reduced communication and computation. Our
protocol is based on an arithmetic view of oblivious transfer, with careful consistency checks and
other techniques to obtain malicious security at a cost of less than 6 times that of semi-honest
security. We describe a highly optimized implementation together with experimental results for
up to five parties. By making extensive use of parallelism and SSE instructions, we improve upon
previous runtimes for MPC over arithmetic circuits by more than 200 times.

Keywords: Multi-party computation, oblivious transfer

1 Introduction

Secure multi-party computation (MPC) allows a set of parties to jointly compute a function on their
private inputs, learning only the output of the function. In the last decade, MPC has rapidly moved
from purely theoretical study to an object of practical interest, with a growing interest in practical
applications, and many implementations now capable of handling complex computations [25, 26].

Most MPC protocols either perform secure computation of Boolean circuits, or arithmetic cir-
cuits over a finite ring or field such as Fp, for some prime p. Historically, the Boolean circuit
approach has led to fast protocols that mostly need only symmetric cryptography, such as two-
party protocols based on Yao’s garbled circuits [37], or protocols based on fast oblivious transfer
techniques [27, 32]. In contrast, protocols for arithmetic circuits are typically based on more ex-
pensive, public-key technology (except for special cases when a majority of the parties are honest).

Despite the need for expensive techniques, secret-sharing-based MPC protocols for arithmetic
circuits have the key advantage that secure addition requires no communication and essentially
come ‘for free’, whereas with current Boolean circuit-based 2-PC, the only ‘free’ operation is XOR.
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The following motivating examples further highlight the practical applicability of integer-based
secure computation, compared with Boolean circuits:

- Bogdanov et al. [7, 8] describe using MPC to perform secure statistical analysis of income tax
records for the Estonian government. The latter work analyzed a large database with over
600000 students and 10 million tax records. The kinds of computations involved were very
simple statistics, but made heavy use of the fact that secure additions are non-interactive.

- In [12], an application of MPC to confidential benchmarking was presented, allowing banks to
jointly evaluate customers’ risks whilst retaining privacy for the customers’ data. They used
secure linear programming, which is a highly complex task in MPC, requiring either secure
floating point arithmetic or very large integer arithmetic (to emulate real numbers without
overflow), both of which would be impractical using Boolean circuits.

- MPC has been suggested as a tool for helping prevent collisions between satellites, by securely
performing collision detection using sensitive location and trajectory data. Kamm et al. [23]
showed how to implement the relevant conjunction analysis algorithms in MPC with a protocol
based on secret-sharing. This also requires secure floating point operations.

Unfortunately, all of the above case studies are somewhat limited, in either the security proper-
ties obtained, or the efficiency. The first and third examples above used the Sharemind system [1],
which is restricted to semi-honest security with three parties, where at most one is corrupt. The
second example used the SPDZ MPC protocol [15], which has security against any number of mali-
ciously corrupted parties, but is much slower. They report a fairly quick evaluation time of around
20–30 s with a prototype implementation, but this does not include the costly ‘preprocessing’ stage
required in SPDZ, which would likely take several hours.

We conclude that although these applications are practical, the MPC protocols used still fall
short: in many real-world applications, semi-honest adversaries and an honest majority are not
realistic assumptions, and MPC may not be cost-effective if it requires several hours of heavy
computation.

Furthermore, it is the case that all known practical protocols for MPC with integer operations
either require an honest majority, or expensive public-key techniques for every multiplication in the
circuit. For example, the SPDZ protocol [14, 15] mentioned above uses a somewhat homomorphic
encryption scheme to perform secure multiplications, whilst the BDOZ protocol [5] uses additively
homomorphic encryption, and both of these require expensive zero-knowledge proofs or cut-and-
choose techniques to achieve security against malicious adversaries.

These protocols mitigate this cost to an extent by restricting the expensive computation to a
preprocessing phase, which is independent of the inputs and can be done in advance. Although
this is highly effective for reducing the latency of the secure computation — as the online phase
is indeed very efficient — the total cost of these protocols can still be thousands of times greater
than the online phase, which may render them ineffective for many applications.

Frederiksen et al. [17] recently showed how to efficiently use oblivious transfer to generate
multiplication triples — the main task of the SPDZ preprocessing — in binary fields, and estimated
much improved performance, compared with previous methods. However, this does not give the
benefits of general arithmetic circuits that allow integer operations.
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1.1 Our contributions

In this paper, we present MASCOT: a new MPC protocol designed to overcome the above limi-
tations of the preprocessing phase, allowing for efficient, secure computation of general arithmetic
circuits using almost exclusively fast, symmetric cryptography.

Protocol Field Comms. (kbit) Throughput, n = 2 (/s)

SPDZ (active)
Fp, 128-bit 215n(n− 1) 23.5
F240 2272n(n− 1) 3.68

SPDZ (covert, Fp, 128-bit 66n(n− 1) 204
pr. 1/10) F240 844n(n− 1) 31.9

Ours (active)
Fp, 128-bit 180n(n− 1) 4842
F2128 180n(n− 1) 4827

Table 1: Comparing the cost of n-party secure multiplication in our OT-based protocol with pre-
vious implementations of SPDZ [13, 14].

Arithmetic-circuit MPC from OT. We present the first practical protocol for secure multi-
party computation of arithmetic circuits based on oblivious transfer (OT), in the dishonest majority
setting. We achieve this by taking an “arithmetic” view of OT, which allows us to generalize the
preprocessing protocol by Frederiksen et al. [17] to create multiplication triples in any (sufficiently
large) finite field, instead of just binary fields. We achieve security against malicious adversaries
using simple consistency checking and privacy amplification techniques, with the result that our
maliciously secure protocol is only 6 times less efficient than a semi-honest version of the protocol.
Moreover, our protocol can be based entirely on symmetric primitives, after a one-time setup phase,
by using efficient OT extensions [22, 24].

Implementation. A key advantage of our approach to triple generation is that we obtain a
streamlined protocol, which is highly amenable to a parallelized and pipelined implementation that
interleaves computation and communication. Table 1 highlights this: the time for a single secure
multiplication in a prime field is 200 times faster than the previous best actively secure implemen-
tation based on somewhat homomorphic encryption [14], in spite of a fairly small improvement
in communication cost. Compared with a covertly secure implementation 1 using SHE [14], our
actively secure protocol requires slightly more communication, but still runs over 20 times faster.
In binary fields, where SHE is much less suited, the improvement is over 1000 times, compared to
previous figures [13]. Note that the online phase of our protocol is identical to that of SPDZ, which
has been previously reported to achieve very practical performance for a range of applications [25].

Our optimized implementation utilizes over 80% of the network’s capacity, whereas the previ-
ous schemes based on SHE are so computation-intensive that the network cannot come close to
capacity. We also describe new techniques for reducing the cost of OT extension using consumer
hardware instructions, namely efficient matrix transposition using SSE instead of Eklundh’s al-
gorithm, and hashing using the Matyas–Meyer–Oseas construction from any block cipher, which

1For F240 in SPDZ with covert security, we could not find precise figures so the throughput in Table 1 is estimated
based on other results.
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allows hashing 128-bit messages with AES-NI whilst avoiding a re-key for every hash. With all of
these optimizations, our protocol outperforms previous protocols by 2–3 orders of magnitude.

More general assumptions. On a theoretical level, we also improve upon previous works by
allowing a much wider variety of cryptographic assumptions, since we only require a secure OT
protocol, which can be built from DDH, quadratic residuosity or lattices [33]. In contrast, security
of the SHE scheme used in SPDZ is based on the ring learning with errors assumption, which is
still relatively poorly understood — it is possible that new attacks could surface that render the
protocol totally impractical for secure parameters. So as well as increasing efficiency, we obtain
much greater confidence in the security of our protocol, and it seems more likely to withstand the
test of time.

Improvements over Frederiksen et al. As well as a more general protocol, we obtain several
advantages compared with the previous method for MPC in binary fields [17]. We describe an
optimized sacrifice procedure for checking correctness of triples, and a new, simpler security analysis,
which put together, reduce communication costs by one third. Also, we present a complete MPC
protocol, rather than just the method for triple generation; this leads to some technical challenges
for verifying correctness of the method for secret-sharing parties’ inputs, which was left open in [17].
We resolve this with an additional consistency check, requiring some careful analysis in the security
proof.

1.2 Related work

Aside from the works already mentioned, many other secure computation protocols use oblivious
transfer. Protocols based on GMW [2, 19] and TinyOT [9, 27, 32] use OT extensions for efficient
MPC on binary circuits, and fast garbled circuit protocols use OT extensions in the input stage
of the protocol [28]. Pinkas et al. [34, 35] used OT extensions to achieve a very efficient and
scalable protocol for the dedicated application of private set intersection. We also note that in 1999,
Gilboa used OT for secret-shared multiplication in semi-honest two-party RSA key generation [18],
similarly to our high-level approach.

Comparison with recent works. Recently, two independent works have appeared that also
consider generating multiplication triples in SPDZ. Baum et al. [3] described improvements to
the ‘sacrifice’ step and the zero-knowledge proofs used with somewhat homomorphic encryption.
Their sacrifice technique requires generating triples that form codewords, which does not seem
straightforward with our protocol. Their zero-knowledge proofs improve upon the method by
Damg̊ard et al. [14] by roughly a factor of two, but our protocol still performs much faster.

Damg̊ard et al. [16] consider building secure multiplication for MPC in large (e.g. 512 or more
bits) finite fields out of multiplication for small fields. Their techniques are complementary to ours:
our OT-based protocol can be used to perform the small field multiplications in their protocol,
thus obtaining more efficient multiplication in large fields (and avoiding the quadratic scaling of
our protocol in the field size).
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2 Preliminaries

In this section, we describe the security model, introduce some important notation, define the
oblivious transfer primitive, and give a basic overview of the SPDZ protocol.

