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ABSTRACT
We consider the task of secure multi-party computation of
arithmetic circuits over a finite field. Unlike Boolean cir-
cuits, arithmetic circuits allow natural computations on in-
tegers to be expressed easily and efficiently. In the strongest
setting of malicious security with a dishonest majority —
where any number of parties may deviate arbitrarily from
the protocol — most existing protocols require expensive
public-key cryptography for each multiplication in the pre-
processing stage of the protocol, which leads to a high total
cost.

We present a new protocol that overcomes this limita-
tion by using oblivious transfer to perform secure multipli-
cations in general finite fields with reduced communication
and computation. Our protocol is based on an arithmetic
view of oblivious transfer, with careful consistency checks
and other techniques to obtain malicious security at a cost of
less than 6 times that of semi-honest security. We describe a
highly optimized implementation together with experimen-
tal results for up to five parties. By making extensive use of
parallelism and SSE instructions, we improve upon previous
runtimes for MPC over arithmetic circuits by more than 200
times.
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1. INTRODUCTION
Secure multi-party computation (MPC) allows a set of

parties to jointly compute a function on their private inputs,
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learning only the output of the function. In the last decade,
MPC has rapidly moved from purely theoretical study to an
object of practical interest, with a growing interest in prac-
tical applications, and many implementations now capable
of handling complex computations [28, 29].

Most MPC protocols either perform secure computation
of Boolean circuits, or arithmetic circuits over a finite ring or
field such as Fp, for some prime p. Historically, the Boolean
circuit approach has led to fast protocols that mostly need
only symmetric cryptography, such as two-party protocols
based on Yao’s garbled circuits [41], or protocols based on
fast oblivious transfer techniques [30, 34]. In contrast, pro-
tocols for arithmetic circuits are typically based on more
expensive, public-key technology (except for special cases
when a majority of the parties are honest).

Despite the need for expensive techniques, secret-sharing-
based MPC protocols for arithmetic circuits have the key
advantage that secure addition requires no communication
and essentially come ‘for free’, whereas with current Boolean
circuit-based 2-PC, the only ‘free’ operation is XOR.

The following motivating examples further highlight the
practical applicability of integer-based secure computation,
compared with Boolean circuits:

- Bogdanov et al. [8, 9] describe using MPC to perform
secure statistical analysis of income tax records for
the Estonian government. The latter work analyzed a
large database with over 600000 students and 10 mil-
lion tax records. The kinds of computations involved
were very simple statistics, but made heavy use of the
fact that secure additions are non-interactive.

- In [13], an application of MPC to confidential bench-
marking was presented, allowing banks to jointly eval-
uate customers’ risks whilst retaining privacy for the
customers’ data. They used secure linear program-
ming, which is a highly complex task in MPC, requir-
ing either secure floating point arithmetic or very large
integer arithmetic (to emulate real numbers without
overflow), both of which would be impractical using
Boolean circuits.

- MPC has been suggested as a tool for helping pre-
vent collisions between satellites, by securely perform-
ing collision detection using sensitive location and tra-
jectory data. Kamm et al. [25] showed how to imple-
ment the relevant conjunction analysis algorithms in
MPC with a protocol based on secret-sharing. This
also requires secure floating point operations.

http://dx.doi.org/10.1145/2976749.2978357


Unfortunately, all of the above case studies are somewhat
limited, in either the security properties obtained, or the ef-
ficiency. The first and third examples above used the Share-
mind system [1], which is restricted to semi-honest security
with three parties, where at most one is corrupt. The second
example used the SPDZ MPC protocol [17], which has se-
curity against any number of maliciously corrupted parties,
but is much slower. They report a fairly quick evaluation
time of around 20–30 s with a prototype implementation,
but this does not include the costly ‘preprocessing’ stage
required in SPDZ, which would likely take several hours.

We conclude that although these applications are practi-
cal, the MPC protocols used still fall short: in many real-
world applications, semi-honest adversaries and an honest
majority are not realistic assumptions, and MPC may not
be cost-effective if it requires several hours of heavy compu-
tation.

Furthermore, it is the case that all known practical proto-
cols for MPC with integer operations either require an hon-
est majority, or expensive public-key techniques for every
multiplication in the circuit. For example, the SPDZ proto-
col [15, 17] mentioned above uses a somewhat homomorphic
encryption scheme to perform secure multiplications, whilst
the BDOZ protocol [6] uses additively homomorphic encryp-
tion, and both of these require expensive zero-knowledge
proofs or cut-and-choose techniques to achieve security against
malicious adversaries.

These protocols mitigate this cost to an extent by restrict-
ing the expensive computation to a preprocessing phase, which
is independent of the inputs and can be done in advance. Al-
though this is highly effective for reducing the latency of the
secure computation — as the online phase is indeed very ef-
ficient — the total cost of these protocols can still be thou-
sands of times greater than the online phase, which may
render them ineffective for many applications.

Frederiksen et al. [19] recently showed how to efficiently
use oblivious transfer to generate multiplication triples —
the main task of the SPDZ preprocessing — in binary fields,
and estimated much improved performance, compared with
previous methods. However, this does not give the benefits
of general arithmetic circuits that allow integer operations.

1.1 Our contributions
In this paper, we present MASCOT: a new MPC proto-

col designed to overcome the above limitations of the pre-
processing phase, allowing for efficient, secure computation
of general arithmetic circuits using almost exclusively fast,
symmetric cryptography.

Protocol Field
Comms.
(kbit)

Throughput,
n = 2 (/s)

SPDZ (active)
Fp, 128-bit 215n(n− 1) 23.5

F240 2272n(n−1) 3.68

SPDZ (covert, Fp, 128-bit 66n(n− 1) 204

pr. 1/10) F240 844n(n− 1) 31.9

Ours (active)
Fp, 128-bit 180n(n− 1) 4842

F2128 180n(n− 1) 4827

Table 1: Comparing the cost of n-party secure mul-
tiplication in our OT-based protocol with previous
implementations of SPDZ [14, 15].

Arithmetic-circuit MPC from OT.
We present a practical protocol for secure multi-party

computation of arithmetic circuits based on oblivious trans-
fer (OT), for the first time with malicious security in the
dishonest majority setting. We achieve this by taking an
“arithmetic” view of OT (as was done by Gilboa for two-
party RSA key generation [20] and Demmler et al. [18] for
two-party computation in the semi-honest model), which al-
lows us to generalize the preprocessing protocol by Frederik-
sen et al. [19] to create multiplication triples in any (suffi-
ciently large) finite field, instead of just binary fields. We
achieve security against malicious adversaries using simple
consistency checking and privacy amplification techniques,
with the result that our maliciously secure protocol is only 6
times less efficient than a semi-honest version of the protocol.
Moreover, our protocol can be based entirely on symmetric
primitives, after a one-time setup phase, by using efficient
OT extensions [23, 26].

