
Chosen-Key Distinguishers on 12-Round

Feistel-SP and 11-Round Collision Attacks on Its

Hashing Modes(Full version)

Xiaoyang Dong1 and Xiaoyun Wang1,2?

1 Key Laboratory of Cryptologic Technology and Information Security, Ministry of

Education, Shandong University, China

dongxiaoyang@mail.sdu.edu.cn
2 Institute for Advanced Study, Tsinghua University

xiaoyunwang@tsinghua.edu.cn

Abstract. Since Knudsen and Rijmen proposed the known-key attacks

in ASIACRYPT 2007, the open-key model becomes more and more pop-

ular. As the other component of the open-key model, chosen-key model

was applied to the full attacks on AES-256 by Biryukov et al. in CRYP-

TO 2009. In this paper, we explore how practically does the chosen-key

model affect the real-world cryptography and show that 11-round generic

Feistel-SP block cipher is no longer safe in its hashing mode (MMO and

MP mode) as there exists collision attacks. This work improves Sasaki

and Yasuda’s collision attacks by 2 rounds with two interesting tech-

niques. First, we for the first time use the available degrees of freedom

in the key to reduce the complexity of the inbound phase, which extends

the previous 5-round inbound differential to a 7-round one. This results

in a 12-round chosen-key distinguisher of Feistel-SP block cipher. Sec-

ond, inspired by the idea of Wang et al., we construct collisions using

two blocks. The rebound attack is used in the second compression func-

tion. We carefully tradeoff between the freedom of the first block and the

complexity of the rebound attack, and extends the chosen-key attack to

a 11-round collision attack on its hashing modes (MMO and MP mode).

Keywords: Block cipher, Feistel-SP, Chosen-key, Rebound attack, Hash

mode.

1 Introduction

Nowadays, both block ciphers and hash functions are important primitives in

cryptography. In many cases, hash functions are based on block ciphers. For

instance, if a block cipher and a hash function are both needed in a resource-

restricted environment, such as smart cards, RFID tag, nodes in cars or other

? Corresponding author

machines which work in very tiny embedded systems, many applications utilize

a block cipher to construct a hash function in order to minimize the design

and implementation cost. There are many popular schemes to construct hash

functions based on a block cipher, including the Davies-Meyer(DM), Matyas-

Meyer-Oseas(MMO) and Miyaguchi-Preneel(MP) hashing modes, which are all

included in the PGV hashing schemes [21]. So to evaluate the security of block

ciphers used in these schemes is very important.

Different from the classical block cipher security analysis, which relies on the

fact that the key value is kept secret, the key value is known to the attackers

in these hashing schemes. Recently, Knudsen and Rijmen [15] have proposed to

consider the known-key attacks on AES. In their attacks, the key is known and

the goal is to find two input messages that satisfy some relations. While, in some

cases the key is under the control of the attackers, for instance when the key

plays a role of salt that is added to the hash functions. This attack model is

called chosen-key model which has been evaluated and popularized by Biryukov

et al. in [4]. Both models belong to the open-key model.

Feistel block cipher adopts an efficient Feistel network design [9], which is

widely trusted and has a long history in cryptography. Nowadays, many block

cipher standards such as DES [5], Triple-DES, MISTY1, Camellia and CAST-

128 [12] are based on Feistel design. In order to analyze the Feistel primitives

comprehensively, Isobe and Shibutani [14] classify them into three types, called

Feistel-1/2/3. In this paper, we focus on the generic Feistel-3 type, which has

round functions based on substitution-permutation network(SPN), i.e. the round

function starts with an XOR of a subkey, followed by a layer of S-Boxes and a

linear diffusion layer. We denote Feistel-3 as Feistel-SP block cipher in this

paper. In ASIACRYPT 2014, Guo et al.[10] gave a 10-round meet-in-the-middle

key-recovery attack on generic Feistel-SP block cipher. When the Feistel-SP

block cipher is used to construct hash functions, the analysis of resistance of

collision attack is immediately needed.

Related Work.

Knudsen and Rijmen in [15] have been the firsts to consider known-key

distinguishers on AES and Feistel schemes. Besides, they present a half-collision

when applying the known-key attack to MMO-hashing function with 7-round

Feistel block cipher whose round function consists of a round-key XOR followed

by an arbitrary key-independent transformmation3. The main motivations for

this model are summarized by paper [8] as following:

1. If there is no distinguisher when the key is known, then there will also be no

distinguisher when the key is secret;

3 Actually, it is Feistel -2 type [14], and can be trivially extend to the Feistel-SP block

cipher.

2

2. If it is possible to find an efficient distinguisher, finding partial collision on

the output of the cipher more efficiently than birthday paradox would predict

even though the key is known, then the authors would not recommend the

use of such cipher;

3. Finally, such model where the key is known or chosen can be interesting to

study the use of cipher in a compression function for a hash function.

In [4], Biryukov et al. studied the chosen-key distinguisher for the full 256-

bit key AES. They showed that in time q · 267, it is possible to construct q-

differential multicollisions on Davis-Meyer compression function using AES-256,

whereas for an ideal cipher, it would require q · 2
q−1
q+1 128. Then the chosen-key

distinguisher is translated into a key-recovery attack on the full AES-256 in

related-key setting. Lamberger et al. [17] presented a chosen-key distinguisher

on the full Whirlpool compression function by taking advantage of rebound

techniques and the available degrees of freedom of the key. In [20], Nikolić et al.

studied the known-key and chosen-key distinguishers on Feistel and Substitution-

Permutation Networks(SPN).

At FSE 2011, by using rebound attack, Sasaki and Yasuda [24] found a 5-

round inbound differential path of the Feistel-SP block cipher, by extending 3

rounds forward and backward, an 11-round known-key distinguisher was given.

Then, they successfully extended the theoretical known-key distinguisher to

real-world threat by introducing 9-round collisions to its hashing mode (MMO

and MP mode). In [23], Sasaki et al. studied the known-key scenario for Feistel

ciphers like Camellia. Later, Sasaki [22] studied the 4-branch generalised Feistel

networks with double SP-functions in known-key setting, and he left an open

problem in this paper that if chosen-key scenario could be applied to the study

of the Feistel schemes.

Our Contributions.

In this work, we continue to explore how the open-key model shake the real-

world cryptography. We give an answer to Sasaki’s open problem and show that

chosen-key scenario works better in the study of the generic Feistel-SP block

cipher and its hashing mode. We extend Sasaki and Yasuda’s 5-round inbound

differential path to a 7-round one. Then a 12-round chosen-key distinguisher is

presented. By exploring the Feistel-SP block cipher used in MMO/MP-hashing

mode, a 11-round full-collision attack is constructed which improves Sasaki and

Yasuda’s collision attacks by 2 rounds. This result shows that the 11-round

generic Feistel-SP block cipher is not secure in its hashing mode (MMO and MP

mode). It should be noted that our 11-round collision attack is in the same setting

as Sasaki and Yasuda’s 9-round collision attack, and both of them consider the

original hash function’s collision(not semi-free-start collision, etc). All the results

are summarized in Tab. 1.

Our contributions come from three folds.

3

1. We introduce a new 7-round inbound differential, which extends the Sasaki

and Yasuda’s inbound path by 2 rounds;

2. We take advantage of the available degrees of freedom in the key to reduce the

complexity of the 7-round inbound phase. This is different from the technique

used by Lamberger et al. [17]. They also use the available degrees of freedom

in the key. However, they use up all the degrees of freedom of the message

and the key to make the inbound path hold. In our work, the freedom of the

key is used in another way. The 7-round inbound phase just consumes the

freedom of the message, but the complexity to compute the starting point of

the inbound phase is very high. To solve the problem, we use the degrees of

freedom of the key to significantly reduce the time complexity. This results

in a 12-round chosen-key distinguisher of Feistel-SP block cipher.

3. Inspired by the idea that constructs collision by two blocks [26,25], we extend

the chosen-key distinguisher to collision attacks. In our attack, the rebound

attack is used in the second compression function, where the key is generated

by the output of the first compression function, i.e. the chaining value. There

is an interesting tradeoff between the degrees of freedom of the chaining

value and the time complexity of the rebound attack. At last, we connect

the two compression functions in the chaining value to produce a 11-round

full-collision.

Organization of the Paper.

Section 2 gives a brief description of Feistel-SP block cipher, some hash-

ing modes and the rebound attack. Section 3 presents the the related work by

Sasaki and Yasuda. Section 4 introduces the new 7-round inbound differential,

12-round chosen-key distinguisher on Feistel-SP block cipher and the 11-round

full-collision attack on MMO/MP hashing mode. Then other cases of Feistel-SP

block ciphers are considered in section 5. In section 6, an experiment is intro-

duced. Finally, we conclude the paper in section 7.

2 Preliminaries

In this section, the basic notations used in this paper are introduced. Then we

briefly recall the properties of the Feistel block ciphers which are equipped with

the SP structrues, denoted as Feistel-SP block ciphers. The hashing modes and

the rebound attack are presented at last.