Security model. We prove our security statements in the universal composition (UC) frame-
work of Canetti [10]. Our protocols assume n parties from the set P = {P1, . . . , Pn}, and we
consider security against malicious, static adversaries, i.e. corruption may only take place before
the protocols start, corrupting up to n− 1 of n parties. We let λ and κ denote the computational
and statistical security parameters, respectively, and use the standard notions of negligible and
overwhelming probability with respect to a security parameter.

Notation. The protocols we present in this paper work in both Fp, for prime p = 2k+µ, and F2k ,
we require some new notation to unify the two finite fields. First note that if k ≥ κ, for statistical
security parameter κ, and µ ∈ poly(k) then with overwhelming probability a random element of
Fp can be represented with k bits in {0, 1}, and likewise for any element of F2k . Let F denote the
finite field, which will be either Fp or F2k , and write F2k

∼= F2[X]/f(X) for some monic, irreducible
polynomial f(X) of degree k. We use lower case letters to denote finite field elements and bold
lower case letters for vectors in F, for any finite field F. If x,y are vectors over F, then x∗y denotes
the component-wise products of the vectors. We denote by a $← A the uniform sampling of a from
a set A, and by [d] the set of integers {1, . . . , d}.

Following notation often used in lattice-based cryptography, define the ‘gadget’ vector g con-
sisting of the powers of two (in Fp) or powers of X (in F2k), so that

g = (1, g, g2, . . . , gk−1) ∈ Fk,

where g = 2 in Fp and g = X in F2k . Let g−1 : F → {0, 1}k be the ‘bit decomposition’ function
that maps x ∈ F to a bit vector xB = g−1(x) ∈ {0, 1}k, such that xB can be mapped back to F by
taking the inner product 〈g,g−1(x)〉 = x. These basic tools allow us to easily switch between field
elements and vectors of bits whilst remaining independent of the underlying finite field.

Oblivious Transfer. Oblivious transfer (OT) is a protocol between a sender and a receiver,
where the sender transmits one of several messages to the receiver, whilst remaining oblivious to
which message was sent. All known constructions of OT require public-key cryptography, but in
2003, Ishai et al. [22] introduced the concept of OT extensions, where cheap, symmetric primitives
(often available in consumer hardware) are used to produce many OTs from only a few.

Recently, Keller et al. [24] presented a simple consistency check that allows maliciously secure
OT extension at essentially no extra cost: the cost for a single OT on random strings is almost
that of computing two hash function evaluations and sending one string.

The ideal functionality for a single 1-out-of-2 oblivious transfer on k-bit strings is specified as
follows, along with the random OT variant, where the sender’s messages are sampled at random:

F1,k
OT : ((s0, s1), b) 7→ (⊥, sb)

F1,k
ROT : (⊥, b) 7→ ((r0, r1), rb),

where r0, r1
$← {0, 1}k, and b ∈ {0, 1} is the receiver’s input. We use the notation Fm,kOT ,Fm,kROT to

denote m sets of oblivious transfers on k-bit strings.
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2.1 The SPDZ Protocol

The online phase of SPDZ [14, 15] uses additive secret sharing over a finite field, combined with
information-theoretic MACs to ensure active security. A secret value x ∈ F is represented by

JxK = (x(1), . . . , x(n),m(1), . . . ,m(n),∆(1), . . . ,∆(n)),

where each party Pi holds the random share x(i), the random MAC share m(i) and the fixed MAC
key share ∆(i), such that the MAC relation m = x ·∆ holds, for

x =
∑
i

x(i), m =
∑
i

m(i), ∆ =
∑
i

∆(i)

over F.
When opening a shared value JxK, parties first broadcast their shares x(i), and then run the

MAC checking protocol, ΠMACCheck, in Protocol 2, which verifies the MAC relation whilst keeping
the global MAC key ∆ secret, ensuring that values cannot be opened incorrectly except by guessing
the key ∆.

The main task of the SPDZ preprocessing phase is to produce the following types of random,
authenticated shared values:

Input Pi: (JrK, i) a random, shared value r, such that only party Pi knows the value r.

Triple: (JaK, JbK, JcK) for uniformly random a, b, with c = a · b.

In the online phase, parties interact and use the Input values to create shared representations of
their private inputs, and the Triple values to perform multiplications on secret-shared values. Note
that since the J·K representation is linear, additions and linear functions can be computed locally.

3 Arithmetic correlated oblivious transfer (or Correlated oblivi-
ous product evaluation (COPE))

In this section we describe an arithmetic generalization of the passively secure OT extension of
Ishai et al. [22], which we call correlated oblivious product evaluation (COPE). This allows two
parties to obtain an additive sharing of the product x · ∆, where one party holds x ∈ F and the
other party holds ∆ ∈ F. The correlation, ∆, is fixed at the start of the protocol, and then future
iterations create sharings for different values of x.

Oblivious product evaluation. The key mechanism behind our protocol ΠCOPEe (Protocol 1)
is a general method for (possibly non-correlated) oblivious product evaluation, which is illustrated
for Fp in Fig. 1, and also used in our triple generation protocol later. The two parties run k sets

of OTs on k-bit strings, where in each OT the sender, PS , inputs a random value ti
$← F and the

correlated value ti+a, where a ∈ F is the sender’s input. The receiver inputs the bit decomposition
of their input, (b1, . . . , bk) ∈ {0, 1}k, and receives back either ti or ti + a, depending on the bit bi.
Since the sender’s correlation is computed over F, we have the relation

qi = ti + bi · a,
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Figure 1: Two-party secret-shared multiplication in Fp using 1-out-of-2 OT

where qi is the receiver’s output in the i-th OT. Now both parties simply compute the inner product
of their values (qi)i, (−ti)i with the gadget vector g to obtain values q and t which form an additive
sharing of the product of the inputs, so that

q + t = a · b ∈ F.

Correlated OPE. To obtain COPE, where one party’s input is fixed for many protocol runs,
we only need to perform the k OTs once, where the receiver, PB, inputs their bits of ∆ ∈ F and
the sender, PA, inputs k pairs of random λ-bit seeds (recall that λ is the computational security
parameter and k = blog |F|c). This is the Initialize phase of the protocol.

After initialization, on each Extend call the parties expand the original seeds to create k bits
of fresh random OTs, with the same receiver’s choice bits ∆B. Party PA now creates a correlation
between the two sets of PRG outputs (steps 1–2) using their input, x. The masked correlation
is sent to PB, who uses this to adjust their PRG output accordingly; now both parties have k
correlated OTs on field elements. These are then mapped into a single field element by taking the
inner product of their outputs with the gadget vector g to obtain an additive sharing of the product
x ·∆ over F in steps 5–7.

Malicious behavior. Now consider what happens in ΠCOPEe if the parties do not follow the
protocol. Party PB fixes their input ∆ at the start of the protocol, and sends no more messages
thereafter, so cannot possibly cheat. On the other hand, PA may use different values of x in each
ui that is sent in step 2 of Extend. Suppose a corrupt PA uses xi to compute ui, for i ∈ [k], then
in step 4 we will instead have

q = t + x ∗∆B,

where x = (x1, . . . , xk). We do not prevent this in our protocol, but instead model this behavior in
the functionality FCOPEe (Fig. 2). When we use FCOPEe in our authentication protocol, the main
challenge is to ensure that any cheating here can be easily and securely detected by all parties.

The proof of security for our protocol, showing that it securely implements FCOPEe in the FOT-
hybrid model, is straightforward, since any deviations by an adversary in the protocol directly
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Protocol 1 The protocol ΠCOPEe: Oblivious correlated product evaluation with errors over the
finite field F.
The protocol uses an arbitrary output length PRG G : {0, 1}λ → {0, 1}∗. Note that after
initialization, Extend may be called multiple times.

Initialize: This initializes the finite field F and PA’s correlation, ∆.
1: PA samples k pairs of seeds, {(ki0,ki1)}ki=1, each in {0, 1}λ.
2: PB inputs ∆ ∈ F, let ∆B = (∆0, . . . ,∆k−1) ∈ {0, 1}k ⊂ Fk.
3: Both parties call Fk,λOT with inputs {ki0,ki1}i∈[k] and ∆B.
4: PB receives ki∆i

for i ∈ [k].
Extend: On input x ∈ F from PA:

1: Expand ki0 and ki1 using the PRG in a stateful way, that is, G(ki0) creates fresh randomness
in every call. Obtain

ti0 = G(ki0) ∈ F and ti1 = G(ki1) ∈ F, i ∈ [k].

so PA knows (ti0, t
i
1) and PB knows ti∆i

for i = 1, . . . , k.
2: PA computes ui = ti0 − ti1 + x ∈ F. for i = 1, . . . , k and sends these to PB.
3: PB computes

qi = ∆i · ui + ti∆i

= ti0 + ∆i · x ∈ F

for i = 1, . . . , k.
4: Let q = (q1, . . . , qk) and t = (t10, . . . , t

k
0). Note that

q = t + x ·∆B ∈ Fk.

5: PB sets q = 〈g,q〉.
6: PA sets t = −〈g, t〉.
7: Now it holds that t+ q = x ·∆ ∈ F.

correspond to errors introduced in the functionality, and the receiver’s input x is computationally
hidden by the output of the PRG when the receiver sends the ui values. We therefore omit the
precise details of the simulation, noting that it is essentially the same of that given by Nielsen [31].

Complexity. The cost of a single iteration of our COPE protocol, after the base OTs in initial-
ization, is just that of sending k field elements, for a total of k2 bits.

4 Authenticating and opening additive shares

In this section we show how to create authenticated SPDZ shares using COPE and securely open
linear combinations of these shares with a MAC checking procedure. The main challenge is to ensure
that an adversary who inputs errors in our COPE protocol cannot later open an authenticated share
to the incorrect value. We model these requirements in a single functionality, FJ·K (Fig. 3), which is
independent of the details of the MAC scheme used and the underlying MAC keys; this leads to a
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Functionality FCOPEe

The functionality uses a finite field F, of bit length k, and runs with with parties PA, PB and an adversary
S.