Implementation.
A key advantage of our approach to triple generation is

that we obtain a streamlined protocol, which is highly amenable
to a parallelized and pipelined implementation that inter-
leaves computation and communication. Table 1 highlights
this: the time for a single secure multiplication in a prime
field is 200 times faster than the previous best actively se-
cure implementation based on somewhat homomorphic en-
cryption [15], in spite of a fairly small improvement in com-
munication cost. Compared with a covertly secure imple-
mentation1 using SHE [15], our actively secure protocol re-
quires slightly more communication, but still runs over 20
times faster. In binary fields, where SHE is much less suited,
the improvement is over 1000 times, compared to previous
figures [14]. Note that the online phase of our protocol is
identical to that of SPDZ, which has been previously re-
ported to achieve very practical performance for a range of
applications [28].

Our optimized implementation utilizes over 80% of the
network’s capacity, whereas the previous schemes based on
SHE are so computation-intensive that the network cannot
come close to capacity. We also describe new techniques
for reducing the cost of OT extension using consumer hard-
ware instructions, namely efficient matrix transposition us-
ing SSE instead of Eklundh’s algorithm, and hashing using
the Matyas–Meyer–Oseas construction from any block ci-
pher, which allows hashing 128-bit messages with AES-NI
whilst avoiding a re-key for every hash.

More general assumptions.
We also improve upon the previous most practical pro-

tocol by allowing a much wider variety of cryptographic
assumptions, since we only require a secure OT protocol,
which can be built from DDH, quadratic residuosity or lat-
tices [36]. In contrast, security of the SHE scheme used in
SPDZ is based on the ring learning with errors assumption,
which is still relatively poorly understood — it is possible
that new attacks could surface that render the protocol to-
tally impractical for secure parameters. So as well as in-
creasing efficiency, we obtain much greater confidence in the

1For F240 in SPDZ with covert security, we could not find
precise figures so the throughput in Table 1 is estimated
based on other results.



security of our protocol, and it seems more likely to with-
stand the test of time.

1.2 Technical overview
The main goal of our MPC protocol is to create multipli-

cation triples, which are essentially additive secret sharings
of tuples (a, b, a · b, a ·∆, b ·∆, a · b ·∆) where a, b are random
values and ∆ is a secret-shared global random MAC key.
Shares of a, b and ∆ can be generated by every party choos-
ing a random share. It remains to generate secret sharings
of the products.

Our starting point is the passively secure two-party product-
sharing protocol of Gilboa [20], which uses k oblivious trans-
fers to multiply two k-bit field elements. By running OT
instances between every pair of parties, the multiplication
triples can be created.

However, corrupted parties can deviate by providing in-
consistent inputs to the different OT instances.2 These de-
viations will not only lead to potentially incorrect results
when the triples are used in SPDZ but also to selective fail-
ures, that is, the checks used in SPDZ might fail (or not)
depending on secret information.

To obtain an actively secure protocol, we use two different
strategies: one to ensure correctness of the products in the
MAC generation, and one to ensure correctness and privacy
of the multiplication triples themselves.

For the MAC generation, it turns out the passively secure
protocol is almost enough; we just need to check random
linear combinations of the MACs immediately after creation,
and also when later opening values. Proving the security of
this, however, is not straightforward and requires a careful,
technical analysis of the possible deviations. To simplify
this as much as possible, we model the MAC generation
and opening requirements in a separate functionality, FJ·K,
which can be seen as a generalization of verifiable secret-
sharing to the case of full-threshold corruption. This greatly
reduces the work in proving higher-level protocols secure, as
these can then be made independent of the MAC scheme
and underlying MAC keys.

For triple generation, we need to ensure correctness and
privacy of the triples. Correctness is easily verified with a
standard sacrifice technique [16, 17], which checks a pair of
triples such that one can then be used securely. To guaran-
tee privacy we use a simple variant of privacy amplification,
where first several leaky triples are produced, from which a
single, random triple is extracted by taking random combi-
nations.

In more detail, the protocol starts by generating shares of
a correlated vector triple (a, b, c), where b ∈ F and a, c ∈ Fτ
for some constant τ , using Gilboa’s multiplication protocol.
If at this point the triple is checked with a sacrifice, b is
guaranteed to be uniformly random, but the fact that the
sacrifice passes may leak a few bits of a, if a corrupt party
used inconsistent inputs to some of the OTs. To counteract
this, the parties sample a public random vector r ∈ Fτ and
obtain the triple (a, b, c) by defining

a = 〈a, r〉, c = 〈c, r〉

In the security proof, the simulator can precisely define any
leakage and bound the min-entropy of a by analysing the

2We assume that the OT instances themselves are secure
against malicious parties.

adversary’s inputs to the OTs. We then use the leftover
hash lemma to show that a is uniformly random when τ is
large enough.

At this point, we could repeat the process to obtain an-
other triple, then authenticate both triples and check cor-
rectness with a sacrifice. However, we observe that this stage
can be optimized by using the original vector triple (a, b, c)
to obtain a second, correlated triple, with the same b value,
at a lower cost. To do this, we simply sample another ran-
dom vector r̂ and compute â, ĉ accordingly. Again, we can
show (for suitable τ) that â is uniformly random and inde-
pendent of a. We can then use (â, b, ĉ) to check correctness of
(a, b, c), as follows. After adding MACs to both triples, the
parties sample a random value s ∈ F and open ρ = s · a− â.
Now, we have:

s · c− ĉ− b · ρ = s · (c− a · b) + (â · b− ĉ)

Since the left-hand side is linear in the shared values, the
parties can compute this and check that it opens to zero. If
one or both triples are incorrect then this is non-zero with
probability at most 1/|F|, since s is uniformly random and
unknown at the time of authentication.

It turns out that for this optimized method, using τ = 4
suffices to give a correct triple and ensure a distinguishing
advantage in O(1/|F|). If we allow this to be O(1/

p
|F|)

then we can have τ = 3. Concretely, this means that we can
use τ = 3 for ≥ 128-bit fields with 64-bit statistical security.

Comparison with Previous Techniques.
Previous works have used similar privacy amplification

techniques for MPC. In [16], privacy amplification was done
on a large batch of triples using packed Shamir secret-sharing,
which leads to high computation costs. In contrast, our pro-
tocol only requires removing leakage on one of the three
triple values, which we do very efficiently by combining a
constant-sized vector of correlated triples. In situations where
leakage is possible on more than one triple component, our
techniqe would have to be repeated and [16] may be more
efficient, at least in terms of communication. Other works
use more complex ‘bucketing’ techniques [35] to remove leak-
age in F2, but when working in large finite fields this is not
needed.

We also note that our authentication method is similar
to that of the triple generation protocol for binary fields
in [19], except there, MACs are only checked after opening
values, whereas we also check MACs at time of creation.
That work did not describe the online phase of the resulting
MPC protocol, and it turns out that for creating inputs in
the online phase, this is not enough, and our additional check
is crucial for security of the whole protocol.

Roadmap.
We model oblivious transfer and random oblivious trans-

fer with FOT and FROT, respectively. The multiplication
with fixed element provided by OT extension with FCOPEe

described in Section 3. This functionality is then used to
implement FJ·K in Section 4, which guarantees the correct-
ness of linear operations. Both FROT and FJ·K are required to
implement the triple generation functionality FTriple in Sec-
tion 5, which is used for the online protocol described in the
full version [27]. In Section 6, we evaluate the complexity



and the implementation of our protocol. Fig. 1 illustrates
the relationship between our functionalities.