2.1 Notations

The following notations are used in this paper:

4

Table 1. Summary of Results for Generic Feistel-SP in Open-Key Mode

Case (N,c)† Rounds Time Memory Power Source

(128,8)

7 − − known-key distinguisher [4]

11 219 219 known-key distinguisher [23]

12 240 235 chosen-key distinguisher Section 4.2

7 − − half-collision [4]

9 227 227 full-collision [23]

11 245.5 245.5 full-collision Section 4.3

(128,4)

7 − − known-key distinguisher [4]

11 212 212 known-key distinguisher [24]

12 236 238.9 chosen-key distinguisher Section 5.1

7 − − half-collision [4]

9 224 224 full-collision [23]

11 245.5 245.4 full-collision Section 5.1

(64,8)

7 − − known-key distinguisher [4]

9 219 219 known-key distinguisher [24]

7 − − half-collision [4]

7 224 224 full-collision [23]

(64,4)

7 − − known-key distinguisher [4]

11 211 211 known-key distinguisher [24]

12 220 220.8 chosen-key distinguisher Section 5.2

7 − − half-collision [4]

9 216 216 full-collision [23]

11 224.4 224.4 full-collision Section 5.2

†: (N,c) denotes different cases of Feistel-SP block cipher, described in section 2.

5

N The block length of the Feistel-SP cipher (in bits)

n The size of the input of Feistel-SP cipher’s round function, n = N/2

c The size of an S-box in bits

r The number of S-box sequences, r = n/c in the Feistel-SP cipher

Xi the state after the key addition layer of the ith round

Yi the state after the substitution transformation layer of the ith round

Zi the state after the diffusion layer of the ith round

ki the subkey used in the ith round

X[i] the ith byte of a bit string X, where the left most byte is X[1]

∆X the difference of X and X ′

⊕ bitwise exclusive OR (XOR)

|A| the size of the set A

≪ t left circular shift by t bits, e.g. X ≪ t

0 A state where all bytes are non-active

1 A state where only one byte of the predetermined jth position is active

P (1) The output state of the permutation layer, when the input state is 1

F A state where all bytes are active

2.2 Feistel-SP block ciphers

Isobe and Shibutani [14] classify the Feistel block ciphers into three types, called

Feistel-1/2/3. Feistel-3 is also called Feistel-SP block cipher [24,23], which usu-

ally adopts 128-bit or 64-bit blocks and use 8-bit or 4-bit S-boxes. As introduced

in [24,23], Feistel-SP block ciphers analyzed in this paper are classified as cases

(N,c)=(128,8),(128,4),(64,8) and (64,4).

S1

S2

Sr

ki

n

n

c

c

c

MDS

c

c

c

n

r bytes

S

ki

n Xi Yi ZiP

Key XOR S-box layer Permutation layer

Fig. 1. Left:Detailed description of the SP round funtion Right:Simplified one

SP Round Functions.

As depicted in Fig.1, the SP-round function is composed of the following

three elements.

6

– Key XOR: The input of the round function is XORed with a round key

ki ∈ Fn
2 .

– S-box layer(S): Each of the c-bit is substituted by S-box. All the r S-

boxes S1, S2, ..., Sr are designed to be resistant to differential and linear

cryptanalyses, like the ones used in AES [6]. Hence, if given a pair of input

and output differences of one S-box, there exist paired values following the

given input/output differences with a probability of approximately 2−1. If

exist, then the number of such paired values is approximately two.

– Permutation layer(P): The linear diffusion, which mixes the values by

multiplying an r × r matrix P , is applied to the output of the S-box layer.

We make the assumption that P is a MDS matrix4, so that the total number

of active bytes in the input and output of P is at least r + 1, as long as the

number of active bytes is not zero.

Key Schedules Assumption5.

For the four block cipher cases (N,c)=(128,8),(128,4),(64,8) and (64,4), we

assume their master key sizes are equal to their state size. In this paper, we

assume that for a random value x ∈ Fn
2 , there exists a master key that makes

k5 ⊕ k9 = x, where k5, k9 are round keys of 5th and 9th round generated by

the key schedule6. This assumption is weaker than the assumption that the

round keys k5 and k9 are statistically independent. For example, we denote the

master key as K ∈ F 128
2 , if k5 = (K ≪ 1)[1, 2, ..., 8] and k9 = K[1, 2, ..., 8], and

obviously k5 and k9 are not statistically independent, but for a random given

value x ∈ Fn
2 , the equation k5 ⊕ k9 = x always have solutions, which meets our

assumption. The key schedules of AES [6], Camellia [12], CLEFIA [13], ARIA

[16], etc, all meet our assumption. However, for some lightweight block ciphers,

such as LED-128 [11], Midori [2], where they divide the master key into k0 and

k1, and use k0 and k1 in turn (some round constants will be used to avoid slide

attack), our attack does not work.

2.3 Hashing Modes Using block ciphers

A hash function is expected to accept almost arbitrary long message inputs. The

popular Merkle-Damg̊ard [7,19] domain extension helps us iteratively applying

4 The matching part 1 → P (1) → S ← P−1(1) ← 1 used in the inbound phase of

section 4.2 requires that the active bytes positions in P (1) and P−1(1) are the same,

it is not always true if P is not a MDS matrix.
5 We thank an anonymous reviewer of FSE 2016 for reminding us to make this as-

sumption.
6 It is because in section 4.2, we need the XOR of some bytes between the subkeys k5

and k9 equal some prefixed values.

7

the compression function. Let f(hi,mi) denote such a compression function ac-

cepting as input a message block mi and a chaining input hi, where h0 is a pre-

defined intial value. First, the input message m is padded to be a multiple of the

message block length and separated into m0||m1|| · · · ||mL−1. Then, all the mes-

sage blocks are iteratively processed by hi = f(hi−1,mi−1) for i = 1, 2, · · · , L.

Finally, hL is output as a hash value of m.

In paper [21], Preneel et al. considered a series of compression functions

built from a block cipher and proved that 12 modes are secure. Matyas-Meyer-

Oseas(MMO) and Miyaguchi-Preneel(MP) modes, which provide efficient ways

to construct a compression function from a block cipher, are among the 12 secure

schemes. Given a block cipher E and a key K, we denote its encryption algorithm

as EK . The MMO compression function computes hi by

hi = f(hi−1, (mi−1)) = Ehi−1(mi−1)⊕mi−1, (1)

where mi−1 is a message block and hi−1 is the previous chaining value. While

the chaining value of the Miyaguchi-Preneel mode is computed by

hi = f(hi−1, (mi−1)) = Ehi−1
(mi−1)⊕mi−1 ⊕ hi−1, (2)

given mi−1 and hi−1.

2.4 The Rebound Attack

The rebound attack is a new tool for the cryptanalysis of AES-based hash func-

tions, which was first introduced by Mendel et al. in [18]. The main idea is to

use the available degrees of freedom in a collision attack to efficiently fulfill the

low probability parts in the middle of a truncated differential trail. The rebound

attack consists of an inbound phase and a outbound phase depicted in Fig. 2,

where W is an internal block cipher or permutation which is split into three

subparts, then W = Wfw ◦Win ◦Wbw.

– Inbound phase: The inbound phase is a meet-in-the-middle phase in Win.

By exploiting the degrees of freedom, the attacker can generate pairs that

match the truncated differential path of Win in a low time cost. The matched

pairs are denoted as starting points for the outbound phase.

– Outbound phase: In this phase, the matched pairs of the inbound phase

are computed in both forward and backward direction through Wfw and

Wbw to obtain a pair that satisfy the whole differential path.

3 Sasaki and Yasuda’s Work

In [24], by using rebound technique, Sasaki and Yasuda introduce 11-round

known-key distinguisher attack on Festel-SP ciphers and 9-round collision attack

8

Wbw Win Wfw

inbound
outbound outbound

Fig. 2. The Rebound-Attack Technique

on its hash mode (MMO/MP mode)7. All the attacks are based on a 5-round

inbound differential path, as follows, depicted in Fig. 3.

(1,0)
4thR−−−→ (F,1)

5thR−−−→ (0,F)
6thR−−−→ (F,0)

7thR−−−→ (1,F)
8thR−−−→ (0,1).

Sasaki and Yasuda use the following procedures to find a starting point of the

inbound phase:

1. Prepare DDTs for all S-boxes. Choose an active-byte position j for differen-

tial 1

2. For all 2c differences of ∆Y4, compute the corresponding full-byte differences

after applying the (forward) permutation layer and store them in a table T .

Set the difference in word ∆Y8 to be equal to ∆Y4. This guarantees that the

difference in word ∆Z6 is 0.

3. For each of the 2c differences of ∆Z5, compute the corresponding full-byte

difference after applying the inverse permutation. For each difference stored

in T , check whether we can match it with the above difference by looking up

the DDTs. If a matched set of differences for ∆Y4 and ∆Z5 is found, we can

instantly obtain a matched set for ∆Y8 and ∆Z7 by setting ∆Z7 = ∆Z5.

4. Now that a matched set of differences is found, we can fix word values and

compute the value of word Z6. Here the values drawn in dashed lines in Fig.

3 are fixed.