Initialize(F): Upon receiving ∆ ∈ F from PB , the functionality stores ∆.

Extend: Upon receiving x ∈ F from PA:

1: Sample t $← F.
2: If PA is corrupt then receive vectors x ∈ Fk from A and compute q, such that

q + t = 〈x,∆B〉

Otherwise, compute q such that
q + t = x ·∆

3: If PB is corrupt then receive q ∈ F from A and recompute t to satisfy the above. Output t to
PA and q to PB .

Figure 2: Correlated oblivious product evaluation with errors

Functionality FJ·K

The functionality maintains a dictionary, Val, to keep track of the authenticated values. Entries of Val
lie in the (fixed) finite field F and cannot be changed, for simplicity. FJ·K also maintains the sets Open
and Cheat to record all openings and those where the adversary tried to cheat.

Input: On receiving (Input, id1, . . . , idm, x1, . . . , xm, Pj) from party Pj and (Input, id1, . . . , idm, Pj) from
all other parties, where x ∈ F, set Val[idi]← xi for i = 1, . . . ,m.

Linear comb.: On receiving (LinComb, id, id1, . . . , idt, c1, . . . , ct, c) from all parties, where
(id1, . . . , idt) ⊆ Val.keys() and the combination coefficients c1, . . . , ct, c ∈ F, set
Val[id]←

∑t
i=1 Val[idi] · ci + c.

Open: On receiving (Open, id) from all parties, where id ∈ Val.keys(), send Val[id], wait for x from the
adversary, and output x to all parties.

Check: On receiving (Check, id1, . . . , idt, x1, . . . , xt) from every party Pi, wait for an input from the
adversary. If it inputs OK, and Val[idj ] = xj for all j, return OK to all parties, otherwise return
⊥ and terminate.

Abort: On receiving Abort from the adversary, send ⊥ to all parties and terminate.

Figure 3: Functionality for authenticating, computing linear combinations of, and opening addi-
tively shared values

clearer exposition and greatly simplifies higher level protocols that use the functionality, compared
with previous works. We first explain the mechanics of the functionality, and then describe the
protocols for implementing it.

Inputs are provided to the functionality with the Input command, which takes as input a value
x from one party and stores it along with an identifier, id. Linear functions can be computed on
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Protocol 2 MAC checking subprotocol

On input an opened value y, a MAC share m(i) and a MAC key share ∆(i) from party Pi, each Pi
does the following:

1: Compute σ(i) ← m(i) − y ·∆(i) and call FComm to commit to this and receive the handle τi.
2: Call FComm with (Open, τi) to open the commitments.
3: If σ(1) + · · ·+ σ(n) 6= 0, output ⊥ and abort, otherwise continue.

values that have been input using the LinComb command.
The Open command lets the adversary output inconsistent or incorrect values. However, if this

happened to honest parties, the Check command will reveal this.

4.1 Authentication using COPE

Using the correlated oblivious product evaluation protocol, one party holding a share x(i) can
authenticate x(i) under another party’s secret MAC key, ∆(j). When every party has an additive
share of x, this protocol can be run between every pair of parties to authenticate each share; if
party Pi uses the same MAC key ∆(i) in every instance then the resulting pairwise MACs can be
added together to create shares of a single SPDZ MAC on the additively shared value, x.

In more detail: first, each party Pi samples a random share, ∆(i), of the global MAC key. Now
suppose we wish to authenticate an additively shared value x ∈ F, so each party holds a share
x(i). A natural approach would then be to run an instance of FCOPEe between every pair of parties
(Pi, Pj): Pj inputs ∆(j) as their correlation into FCOPEe.Initialize, and then they call FCOPEe.Extend
where Pi inputs x(i). Let t(i,j) be the FCOPEe output received by Pi when playing with Pj , and let
q(j,i) be the output received by Pj in the same instance. If they both played honestly, then

q(j,i) + t(i,j) = x(i) ·∆(j).

After the n(n − 1) executions are done, each party Pi simply combines their results as follows to
compute the MAC share

m(i) = x(i) ·∆(i) +
∑
j 6=i

(
q(i,j) + t(i,j)

)
.

Correctness in the semi-honest case. To see that this is correct if all parties behaved honestly,
look at the sum of the MAC shares and observe that the MAC relation holds:

m =
n∑
i=1

m(i) =
n∑
i=1

x(i) ·∆(i) +
n∑
i=1

∑
j 6=i

(
q(i,j) + t(i,j)

)
=

n∑
i=1

x(i) ·∆(i) +
n∑
i=1

∑
j 6=i

(
q(j,i) + t(i,j)

)
=

n∑
i=1

x(i) ·∆(i) +
n∑
i=1

∑
j 6=i

x(i) ·∆(j)

= x ·∆.
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Protocol 3 ΠJ·K, creating J·K elements
This protocol authenticates additively shared inputs in F, and allows linear operations and opening
to be carried out on these shares. Note that the Initialize procedure only needs to be called once,
to set up the MAC keys.
Initialize: Each party Pi samples a MAC key share ∆(i) ∈ F. Each pair of parties (Pi, Pj) (for

i 6= j) calls FCOPEe.Initialize(F) where Pj inputs ∆(j).
Input: On input (Input, id1, . . . , idm, x1, . . . , xm, Pj) from Pj and (Input, id1, . . . , idm, Pj) from all

other parties:

1: Pj samples x0
$← F.

2: For h = 0, . . . ,m, Pj generates a random additive sharing
∑

i x
(i)
h = xh and sends x(i)

h to
Pi.

3: For every i 6= j, Pi and Pj call FCOPEe.Extend, where Pj inputs (x0, . . . , xm) ∈ Fm.
4: Pi receives q(i,j)

h and Pj receives t(j,i)h such that

q
(i,j)
h + t

(j,i)
h = xh ·∆(i), for h = 0, . . . ,m.

5: Each Pi, i 6= j, computes the MAC shares m(i)
h =

∑
j 6=i q

(i,j)
h , and Pj computes the MAC

shares
m

(j)
h = xh ·∆(j) +

∑
j 6=i

t
(j,i)
h

to obtain JxhK, for h = 0, . . . ,m.
6: The parties sample r← FRand(Fm+1).
7: Pj computes and broadcasts y =

∑m
h=0 rh · xh.

8: Each party Pi computes m(i) =
∑m

h=0 rh ·m
(i)
h .

9: The parties execute ΠMACCheck with y and {m(i)}i∈[n].
10: All parties store their shares and MAC shares under the handles id1, . . . , idm.

Linear comb.:
On input (LinComb, id, id1, . . . , idt, c1, . . . , ct, c), the parties retrieve their shares and MAC shares
{x(i)

j ,m(xj)(i)}j∈[t],i∈[n] corresponding to id1, . . . , idt, and each Pi computes:

y(i) =
t∑

j=1

cj · x(i)
j +

{
c i = 0
0 i 6= 0

m(y)(i) =
t∑

j=1

cj ·m(xj)(i) + c ·∆(i),

where They then store the new share and MAC of JyK under the handle id.

Active adversaries. We now examine the case of active adversaries, who may not follow the
procedure as specified. A corrupted party Pj may cheat in the above protocol in one of three
possible ways: they can use a different MAC key share ∆(i,j) in the FCOPEe.Initialize step with
party Pi and they could use non-monochrome input shares x(i,j) in the FCOPEe.Extend calls, and
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Protocol ΠJ·K (continued)
11: ΠJ·K (continued)
Open: On input (Open, id):

1: Each Pi retrieves and broadcasts their share x(i).
2: Parties reconstruct x =

∑n
i=1 x

(i)
j and output it.

Check: On input (Check, id1, . . . , idt, x1, . . . , xt), the parties do the following:
1: Sample a public, random vector r← FRand(Ft).
2: Compute y ←

∑t
j=1 rj · xj and m(y)(i) ←

∑t
j=1 rj · m

(i)
idj

, where m(i)
idj

denotes Pi’s MAC
share stored under idj for all i ∈ [n] and j ∈ [t].

3: Execute ΠMACCheck with y and m(y)(i).

these may also differ between each instance of FCOPEe. We will show that using inconsistent inputs
in different FCOPEe instances does not help the adversary, but non-monochrome vectors allow them
to open to more than one value with non-negligible probability. This is the reason for the check
at the end of the input step, which forces the adversary to decide upon a value, and allows the
simulator to extract this value in the security proof, to provide as input to FJ·K.

The sum of the honest parties’ MACs is given by∑
i/∈A

m(i) =
∑
i/∈A

x(i) ·∆(i) +
∑
i/∈A

∑
j 6=i

(
q(i,j) + t(i,j)

)
=
∑
i/∈A

x(i) ·∆(i) +
∑

j /∈A,i 6=j

x(i) ·∆(j)

+
∑
i/∈A

∑
j∈A
〈g ∗ x(i,j),∆(i)

B 〉 − t
(j,i) + x(i) ·∆(j,i) − q(j,i)

=
∑
i/∈A

x(i) ·∆(i) +
∑

j /∈A,i 6=j

x(i) ·∆(j)

+
∑
i/∈A

∑
j∈A
〈g ∗ x(i,j),∆(i)

B 〉 − t
(j,i) + x(i) ·∆(j,i) − q(j,i)

=
∑
i/∈A

(〈
g ·
∑
j /∈A

x(j) + g ∗
∑
j∈A

x(i,j),∆(i)
B

〉
+
∑
j∈A

(−t(j,i) + x(i) ·∆(j,i) − q(j,i))
)
.