FOT FCOPE FJ·K

FROT

FTriple

Figure 1: Dependency among functionalities

1.3 Related work
Aside from the works already mentioned, many other se-

cure computation protocols use oblivious transfer. Proto-
cols based on GMW [2, 21] and TinyOT [10, 30, 34] use OT
extensions for efficient MPC on binary circuits, and fast gar-
bled circuit protocols use OT extensions in the input stage
of the protocol [31]. Pinkas et al. [37, 38] used OT exten-
sions to achieve a very efficient and scalable protocol for the
dedicated application of private set intersection.

Ishai et al. [24] present another protocol achieving mali-
cious security based on OT. However, they only give asymp-
totic complexity measures. Furthermore, the building blocks
of their protocol such as codes and fast fourier transforms
suggest more expensive computation than our protocol, where
the computation mainly consists of a few field operations.

Baum et al. [3] described improvements to the ‘sacrifice’
step and the zero-knowledge proofs used with somewhat ho-
momorphic encryption in SPDZ. Their sacrifice technique
requires generating triples that form codewords, which does
not seem straightforward with our protocol. Their zero-
knowledge proofs improve upon the method by Damg̊ard
et al. [15] by roughly a factor of two, but our protocol still
performs much faster.

2. PRELIMINARIES
In this section, we describe the security model, introduce

some important notation, define the oblivious transfer prim-
itive, and give a basic overview of the SPDZ protocol.

Security model.
We prove our security statements in the universal com-

position (UC) framework of Canetti [11], and assume famil-
iarity with this. Our protocols work with n parties from
the set P = {P1, . . . , Pn}, and we consider security against
malicious, static adversaries, i.e. corruption may only take
place before the protocols start, corrupting up to n− 1 par-
ties. When we say that a protocol Π securely implements
a functionality F with statistical (resp. computational) se-
curity parameter κ (resp. λ), our theorems guarantee that
the advantage of any environment in distinguishing the real
and ideal executions is in O(2−κ) (resp. O(2−λ)). Here,
κ and λ denote the statistical and computational security
parameters, respectively.

Notation.
The protocols we present in this paper work in both Fp,

for prime p = 2k + µ, and F2k ; we introduce some notation
to unify the two finite fields. First note that if k ≥ κ, for

statistical security parameter κ, and µ ∈ poly(k) then with
overwhelming probability a random element of Fp can be
represented with k bits in {0, 1}, and likewise for any ele-
ment of F2k . Let F denote the finite field, which will be either
Fp or F2k , and write F2k

∼= F2[X]/f(X) for some monic, ir-
reducible polynomial f(X) of degree k. We use lower case
letters to denote finite field elements and bold lower case let-
ters for vectors in F, for any finite field F. If x,y are vectors
over F, then x ∗ y denotes the component-wise products of

the vectors. We denote by a
$← A the uniform sampling of

a from a set A, and by [d] the set of integers {1, . . . , d}.
Following notation often used in lattice-based cryptogra-

phy, define the ‘gadget’ vector g consisting of the powers of
two (in Fp) or powers of X (in F2k ), so that

g = (1, g, g2, . . . , gk−1) ∈ Fk,

where g = 2 in Fp and g = X in F2k . Let g−1 : F→ {0, 1}k
be the ‘bit decomposition’ function that maps x ∈ F to a
bit vector xB = g−1(x) ∈ {0, 1}k, such that xB can be
mapped back to F by taking the inner product 〈g,g−1(x)〉 =
x. These basic tools allow us to easily switch between field
elements and vectors of bits whilst remaining independent
of the underlying finite field.

Oblivious Transfer.
Oblivious transfer (OT) is a protocol between a sender and

a receiver, where the sender transmits one of several mes-
sages to the receiver, whilst remaining oblivious to which
message was sent. All known constructions of OT require
public-key cryptography, but in 1996, Beaver [5] introduced
the concept of OT extensions, where cheap, symmetric prim-
itives (often available in consumer hardware) are used to
produce many OTs from only a few. Ishai et al. [23] later
optimized this concept to the form that we will use in this
paper.

Recently, Keller et al. [26] presented a simple consistency
check that allows maliciously secure OT extension at essen-
tially no extra cost: the cost for a single OT on random
strings is almost that of computing two hash function eval-
uations and sending one string.

The ideal functionality for a single 1-out-of-2 oblivious
transfer on k-bit strings is specified as follows, along with
the random OT variant, where the sender’s messages are
sampled at random:

F1,k
OT : ((s0, s1), b) 7→ (⊥, sb)

F1,k
ROT : (⊥, b) 7→ ((r0, r1), rb),

where r0, r1
$← {0, 1}k, and b ∈ {0, 1} is the receiver’s input.

We use the notation F l,kOT ,F
l,k
ROT to denote l sets of oblivious

transfers on k-bit strings.

2.1 The SPDZ Protocol
The online phase of SPDZ [15, 17] uses additive secret

sharing over a finite field, combined with information-theoretic
MACs to ensure active security. A secret value x ∈ F is rep-
resented by

JxK = (x(1), . . . , x(n),m(1), . . . ,m(n),∆(1), . . . ,∆(n)),

where each party Pi holds the random share x(i), the random



Figure 2: Two-party secret-shared multiplication in
Fp using 1-out-of-2 OT

MAC share m(i) and the fixed MAC key share ∆(i), such
that the MAC relation m = x ·∆ holds, for

x =
X
i

x(i), m =
X
i

m(i), ∆ =
X
i

∆(i)

over F.
When opening a shared value JxK, parties first broadcast

their shares x(i) and compute x. To ensure that x is correct,
they then check the MAC by committing to and opening
m(i) − x · ∆(i), and checking these shares sum up to zero.
To increase efficiency when opening many values, a random
linear combination of the MACs can be checked instead.

The main task of the SPDZ preprocessing phase is to pro-
duce the following types of random, authenticated shared
values:

Input Pi: (JrK, i) a random, shared value r, such that
only party Pi knows the value r.

Triple: (JaK, JbK, JcK) for uniformly random a, b, with
c = a · b.

In the online phase, parties interact and use the Input val-
ues to create shared representations of their private inputs,
and the Triple values to perform multiplications on secret-
shared values. Note that since the J·K representation is lin-
ear, additions and linear functions can be computed locally.

3. CORRELATED OBLIVIOUS PRODUCT
EVALUATION

In this section we describe an arithmetic generalization of
the passively secure OT extension of Ishai et al. [23], which
we call correlated oblivious product evaluation (COPE). This
allows two parties to obtain an additive sharing of the prod-
uct x ·∆, where one party holds x ∈ F and the other party
holds ∆ ∈ F. The correlation, ∆, is fixed at the start of
the protocol, and then future iterations create sharings for
different values of x.

Oblivious product evaluation.
The key mechanism behind COPE is a general method

for (possibly non-correlated) oblivious product evaluation,

which is illustrated for Fp in Fig. 2, and also used in our
triple generation protocol later. The two parties run k sets
of OTs on k-bit strings, where in each OT the sender, PS ,

inputs a random value ti
$← F and the correlated value ti+a,

where a ∈ F is the sender’s input. The receiver inputs the
bit decomposition of their input, (b1, . . . , bk) ∈ {0, 1}k, and
receives back either ti or ti + a, depending on the bit bi.
Since the sender’s correlation is computed over F, we have
the relation

qi = ti + bi · a,

where qi is the receiver’s output in the i-th OT. Now both
parties simply compute the inner product of their values
(qi)i, (−ti)i with the gadget vector g to obtain values q and
t which form an additive sharing of the product of the inputs,
so that

q + t = a · b ∈ F.