(a) Check whether or not the computed differences in ∆Y4 and ∆Y8 in step 4

and the chosen difference in ∆Y4 = ∆Y8 at step 2 are consistent. Namely,

check the following:

∆
[
Sj

(
S−1j

((
P−1 (Z6)

)
[j]
)
⊕ k6 [j]⊕ Z5 [j]⊕ k4 [j]

)] ?
= ∆Y4 (3)

∆
[
Sj

(
S−1j

((
P−1 (Z6)

)
[j]
)
⊕ k6 [j]⊕ Z7 [j]⊕ k8 [j]

)] ?
= ∆Y8 (4)

(b) If we find a solution for the above two equations, then it means that we

have found a starting point of the inbound phase.

7 For (N,c)=(64,8), it is a 9-round known-key distinguisher attack and 7-round collision

attack

9

⊕4X 4Y4k

S P⊕
4Z

⊕5X 5Y
5k

S P⊕
5Z

⊕6X 6Y
6k

S P⊕
6Z

⊕7X 7Y
7k

S P⊕
7Z

⊕8X 8Y
8k

S P⊕
8Z

1

0

P(1)

1

P(1)
P(1)

0

P(1)

1

1

1

P-1(1)
P(1)

1

match

match

0

P(1)

P(1)

P(1)
P-1(1)

0

0

P(1)

P(1)
0

filter

filter

Fig. 3. The 5-round Inbound Phase Used by Sasaki and Yasuda

10

Then for cases (N,c)=(128,8),(128,4) and (64,4), the outbound phase for the

11-round known-key distinguisher attack consists of three rounds in backward

direction and three rounds in the forward direction. For the 9-round collision

attack, the outbound phase consists of two rounds in backward direction and

two rounds in the forward direction. For case (N,c)=(64,8), the attacked rounds

are reduced by 2 rounds.

4 New Attacks on Feistel-SP block ciphers: Case

(N,c)=(128,8)

Similar to the known-key setting, the chosen-key setting also belongs to the

open-key model in the literature. In [4], Biryukov et al. extended the chosen-key

distinguisher to a related-key attack on the full AES-256 version, which makes

the chosen-key model popular. However, these attacks have little effect on the

practical use of AES. So one may wonder how practically will these open-key

models endanger the real-world cryptography. In [24], Sasaki and Yasuda intro-

duced known-key distinguishers on Feistel-SP block ciphers, and then converted

them to collision attacks on the MMO and MP hashing modes. Later, Sasaki

[22] proposed an open problem that if chosen-key scenario could be applied to

the study of the Feistel schemes. In this section, we respond to this open prob-

lem, and present a chosen-key distinguisher to Feistel-SP block ciphers based

on a new 7-round inbound differential, and then we can extend the distinguisher

attack to a 11-round full-collision attack on the MMO and MP hashing modes

with these block ciphers, which improves Sasaki and Yasuda’s work [24] by 2

rounds.

4.1 New 7-Round Inbound Differential

The differential path of the new 7-round inbound phase is

(1,0)
4thR−−−→ (P (1),1)

5thR−−−→ (1, P (1))
6thR−−−→ (0,1)

7thR−−−→ (1,0)
8thR−−−→ (P (1),1)

9thR−−−→ (1, P (1))
10thR−−−−→ (0,1),

which is depicted in Fig. 4.

The 7-round inbound phase is split into 3 parts, i.e. Inbound Part 1/2/3.

In Inbound Part 1, the match-in-the-middle step is applied twice with active

bytes 1 → P (1) → S ← P−1(1) ← 1. In Inbound Part 2, we follow the bold

lines to formulate Equ. (5) and (6). The matched pairs computed in the match-

in-the-middle step will be connected in the middle of this part by calculating γ

with Equ. (5) and (6).

S−1(P−1(X5 ⊕ k5 ⊕ γ))⊕k6⊕S−1(P−1(X9 ⊕ k9 ⊕ γ))⊕k8 = P (S(γ⊕k7)), (5)

11

⊕4X 4Y4k

S P⊕
4Z

⊕5X 5Y
5k

S P⊕
5Z

⊕6X 6Y
6k

S P⊕
6Z

⊕7X 7Y
7k

S P⊕
7Z

⊕8X 8Y
8k

S P⊕
8Z

⊕9X 9Y
9k

S P⊕
9Z

⊕10X 10Y
10k

S P⊕
10Z

1

0

P(1)

1

P(1)
P(1)

1 1

1 P(1)

P(1)

0

0 0 0

1

1

1 1 P(1)

0

P(1)

1

1
1

1 P(1)

P(1)

0

1

1

P-1(1)

P-1(1)

P(1)

0 1

P(1)

P(1)

1

0

1

filter

Inbound Part 1

Inbound Part 1

Inbound Part 2

Inbound Part 3

Inbound Part 3

filter







match

match

Fig. 4. 7-round inbound phase

12

S−1(P−1(X ′5 ⊕ k5 ⊕ γ))⊕k6⊕S−1(P−1(X ′9 ⊕ k9 ⊕ γ))⊕k8 = P (S(γ⊕k7)). (6)

We focus on the ∆X6 and ∆X8, where

∆X6 = S−1(P−1(X5 ⊕ k5 ⊕ γ))⊕ S−1(P−1(X ′5 ⊕ k5 ⊕ γ)), (7)

∆X8 = S−1(P−1(X9 ⊕ k9 ⊕ γ))⊕ S−1(P−1(X ′9 ⊕ k9 ⊕ γ)). (8)

In Equ. 7, if we add(XOR) the underlined formulas, we get P−1(X5 ⊕ k5 ⊕
γ)⊕P−1(X ′5⊕k5⊕γ) = P−1(X5⊕X ′5). As shown in Inbound Part 1 of Fig.4,

X5⊕X ′5 is of P (1) differential. Then, P−1(X5⊕X ′5) is of 1 differential. So, it is

easy to know that ∆X6 is also of 1 differential. Similarly, ∆X8 is of 1 differen-

tial, too. In our attack, we let all the differentials 1 be active in the same byte

position. So ∆X6 = ∆X8 happens with probability of 2−8. Once this happens,

S−1(P−1(X5 ⊕ k5 ⊕ γ))⊕ S−1(P−1(X ′5 ⊕ k5 ⊕ γ)) = S−1(P−1(X9 ⊕ k9 ⊕ γ))⊕
S−1(P−1(X ′9 ⊕ k9 ⊕ γ)) holds. Then, we can get S−1(P−1(X5 ⊕ k5 ⊕ γ))⊕k6⊕
S−1(P−1(X9 ⊕ k9 ⊕ γ))⊕k8 = S−1(P−1(X ′5 ⊕ k5 ⊕ γ))⊕k6⊕S−1(P−1(X ′9 ⊕ k9 ⊕ γ))

⊕k8. That means the left two formulas of Equ. 5 and 6 are equal with probability

of 2−8.

For a random given master key(round keys k5, k7, k9 are computed by the

master key) and (X5, X
′
5, X9, X

′
9), Equ. 5 has one solution for γ, if we solve γ out,

the solution meets Equ. 6 with probability of 2−8(it must meet the condition of

∆X6 = ∆X8). However, Equ. 5 is a nonlinear equation, which hard to solve, if we

calculate γ by exhaustive search, the complexity is about 2n = 264. Interestingly,

we elaborately choose some keys to partially linearize Equ. (5) and make it solved

much more efficiently .

Collecting keys which help solving Equ. (5) easily.

In Equ. (5), we add(XOR) the underlined two formulas: P−1(X5⊕ k5⊕ γ)⊕
P−1(X9 ⊕ k9 ⊕ γ) = P−1(X5 ⊕X9)⊕ P−1(k5 ⊕ k9).

For a given (X5, X9), if we find a master key that makes P−1(k5⊕k9)[1, 2, 3, 4,

5, 6] = P−1(X5⊕X9)[1, 2, 3, 4, 5, 6], then the underlined two formulas, P−1(X5⊕
k5⊕γ) and P−1(X9⊕k9⊕γ), only differ in bytes 7, 8. Hence, Equ. (5) is simplified

as follows,

(0, 0, 0, 0, 0, 0, ∗, ∗)⊕ k6 ⊕ k8 = P ◦ S(γ ⊕ k7), (9)

which can be solved by traversing the two unknown bytes ∗, and correspondingly

there are 216 possible values of γ. Then we use Equ. (5) to uniquely determine

the right connection value γ. The time complexity is 216. Then the following

observation is easy to achieve.

Observation 1 For a given 64-bit value P−1(X5 ⊕X9) and a 6-element-array

1 ≤ i1 ≤ i2 ≤ i3 ≤ i4 ≤ i5 ≤ i6 ≤ 8, there are about 2128−48 = 280 master keys

that form a key set to ensure Equ. (10). There are C6
8 = 28 key sets corresponding

to different 6-element-arrays under a given P−1(X5⊕X9). We denote the union

13

of the 28 key sets as Ukey set indexed by P−1(X5 ⊕ X9), whose size is about

284.8.