Define the second summand to be Ri. If only checking the opening of this value to x, the honest
party Pi broadcasts σ(i) = m(i) − x ·∆(i). Summing up,∑

i/∈A

m(i) − x ·∆(i)

=
∑
i/∈A

(〈
g ·
∑
j /∈A

x(j) + g ∗
∑
j∈A

x(i,j) − g · x,∆(i)
B

〉
+Ri

)
=
∑
i/∈A

(〈
g ·
(∑
j /∈A

x(j) − x
)

+ g ∗
∑
j∈A

x(i,j),∆(i)
B

〉
+Ri

)
.

(1)
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The corrupted parties have to provide values {σ(i)}i∈A such that
∑

i σ
(i) = 0 for the check to pass.

Note that {Ri}i/∈A are independent of {∆(i)
B }i/∈A and known to the adversary because {x(i)}i/∈A

were revealed in the opening. The adversary therefore has to “guess” the inner product for random
{∆(i)

B }i/∈A. Clearly, success is guaranteed if x −
∑

j /∈A x
(j) =

∑
j∈A x(i,j) for all i /∈ A. This

roughly corresponds to the corrupted parties following the protocol in the sense that all deviations
cancel out when taking a global view. It is easy to see that once value has been opened, the same
value cannot be opened to another value without guessing

∑
i ∆(i), which happens with negligible

probability. However, opening a linear combination only fixes the linear combination this way but
not the summands of the linear combination. On the other hand, we will prove that opening a
random linear combination indeed fixes every summand.

Linear combinations. Since the additive secret sharing and MAC schemes are linear, performing
linear combinations on authenticated shared values is straightforward. When adding a public value
y to JxK, each party must locally adjust their MAC share for x by adding ∆(i) · y so that the
resulting MAC is correct.

Checking MACs. The Check subprotocol checks a batch of t MACs using the same procedure
as Damg̊ard et al. [14]. First a public, secure random value r ∈ Fm is sampled, and then this is
used to compute a random linear combination, y, of the inputs. The MAC on y is then checked by
having each party Pi first commit to, and then open, σ(i) ← m(y)(i) − y · ∆(i). The parties then
check that these shares sum to zero, which holds if the MAC is correct, i.e. m(y) = y ·∆.

The security of our authentication and MAC checking protocols is given formally in the following
theorem, which we prove in Appendix A.

Theorem 1. The protocol ΠJ·K securely implements FJ·K in the (FCOPEe,FComm,FRand)-hybrid
model, with statistical security parameter log |F| − 2 log log|F|.

The most intricate part of the proof is to guarantee that, once the adversary has passed the
check in the input phase, they are committed to a particular value. However, the adversary has an
edge (reflected by the 2 log log |F| subtrahend) because only a random combination of inputs can be
checked (otherwise all the inputs would be revealed). This can be seen as follows: Assume that there
is only one honest and one dishonest party. Denote by xh,g the g-th entry of the vector xh input
when authenticating the h-th value, and denote by {rh}h∈[m] the random coefficients generated
using FRand. For g 6= g′ ∈ [k], if xh,g 6= xh,g′ , there is a 1/|F| chance that

∑
rhxh,g =

∑
rhxh,g′ .

Because the check only relates to the randomly weighted sum, the adversary could therefore act
as if xh,g = xh,g′ and decide later between {xh,g}h∈[m] and {xh,g′}h∈[m]. The fact that there are
log |F|(log |F| − 1)/2 such pairs g 6= g′ explains the 2 log log |F| subtrahend in the theorem. It is
easy to see that a repeated check would suffice for security parameter log |F|.

5 Multiplication triples using oblivious transfer

In the previous section we showed how parties can compute linear functions on their private inputs
using the authentication and MAC checking protocols. We now extend this to arbitrary functions,
by showing how to create multiplication triples using FJ·K and OT.

Recall that a multiplication triple is a tuple of shared values (JaK, JbK, JcK) where a, b $← F and
c = a · b. Given FJ·K and a protocol for preprocessing triples, the online phase of the resulting MPC
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protocol is straightforward, using Beaver’s method for multiplying two secret-shared values [4]. For
completeness, this is detailed in Appendix 6.

Our protocol is designed to use FJ·K and an ideal OT functionality to securely implement the
functionality FTriple, which has all of the same features as FJ·K, with the following additional com-
mand:

FTriple: On input (Triple, ida, idb, idc) from all parties, sample two random values a, b $← F and set
(Val[ida],Val[idb],Val[idc])← (a, b, a · b).

Throughout this section, we write JxK to mean that each party holds a random, additive share
of x, and the value of x is stored in the ideal box FJ·K. We start by showing correctness of the
protocol ΠTriple (Protocol 4) for semi-honest adversaries.

Each party Pi first samples their input shares a(i) $← Fτ , b(i) $← F. Then they run τ · k sets of
random OTs on k-bit strings (Fτk,kROT), where Pi plays receiver with input a(i)

B = (a(i)
1 , . . . , a

(i)
τk) ∈ Fτk2 ,

with a(i)
B = g−1(a(i)), and Pj obtains q(j,i)

0,h , q(j,i)
1,h ∈ F, h ∈ [τk]. Then Pj sends d(j,i)

h = q
(j,i)
0,h −

q
(j,i)
1,h + b(j) ∈ F to Pi, who computes t(i,j)h = q

(j,i)
0,h + a

(i)
h · b

(j) for each h. By splitting the vectors

(t(i,j)1 , . . . , t
(i,j)
τk ) and (q(j,i)

1 , . . . , q
(j,i)
τk ) into τ vectors of k components, Pi and Pj respectively obtain

t(i,j) = (t(i,j)
1 , . . . , t(i,j)

τ ) and q(j,i) = (q(j,i)
1 , . . . ,q(j,i)

τ ). Then they apply g to each component of
these, getting

c(i)
i,j + c(j)

i,j = t(i,j) + q(j,i) = a(i) · b(j) ∈ Fτ .

After running this between every pair of parties, we have the following relation:

c =
∑
i∈[n]

c(i) =
∑
i∈[n]

a(i) · b(i) +
∑
i∈[n]

∑
j 6=i

c(i)
i,j + c(j)

i,j

=
∑
i∈[n]

a(i) · b(i) +
∑
i∈[n]

a(i) ·
∑
j 6=i

b(j)

=
∑
i∈[n]

a(i) ·
∑
i∈[n]

b(i) =
(∑
i∈[n]

a(i)
)
· b = a · b.

The parties then locally Combine together the τ components of a(i) = (a(i)
1 , . . . , a

(i)
τ ) and c(i) =

(c(i)
1 , . . . , c

(i)
τ ) using two random values r and r̂ in Fτ obtained from FRand. The outputs of this step

are a, c and â, ĉ in F such that c = a · b and ĉ = â · b. Looking ahead, this step is necessary to
achieve active security.

The parties then use FJ·K to Authenticate their shares of a, â, b, c and ĉ.
Finally, correctness of the triples JaK, JbK, JcK is checked in a Sacrifice phase, using JâK and JĉK.

The idea of this step is similar to the corresponding step in previous works [14, 15].

Active security. It is clear that an adversary can choose to not follow the protocol in several
ways, during both multiplication and authentication. Although the Sacrifice step ensures that the
final triple is still correct, this does not prevent the adversary from forcing leakage on a triple. We
prevent this in the Combine step, which ensures that the final triple is sufficiently random. To
see how this works, let us first examine the possible adversarial deviations in the Multiply step.

Suppose Pj is corrupt. Let a(j,i) ∈ Fτ and b(j,i) ∈ Fτk be the actual values used by Pj in the
two executions of steps 1 and 3 with an honest Pi, instead of a(j) and b(j). Define the values a(j)
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Protocol 4 Triple generation protocol, ΠTriple

The integer parameter τ ≥ 3 specifies the amount of random combining to perform.
Multiply:

1. Each party samples a(i) $← Fτ , b(i) $← F.
2. Every ordered pair of parties (Pi, Pj) does the following:

1: Both parties call Fτk,kROT where Pi inputs (a(i)
1 , . . . , a

(i)
τk) = g−1(a(i)) ∈ Fτk2 .

2: Pj receives q(j,i)
0,h , q

(j,i)
1,h ∈ F and Pi receives s(i,j)

h = q
(j)

a
(i)
h ,h

, for h = 1, . . . , τk.

3: Pj sends d(j,i)
h = q

(j,i)
0,h − q

(j,i)
1,h + b(j), h ∈ [τk].

4: Pi sets t(i,j)h = s
(i,j)
h + a(i) · d(j,i)

h = q
(j,i)
0,h + a

(i)
h · b

(j), for h = 1, . . . , τk. Set q(j,i)
h = q

(j,i)
0,h .

5: Split (t(i,j)1 , . . . , t
(i,j)
τk ) and (q(j,i)

1 , . . . , q
(j,i)
τk ) into τ vectors of k components each, (t1, . . . , tτ )

and (q1, . . . ,qτ ).
6: Pi sets c(i)

i,j = (〈g, t1〉, . . . , 〈g, tτ 〉) ∈ Fτ .

7: Pj sets c(j)
i,j = −(〈g,q1〉, . . . , 〈g,qτ 〉) ∈ Fτ .

8: Now we have
c(i)
i,j + c(j)

i,j = a(i) · b(j) ∈ Fτ

3. Each party Pi computes:
c(i) = a(i) · b(i) +

∑
j 6=i

(c(i)
i,j + c(i)

j,i )

Combine:
1: Sample r, r̂← FRand(Fτ ).
2: Each party Pi sets

a(i) = 〈a(i), r〉, c(i) = 〈c(i), r〉 and

â(i) = 〈a(i), r̂〉, ĉ(i) = 〈c(i), r̂〉

Authenticate: Each party Pi runs FJ·K.Input on their shares to obtain authenticated shares
JaK, JbK, JcK, JâK, JĉK.