Correlated OPE.
To obtain COPE, where one party’s input is fixed for

many protocol runs, we only need to perform the k OTs
once, where the receiver, PB , inputs their bits of ∆ ∈ F
and the sender, PA, inputs k pairs of random λ-bit seeds
(recall that λ is the computational security parameter and
k = blog |F|c). This is the Initialize phase of ΠCOPEe (Pro-
tocol 1).

After initialization, on each Extend call the parties ex-
pand the original seeds using a PRF to create k bits of fresh
random OTs, with the same receiver’s choice bits ∆B . Party
PA now creates a correlation between the two sets of PRF
outputs using their input, x (step (b)). The masked correla-
tion is sent to PB , who uses this to adjust the PRF output
accordingly; now both parties have k correlated OTs on field
elements. These are then mapped into a single field element
by taking the inner product of their outputs with the gadget
vector g to obtain an additive sharing of x ·∆ in steps 4–5.

Malicious behavior.
Now consider what happens in ΠCOPEe if the parties do

not follow the protocol. Party PB fixes their input ∆ at the
start of the protocol, and sends no more messages thereafter,
so cannot possibly cheat. On the other hand, PA may use
different values of x in each ui that is sent in step 2 of
Extend. Suppose a corrupt PA uses xi to compute ui, for
i ∈ [k], then in step 4 we will instead have q = t + x ∗∆B ,
where x = (x1, . . . , xk), which then results in

t+ q = 〈g ∗ x,∆B〉

We do not prevent this in our protocol, but instead model
this behavior in the functionality FCOPEe (given in the full
version [27]).

The proof of the following theorem, showing that our pro-
tocol securely implements FCOPEe in the FOT-hybrid model
if F is a PRF, is given in the full version.

Theorem 1. The protocol ΠCOPEe securely implements FCOPEe

in the FOT-hybrid model with computational security param-
eter λ, if F is a PRF.



Protocol 1 The protocol ΠCOPEe: Oblivious correlated prod-
uct evaluation with errors over the finite field F.

The protocol uses a PRF F : {0, 1}λ × {0, 1}λ → F and
maintains a counter j := 0. After initialization, Extend
may be called multiple times.

Initialize: On input ∆ ∈ F from PB :

1: PA samples k pairs of seeds, {(ki0,ki1)}ki=1, each in
{0, 1}λ.

2: Both parties call Fk,λOT with inputs {ki0,ki1}i∈[k] from

PA and ∆B = (∆0, . . . ,∆k−1) ∈ {0, 1}k from PB .
3: PB receives ki∆i

for i ∈ [k].

Extend: On input x ∈ F from PA:

1: For each i = 1, . . . , k:

(a) Define

ti0 = F (ki0, j) ∈ F and ti1 = F (ki1, j) ∈ F

so PA knows (ti0, t
i
1) and PB knows ti∆i

.

(b) PA sends ui = ti0 − ti1 + x to PB .

(c) PB computes

qi = ∆i · ui + ti∆i

= ti0 + ∆i · x

2: Store j := j + 1
3: Let q = (q1, . . . , qk) and t = (t10, . . . , t

k
0). Note that

q = t + x ·∆B ∈ Fk.

4: PB outputs q = 〈g,q〉.
5: PA outputs t = −〈g, t〉.
6: Now it holds that t+ q = x ·∆ ∈ F.

Complexity.
The communication complexity of a single iteration of our

COPE protocol, after the k base OTs in initialization, is k
field elements, for a total of k2 bits. The computation cost
is 3k PRF evaluations and 8k finite field operations between
the two parties.

4. AUTHENTICATING AND OPENING AD-
DITIVE SHARES

In this section we show how to create authenticated SPDZ
shares using COPE and securely open linear combinations
of these shares with a MAC checking procedure. The main
challenge is to ensure that an adversary who inputs errors
in our COPE protocol cannot later open an authenticated
share to the incorrect value. We model these requirements
in a single functionality, FJ·K (Fig. 3), which is independent
of the details of the MAC scheme used and the underlying
MAC keys. One can see this functionality as a generaliza-
tion of verifiable secret sharing with the main difference that
it allows full-threshold corruption. We first explain the me-
chanics of the functionality, and then describe the protocols
for implementing it.

Inputs are provided to the functionality with the Input
command, which takes as input a list of values x1, . . . , xl
from one party and stores these along with the identifiers

Protocol 2 MAC checking subprotocol

On input an opened value y, a MAC share m(i) and a MAC
key share ∆(i) from party Pi, each Pi does the following:

1: Compute σ(i) ← m(i)−y ·∆(i) and call FComm to commit
to this and receive the handle τi.

2: Call FComm with (Open, τi) to open the commitments.

3: If σ(1) + · · · + σ(n) 6= 0, output ⊥ and abort, otherwise
continue.

id1, . . . , idl. Linear functions can then be computed on values
that have been input using the LinComb command.

The Open command lets the adversary output inconsistent
or incorrect values. However, if this happened to honest
parties, the Check command will reveal this.

4.1 Authentication using COPE
We first consider a natural approach for one party to cre-

ate an authenticated sharing of their private inputs using
the correlated oblivious product evaluation protocol, and
describe why this is not sufficient for active security on its
own. We then show that an actively secure protocol can
be obtained by authenticating one extra random value and
checking a random linear combination of all MACs during
the input phase. For ease of exposition, we restrict ourselves
to the two-party setting, and briefly explain at the end how
ΠJ·K (Protocol 3) extends this to n parties.

Suppose party P1 is honest and wishes to authenticate
an input x ∈ F. P1 runs an instance of FCOPEe with P2

and inputs x into the Extend command, whilst P2 inputs
a MAC key share ∆(2). P1 then receives t and Pj receives q
such that q + t = x ·∆(2). P1 then defines the MAC share
m(1) = x ·∆(1) + t, and P2 defines the MAC share m(2) = q.
Clearly, we have m(1) +m(2) = x ·∆, as required.

To convert x into shares, P1 simply generates random ad-
ditive shares x(1), x(2) and sends x(2) to P2. Note that since
the shares and MACs are linear, computing linear combi-
nations on authenticated values is straightforward. Parties
can also add a constant by adjusting their MAC shares ac-
cordingly, and choosing one party (say, P1) to adjust their
share.

Now consider a corrupt P ∗1 , who can input a vector x into
FCOPEe. If P ∗1 chooses x = (1, . . . , 1, 0, . . . , 0) ∈ Fk, where
this is 1 in the first k/2 positions and 0 elsewhere, then the
relation between the MAC shares becomes:

m(1) +m(2) = 〈g ∗ (1, . . . , 1, 0, . . . , 0),∆B〉

where we have defined m(1) = t + 〈g ∗ x,∆(1)〉 for conve-
nience.