P−1(k5 ⊕ k9)[i1, i2, i3, i4, i5, i6] = P−1(X5 ⊕X9)[i1, i2, i3, i4, i5, i6], (10)

where k5, k9 are generated by the master key through the key schedule. For each

key in the Ukey set, we can calculate γ with time complexity of 216.

In observation 1, the Ukey set is determined by the 64-bit value P−1(X5⊕X9).

The values of X5, X9 are calculated from Inbound Part 1. In Alg. 1, we first

compute all the values of X5, X9 through all the possible matching difference

pairs of (∆X5, ∆Y5) and (∆X9, ∆Y9), and store all the P−1(X5 ⊕X9) values in

a table T . Then we randomly choose a master key, and check Equ. (10) by every

list in the table T to determine whether the key is in a Ukey set. If the key is

in one Ukey set, we will efficiently calculate γ.

After that, we calculate forward and backward to Inbound Part 3 and

the pairs are filtered in this part. At last, the starting points prepared for the

outbound phase are generated. The detailed attack procedures are shown in Alg.

1.

Attack Evaluation.

In Phase A: it requires r · 22c computations and r · 22c memory to prepare

r-many DDTs.

– In step 1, there are r = 8 possible positions for differential 1, j = 1, 2, ...8.

– In step 2, we are expected to find 22c−r matches between ∆X5, ∆Y5. Because

2r solutions of (X5, X
′
5) are obtained from a match, we obtain 22c solutions

as long as 2c ≥ r which is true for case (N,c)=(128,8). It is similar to step 3.

– In step 4, there are about 24c × 8 = 235 (note there are 8 byte positions for

j) values of (P−1(X5 ⊕ X9), j, X5, X
′
5, X

′
9) needed to be stored in a hash

table T .

In Phase B:

– In step 2, every item in table T corresponding to a different Ukey set. If

there exist an item in table T and a 6-element-array 1 ≤ i1 ≤ i2 ≤ i3 ≤ i4 ≤
i5 ≤ i6 ≤ 8, that make Equ. (10) hold, that means the chosen key falls into a

Ukey set. While there are 235 items in T and 235 Ukey sets correspondingly.

By observation 1, the chosen key falls into one of the 235 Ukey sets with

probability of 284.8 × 235 × 2−128 = 2−8.2.

– In step 3, the value γ is calculated through Equ. (9) and (5). The time

complexity is 216 to traverse the two unknown bytes in Equ. (9).

– In step 4, all the bytes of ∆X6 and ∆X8 are zero except one in the same byte

position j. This is because, ∆X6 = S−1(P−1(X5⊕k5⊕γ))⊕S−1(P−1(X ′5⊕
k5⊕ γ)), and P−1(X5⊕ k5⊕ γ)⊕P−1(X ′5⊕ k5⊕ γ) = P−1(X5⊕X ′5) where

14

Algorithm 1 Calculate Starting Point by the 7-round Inbound Phase

Phase A: Prepare DDTs for all S-boxes.

1. Choose an active-byte position j for differential 1.

2. Inbound Part 1: For 2c differences of ∆Y4, compute the corresponding ∆X5

after applying the (forward) permutation layer. For each of the 2c differences

of ∆Z5, compute the corresponding full-byte difference ∆Y5 after applying the

inverse permutation layer, and check whether ∆X5 matches ∆Y5 by looking

up the DDTs. If we pass the check, go to the following steps.

3. Inbound Part 1: For 2c differences of ∆Y10, compute the corresponding ∆X9

after applying the (forward) permutation layer. For all 2c differences of ∆Z9,

compute the corresponding full-byte differences ∆Y9 after applying the inverse

permutation layer, and check whether ∆X9 matches ∆Y9 by looking up the

DDTs. If we pass the check, go to the next step.

4. For the matched pairs (∆X5,∆Y5) and (∆X9,∆Y9), we get values (X5, X
′
5),

(X9, X
′
9) and store values (P−1(X5 ⊕X9), j, X5, X

′
5, X

′
9) in a table T .

Phase B:

1. Randomly choose a master key, and get all the subkeys by the key schedule.

2. Check Equ. (10) by the chosen key and every item in table T : if there exist an

item in table T and a 6-element-array 1 ≤ i1 ≤ i2 ≤ i3 ≤ i4 ≤ i5 ≤ i6 ≤ 8, that

make Equ. (10) hold, go to the next step; else go to step 1 to choose another

master key.

3. Calculate γ through Equ. (9) (note that the positions of the two unknown bytes

may be changed corresponding to the 6-element-array determined in step 2.)

and Equ. (5).

4. Follows the dashed lines, we calculate ∆X6 = S−1(P−1(X5 ⊕ k5 ⊕ γ)) ⊕
S−1(P−1(X ′5 ⊕ k5 ⊕ γ)) and ∆X8 = S−1(P−1(X9 ⊕ k9 ⊕ γ))⊕ S−1(P−1(X ′9 ⊕
k9 ⊕ γ)). If ∆X6 = ∆X8, then go to the next step; else go to step 1 to choose

another master key.

5. CalculateX6 = S−1(P−1(X5⊕k5⊕γ)) andX ′6, X8, X
′
8 similarly. Then calculate

X4 = k4 ⊕ P (S(X5)) ⊕X6 ⊕ k6 and X ′4, X10, X ′10, similarly. Then check the

following two equations. if these two hold, we get a starting point under the

chosen key; else go to step 1 to choose another master key.

Sj(X4[j])⊕ Sj(X
′
4[j])

?
= ∆Y4[j] (11)

Sj(X10[j])⊕ Sj(X
′
10[j])

?
= ∆Y10[j] (12)

15

∆X5 = X5 ⊕ X ′5 is of P (1) differential pattern, so P−1(X5 ⊕ X ′5) is of 1

differential pattern. So ∆X6 is of 1 differential pattern. So as to ∆X8. Then

∆X6 equals to ∆X8 with probability of 2−8.

– In step 5, Equ. (11) and (12) are satisfied with probability of 2−16.

Complexity Evaluation.

In Phase A, the time complexity is 235 and memory complexity is 235 259-bit

words to store T .

In Phase B, if we choose 2x different keys, there are 2x−8.2 left after step

2. The time complexity in step 3 is 2x−8.2 × 216 = 2x+7.8. The time complexity

of step 4 is 2x−8.2 and there are 2x−8.2−8 = 2x−16.2 keys left. In step 5, time

complexity is 2x−16.2 and there are 2x−16.2−16 = 2x−32.2 keys left. Finally, we

get 2x−32.2 starting points. For x = 32.2, we get one starting point.

Totally, the time complexity is 240 with bounded by step 3 of the Phase B.

The memory complexity is 235 259-bit words to store T . In addition, we need to

randomly choose 232.2 keys.

4.2 12-Round Chosen-Key Distinguisher

Outbound Phase. As shown in Fig. 5, we place the 7-round inbound phase

between 4 and 10 round. The outbound phase is composed of 3-round backward

direction and 2-round forward direction. In the backward, the differential is

(1,0)
3th−−→ (0,1)

2th−−→ (1, P (1))
1th−−→ (P (1),F). In the forward direction, the

differential is (0,1)
11th−−−→ (1,0)

12th−−−→ (1, P (1)). Hence, when a starting point

is given by Alg. 1, the possible output difference of 12th round is limited to

22c = 216 possible values.

Comparison with a Random Permutation.

Given a starting point of the 7-round inbound phase, the outbound phase

produces a pair of values that has a differential form of (P (1),F) for plain-

texts and (1, P (1)) for ciphertexts with probability of 1. So the complexity to

obtain such pairs is equal to finding a starting point of the 7-round inbound

phases, which is 240. When compared with the generic birthday bound, namely

2(N−2c)/2 = 256, our attack is faster by a factor 216.

4.3 11-round Collision Attack

Here we only discuss our collision attacks on the MMO mode, but all the attacks

can be trivially extended to the MP mode. This is because the key addition to

the hash output state used by the MP mode does not make any impact upon

the output value differences.

We add two rounds on the top and two rounds at the bottom of the 7-round

inbound path to construct a new 11-round rebound attack, depicted in Fig. 6.

16

⊕2X 2Y
2k

S P⊕
2Z

⊕3X 3Y
3k

S P⊕
3Z

⊕11X 11Y
11k

S P⊕
11Z

⊕12X 12Y
12k

S P⊕
12Z

0

1

0

7-inbound phase

1

P(1)

1

1

⊕1X 1Y
1k

S P⊕
1Z

FP(1)

0

P(1)1

Fig. 5. 12-round chosen-key distinguisher for Feistel-SP cipher

As shown in Fig. 7, we use two hashing blocks to construct a collision, where the

11-round rebound attack is used in the second compression function. The detail

attack procedures are shown in Alg. 2.

Algorithm 2 Generate 11-Round Collision for MMO Hashing Mode with

Feistel-SP block cipher

1: Carry out the Phase A of Alg. 1.

2: As shown in Fig.8, randomly choose 2x values M0, compute H1. Carry out the

Phase B of Alg. 1, where 2x values of H1 work as the chosen keys, and calculate

the starting points of the 7-round inbound phase. We get 2x−8.2−8−16 = 2x−32.2

starting points.