Sacrifice: Check correctness of the triple (JaK, JbK, JcK) by sacrificing JâK, JĉK.
1: Sample s← FRand(F).
2: Call FJ·K.Open on input s · JaK− JâK to obtain ρ.
3: Call FJ·K.LinComb to store s · JcK− JĉK− JbK · ρ under JσK.
4: Run FJ·K.Check(JρK, JσK, ρ, 0) and abort if FJ·K aborts.

Output: (JaK, JbK, JcK) as a valid triple.

and b(j) to be those values used in the instance with an arbitrary (e.g. lowest index) honest party
Pi0 .

Then, for each i 6∈ A, let δ
(j,i)
a = a(j,i) − a(j) ∈ Fτ and δ

(j,i)
b = b(j,i) − (b(j), . . . , b(j)) ∈ Fτk be

the deviation in Pj ’s input with an honest Pi. Let δ
(i)
a =

∑
j∈A δ

(j,i)
a and δ

(i)
b =

∑
j∈A δ

(j,i)
b , and

consider δ
(i)
b as a length τ vector with components in Fk (similarly to th,qh in the protocol).

Now by analyzing the possible adversarial deviations and summing up shares, we can see that
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the h-th component of c (for h ∈ [τ ]), at the end of the Multiply stage, is

c[h] = a[h] · b+
∑
i 6∈A
〈(a(i)[h])B, δ

(i)
b [h]〉︸ ︷︷ ︸

=eah

+
∑
i 6∈A

b(i) · δ(i)
a [h]︸ ︷︷ ︸

=ebh

. (2)

Intuitively, it is easy to see that any non-zero δ
(i)
a errors will be blown up by the random honest

party’s share b(i), so should result in an incorrect triple with high probability. On the other hand,
the δ

(i)
b errors can be chosen so that eah only depends on single bits of the shares a(i). This means

that a corrupt party can attempt to guess a few bits (or linear combinations of bits) of a(i). If this
guess is incorrect then the resulting triple should be incorrect; however, if all guesses succeed then
the triple is correct and the sacrifice step will pass, whilst the adversary learns the bits that were
guessed.

This potential leakage (or selective failure attack) is the reason for initially using a vector for
the a(i) shares, rather than just one field element. The Combine step then randomly reduces
a(i) down to two field elements. The intuition here is that, to be able to guess a single bit of the
final shares a(i), â(i), the adversary must have guessed many bits from the input vector, which is
very unlikely to happen. To prove this intuition, we analyze the distribution of the honest party’s
output shares using the Leftover Hash Lemma, and show that with suitable parameter choices, the
combined output is statistically close to uniform to the adversary.

Finally, after authentication, the Sacrifice stage uses JâK and JĉK to verify correctness of the
output triple. In previous works [14, 15], a whole triple is wasted to check one other; however, we
observe that by using two triples with the same b component, we can save the cost of authenticating
one field element in this step. Note that we also save performing an additional multiplication, as
we use the original triple (a, b, c) to produce both triples for sacrificing, by combining with two
different random seeds.

The following results (proven in Appendix B) state the security of our protocol. The first
requires the combining parameter set to τ = 4, to obtain a a general result for any k-bit field,
whilst the second shows that for 128-bit fields and 64-bit statistical security, τ = 3 suffices.

Theorem 2. The protocol ΠTriple (Protocol 4) securely implements FTriple in the (FROT,FJ·K)-hybrid
model, with statistical security parameter k, for τ = 4.

Corollary 1. For k ≥ 128 and τ = 3, ΠTriple securely implements FTriple with statistical security
parameter 64.

6 Complete preprocessing and online protocols

We now describe the complete protocols for preprocessing and the online phase of our MPC protocol.

6.1 Preprocessing

As well as multiplication triples, we also want the preprocessing to produce random, shared values
known by a single party (called input tuples), to allow that party to provide inputs in the online
phase. This is easy to do with Protocol 5: the relevant party simply inputs a random value to FJ·K.
In the online phase, they broadcast the difference of this and their actual input, so that the shared
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Protocol 5 Preprocessing input tuples, ΠInputTuple

Input: On input (Input, Pj) from all parties, do the following:

1: Pj samples r $← F, and calls FJ·K with (Input, r, Pj).
2: All parties output JrK and Pj outputs r.

Functionality FPrep

FPrep has all of the same features as FJ·K, with the following additional commands:

Input Tuple: On input (InputTuple, Pj , id) from all parties, sample Val[id] $← F, and output it to Pj .

Triple: On input (Triple, ida, idb, idc) from all parties, sample two random values a, b $← F and set
(Val[ida],Val[idb],Val[idc])← (a, b, a · b).

Figure 4: Ideal functionality for the SPDZ preprocessing phase.

random value can then be adjusted to the correct value by all parties. Note that this method avoids
having to use the Input command of FPrep (and hence of ΠJ·K in the actual protocol) in the online
phase, by instead offloading this cost to the preprocessing.

The requirements for input tuple and triple generation are specified in the functionality FPrep

(Fig. 4), which also contains all features from FJ·K (like FTriple). Given this and the proof of
Theorem 2, it is straightforward to show that the triple generation and input tuple generation
protocols securely implement FPrep.

Theorem 3. The protocols ΠTriple and ΠInputTuple together securely realize the functionality FPrep,
in the (FJ·K,FROT,FRand)-hybrid model.

6.2 Online phase

Given the preprocessing data from FPrep, the online phase is quite straightforward, essentially the
same as in SPDZ [15], and shown in Protocol 6. Note that all of the linear computations on
J·K-shared data are performed by calling the relevant command of FJ·K.

To share an input xi by party Pi, they take a preprocessed random value JrK and broadcast
the value xi − r. Since r is uniformly random in F and unknown to all other parties, it acts as a
one-time pad to perfectly hide xi. All parties can then locally compute JrK+(xi−r) to obtain JxiK.

Multiplication of two shared values JxK and JyK uses Beaver’s circuit randomization technique.
Given a multiplication triple JaK, JbK, JcK, first the values x − a and y − b are opened; again, the
triple values perfectly mask the inputs, so this appears uniformly random to an adversary. Given
this, a sharing of the product x · y can be locally computed by all parties using the triple.

The final functionality that the online phase implements is the arithmetic black box, shown in
Fig. 5. The following theorem proves UC security of the protocol.

Theorem 4. The protocol ΠOnline (Protocol 6) securely implements the functionality FABB (Fig. 5)
against a static, active adversary corrupting up to n− 1 parties in the FPrep-hybrid model.
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Functionality FABB

Initialize: On input (Init,F) from all parties, store F.

Input: On input (Input, Pi, id, x) from Pi and (Input, Pi, id) from all other parties, with id a fresh iden-
tifier and x ∈ F, store (id, x).

Add: On command (Add, id1, id2, id3) from all parties (where id1, id2 are present in memory), retrieve
(id1, x), (id2, y) and store (id3, x+ y).

Multiply: On input (Mult, id1, id2, id3) from all parties (where id1, id2 are present in memory), retrieve
(id1, x), (id2, y) and store (id3, x · y).

Output: On input (Output, id) from all honest parties (where id is present in memory), retrieve (id, y)
and output it to the adversary. Wait for an input from the adversary; if this is Deliver then output
y to all parties, otherwise output Abort.

Figure 5: The ideal functionality for the MPC arithmetic black box.

Protocol 6 Operations for Secure Function Evaluation, ΠOnline

Initialize: The parties call FPrep for the handles of a number of multiplication triples (JaK, JbK, JcK)
and mask values (ri, JriK) as needed for the function being evaluated. If FPrep aborts then the
parties output ⊥ and abort.

Input: To share an input xi, party Pi takes an available mask value (ri, JriK) and does the following:
1: Broadcast ε← xi − ri.
2: The parties compute JxiK← JriK + ε.

Add: On input (JxK, JyK), locally compute Jx+ yK← JxK + JyK.
Multiply: On input (JxK, JyK), the parties do the following:

1: Take one multiplication triple (JaK, JbK, JcK), compute JεK ← JxK − JaK, JρK ← JyK − JbK and
call FPrep.Open on these shares to get ε, ρ respectively.

2: Set JzK← JcK + ε · JbK + ρ · JaK + ε · ρ
Output: To output a share JyK, do the following:2

1: Call FPrep.Check with input all opened values so far. If it fails, output ⊥ and abort.
2: Call FPrep with commands Open and then Check to open and verify JyK. If the check fails,

output ⊥ and abort, otherwise accept y as a valid output.

Proof. Because most of the protocol purely consists of interaction with FPrep based on value iden-
tifiers, the simulation in Fig. 6 is straightforward. The only values sent in the protocol are masked
openings for multiplications and outputs.

Since each multiplication triple is only used once, the two values opened during a multiplication
call are uniformly random in both worlds. This means that up until the output stage, the two
views of the environment in both worlds are identically distributed and so indistinguishable.

The output stage is straightforward to simulate because the Check aborts exactly if the adversary
deviated.
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Simulator SOnline

Initialize: The simulation of this procedure is performed by running a local copy of FPrep. It is straight-
forward because the InputTuple and Triple commands of FPrep only involve value identifiers.

Input: Simulate according to the following two cases:

- For inputs from an honest party, broadcast a random value.

- For inputs from a corrupt party Pi, wait for Pi to broadcast the (possibly incorrect) value
ε′, compute x′i ← ri + ε′ and use x′i as input to FABB.

Add: This local procedure requires no simulation.

Multiply: Send random values for ε and ρ to the adversary and wait for it to input ε′ and ρ′. If
(ε, ρ) 6= (ε′, ρ′), set Fail.

Output: Simulate the output stage as follows:

1. If Fail is set, abort in the first call of FPrep.Check.

2. Receive the output y from FABB and forward it to the adversary in FPrep. If it returns y′ 6= y,
input Abort to FABB and abort in the simulation of the second Check call, otherwise input
Deliver to FABB and continue.

Figure 6: Simulator for the online phase.