If P ∗1 ’s input is later opened, then to pass the MAC check,
P ∗1 essentially needs to come up with a value x and a valid
MAC share m∗ such that m∗+m(2) = x ·∆. One possibility
is to guess the first k/2 bits of ∆, denoted ∆′, and compute

m∗ = m(1) − 〈g,∆′B〉

which gives a valid MAC relation for x = 0. However, P ∗1
could similarly try to guess the latter k/2 bits of ∆, which
corresponds to opening to x = 1. Note that each of these
openings only succeeds with probability 2−k/2, but for effi-



Functionality FJ·K

The functionality maintains a dictionary, Val, to keep track of the authenticated values. Entries of Val lie in the (fixed) finite field
F and cannot be changed, for simplicity.

Input: On receiving (Input, id1, . . . , idl, x1, . . . , xl, Pj) from party Pj and (Input, id1, . . . , idl, Pj) from all other parties, where xi ∈ F,
set Val[idi]← xi for i = 1, . . . , l.

Linear comb.: On receiving (LinComb, id, id1, . . . , idt, c1, . . . , ct, c) from all parties, where (id1, . . . , idt) ⊆ Val.keys() and the com-

bination coefficients c1, . . . , ct, c ∈ F, set Val[id]←
Pt
i=1 Val[idi] · ci + c.

Open: On receiving (Open, id) from all parties, where id ∈ Val.keys(), send Val[id], wait for x from the adversary, and output x to
all parties.

Check: On receiving (Check, id1, . . . , idt, x1, . . . , xt) from every party Pi, wait for an input from the adversary. If it inputs OK,
and Val[idj ] = xj for all j, return OK to all parties, otherwise return ⊥ and terminate.

Abort: On receiving Abort from the adversary, send ⊥ to all parties and terminate.

Figure 3: Functionality for authenticating, computing linear combinations of, and opening additively shared
values

ciency we would like to achieve a failure probability much
closer to 2−k.

The main problem here is that P ∗1 can choose, at the time
of opening, what to open to, and is not committed to one
particular value. This means the simulator cannot compute
a valid input during the Input stage, and we cannot securely
realize the functionality.

To get around this problem, we require two changes to the
Input stage. Firstly, P1 samples a random dummy input

x0
$← F, and authenticates this as well as the m actual in-

puts. Secondly, after computing the MACs using FCOPEe, P1

opens a random linear combination of the inputs x0, . . . , xl,
and the MAC on this is checked by all parties. This ensures
that P1 is committed to their inputs during the input stage
and cannot later open to a different value, whilst x0 masks
the actual inputs in this opening.

We now examine in more detail why this suffices. Suppose
a corrupt P ∗1 is meant to input m values to be shared, in
the actual protocol ΠJ·K. A dummy value x0 ∈ F is sampled,
and P ∗1 , P2 can obtain MAC shares such that:

m
(1)
h +m

(2)
h = 〈g ∗ xh,∆B〉, for h = 0, . . . , l

where xh are P ∗1 ’s inputs to FCOPEe. In the MAC check of
the Input stage, the parties sample a random r ∈ Fl+1, and
P ∗1 then opens the value y, which P ∗1 can force to be any
value. Next, P2 computes during steps 8–9 the values:

m(2) =

lX
h=0

rh ·m(2)
h

σ(2) = m(2) − y ·∆.

P ∗1 must then come up with a value σ(1) such that σ(1) +
σ(2) = 0, which implies:

σ(1) = −σ(2) = y ·∆−
lX

h=0

rh · (〈g ∗ xh,∆B〉 −m(1)
h )

⇔ σ(1) −
X
h

rh ·m(1)
h = y ·∆−

lX
h=0

rh · 〈g ∗ xh,∆B〉. (1)

Since rh,m
(1)
h are known to P ∗1 , this is equivalent to guess-

ing the right-hand side of (1), after choosing xh (indepen-
dently of rh) and y.

Clearly, one way of achieving this is letting xh = (xh, . . . , xh)
for some xh ∈ F, which implies that 〈g ∗ xh,∆B〉 = xh ·∆,

and letting y =
Pl
h=0 rh · xh. This corresponds to the hon-

est behavior. Otherwise, we prove in the full version that
for P ∗1 , passing the check implies being able to compute a
correct MAC share for xh. Once a correct MAC share for
a specific value is known, passing a later MAC check for
another value implies knowledge of the MAC key.

As an example, consider the case of xh = (0, xh, . . . , xh)
for some xh 6= 0, h ∈ [l]. This implies that

lX
i=0

rh · 〈g ∗ xh,∆B〉 =

lX
h=0

rh · (xh ·∆− xh ·∆1)

=

lX
h=0

rh · xh · (∆−∆1),

where ∆1 denotes the first bit of ∆B . Define ∆′ = ∆−∆1.
Then, (1) can be written as

σ(1) −
lX

h=0

rh ·m(1)
h = (y −

lX
h=0

rh · xh) ·∆′ −
lX

h=0

rh · xh ·∆1.

If y 6=
Pl
h=0 rh ·xh, P ∗1 has only negligible chance of passing

the check. Otherwise, P ∗1 can succeed with probability 1/2

by “guessing” ∆1. If successful, P ∗1 can compute m
(1)
h + xh ·

∆1, which is a correct MAC share for xh because

m
(1)
h + xh ·∆1 +m

(2)
h = 〈g ∗ xh,∆B〉+ xh ·∆1

= 〈g · xh,∆B〉
= xh ·∆.

This means that P ∗1 is effectively committed to xh. Finally,
the simulation involves solving

0 =
D
g · y − g ∗

lX
h=0

rh · xh, ∆̃B

E



Protocol 3 ΠJ·K, creating J·K elements

This protocol additively shares and authenticates inputs in
F, and allows linear operations and openings to be carried
out on these shares. Note that the Initialize procedure only
needs to be called once, to set up the MAC key.

Initialize: Each party Pi samples a MAC key share
∆(i) ∈ F. Each pair of parties (Pi, Pj) (for i 6= j) calls

FCOPEe.Initialize(F) where Pj inputs ∆(j).
Input: On input (Input, id1, . . . , idl, x1, . . . , xl, Pj) from Pj

and (Input, id1, . . . , idl, Pj) from all other parties:

1: Pj samples x0
$← F.

2: For h = 0, . . . , l, Pj generates a random additive

sharing
P
i x

(i)
h = xh and sends x

(i)
h to Pi.

3: For every i 6= j, Pi and Pj call FCOPEe.Extend, where
Pj inputs (x0, . . . , xl) ∈ Fl+1.

4: Pi receives q
(i,j)
h and Pj receives t

(j,i)
h such that

q
(i,j)
h + t

(j,i)
h = xh ·∆(i), for h = 0, . . . , l.

5: Each Pi, i 6= j, defines the MAC shares m
(i)
h = q

(i,j)
h ,

and Pj computes the MAC shares

m
(j)
h = xh ·∆(j) +

X
j 6=i

t
(j,i)
h

to obtain JxhK, for h = 0, . . . , l.
6: The parties sample r← FRand(Fl+1).

7: Pj computes and broadcasts y =
Pl
h=0 rh · xh.

8: Each party Pi computes m(i) =
Pl
h=0 rh ·m

(i)
h .