3: Then we turn to the outbound phase and calculate two rounds forward and two

rounds backward. If we get a collision in H2, the whole attack stops.

Attack Evaluation. The whole collision attack is shown in Fig. 8, we give a

brief evaluation in the following.

17

⊕2X 2Y
2k

S P⊕
2Z

⊕3X 3Y
3k

S P⊕
3Z

⊕11X 11Y
11k

S P⊕
11Z

⊕12X 12Y
12k

S P⊕
12Z

0

1

0 0

0

P(1)

7-inbound phase

1

P(1)

1

1

Collision Collision

Fig. 6. 11-round collsion attack on Feistel-SP cipher

IV=H0

M0 M1 H2H1 EKEK

Fig. 7. MMO hashing mode with two blocks

IV
M0,2

M
0,x-1

M 0,1

M
0,x

..
.

H1,1

H1,2

H1,x-1

H1,x

.
.
.

Ukey sets

checking T

1M 

1M

Rebound

attack

Fig. 8. The Whole Collision Attack Structure

18

In step 2, we choose x = 48.2, and get 248.2−32.2 = 216 starting points8 after

the Phase B of Alg. 1 is carried out. In section 4.2, the complexity analysis of

Alg. 1 shows that it costs 240 time complexity9 to find a starting point. So for

216 starting points, the time complexity is 256.

In step 3, for the outbound phase, the collision occurs when the input differ-

ence and output differences of the block cipher EK are equal, depicted in Fig. 6.

Because the input difference and output differences have the common differential

pattern (1, P (1)), they are equal with probability of 2−16. So the 216 starting

points finally produce a collision in H2. The time complexity of this step is 216.

Totally, the time complexity to find a collision in H2 is 256. The memory

complexity dominated by step 1 is 235 259-bit words. In addition, 248.2 values of

M0 are needed.

Tradeoff between Memory and Time.

If we have enough parallel computing resources, we can tradeoff the memory

and time complexity by using 210.5 computing units in parallel. The 248.2 M0s can

be produced by 210.5 computing units in parallel. The total memory complexity

is 235+10.5 = 245.5 259-bit words. The total time complexity is 256−10.5 = 245.5,

while generic birthday bound is 264.

5 Attacks on Feistel-SP block ciphers: Other Cases

(N,c)=(128,4),(64,8) and (64,4)

5.1 Attacks: Case (N,c)=(128,4)

For case (N,c)=(128,4), we modify the inbound phase as

(2,0)
4th−−→ (P (2),2)

5th−−→ (2, P (2))
6th−−→ (0,2)

7th−−→ (2,0)
8th−−→ (P (2),2)

9th−−→ (2, P (2))
10th−−−→ (0,2).

Modify the observation 1: choose an 13-element-array 1 ≤ i1 ≤ i2 ≤ i3 · · · ≤
i11 ≤ i12 ≤ i13 ≤ 16 to construct a master key set that make Equ. (13) hold for

a given P−1(X5 ⊕X9). There are C13
16 = 29.1 different key sets, whose union is

also denoted as Ukey set. Hence, the size of Ukey is 2128−52+9.1 = 285.1 for a

given P−1(X5 ⊕X9).

P−1(k5 ⊕ k9)[i1, i2, · · · , i12, i13] = P−1(X5 ⊕X9)[i1, i2, · · · , i12, i13] (13)

Similar to Alg. 1, the match-in-the-middle step is applied twice, then we get

28×4×C2
16 = 238.9 274-bit values (P−1(X5⊕X9), i, j,X5, X

′
5, X

′
9) stored in a table

8 Note that, in the complexity evaluation of the Phase B of Alg. 1, we can get one

starting point using 232.2 chosen keys.
9 Note that, this complexity evaluation from the Phase B of Alg. 1 includes the time

to meet the 2c-bit condition of Equ. (11) and (12), we do not add it here duplicately.

19

T ′, where i, j are active nibble positions of differential (2,0) and 1 ≤ i < j ≤ 16.

Then by applying Phase B of Alg. 1, we find a starting point by using 228

random chosen keys, the time complexity is 236 and the total memory cost is

238.9 274-bit words.

The differential of the 12-round chosen-key distinguisher is

(P (2),F)
1th−−→ (2, P (2))

2th−−→ (0,1)
3th−−→ (2,0)

Inbound−−−−−→

(0,2)
11th−−−→ (2,0)

12th−−−→ (2, P (2)).

The complexity to find a pair that matches the output differential (2, P (2)) is

equal to finding a starting point of the 7-inbound phase, obviously it is faster

than the generic birthday bound 256.

The collision attack is similar to Alg. 2, the differential of the rebound attack

starts from the second round of the 12-round differential. After tradeoff between

the memory and time, the time complexity is 245.5, the memory cost is 245.4

274-bit words, and 244 messages are needed. While, the generic birthday bound

is 264.

5.2 Attacks: Case (N,c)=(64,4) and (N,c)=(64,8)

Cases (N,c)=(64,4) is similar to (128,8), the time complexity of 12-round chosen-

key distinguisher is 220, the memory cost is 220.8 131-bit words, 212.2 random

chosen keys are needed. While the generic birthday bound is 2(64−8)/2 = 228. For

11-round collision attack, the time complexity is 224.4, the memory cost is 224.4

131-bit words, 220.2 messages are needed. While the generic birthday bound is

264/2 = 232.

In the case (N,c)=(64,8), the time to find a starting point of the 7-round

inbound phase is about 232, which is not faster than the birthday complexity.

So the 7-round inbound phase can not be used in this case.

6 Experiment For Case (N,c)=(128,8)

Due to the lack of Feistel-SP block cipher for case (N,c)=(128,8), we modify

Camellia [12] block cipher for experiment. As we know, the linear permutation

of Camellia is not a MDS matrix, so we replace it by the MDS matrix P showed in

Equ. (14) borrowed from block cipher Khazad [3], then we remove the FL/FL−1

layer and make the other modules of Camellia unchanged. Note that the linear

permutation in the key schedule is also replaced by the MDS matrix. We call the

new block cipher as Camellia-MDS, whose C++ code is listed in Appendix A10.

Our experiment works on 12-round reduced Camellia-MDS with 128-bit key.

10 The code is modified from Camellia source code [1], we remove the FL/FL−1 func-

tion and replace Camellia linear permutation by MDS matrix.

20

P =



0x01 0x03 0x04 0x05 0x06 0x08 0x0B 0x07

0x03 0x01 0x05 0x04 0x08 0x06 0x07 0x0B

0x04 0x05 0x01 0x03 0x0B 0x07 0x06 0x08

0x05 0x04 0x03 0x01 0x07 0x0B 0x08 0x06

0x06 0x08 0x0B 0x07 0x01 0x03 0x04 0x05

0x08 0x06 0x07 0x0B 0x03 0x01 0x05 0x04

0x0B 0x07 0x06 0x08 0x04 0x05 0x01 0x03

0x07 0x0B 0x08 0x06 0x05 0x04 0x03 0x01


(14)

We give a experiment for 12-round chosen-key distinguisher of section 4.2 to

find a pair that matches the 12-round differential pattern of Fig. 5 by using our

Alg 1. We get a pair of plaintexts:

P1 = (1f 17 7f 72 7a f5 37 53, 5f f4 d9 23 59 e0 e6 75),

P2 = (8a b5 11 89 23 29 49 9f, a1 9e 90 58 02 e8 fa 25),

under key = (69 e4 4a 60 1e ea 50 20, 0a 3b 81 ae ad 3a 79 bc) (all the

numbers are in hexadecimal). The corresponding differential of the 12-round

reduced Camellia-MDS is listed in Tab. 2, which follows the differential pattern

of Fig. 5. The birthday complexity to find this kind of plaintext pair is 256 12-

round encryptions. We do not give a collision attack experiment because the

complexity is infeasible under our computation resource.

Table 2. Differential of the Experiment Pair for 12-round chosen-key distinguisher

95 a2 6e fb 59 dc 7e cc fe 6a 49 7b 5b 08 1c 50

32 00 00 00 00 00 00 00 95 a2 6e fb 59 dc 7e cc

00 00 00 00 00 00 00 00 32 00 00 00 00 00 00 00

32 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

02 06 08 0a 0c 10 16 0e 32 00 00 00 00 00 00 00

a9 00 00 00 00 00 00 00 02 06 08 0a 0c 10 16 0e

00 00 00 00 00 00 00 00 a9 00 00 00 00 00 00 00

a9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

02 06 08 0a 0c 10 16 0e a9 00 00 00 00 00 00 00

51 00 00 00 00 00 00 00 02 06 08 0a 0c 10 16 0e

00 00 00 00 00 00 00 00 51 00 00 00 00 00 00 00

51 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

a2 fb b2 10 eb 79 82 49 51 00 00 00 00 00 00 00

†: all the numbers are in hexadecimal.

21

7 Conclusion

In this paper, we give an answer to the open problem proposed by Sasaki in

[22] and show chosen-key scenario works well in the study of Feistel schemes.