7 Performance and implementation

We first analyse the complexity of our preprocessing protocol, and then describe our implementation
and experiments.

7.1 Complexity

We measure the communication complexity of our protocol in terms of the total amount of data sent
across the network. Note that the number of rounds of communication is constant, so is unlikely
to heavily impact performance when generating large amounts of preprocessing data. Throughout
this section, we exclude the cost of the base OTs in the initialization stages, as this is a one-time
setup cost that takes around a second.

Input tuple generation. The main cost of authenticating one party’s field element in a k-bit
field with ΠJ·K is the n− 1 calls to ΠCOPEe, each of which sends k2 bits, plus sending n− 1 shares of
k bits, for a total of (n− 1)(k2 + k) bits. We ignore the cost of authenticating one extra value and
performing the MAC check, as this is amortized away when creating a large batch of input tuples.

Triple generation. To generate a triple, each pair of parties makes τk calls to FROT, followed by
sending a further τk2 bits in step 3 and then 5 calls to ΠCOPEe for authentication (ignoring FRand and
sending the input shares as these are negligible). Since each call to FROT requires communicating
λ bits, and ΠCOPEe requires k2 bits, this gives a total of n(n− 1)(τλk + (τ + 5)k2) bits sent across
the network.
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Table 2 shows these complexities for a few choices of field size, with λ = 128 and τ chosen
to achieve at least 64 bit statistical security. We observe that as k increases, the cost of inputs
scales almost exactly quadratically. For triples, k = 64 is slightly less efficient as we require τ = 4
(instead of 3), whilst for larger k the cost reduces slightly as k becomes much larger than λ. Note
also that the cost of an input is much lower than a triple, as the input protocol does not require
any of the expensive sacrificing or combining that we use to obtain active security with triples.
This is in contrast to the SPDZ protocol [14, 15], where creating input tuples requires complex
zero-knowledge or cut-and-choose techniques.

Comparison with a passive protocol. A passively secure (or semi-honest) version of our
protocol can be constructed by setting τ = 1 and removing the authentication step, saving 5 calls
to ΠCOPEe for every pair of parties. The communication cost of a single triple is then n(n−1)(λk+k2)
bits. For triples where k ≥ 128, and 64-bit statistical security, the actively secure protocol achieves
τ = 3, so is just 5.5 times the cost of the passive variant.

Field bit length Input cost (kbit) Triple cost (kbit)

64 4.16(n− 1) 53.25n(n− 1)
128 16.51(n− 1) 180.22n(n− 1)
256 65.79(n− 1) 622.59n(n− 1)
512 262.66(n− 1) 2293.76n(n− 1)

Table 2: Communication cost of our protocols for various field sizes, with n parties.

7.2 Implementation

As part of our implementation, we have used the optimizations described below. The first two
apply to the OT extension by Keller et al. [24].

Bit matrix transposition. Asharov et al. [2] mention the bit matrix transposition as the most
expensive part of the computation for their OT extension. They propose Eklundh’s algorithm
to reduce the number of cache misses. Instead of transposing a matrix bit by bit, the matrix
is transposed with respect to increasingly small blocks while leaving the blocks internally intact.
Keller et al. also use this algorithm.

However, for security parameter λ, the OT extension requires the transposition of a n × λ-
matrix. We store this matrix as list of λ × λ-blocks, and thus, we only have to transpose those
blocks. For λ = 128, one such block is 2 KiB, which easily fits into the L1 cache of most modern
processors.

Furthermore, we use the PMOVMSKB instruction from SSE2. It outputs a byte consisting
of the most significant bits of 16 bytes in a 128-bit register. Together with a left shift (PSLLQ),
this allows a 16 × 8-matrix to be transposed [30] with only 24 instructions (eight of PMOVSKB,
PSLLQ, and MOV each).

Pseudorandom generator and hashing. Keller et al. [24] used AES-128 in counter mode
to implement the PRG needed for the OT extension. This allows to use the AES-NI extension
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provided by modern processors. We have also implemented the hash function using AES-128 by
means of the Matyas–Meyer–Oseas construction [29], which was proven secure by Black et al. [6].
This construction uses the compression function hi = Eg(hi−1)(mi)⊕mi, where mi denotes the i-th
message block, hi is the state after the i-th compression, and g denotes a conversion function. In
our case, the input is only one block long (as many bits as the computational security parameter
of the OT extension), and g is the identity. This gives a hash function H(m) = EIV (m) ⊕m for
some initialization vector IV , which allows to precompute the key schedule. This precomputation
in turn allows to easily take advantage of the pipelining capabilities of AES-NI in modern Intel
processors: While the latency of the AESENC instruction is seven clock cycles, the throughput is
one per clock cycle [21]. This means that the processor is capable of computing seven encryptions
in parallel.

Inner product computation. Both ΠCOPEe and ΠTriple involve the computation of 〈g,x〉 for
x ∈ Flog |F|. Elements of both F2k and Fp are commonly represented as elements of larger rings
(F2[X] and Z, respectively), and some operations involves a modular reduction (modulo an irre-
ducible polynomial or p). When computing, we defer this reduction until after computing the sum.
Furthermore, we use the mpn_* functions of MPIR [36] for the large integer operations for Fp. For
F2k on the other hand, the computation before the modular reduction is straightforward because
addition in F2[X] corresponds to XOR.

Multithreading. In order to make optimal use of resources, we have organized the triple gener-
ation as follows: There are several threads independently generating triples, and every such thread
controls n − 1 threads for the OTs with the n − 1 other players. Operations independent of OT
instances, such as amplification and sacrificing, are performed by the triple generation threads.
We found that performance is optimal if the number of generator threads is much larger than the
number of processor cores. This is an indication that the communication is the main bottleneck.

7.3 Experiments

We have tested our implementation for up to five parties on off-the-shelf machines (eight-core i7
3.1 GHz CPU, 32 GB RAM) in a local network. Fig. 7 shows our results.

We could generate up to 4800 and 1000 F2128 triples per second with two and five parties,
respectively. For Fp with p a 128-bit prime, the figures are the same. These figures come close to
the maximum possible throughput of the correlation steps, which is 5500 and 1400, respectively.
The maximum figures are computed from the analysis below, with τ = 3 and k = λ = 128.
Assuming a 1 Gbit/s link per party and unlimited routing capacity gives the desired result.

By increasing the bandwidth to 2 Gbit/s, we could increase the throughput to 9500 and 1600
triples per seconds for two and five parties, respectively. This confirms the observation that the
communication is the main bottleneck. Fig. 8 shows the throughput for two parties in various
network environments. The WAN environment was simulated over a LAN by restricting bandwidth
to 50 Mbit/s and a round-trip latency of 100 ms.

7.3.1 Vickrey Auction

To highlight the practicality of our protocol, we have implemented the Vickrey second-price auction.
Figure 9 shows the results for the offline and online phase run between two parties on a local network.
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A Authentication and MAC checking security proof

We now prove security of the authentication and MAC checking protocol.

Theorem 5 (Theorem 1, restated). The protocol ΠJ·K securely implements FJ·K in the (FCOPEe,FComm,FRand)-
hybrid model, with statistical security parameter log |F| − 2 log log|F|.

Proof. We describe a simulator, S, that interacts with FJ·K, such that no environment Z can
distinguish between an interaction with S and FJ·K and an interaction with the real adversary A
and ΠJ·K. After describing the simulator we then argue indistinguishability of the real and ideal
worlds.
S maintains several databases, LC for linear combinations, HS for simulated shares of honest

parties in the open and check phases, and CS for the sums of shares of corrupted parties.

Simulating the Initialize phase. Emulating FCOPEe instances between every pair of corrupt
party Pi and honest party Pj , receive ∆(i,j) input by Pi to the respective instance. Furthermore,

sample ∆(i) $← F for all i /∈ A.

Simulating the Input phase.

- If Pj is corrupted, emulate the communication channels and instances of FCOPEe with honest
parties Pi, i /∈ A. For the FCOPEe instance with Pi, receive x(i,j)

h from the adversary and set
it to the input of Pj and output random t

(j,i)
h to Pj for i = 1, . . . , n and h = 0, . . . ,m. For

the checking, sample r $← Fm+1 to emulate FRand, receive y from Pj , and receive {σ(i)}i∈A
emulating FComm. Compute σ(i) =

∑m
h=0 rh · (〈g ∗ x(i,j)

h ,∆(i)
B 〉 − t(i,j)) for all i /∈ A. If∑n

i=1 σi 6= 0, abort. Otherwise, solve

∑
i/∈A

〈
g · y − g ∗

m∑
h=0

rh ·
∑
j∈A

x(i,j)
h , ∆̃(i)

B

〉
= 0 (3)

for {∆̃(i)
B }i/∈A in F. If

∑
i/∈A ∆̃(i) = 0 for all solutions, abort. Otherwise, for some {∆̃(i)}i/∈A

such that
∑

i/∈A ∆̃(i) 6= 0 and for each h ∈ [m], compute

xh =
(∑
i/∈A

〈g, ∆̃(i)
B 〉
)−1
·
∑
i/∈A

∑
j∈A
〈g ∗ x(i,j)

h , ∆̃(i)
B 〉, (4)

and input {xh}h∈[m] to FJ·K on behalf of Pj . We will show that, with overwhelming probability,
xh is unique over all possible ∆̃(i).
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- Otherwise, emulate communication channels and instances of FCOPEe with corrupted parties
Pi, i ∈ A. For the channel with Pi, send a random share x(i), and for the FCOPEe instance,
send q(i,j) to A, for h = 0, . . . ,m. Store

∑
i∈A x

(i)
h and

∑
i∈Am

(i)
h =

∑
i∈A x

(i) ·∆(i) + q(i,j) in

CS. Sample r $← Ft to emulate FRand, sample y $← F, and send both to the corrupted parties.
Compute

∑
i∈A σ

(i) =
∑m

j=0 rh ·
∑

i∈Am
(i)
h − y ·∆

(i). Then sample {σ(i)}i/∈A in F such that∑n
i=1 σ

(i) = 0 and use {σ(i)}i/∈A to emulate FComm just as in the Check phase below.