9: The parties execute ΠMACCheck with y and {m(i)}i∈[n].

10: All parties store their shares and MAC shares under
the handles id1, . . . , idl.

Linear comb.:
On input (LinComb, id, id1, . . . , idt, c1, . . . , ct, c),
the parties retrieve their shares and MAC shares

{x(i)
j ,m(xj)

(i)}j∈[t],i∈[n] corresponding to id1, . . . , idt,
and each Pi computes:

y(i) =

tX
j=1

cj · x(i)
j +

(
c i = 1

0 i 6= 1

m(y)(i) =

tX
j=1

cj ·m(xj)
(i) + c ·∆(i),

They then store the new share and MAC of JyK under
the handle id.

Open: On input (Open, id):

1: Each Pi retrieves and broadcasts their share x(i).
2: Parties reconstruct x =

Pn
i=1 x

(i) and output it.

Check: On input (Check, id1, . . . , idt, x1, . . . , xt), the par-
ties do the following:

1: Sample a public, random vector r← FRand(Ft).
2: Compute y ←

Pt
j=1 rj · xj and m(y)(i) ←

Pt
j=1 rj ·

m
(i)
idj

, where m
(i)
idj

denotes Pi’s MAC share stored un-

der idj for all i ∈ [n] and j ∈ [t].

3: Execute ΠMACCheck with y and m(y)(i).

=

lX
h=0

rh · xh · ∆̃1

for ∆̃. Clearly, the first bit of any solution ∆̃ must be zero.
It is easy to see that

∆̃−1 · 〈g ∗ xh, ∆̃〉 = xh

for any such ∆̃. This is how the simulator in our proof
computes the value P ∗1 is committed to after passing the
check.

We need that, once P ∗1 has passed the check in the input
phase, they are committed to a particular value. However,
the adversary has an edge because only a random combina-
tion of inputs can be checked (otherwise all the inputs would
be revealed). This can be seen as follows: Denote by xh,g the
g-th entry of the vector xh input when authenticating the
h-th value, and denote by {rh}h∈[l] the random coefficients
generated using FRand. For g 6= g′ ∈ [k], if xh,g 6= xh,g′ , there
is a 1/|F| chance that

P
rhxh,g =

P
rhxh,g′ . Because the

check only relates to the randomly weighted sum, the adver-
sary could therefore act as if xh,g = xh,g′ and decide later
between {xh,g}h∈[l] and {xh,g′}h∈[l]. The fact that there are
log |F|(log |F|−1)/2 such pairs g 6= g′ explains the 2 log log |F|
subtrahend in the theorem below. It is easy to see that a
repeated check would suffice for security parameter log |F|.

Extension to more than two parties.
Extending the authentication protocol to n parties is rela-

tively straightforward. When party Pj is inputing a value x,
Pj runs FCOPEe (on input x) with every other party Pi 6= Pj ,

who each inputs the MAC key share ∆(i). Summing up
these outputs allows Pj to obtain an authenticated share
under the global MAC key, ∆ =

P
i ∆(i). Note that this

introduces further potential avenues for cheating, as Pj may
provide inconsistent x’s to FCOPEe with different parties, and
the other parties may not use the correct ∆(i). However, it
is easy to see that except with probability 1/|F|, these devi-
ations will cause the MAC check to fail in the Input stage,
so are not a problem.

The security of our authentication and MAC checking pro-
tocols is given formally in the following theorem, which we
prove in the full version [27].

Theorem 2. The protocol ΠJ·K securely implements FJ·K
in the (FCOPEe,FComm,FRand)-hybrid model, with statistical
security parameter log |F| − 2 log log|F|.

5. MULTIPLICATION TRIPLES
USING OBLIVIOUS TRANSFER

In the previous section we showed how parties can com-
pute linear functions on their private inputs using the au-
thentication and MAC checking protocols. We now extend
this to arbitrary functions, by showing how to create multi-
plication triples using FJ·K and OT.

Recall that a multiplication triple is a tuple of shared val-

ues (JaK, JbK, JcK) where a, b
$← F and c = a·b. Given FJ·K and

a protocol for preprocessing triples, the online phase of the
resulting MPC protocol is straightforward, using Beaver’s
method for multiplying two secret-shared values [4]. For
completeness, this is detailed in the full version [27].

Throughout this section, we write JxK to mean that each
party holds a random, additive share of x, and the value of
x is stored in the ideal functionality FJ·K.

The protocol ΠTriple (Protocol 4) begins with the Multi-
ply step, which uses FOT to compute a secret sharing of the



Protocol 4 Triple generation protocol, ΠTriple

The integer parameter τ ≥ 3 specifies the number of triples
to be generated per output triple.

Multiply:

1: Each party samples a(i) $← Fτ , b(i) $← F.
2: Every ordered pair of parties (Pi, Pj) does the follow-

ing:

(a) Both parties call Fτk,kROT where Pi inputs

(a
(i)
1 , . . . , a

(i)
τk) = g−1(a(i)) ∈ Fτk2 .

(b) Pj receives q
(j,i)
0,h , q

(j,i)
1,h ∈ F and Pi receives s

(i,j)
h =

q
(j)

a
(i)
h
,h

, for h = 1, . . . , τk.

(c) Pj sends d
(j,i)
h = q

(j,i)
0,h − q

(j,i)
1,h + b(j), h ∈ [τk].

(d) Pi sets t
(i,j)
h = s

(i,j)
h +a(i) ·d(j,i)

h = q
(j,i)
0,h +a

(i)
h ·b

(j),

for h = 1, . . . , τk. Set q
(j,i)
h = q

(j,i)
0,h .

(e) Split (t
(i,j)
1 , . . . , t

(i,j)
τk ) and (q

(j,i)
1 , . . . , q

(j,i)
τk ) into τ

vectors of k components each, (t1, . . . , tτ ) and
(q1, . . . ,qτ ).

(f) Pi sets c
(i)
i,j = (〈g, t1〉, . . . , 〈g, tτ 〉) ∈ Fτ .

(g) Pj sets c
(j)
i,j = −(〈g,q1〉, . . . , 〈g,qτ 〉) ∈ Fτ .

(h) Now we have

c
(i)
i,j + c

(j)
i,j = a(i) · b(j) ∈ Fτ

3: Each party Pi computes:

c(i) = a(i) · b(i) +
X
j 6=i

(c
(i)
i,j + c

(i)
j,i)

Combine:

1: Sample r, r̂← FRand(Fτ ).
2: Each party Pi sets

a(i) = 〈a(i), r〉, c(i) = 〈c(i), r〉 and

â(i) = 〈a(i), r̂〉, ĉ(i) = 〈c(i), r̂〉

Authenticate: Each party Pi runs FJ·K.Input on their
shares to obtain authenticated shares JaK, JbK, JcK, JâK, JĉK.

Sacrifice: Check correctness of the triple (JaK, JbK, JcK) by
sacrificing JâK, JĉK.
1: Sample s← FRand(F).
2: Call FJ·K.LinComb to store s · JaK− JâK under JρK.
3: Call FJ·K.Open on input JρK to obtain ρ.
4: Call FJ·K.LinComb to store s · JcK− JĉK− JbK · ρ under

JσK.
5: Run FJ·K.Check(JρK, JσK, ρ, 0) and abort if FJ·K aborts.