By using the rebound-attack technique and the available degrees of freedom in

the key, we introduce 11-round collision attacks on two-block MMO/MP hash

functions with Feistel-SP block ciphers. These improve previous best works by

two rounds. Besides, 12-round chosen-key distinguishers are also presented.

Due to the development of industry, the lightweight cryptography applied to

resource-restricted environment becomes more and more popular. If one needs

both block cipher and hash function, then using a block cipher to construct a

hash function can minimize the design and implementation cost. So the security

analysis of these applications is immediately needed. This paper presents some

results on the generic Feistel-SP block cipher used in hashing mode. However, it

is far from enough. There are many works needed to be done, such as analysis

on hash function with SPN block cipher, or many standardized primitives.

8 Acknowledgments

We would like to thank anonymous reviewers of FSE 2016 for their very helpful

comments on this paper. We would like to thank Jian Guo and Yanzhao Shen

for their fruitful discussion on this paper.

References

1. Camellia source code. Https://tls.mbed.org/camellia-source-code

2. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T.,

Regazzoni, F.: Midori: A block cipher for low energy. In: Advances in Cryptology–

ASIACRYPT 2015, pp. 411–436. Springer (2015)

3. Barreto, P., Rijmen, V.: The khazad legacy-level block cipher. Primitive submitted

to NESSIE 97 (2000)

4. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack on

the full aes-256. In: Advances in Cryptology-CRYPTO 2009, pp. 231–249. Springer

(2009)

5. Coppersmith, D.: The data encryption standard (des) and its strength against

attacks. IBM journal of research and development 38(3), 243–250 (1994)

6. Daemen, J., Rijmen, V.: Aes proposal: Rijndael (1998)

7. Damg̊ard, I.B.: A design principle for hash functions. In: Advances in Cryptology-

CRYPTO89 Proceedings. pp. 416–427. Springer (1990)

8. Derbez, P., Fouque, P.A., Jean, J.: Faster chosen-key distinguishers on reduced-

round aes. In: Progress in Cryptology-INDOCRYPT 2012, pp. 225–243. Springer

(2012)

22

9. Feistel, H., Notz, W., Smith, J.L., et al.: Some cryptographic techniques for

machine-to-machine data communications. Proceedings of the IEEE 63(11), 1545–

1554 (1975)

10. Guo, J., Jean, J., Nikolić, I., Sasaki, Y.: Meet-in-the-middle attacks on generic

feistel constructions. In: Advances in Cryptology-ASIACRYPT 2014, pp. 458–477.

Springer (2014)

11. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The led block cipher. In: Cryp-

tographic Hardware and Embedded Systems–CHES 2011, pp. 326–341. Springer

(2011)

12. International Organization for Standardization(ISO): International Standard-

ISO/IEC 18033-3, Information technology-Security techniques-Encryption algo-

rithms -Part 3: Block ciphers (2010)

13. International Standardization of Organization (ISO): International Standard-

ISO/IEC 29192-2, Information technology-Security techniques-Lightweight cryp-

tography -Part 2: Block ciphers (2011)

14. Isobe, T., Shibutani, K.: Generic key recovery attack on feistel scheme. In: Ad-

vances in Cryptology-ASIACRYPT 2013, pp. 464–485. Springer (2013)

15. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In:

Advances in Cryptology-ASIACRYPT 2007. pp. 315–324. Springer (2007)

16. Kwon, D., Kim, J., Park, S., Sung, S.H., Sohn, Y., Song, J.H., Yeom, Y., Yoon,

E.J., Lee, S., Lee, J., et al.: New block cipher: Aria. In: Information Security and

Cryptology-ICISC 2003, pp. 432–445. Springer (2004)

17. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound

distinguishers: Results on the full whirlpool compression function. In: Advances in

Cryptology-ASIACRYPT 2009, pp. 126–143. Springer (2009)

18. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack:

Cryptanalysis of reduced whirlpool and grøstl. In: Fast Software Encryption. pp.

260–276. Springer (2009)

19. Merkle, R.C.: One way hash functions and des. In: Advances in Cryptology-

CRYPTO89 Proceedings. pp. 428–446. Springer (1990)

20. Nikolić, I., Pieprzyk, J., Soko lowski, P., Steinfeld, R.: Known and chosen key dif-

ferential distinguishers for block ciphers. In: Information Security and Cryptology-

ICISC 2010, pp. 29–48. Springer (2011)

21. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block cipher-

s: A synthetic approach. In: Advances in Cryptology-CRYPTO93. pp. 368–378.

Springer (1994)

22. Sasaki, Y.: Double-sp is weaker than single-sp: rebound attacks on feistel ciphers

with several rounds. In: Progress in Cryptology-INDOCRYPT 2012, pp. 265–282.

Springer (2012)

23. Sasaki, Y., Emami, S., Hong, D., Kumar, A.: Improved known-key distinguishers on

feistel-sp ciphers and application to camellia. In: Information Security and Privacy.

pp. 87–100. Springer (2012)

24. Sasaki, Y., Yasuda, K.: Known-key distinguishers on 11-round feistel and collision

attacks on its hashing modes. In: Fast Software Encryption. pp. 397–415. Springer

(2011)

23

25. Wang, X., Yu, H.: How to break md5 and other hash functions. In: Advances in

Cryptology-EUROCRYPT 2005, pp. 19–35. Springer (2005)

26. Wang, X., Yu, H., Yin, Y.L.: Efficient collision search attacks on sha-0. In: Advances

in Cryptology–CRYPTO 2005. pp. 1–16. Springer (2005)

A Camellia-MDS source code

#include "stdlib.h"

#include "stdio.h"

#include <stddef.h>

#include <stdint.h>

#include <string.h>

#define CAMELLIA_ENCRYPT 1

#define CAMELLIA_DECRYPT 0

#define ERR_CAMELLIA_INVALID_KEY_LENGTH -0x0024

#define ERR_CAMELLIA_INVALID_INPUT_LENGTH -0x0026

typedef struct

{

int nr; /*!< number of rounds */

uint32_t rk[68]; /*!< CAMELLIA round keys */

}

camellia_context;

/* 32-bit integer manipulation macros (big endian) */

#ifndef GET_UINT32_BE

#define GET_UINT32_BE(n,b,i) \

{ \

(n) = ((uint32_t) (b)[(i)] << 24) \

| ((uint32_t) (b)[(i) + 1] << 16) \

| ((uint32_t) (b)[(i) + 2] << 8) \

| ((uint32_t) (b)[(i) + 3]); \

}

#endif

#ifndef PUT_UINT32_BE

#define PUT_UINT32_BE(n,b,i) \

{ \

(b)[(i)] = (unsigned char) ((n) >> 24); \

(b)[(i) + 1] = (unsigned char) ((n) >> 16); \

(b)[(i) + 2] = (unsigned char) ((n) >> 8); \

(b)[(i) + 3] = (unsigned char) ((n)); \

}

#endif

static const unsigned char SIGMA_CHARS[6][8] =

24

{

{ 0xa0, 0x9e, 0x66, 0x7f, 0x3b, 0xcc, 0x90, 0x8b },

{ 0xb6, 0x7a, 0xe8, 0x58, 0x4c, 0xaa, 0x73, 0xb2 },

{ 0xc6, 0xef, 0x37, 0x2f, 0xe9, 0x4f, 0x82, 0xbe },

{ 0x54, 0xff, 0x53, 0xa5, 0xf1, 0xd3, 0x6f, 0x1c },

{ 0x10, 0xe5, 0x27, 0xfa, 0xde, 0x68, 0x2d, 0x1d },

{ 0xb0, 0x56, 0x88, 0xc2, 0xb3, 0xe6, 0xc1, 0xfd }

};

static const unsigned char FSb[256] =

{

112, 130, 44, 236, 179, 39, 192, 229, 228, 133, 87, 53, 234, 12, 174, 65,

35, 239, 107, 147, 69, 25, 165, 33, 237, 14, 79, 78, 29, 101, 146, 189,

134, 184, 175, 143, 124, 235, 31, 206, 62, 48, 220, 95, 94, 197, 11, 26,

166, 225, 57, 202, 213, 71, 93, 61, 217, 1, 90, 214, 81, 86, 108, 77,

139, 13, 154, 102, 251, 204, 176, 45, 116, 18, 43, 32, 240, 177, 132, 153,

223, 76, 203, 194, 52, 126, 118, 5, 109, 183, 169, 49, 209, 23, 4, 215,

20, 88, 58, 97, 222, 27, 17, 28, 50, 15, 156, 22, 83, 24, 242, 34,

254, 68, 207, 178, 195, 181, 122, 145, 36, 8, 232, 168, 96, 252, 105, 80,

170, 208, 160, 125, 161, 137, 98, 151, 84, 91, 30, 149, 224, 255, 100, 210,

16, 196, 0, 72, 163, 247, 117, 219, 138, 3, 230, 218, 9, 63, 221, 148,

135, 92, 131, 2, 205, 74, 144, 51, 115, 103, 246, 243, 157, 127, 191, 226,

82, 155, 216, 38, 200, 55, 198, 59, 129, 150, 111, 75, 19, 190, 99, 46,

233, 121, 167, 140, 159, 110, 188, 142, 41, 245, 249, 182, 47, 253, 180, 89,

120, 152, 6, 106, 231, 70, 113, 186, 212, 37, 171, 66, 136, 162, 141, 250,

114, 7, 185, 85, 248, 238, 172, 10, 54, 73, 42, 104, 60, 56, 241, 164,

64, 40, 211, 123, 187, 201, 67, 193, 21, 227, 173, 244, 119, 199, 128, 158

};