Simulating the Linear comb. phase. Store the linear combination in LC under id.

Simulating the Open phase. Receive the constraints on x from FJ·K and check if the value
to be opened and the previously opened values form a linearly dependent set in the input values
w.r.t. LC. If so, compute the shares of the honest parties accordingly from the entries in HS.
Otherwise, sample random shares {x(i)}i/∈A and MAC shares {m(i)}i/∈A such that

∑
i x

(i) = x
and

∑
im

(i) = x ·∆ with
∑

i∈A x
(i) and

∑
i∈Am

(i) taken from the relevant linear combination of
values from CS. Emulating the broadcast channel send {x(i)}i/∈A and receive {x(j)}j∈A. Compute
x =

∑
i x

(i) and input it to FJ·K.

Simulating the Check phase. Sample r $← Ft to emulate FRand and send it to the corrupted
parties. Emulating FComm, receive σi from corrupted party Pi for i ∈ A.

For j ∈ [t], compute x′j and m′j as the respective linear combination from values in CS. Fur-

thermore, look up m(i)
j in HS for all i /∈ A. For i /∈ A, compute σi =

∑t
j=1 rj · (m

(i)
j −∆(i) · xj) and

complete the emulation of FComm. If
∑

i σi = 0, input OK to FJ·K and ⊥ otherwise.

Indistinguishability. Now we argue indistinguishability. The LinComb command does not re-
quire communication, and the Initialize command only involve sending random shares and using
FCOPEe, which only outputs random information from the point of view of a single party. Therefore,
the simulation of these commands is easily seen to indistinguishable. It remains to discuss Input,
Open, and Check.

If Pj in the Input phase is not corrupted, it is easy to see that adversary only learns random
information. FCOPEe only outputs random shares, y has r0 · x0 as summand for random single-use
x0, and ΠMACCheck only reveals a random secret sharing of zero because it also contains one-time
randomness in the MAC of x0. The simulation therefore simply generates the required randomness.

More intricate is the simulation for a corrupted Pj . While it is easy to simulate all information
sent to the adversary, the simulation aborts if there is no adequate solution of (3) to be used in
(4). A solution is inadequate if

∑
i/∈A ∆̃(i) = 0. Clearly, there exist |F|n−|A|−1 inadequate solutions.

Since every such solution corresponds to a choice of {∆(i)}i/∈A where the MAC check succeeds, the
inexistence of an adequate solution means that the success probability of the adversary is at most
2− log |F| because there are |F|n−|A| possible choices of {∆(i)}i/∈A.

In the Open procedure, corrupted parties learn the honest parties shares. Using HS ensures that
all the openings are consistent. Furthermore, the sampling constraints ensure that the simulated
honest parties’ shares and the correct corrupted parties’ shares sum up the correct value. Finally,
FJ·K allows the adversary to determine the honest parties’ outputs, which the simulator uses with
values computed as in the real protocol.
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The most intricate phase is the Check procedure. While it is straightforward to simulate σi sent
by an honest party Pi, the indistinguishability of the abort behavior requires further discussion.
The idea of our proof is that, once a corrupted player has passed the MAC check in the Input phase,
they only can pass the MAC check for a specific value for each of their inputs, namely xh computed
in (4). In the following, we will focus on F = F2k . Later we will discuss F = Fp. Adapting (1) to
the input phase gives that, in order to pass the MAC check, the adversary has to send {σ(i)}i∈A
such that

−
∑
i∈A

σ(i) =
∑
i/∈A

σ(i)

=
∑
i/∈A

m(i) − y ·∆(i)

=
∑
i/∈A

(〈
g · y + g ∗

∑
j∈A

m∑
h=0

rh · x
(i,j)
h ,∆(i)

B

〉
+Ri

)
, (5)

where Ri is computed as the {rh}mh=0-weighted sum from the equivalent rest terms in (1). Assuming
that the above equality is satisfied for a different {∆̄(i)}i/∈A, we get (3) for ∆̃(i) = ∆(i)− ∆̄(i) for all
i /∈ A. This proves that the set S∆ of {∆(i)}i/∈A fulfilling (5) is an affine subspace of Fn−|A|2 .

Clearly, (4) provides a solution for y =
∑m

h=0 rhxh such that〈
g · xh − g ∗

∑
j∈A

x(i,j)
h , ∆̃(i)

B

〉
= 0 (6)

holds for all h ∈ [m] and some {∆̃(i)}i/∈A ∈ S̃∆, where the latter denotes the linear space parallel to
S∆. We have to prove that this is the only solution for a sufficiently large subspace of S̃∆, otherwise
the adversary has two sets of {xh}h∈[m] to choose from later. Assume now that, for every f ∈ [l]
for some l ∈ N, there is a different set {xf,h}h∈[m] with

∑m
i=1 rh · xf,h = y and〈

g · xf,h − g ∗
∑
j∈A

x(i,j)
h , ∆̃(i)

f,B

〉
= 0 (7)

for all {∆̃(i)
f }i/∈A ∈ S̃f ⊂ S̃∆ such that |S̃f | > 2(n−|A|−1) log |F|. The latter condition is required for

the adversary to be successful with probability more than 2− log |F| at the later opening. Since S̃f
clearly is a linear space for all f ∈ [l], and S̃f ∩ S̃f ′ = {0} by definition, and |S̃∆| ≤ 2(n−|A|) log |F|

by definition, l ≤ log |F|.
Let f 6= f ′ ∈ [l]. Then,

∑
i/∈A

〈
g · y − g ∗

m∑
h=0

rh ·
∑
j∈A

x(i,j)
h , ∆̃(i)

B

〉
= 0

for all {∆̃(i)}i/∈A implies that

m∑
h=0

rh ·
∑
i/∈A

〈
g ∗
∑
j∈A

x(i,j)
h , ∆̃(i)

f,B − ∆̃(i)
f ′,B

〉
= 0
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for all {∆(i)
f }i/∈A ∈ S̃f and {∆(i)

f ′ }i/∈A ∈ S̃f ′ . Using (7), we get

m∑
h=0

rh ·
(
xf,h ·

∑
i/∈A

∆̃(i)
f − xf ′,h ·

∑
i/∈A

∆̃(i)
f ′

)
= 0. (8)

By definition, there exists h̄ ∈ {0, . . . ,m} such that xf,h 6= xf ′,h. Furthermore, a simple counting
argument shows that

∑
i/∈A ∆̃(i)

f and
∑

i/∈A ∆̃(i)
f ′ each have at least two results for {∆̃(i)

f }i/∈A ∈ S̃f
and {∆̃(i)

f ′ }i/∈A ∈ S̃f ′ . It follows that(
xf,h ·

∑
i/∈A

∆̃(i)
f − xf ′,h ·

∑
i/∈A

∆̃(i)
f ′

)
6= 0

for some {∆̃(i)
f }i/∈A ∈ S̃f and {∆̃(i)

f ′ }i/∈A ∈ S̃f ′ . Therefore, by applying the principle of deferred
decisions, the probability of (8) is 2− log |F| over the choice of {rh}mh=0. Given that there are less than
(log |F|)2 pairs f 6= f ′ ∈ [l], the overall probability is at most (log |F|)2 ·2− log |F| = 2− log |F|+2 log log |F|.

We have established that, for every h ∈ [m], there exists a unique xh where the adversary can
compute ∑

i/∈A

〈
g · xh − g ∗

∑
j∈A

x(i,j)
h ,∆(i)

B

〉
.

(1) shows that this term is viable to passing the MAC check. Furthermore, if the computing this
term for a different x′h is equivalent to guessing

∑
i/∈A ∆(i) because the difference between the terms

is
〈g · xh − g · x′h,∆

(i)
B 〉 = (xh − x′h) ·

∑
i/∈A

∆(i).

Since
∑

i/∈A ∆(i) is uniformly random the probability of this happening is 2− log |F|. �
We now turn to the discussion of F = Fp. The main difference to the case of F = F2k is that

there is no bijection between ∆ ∈ F = Fp and ∆ ∈ Flog p
p . While there are canonical maps both

ways, bit decomposition from Fp to Flog p
p and 〈g,∆〉 from Flog p

p to Fp, the former is not surjective
and the latter not injective. This implies that the solutions of (5) or (6) are not necessarily vectors
of bits rather than elements of Fp. Nevertheless, the lemma below proves that, if S̃f contains at
least 2(n−|A|−1) log |F| vectors consisting only of bits (which is necessary for an adversary to pass the
MAC check), then it has dimension at least (n − |A| − 1) log |F| for all f . Together with the fact
that S̃∆ has dimension at most (n− |A|) log |F| by definition and S̃f ∩ S̃f ′ = {0} for f 6= f ′ ∈ [l], it
follows that l ≤ log |F| as above. �

Lemma 1. Let V be subspace of Fkp containing 2l elements of {0, 1}k. Then the dimension of V is
at least l.

Proof. We prove that if the dimension of V is l, it cannot contain more than 2l elements of {0, 1}k.
There exists a basis v1, . . . ,vl such that vi+1 starts with more zeroes than vi for all i = 1, . . . , l−1.
Such a basis can be constructed from any basis using Gaussian elimination. Every element of V has
the form

∑l
i=1 aivi. Now consider the following algorithm for generating an element of V ∩{0, 1}k.

For i ∈ [l], assume that {aj}1≤j<i have already been chosen. Furthermore let g such that the g-th
element of vi is not zero but the g-th element of vi+1, . . . ,vl is. This exists by definition. Then,
there exist only two choices of ai in order to let the g-th element of

∑l
i=1 aivi be in {0, 1}. Iterating

over a1, . . . , al, this proves that the size of V ∩ {0, 1}k is at most 2l.
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B Triple generation security proof

Here we give a proof of security of Theorem 2. Before we need to recall basic facts and definition
about entropy.