Output: (JaK, JbK, JcK) as a valid triple.

product of b ∈ F and a ∈ Fτ , where τ ≥ 3 is a parame-
ter affecting security. This is done by running τ copies of
the basic two-party product sharing protocol between every
pair of parties (steps (a)–(g)), followed by each party locally
summing up their shares.

During this stage, a corrupt Pj may attempt to guess some
bits of a by using values other than b(j) in step (c). This is
why we start with τ components for a instead of just one,
ensuring that a still has sufficient randomness to produce a
triple. Note that there is no need for privacy amplification
on b, which is already protected by the protocol because the

shares b(j) are only used to compute d(j,i) = q
(j,i)
0,h − q

(j,i)
1,h +

b(j), which is uniformly random because Pj learns only one

of q
(j,i)
0,h and q

(j,i)
1,h .

After the Multiply step, the parties have an additively
shared triple (a, b, c), which may be incorrect if someone was
dishonest. In the Combine step, they take random linear
combinations of the τ components of (a, b, c) using random
r and r̂ in Fτ obtained from FRand. By using two sets of
random coefficients, this produces two triples with the same
b component; later, one of these will be ‘sacrificed’ to check
correctness of the other.

Using random combinations ensures that even if a few bits
of the vector a are leaked to the adversary, the values a, â
are still statistically close to uniform. The parties then use
FJ·K to Authenticate their shares of a, â, b, c and ĉ.

Finally, correctness of the triple JaK, JbK, JcK is checked in
a Sacrifice phase, using JâK and JĉK. The idea of this step
is similar to the corresponding step in previous works [15,
17], with the key difference that in our case both triples
have the same b value. We observe that this still suffices to
check correctness of the triples, and means we only need to
authenticate 5 values instead of 6.

5.1 Security analysis
We now give some more intuition behind the security of

the protocol. Let us first examine the possible adversarial
deviations in the Multiply step.

Suppose Pj is corrupt. Let a(j,i) ∈ Fτ and b(j,i) ∈ Fτk be
the actual values used by Pj in the two executions of steps 1
and 3 with an honest Pi, instead of a(j) and b(j). Define the
values a(j) and b(j) to be those values used in the instance
with an arbitrary (e.g. lowest index) honest party Pi0 .

Then, for each i 6∈ A, let δ
(j,i)
a = a(j,i) − a(j) ∈ Fτ and

δ
(j,i)
b = b(j,i) − (b(j), . . . , b(j)) ∈ Fτk be the deviation in

Pj ’s input with an honest Pi. Let δ
(i)
a =

P
j∈A δ

(j,i)
a and

δ
(i)
b =

P
j∈A δ

(j,i)
b , and consider δ

(i)
b as a length τ vector

with components in Fk (similarly to th,qh in the protocol).
Now by analyzing the possible adversarial deviations and

summing up shares, we can see that the h-th component of
c (for h ∈ [τ ]), at the end of the Multiply stage, is

c[h] = a[h]·b+
X
i 6∈A

〈(a(i)[h])B , δ
(i)
b [h]〉

| {z }
=eah

+
X
i6∈A

b(i) · δ(i)
a [h]

| {z }
=ebh

. (2)

Intuitively, it is easy to see that any non-zero δ
(i)
a errors

will be blown up by the random honest party’s share b(i),
so should result in an incorrect triple with high probability.

On the other hand, the δ
(i)
b errors can be chosen so that eah

only depends on single bits of the shares a(i). This means
that a corrupt party can attempt to guess a few bits (or

linear combinations of bits) of a(i). If this guess is incorrect
then the resulting triple should be incorrect; however, if all
guesses succeed then the triple is correct and the sacrifice
step will pass, whilst the adversary learns the bits that were
guessed.

This potential leakage (or selective failure attack) is mit-
igated by the Combine stage. The intuition here is that,
to be able to guess a single bit of the final shares a(i), â(i),
the adversary must have guessed many bits from the input
vector a(i), which is very unlikely to happen. To prove this



intuition, we analyze the distribution of the honest party’s
output shares using the Leftover Hash Lemma, and show
that if τ is large enough, the combined output is statisti-
cally close to uniform to the adversary.

Regarding the Sacrifice stage, note that the check first
opens ρ = s · a− â and then checks that

s · c− ĉ− b · ρ = 0

which is equivalent to s · (c− a · b) = ĉ− â · b. If the triples
are incorrect then this will only pass with probability 1/|F|,
since s is random and unknown when the triples are authen-
ticated.

The following results (proven in the full version [27]) state
the security of our protocol. The first requires the combining
parameter set to τ = 4, to obtain a a general result for
any k-bit field, whilst the second (which is evident from the
proof of the theorem) shows that for k-bit fields and k/2-bit
statistical security, τ = 3 suffices.

Theorem 3. If τ = 4 then the protocol ΠTriple (Protocol 4)
securely implements FTriple in the (FROT,FJ·K)-hybrid model
with statistical security parameter k.

Corollary 1. If τ = 3 then ΠTriple securely implements
FTriple in the (FROT,FJ·K)-hybrid model with statistical secu-
rity parameter k/2.

6. PERFORMANCE
We first analyse the complexity of our preprocessing pro-

tocol, and then describe our implementation and experi-
ments.

6.1 Complexity
We measure the communication complexity of our pro-

tocol in terms of the total amount of data sent across the
network. Note that the number of rounds of communication
is constant (� 100), so is unlikely to heavily impact per-
formance when generating large amounts of preprocessing
data. Throughout this section, we exclude the cost of the λ
base OTs (between every pair of parties) in the initialization
stages, as this is a one-time setup cost that takes less than
a second using [12].

Input tuple generation.
The main cost of authenticating one party’s field element

in a k-bit field with ΠJ·K is the n− 1 calls to ΠCOPEe, each of

which sends k2 bits, plus sending n− 1 shares of k bits, for
a total of (n−1)(k2 +k) bits. We ignore the cost of authen-
ticating one extra value and performing the MAC check, as
this is amortized away when creating a large batch of input
tuples.

Triple generation.
To generate a triple, each pair of parties makes τk calls

to FROT, followed by sending a further τk2 bits in step (c)
and then 5 calls to ΠCOPEe for authentication (ignoring FRand

and sending the input shares as these are negligible). Since
each call to FROT requires communicating λ bits, and ΠCOPEe

requires k2 bits, this gives a total of n(n−1)(τλk+(τ+5)k2)
bits sent across the network.

Table 2 shows these complexities for a few choices of field
size, with λ = 128 and τ chosen to achieve at least 64 bit

statistical security. We observe that as k increases, the cost
of inputs scales almost exactly quadratically. For triples,
k = 64 is slightly less efficient as we require τ = 4 (instead of
3), whilst for larger k the cost reduces slightly as k becomes
much larger than λ. Note also that the cost of an input
is much lower than a triple, as the input protocol does not
require any of the expensive sacrificing or combining that
we use to obtain active security with triples. This is in
contrast to the SPDZ protocol [15, 17], where creating input
tuples requires complex zero-knowledge or cut-and-choose
techniques.