static const unsigned char FSb2[256] =

{

224, 5, 88, 217, 103, 78, 129, 203, 201, 11, 174, 106, 213, 24, 93, 130,

70, 223, 214, 39, 138, 50, 75, 66, 219, 28, 158, 156, 58, 202, 37, 123,

13, 113, 95, 31, 248, 215, 62, 157, 124, 96, 185, 190, 188, 139, 22, 52,

77, 195, 114, 149, 171, 142, 186, 122, 179, 2, 180, 173, 162, 172, 216, 154,

23, 26, 53, 204, 247, 153, 97, 90, 232, 36, 86, 64, 225, 99, 9, 51,

191, 152, 151, 133, 104, 252, 236, 10, 218, 111, 83, 98, 163, 46, 8, 175,

40, 176, 116, 194, 189, 54, 34, 56, 100, 30, 57, 44, 166, 48, 229, 68,

253, 136, 159, 101, 135, 107, 244, 35, 72, 16, 209, 81, 192, 249, 210, 160,

85, 161, 65, 250, 67, 19, 196, 47, 168, 182, 60, 43, 193, 255, 200, 165,

32, 137, 0, 144, 71, 239, 234, 183, 21, 6, 205, 181, 18, 126, 187, 41,

15, 184, 7, 4, 155, 148, 33, 102, 230, 206, 237, 231, 59, 254, 127, 197,

164, 55, 177, 76, 145, 110, 141, 118, 3, 45, 222, 150, 38, 125, 198, 92,

25

211, 242, 79, 25, 63, 220, 121, 29, 82, 235, 243, 109, 94, 251, 105, 178,

240, 49, 12, 212, 207, 140, 226, 117, 169, 74, 87, 132, 17, 69, 27, 245,

228, 14, 115, 170, 241, 221, 89, 20, 108, 146, 84, 208, 120, 112, 227, 73,

128, 80, 167, 246, 119, 147, 134, 131, 42, 199, 91, 233, 238, 143, 1, 61

};

static const unsigned char FSb3[256] =

{

56, 65, 22, 118, 217, 147, 96, 242, 114, 194, 171, 154, 117, 6, 87, 160,

145, 247, 181, 201, 162, 140, 210, 144, 246, 7, 167, 39, 142, 178, 73, 222,

67, 92, 215, 199, 62, 245, 143, 103, 31, 24, 110, 175, 47, 226, 133, 13,

83, 240, 156, 101, 234, 163, 174, 158, 236, 128, 45, 107, 168, 43, 54, 166,

197, 134, 77, 51, 253, 102, 88, 150, 58, 9, 149, 16, 120, 216, 66, 204,

239, 38, 229, 97, 26, 63, 59, 130, 182, 219, 212, 152, 232, 139, 2, 235,

10, 44, 29, 176, 111, 141, 136, 14, 25, 135, 78, 11, 169, 12, 121, 17,

127, 34, 231, 89, 225, 218, 61, 200, 18, 4, 116, 84, 48, 126, 180, 40,

85, 104, 80, 190, 208, 196, 49, 203, 42, 173, 15, 202, 112, 255, 50, 105,

8, 98, 0, 36, 209, 251, 186, 237, 69, 129, 115, 109, 132, 159, 238, 74,

195, 46, 193, 1, 230, 37, 72, 153, 185, 179, 123, 249, 206, 191, 223, 113,

41, 205, 108, 19, 100, 155, 99, 157, 192, 75, 183, 165, 137, 95, 177, 23,

244, 188, 211, 70, 207, 55, 94, 71, 148, 250, 252, 91, 151, 254, 90, 172,

60, 76, 3, 53, 243, 35, 184, 93, 106, 146, 213, 33, 68, 81, 198, 125,

57, 131, 220, 170, 124, 119, 86, 5, 27, 164, 21, 52, 30, 28, 248, 82,

32, 20, 233, 189, 221, 228, 161, 224, 138, 241, 214, 122, 187, 227, 64, 79

};

static const unsigned char FSb4[256] =

{

112, 44, 179, 192, 228, 87, 234, 174, 35, 107, 69, 165, 237, 79, 29, 146,

134, 175, 124, 31, 62, 220, 94, 11, 166, 57, 213, 93, 217, 90, 81, 108,

139, 154, 251, 176, 116, 43, 240, 132, 223, 203, 52, 118, 109, 169, 209, 4,

20, 58, 222, 17, 50, 156, 83, 242, 254, 207, 195, 122, 36, 232, 96, 105,

170, 160, 161, 98, 84, 30, 224, 100, 16, 0, 163, 117, 138, 230, 9, 221,

135, 131, 205, 144, 115, 246, 157, 191, 82, 216, 200, 198, 129, 111, 19, 99,

233, 167, 159, 188, 41, 249, 47, 180, 120, 6, 231, 113, 212, 171, 136, 141,

114, 185, 248, 172, 54, 42, 60, 241, 64, 211, 187, 67, 21, 173, 119, 128,

130, 236, 39, 229, 133, 53, 12, 65, 239, 147, 25, 33, 14, 78, 101, 189,

184, 143, 235, 206, 48, 95, 197, 26, 225, 202, 71, 61, 1, 214, 86, 77,

13, 102, 204, 45, 18, 32, 177, 153, 76, 194, 126, 5, 183, 49, 23, 215,

88, 97, 27, 28, 15, 22, 24, 34, 68, 178, 181, 145, 8, 168, 252, 80,

208, 125, 137, 151, 91, 149, 255, 210, 196, 72, 247, 219, 3, 218, 63, 148,

92, 2, 74, 51, 103, 243, 127, 226, 155, 38, 55, 59, 150, 75, 190, 46,

121, 140, 110, 142, 245, 182, 253, 89, 152, 106, 70, 186, 37, 66, 162, 250,

26

7, 85, 238, 10, 73, 104, 56, 164, 40, 123, 201, 193, 227, 244, 199, 158

};

#define SBOX1(n) FSb[(n)]

#define SBOX2(n) FSb2[(n)]

#define SBOX3(n) FSb3[(n)]

#define SBOX4(n) FSb4[(n)]

static const unsigned char shifts[2][4][4] =

{

{

{ 1, 1, 1, 1 }, /* KL */

{ 0, 0, 0, 0 }, /* KR */

{ 1, 1, 1, 1 }, /* KA */

{ 0, 0, 0, 0 } /* KB */

},

{

{ 1, 0, 1, 1 }, /* KL */

{ 1, 1, 0, 1 }, /* KR */

{ 1, 1, 1, 0 }, /* KA */

{ 1, 1, 0, 1 } /* KB */

}

};

static const signed char indexes[2][4][20] =

{

{

{ 0, 1, 2, 3, 8, 9, 10, 11, 38, 39,

36, 37, 23, 20, 21, 22, 27, -1, -1, 26 }, /* KL -> RK */

{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

-1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, /* KR -> RK */

{ 4, 5, 6, 7, 12, 13, 14, 15, 16, 17,

18, 19, -1, 24, 25, -1, 31, 28, 29, 30 }, /* KA -> RK */

{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

-1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } /* KB -> RK */

},

{

{ 0, 1, 2, 3, 61, 62, 63, 60, -1, -1,

-1, -1, 27, 24, 25, 26, 35, 32, 33, 34 }, /* KL -> RK */

{ -1, -1, -1, -1, 8, 9, 10, 11, 16, 17,

18, 19, -1, -1, -1, -1, 39, 36, 37, 38 }, /* KR -> RK */

{ -1, -1, -1, -1, 12, 13, 14, 15, 58, 59,

56, 57, 31, 28, 29, 30, -1, -1, -1, -1 }, /* KA -> RK */

{ 4, 5, 6, 7, 65, 66, 67, 64, 20, 21,

27

22, 23, -1, -1, -1, -1, 43, 40, 41, 42 } /* KB -> RK */

}

};

static const signed char transposes[2][20] =

{

{

21, 22, 23, 20,

-1, -1, -1, -1,

18, 19, 16, 17,

11, 8, 9, 10,

15, 12, 13, 14

},

{

25, 26, 27, 24,

29, 30, 31, 28,

18, 19, 16, 17,

-1, -1, -1, -1,

-1, -1, -1, -1

}

};