B.1 Entropy definitions.

Given a probability distribution X over a sample space S, we denote by PX the probability distri-
bution of X.

Definition 1. Let X be a discrete probability distribution. The min-entropy of X is defined as

H∞(X) = − log
(

max
x

Pr [X = x]
)

Intuitively, the min-entropy of a distribution is a measure of how predictable the distribution
is. We now state some basic properties of min-entropy that easily follow from the definition:

Proposition 1.

1. If U is the uniform distribution over a sample space S, then

H∞(U) = log |S|

2. If X is the joint distribution of X1, . . . , Xn, then there exists i ∈ [n] such that

H∞(Xi) ≥ H∞(X)/n

3. Let X and Y be independent distributions over a finite field F. Then

H∞(X + Y ) ≥ max(H∞(X), H∞(Y ))

We will also use the concept of universal hashing , due to Carter and Wegman [11].

Definition 2. Let T be a set and H = {ht}t∈t be a family of keyed hash function ht : {0, 1}n →
{0, 1}k. Then {ht}t∈T is a 2-universal hash function family, if for every x, y ∈ {0, 1}n such that
x 6= y, we have that

Pr
t∈T

[ht(x) = ht(y)] ≤ 2−k.

The following is a version of the Leftover Hash Lemma, phrased over finite fields.

Lemma 2 (Leftover Hash Lemma [20]). Let S and T be two sets, and F a finite field. Let X be a
random variable over S and H = {ht}t∈T , ht : S → F, a 2-universal hash function. Let US and UT
be the uniform distribution over S and T , respectively. If

H∞(X) ≥ 2κ+ log2 |F|

then for t $← T (independent of X), we have

(ht(X), Ut)
s
≈ (Us, Ut)

for statistical security parameter κ.
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B.2 Proof of Theorem 2

Theorem 6 (Theorem 2, restated). The protocol ΠTriple (Protocol 4) securely implements FTriple

in the (FROT,FJ·K)-hybrid model, with statistical security parameter log2 |F|, for τ = 4.

Proof. Let A be a real world adversary corrupting up to n−1 parties and A ⊂ P the set of corrupt
parties. We describe a simulator S for A who interacts with FPrep and simulates each received
message of A in the protocol ΠTriple from the honest parties and from the other functionalities,
stage by stage.

Simulating the Multiply phase. The simulator emulates Fτk,kROT and sends q(j,i)
0 ,q(j,i)

1 , j ∈ A
to A. Then for each j ∈ A, S receives d(j,i) by A, for each j 6= i, sets b(j,i) = d(j,i) − q(j,i)

0,h + q
(j,i)
1,h ,

h ∈ [τ · k], and sends random d
(i,j)
h , i 6∈ A to A.

If Pj , j ∈ A, gives any inconsistent b(j,i), then S computes δb[h](j,i) and
∑

j∈A δb[h](j,i) = δb[h](i).
If some Pj inputs inconsistent values a(j), when playing with Pi, i 6∈ A, then S computes δa[h](j,i)

and
∑

j∈A δ
(j,i)
a = δa[h](i).

Simulating the Combining phase. All the computations are local, so S just emulates FRand

and proceeds according to the protocol.

Simulating the Authentication phase. Now S emulates FJ·K with inputs from the corrupt
parties provided by A. So if some inputs are inconsistent with previous computation, S computes
eAuth, êAuth, i.e. the deviation introduced by A in this step. Note that here eAuth, êAuth 6= 0
essentially means that the adversary authenticates values different from those computed in the
previous phases. If FJ·K aborts, then S sends Abort to FPrep.

Simulating the Sacrifice step. The simulator emulates the functionalities FRand and FJ·K.Open
honestly. Emulating FJ·K.Check, S aborts randomly depending on how many errors there are.

Indistinguishability. Now we argue indistinguishability. During the Multiply command, in
both the simulated and the hybrid model, Z can see the mask d(i,j)

h , for each i 6∈ A, but they look
perfectly random as the values q(i,j)

1,h are uniformly random and never revealed to Z.
Then the Amplify/Combine command do not require communication and in the Authenticate
command the simulator honestly runs FJ·K, so the view of Z up to the point where the values ρ
and σ are partially opened in the Sacrifice step, has exactly the same distribution in both the
execution. In the partial openings, we need to prove that the values produced in the real world
and the simulated random values are indistinguishable.

Let us consider a = 〈a, r〉 and â = 〈a, r̂〉, and let X be the joint distribution of (a1, . . . , aτ ).
Applying the Leftover Hash Lemma (Lemma 2), with S = Fτ , T = Fτ and hr,r̂ : Fτ → F2 be defined
by

hr,r̂ (a1, . . . , aτ ) =

(
τ∑
i=1

ri · ai,
τ∑
i=1

r̂i · ai

)
,
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we have that the output of h is statistically close to uniform, for statistical security parameter κ,
provided that

H∞(X) ≥ 2κ+ 2 log |F|. (9)

In this way, if (9) is satisfied, it is easy to see that the partially opened value ρ in the real protocol
is statistically indistinguishable from the uniformly random value used in the simulation.

Now we consider the probability of passing the sacrificing step. We recall that, from Equation
(2), after authentication parties obtain values JbK, JaK, JcK, JâK, JĉK, which can be seen as follows:

c = a · b+ ea + eb + eAuth

and
ĉ = â · b+ êb + êa + êAuth.

First of all, if no Abort occurs, we obtain a correct triple in both the worlds with high probability,
as stated by the following claim which shows that after sacrificing the additive error in a triple
must be zero.

Claim 1. Let A be the set of the corrupt parties and B = P \A. If the sacrificing step passes then

e = ea + eb + eAuth = 0

and
ê = êa + êb + êAuth = 0

with high probability.

Proof. This is easy to see, following the same argument used for triple generation with SHE in [15].
In particular, rewriting the value σ in the second opening of sacrificing as r · (c− a · b)− (ĉ− â · b),
and assuming that e, ê 6= 0, then the probability of satisfying the check is log|F|, since there is only
one random challenge r ∈ F for which σ would be zero.

We have shown that if the sacrifice test passes then e = 0 and the output triple is correct.
However this could happen even if ea, eb and eAuth are not (all) zero.

Claim 2. If the sacrificing step passes then δa[h](i) = 0, for all i 6∈ A and h ∈ [τ ], with high
probability.

Proof. Suppose that {δ(i)
a [h]}h,i are not all zero. If the sacrificing passes, then by Claim 1,

−eAuth =
∑
h∈τ

r[h] ·
(∑
i/∈A

b(i) · δ(i)
a [h] +

∑
i/∈A

〈a(i)
B [h], δb[h](i)〉

)
,

where {b(i)}i/∈A are uniformly random in F and {aB[h](i)}i and eAuth are independent of {b(i)}i. So
the probability of passing the check is the same as the probability of guessing b(i), i.e. 1/|F|.

Consider now the error
ea =

∑
h∈τ

rh ·
∑
i/∈A

〈a(i)
B [h], δb[h](i)〉,

and let m = n − |A| be the number of honest parties, and S the set of all possible honest shares
(a(i)
B )i 6∈A of aB, which are determined by the adversarial errors, and for which the sacrifice would
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The Functionality FComm

Commit: On input (Comm, v, i, τv) by Pi or the adversary on his behalf (if Pi is corrupt), where v is
either in a specific domain or ⊥, it stores (v, i, τv) on a list and outputs (i, τv) to all parties and
adversary.

Open: On input (Open, i, τv) by Pi or the adversary on his behalf (if Pi is corrupt), the ideal func-
tionality outputs (v, i, τv) to all parties and adversary. If (NoOpen, i, τv) is given by the adversary,
and Pi is corrupt, the functionality outputs (⊥, i, τv) to all parties.

Figure 10: Ideal Commitments

pass. The value (a(i)
B )i 6∈A is uniformly distributed in S, and so its min-entropy is log|S|. This

means that there exists an i such that a(i)
B has min-entropy at least log |S|/m. Since at least

one a(i)
B has min-entropy log |S|/m, and each a(i)

B is independent, it follows that the shared value
aB =

∑
i∈[n] a

(i)
B has min-entropy at least log |S|/m.

Also, let β be the probability of passing the sacrifice, so β := |S|
2mkτ

, since (a(i)
B )i 6∈A is chosen at

random from a set of size 2mkτ . Writing β = 2−c for some c ≥ 0, we get

H∞(a) ≥ log |S|
m

=
log (β · 2mkτ )

m

= k · τ − c

m
≥ k · τ − c (10)

Noting that k = dlog|F|e, and using (10) and (9), we obtain κ = (k(τ − 2)− c)/2. Now the overall
distinguishing probability of the environment (ignoring the failure events in the previous claims
that occur with negligible probability) is obtained by multiplying the probability of passing the
sacrifice check and the probability of distinguishing the output distribution from random (given
that the sacrifice passed), so this is given by

β · 2−κ = 2−κ−c = 2−k(τ−2)/2−c/2

For this to be no more than 2−k (for any c ≥ 0) it suffices to set the number of triples to combine to
τ = 4. Note that if the field size is much larger than the statistical security parameter, say k = 2κ,
then we only need distinguishing probability ≤ 2−k/2, so could combine just τ = 3 triples to ensure
security.

The final analysis in this proof also gives the following special case as a corollary.

Corollary 2 (Corollary 1, restated). For k ≥ 128 and τ = 3, ΠTriple securely implements FTriple

with statistical security parameter 64.

C Other functionalities
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Functionality FF
Rand

Random sample: Upon receiving (rand;u) from all parties, it samples a uniform r ∈ F and outputs
(rand, r) to all parties.

Figure 11: Functionality FF
Rand
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