Comparison with a passive protocol.
A passively secure (or semi-honest) version of our proto-

col can be constructed by setting τ = 1 and removing the
authentication step, saving 5 calls to ΠCOPEe for every pair
of parties. Note that for two parties this is essentially the
same as the protocol in ABY [18]. The communication cost
of a single triple is then n(n− 1)(λk + k2) bits. For triples
where k ≥ 128, and 64-bit statistical security, the actively
secure protocol achieves τ = 3, so is just 5.5 times the cost
of the passive variant.

Field bit length Input cost (kbit) Triple cost (kbit)

64 4.16(n− 1) 53.25n(n− 1)

128 16.51(n− 1) 180.22n(n− 1)

256 65.79(n− 1) 622.59n(n− 1)

512 262.66(n− 1) 2293.76n(n− 1)

Table 2: Communication cost of our protocols for
various field sizes, with n parties.

6.2 Implementation
As part of our implementation, we have used the opti-

mizations described below. The first two apply to the OT
extension by Keller et al. [26].

Bit matrix transposition.
Asharov et al. [2] mention the bit matrix transposition as

the most expensive part of the computation for their OT
extension. They propose Eklundh’s algorithm to reduce the
number of cache misses. Instead of transposing a matrix bit
by bit, the matrix is transposed with respect to increasingly
small blocks while leaving the blocks internally intact. Keller
et al. also use this algorithm.

However, for security parameter λ, the OT extension re-
quires the transposition of a n × λ-matrix. We store this
matrix as list of λ × λ-blocks, and thus, we only have to
transpose those blocks. For λ = 128, one such block is 2
KiB, which easily fits into the L1 cache of most modern
processors.

Furthermore, we use the PMOVMSKB instruction from
SSE2. It outputs a byte consisting of the most significant
bits of 16 bytes in a 128-bit register. Together with a left
shift (PSLLQ), this allows a 16 × 8-matrix to be trans-
posed [33] with only 24 instructions (eight of PMOVSKB,
PSLLQ, and MOV each).

Pseudorandom generator and hashing.
Keller et al. [26] used AES-128 in counter mode to imple-

ment the PRG needed for the OT extension. This allows to



use the AES-NI extension provided by modern processors.
We have also implemented the hash function using AES-
128 by means of the Matyas–Meyer–Oseas construction [32],
which was proven secure by Black et al. [7]. This construc-
tion uses the compression function hi = Eg(hi−1)(mi)⊕mi,
where mi denotes the i-th message block, hi is the state
after the i-th compression, and g denotes a conversion func-
tion. In our case, the input is only one block long (as many
bits as the computational security parameter of the OT ex-
tension), and g is the identity. This gives a hash function
H(m) = EIV (m) ⊕ m for some initialization vector IV ,
which allows to precompute the key schedule. This pre-
computation in turn allows to easily take advantage of the
pipelining capabilities of AES-NI in modern Intel proces-
sors: While the latency of the AESENC instruction is seven
clock cycles, the throughput is one per clock cycle [22]. This
means that the processor is capable of computing seven en-
cryptions in parallel.

Inner product computation.
Both ΠCOPEe and ΠTriple involve the computation of 〈g,x〉

for x ∈ Flog |F|. Elements of both F2k and Fp are commonly
represented as elements of larger rings (F2[X] and Z, respec-
tively), and some operations involves a modular reduction
(modulo an irreducible polynomial or p). When computing,
we defer this reduction until after computing the sum. Fur-
thermore, we use the mpn_* functions of MPIR [40] for the
large integer operations for Fp. For F2k on the other hand,
the computation before the modular reduction is straight-
forward because addition in F2[X] corresponds to XOR.

Multithreading.
In order to make optimal use of resources, we have or-

ganized the triple generation as follows: There are several
threads independently generating triples, and every such
thread controls n − 1 threads for the OTs with the n − 1
other players. Operations independent of OT instances, such
as amplification and sacrificing, are performed by the triple
generation threads. We found that performance is optimal
if the number of generator threads is much larger than the
number of processor cores. This is an indication that the
communication is the main bottleneck.

6.3 Experiments
We have tested our implementation for up to five parties

on off-the-shelf machines (eight-core i7 3.1 GHz CPU, 32 GB
RAM) in a local network. Fig. 4 shows our results.

We could generate up to 4800 and 1000 F2128 triples per
second with two and five parties, respectively, using 100
threads. For Fp with p a 128-bit prime, the figures are the
same. These figures come close to the maximum possible
throughput of the correlation steps, which is 5500 and 1400,
respectively. The maximum figures are computed from the
analysis above, with τ = 3 and k = λ = 128. Assuming a 1
Gbit/s link per party and unlimited routing capacity gives
the desired result.

Using just a single thread, we can produce 2000 triples/s
with two parties, which is still over 72 times faster than the
single-threaded implementation of SPDZ [15].

By increasing the bandwidth to 2 Gbit/s, we could in-
crease the throughput to 9500 and 1600 triples per seconds
for two and five parties, respectively. This confirms the ob-
servation that the communication is the main bottleneck.
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Figure 4: Triple generation throughput for 128-bit
fields.
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throughput for different networks with two parties

Fig. 5 shows the throughput for two parties in various net-
work environments. The WAN environment was simulated
over a LAN by restricting bandwidth to 50 Mbit/s and a
round-trip latency of 100 ms.

6.3.1 Vickrey Auction
To highlight the practicality of our protocol, we have im-

plemented the Vickrey second-price auction. Figure 6 shows
the results for the offline and online phase run between two
parties on a local network. This clearly illustrates the 200-
fold performance improvement of our protocol, compared
with (actively secure) SPDZ. Now the preprocessing phase
in within 2–3 orders of magnitude of the online phase.



100 101 102 103

10−2

100

102

104

Number of bids

T
im

e
in

se
co

n
d
s

SPDZ offline phase

MASCOT offline phase

Online phase

Figure 6: Vickrey auction run by two parties.

Acknowledgements
We thank Claudio Orlandi and the anonymous reviewers for
valuable feedback that helped to improve the presentation.

References
[1] The Sharemind project. http://sharemind.cs.ut.ee,

2007.

[2] Asharov, G., Lindell, Y., Schneider, T., and
Zohner, M. More efficient oblivious transfer and
extensions for faster secure computation. In
Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security (2013), ACM,
pp. 535–548.

[3] Baum, C., Damg̊ard, I., Toft, T., and Zakarias,
R. Better preprocessing for secure multiparty
computation. IACR Cryptology ePrint Archive (2016).

[4] Beaver, D. Efficient multiparty protocols using
circuit randomization. Advances in Cryptology -
CRYPTO 1991 (1992).

[5] Beaver, D. Correlated pseudorandomness and the
complexity of private computations. In Proceedings of
the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing (1996), G. L. Miller, Ed., ACM,
pp. 479–488.

[6] Bendlin, R., Damg̊ard, I., Orlandi, C., and
Zakarias, S. Semi-homomorphic encryption and
multiparty computation. In Advances in Cryptology -
EUROCRYPT 2011 (2011), pp. 169–188.

[7] Black, J., Rogaway, P., Shrimpton, T., and
Stam, M. An analysis of the blockcipher-based hash
functions from PGV. J. Cryptology 23, 4 (2010),
519–545.
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