/*Shift macro for 128 bit strings with rotation smaller than 32 bits*/

#define ROTL(DEST, SRC, SHIFT) \

{ \

(DEST)[0] = (SRC)[0] << (SHIFT) ^ (SRC)[1] >> (32 - (SHIFT)); \

(DEST)[1] = (SRC)[1] << (SHIFT) ^ (SRC)[2] >> (32 - (SHIFT)); \

(DEST)[2] = (SRC)[2] << (SHIFT) ^ (SRC)[3] >> (32 - (SHIFT)); \

(DEST)[3] = (SRC)[3] << (SHIFT) ^ (SRC)[0] >> (32 - (SHIFT)); \

}

//remove the FL/FL^-1 layer

/*

#define FL(XL, XR, KL, KR) \

{ \

(XR) = ((((XL) & (KL)) << 1) | (((XL) & (KL)) >> 31)) ^ (XR); \

(XL) = ((XR) | (KR)) ^ (XL); \

}

#define FLInv(YL, YR, KL, KR) \

{ \

(YL) = ((YR) | (KR)) ^ (YL); \

(YR) = ((((YL) & (KL)) << 1) | (((YL) & (KL)) >> 31)) ^ (YR); \

}

*/

28

#define SHIFT_AND_PLACE(INDEX, OFFSET) \

{ \

TK[0] = KC[(OFFSET) * 4 + 0]; \

TK[1] = KC[(OFFSET) * 4 + 1]; \

TK[2] = KC[(OFFSET) * 4 + 2]; \

TK[3] = KC[(OFFSET) * 4 + 3]; \

\

for(i = 1; i <= 4; i++) \

if(shifts[(INDEX)][(OFFSET)][i -1]) \

ROTL(TK + i * 4, TK, (15 * i) % 32); \

\

for(i = 0; i < 20; i++) \

if(indexes[(INDEX)][(OFFSET)][i] != -1) { \

RK[indexes[(INDEX)][(OFFSET)][i]] = TK[i]; \

} \

}

// p[][] is a MDS matrix borrowed from block cipher Khazad.

int p[8][8]={

{0x01,0x03,0x04,0x05,0x06,0x08,0x0B,0x07},

{0x03,0x01,0x05,0x04,0x08,0x06,0x07,0x0B},

{0x04,0x05,0x01,0x03,0x0B,0x07,0x06,0x08},

{0x05,0x04,0x03,0x01,0x07,0x0B,0x08,0x06},

{0x06,0x08,0x0B,0x07,0x01,0x03,0x04,0x05},

{0x08,0x06,0x07,0x0B,0x03,0x01,0x05,0x04},

{0x0B,0x07,0x06,0x08,0x04,0x05,0x01,0x03},

{0x07,0x0B,0x08,0x06,0x05,0x04,0x03,0x01}

};

#define xtime(a) ((a&0x80)?(((a<<1)^0x1d)&0xff):((a<<1)&0xff))

#define xtime1(a) (a)

#define xtime3(a) (xtime(a)^a)

#define xtime4(a) (xtime(xtime(a)))

#define xtime5(a) (xtime(xtime(a))^a)

#define xtime6(a) (xtime(xtime(a))^xtime(a))

#define xtime7(a) (xtime6(a)^a)

#define xtime8(a) (xtime(xtime(xtime(a))))

#define xtimeb(a) (xtime8(a)^xtime3(a))

void permut(uint32_t x0, uint32_t x1, uint32_t z[2])

{

unsigned char a[8];

PUT_UINT32_BE(x0,a,0);

PUT_UINT32_BE(x1,a,4);

29

unsigned char in[8];

for(int i=0;i<8;i++)in[i]=a[i];

a[0]=xtime1(in[0])^xtime3(in[1])^xtime4(in[2])^xtime5(in[3])

^xtime6(in[4])^xtime8(in[5])^xtimeb(in[6])^xtime7(in[7]);

a[1]=xtime3(in[0])^xtime1(in[1])^xtime5(in[2])^xtime4(in[3])

^xtime8(in[4])^xtime6(in[5])^xtime7(in[6])^xtimeb(in[7]);

a[2]=xtime4(in[0])^xtime5(in[1])^xtime1(in[2])^xtime3(in[3])

^xtimeb(in[4])^xtime7(in[5])^xtime6(in[6])^xtime8(in[7]);

a[3]=xtime5(in[0])^xtime4(in[1])^xtime3(in[2])^xtime1(in[3])

^xtime7(in[4])^xtimeb(in[5])^xtime8(in[6])^xtime6(in[7]);

a[4]=xtime6(in[0])^xtime8(in[1])^xtimeb(in[2])^xtime7(in[3])

^xtime1(in[4])^xtime3(in[5])^xtime4(in[6])^xtime5(in[7]);

a[5]=xtime8(in[0])^xtime6(in[1])^xtime7(in[2])^xtimeb(in[3])

^xtime3(in[4])^xtime1(in[5])^xtime5(in[6])^xtime4(in[7]);

a[6]=xtimeb(in[0])^xtime7(in[1])^xtime6(in[2])^xtime8(in[3])

^xtime4(in[4])^xtime5(in[5])^xtime1(in[6])^xtime3(in[7]);

a[7]=xtime7(in[0])^xtimeb(in[1])^xtime8(in[2])^xtime6(in[3])

^xtime5(in[4])^xtime4(in[5])^xtime3(in[6])^xtime1(in[7]);

uint32_t b, c;

GET_UINT32_BE(b,a,0);

GET_UINT32_BE(c,a,4);

z[0]=z[0]^b;

z[1]=z[1]^c;

}

static void camellia_feistel(const uint32_t x[2], const uint32_t k[2],

uint32_t z[2])

{

uint32_t I0, I1;

I0 = x[0] ^ k[0];

I1 = x[1] ^ k[1];

I0 = ((uint32_t) SBOX1((I0 >> 24) & 0xFF) << 24) |

((uint32_t) SBOX2((I0 >> 16) & 0xFF) << 16) |

((uint32_t) SBOX3((I0 >> 8) & 0xFF) << 8) |

((uint32_t) SBOX4((I0) & 0xFF));

I1 = ((uint32_t) SBOX2((I1 >> 24) & 0xFF) << 24) |

((uint32_t) SBOX3((I1 >> 16) & 0xFF) << 16) |

((uint32_t) SBOX4((I1 >> 8) & 0xFF) << 8) |

((uint32_t) SBOX1((I1) & 0xFF));

30

permut(I0, I1, z);//replace linear permutation of Camellia by a MDS matrix

/*

I0 ^= (I1 << 8) | (I1 >> 24);

I1 ^= (I0 << 16) | (I0 >> 16);

I0 ^= (I1 >> 8) | (I1 << 24);

I1 ^= (I0 >> 8) | (I0 << 24);

z[0] ^= I1;

z[1] ^= I0;

*/

}

void camellia_init(camellia_context *ctx)

{

memset(ctx, 0, sizeof(camellia_context));

}

void camellia_free(camellia_context *ctx)

{

if(ctx == NULL)

return;

memset(ctx, 0, sizeof(camellia_context));

}

/* Camellia key schedule (encryption) */

int camellia_setkey_enc(camellia_context *ctx, const unsigned char *key,

unsigned int keybits)

{

int idx;

size_t i;

uint32_t *RK;

unsigned char t[64];

uint32_t SIGMA[6][2];

uint32_t KC[16];

uint32_t TK[20];

RK = ctx->rk;

memset(t, 0, 64);

memset(RK, 0, sizeof(ctx->rk));

switch(keybits)

{

31

case 128: ctx->nr = 3; idx = 0; break;

case 192:

case 256: ctx->nr = 4; idx = 1; break;

default : return(ERR_CAMELLIA_INVALID_KEY_LENGTH);

}

for(i = 0; i < keybits / 8; ++i)

t[i] = key[i];

/* Prepare SIGMA values */

for(i = 0; i < 6; i++) {

GET_UINT32_BE(SIGMA[i][0], SIGMA_CHARS[i], 0);

GET_UINT32_BE(SIGMA[i][1], SIGMA_CHARS[i], 4);

}

/*

* Key storage in KC

* Order: KL, KR, KA, KB

*/

memset(KC, 0, sizeof(KC));

/* Store KL, KR */

for(i = 0; i < 8; i++)

GET_UINT32_BE(KC[i], t, i * 4);

/* Generate KA */

for(i = 0; i < 4; ++i)

KC[8 + i] = KC[i] ^ KC[4 + i];

camellia_feistel(KC + 8, SIGMA[0], KC + 10);

camellia_feistel(KC + 10, SIGMA[1], KC + 8);

for(i = 0; i < 4; ++i)

KC[8 + i] ^= KC[i];

camellia_feistel(KC + 8, SIGMA[2], KC + 10);

camellia_feistel(KC + 10, SIGMA[3], KC + 8);

if(keybits > 128) {

/* Generate KB */

for(i = 0; i < 4; ++i)

KC[12 + i] = KC[4 + i] ^ KC[8 + i];

camellia_feistel(KC + 12, SIGMA[4], KC + 14);

camellia_feistel(KC + 14, SIGMA[5], KC + 12);

}

/*Generating subkeys */

/* Manipulating KL */

32

SHIFT_AND_PLACE(idx, 0);

/* Manipulating KR */

if(keybits > 128) {

SHIFT_AND_PLACE(idx, 1);

}

/* Manipulating KA */

SHIFT_AND_PLACE(idx, 2);

/* Manipulating KB */

if(keybits > 128) {

SHIFT_AND_PLACE(idx, 3);

}

/* Do transpositions */

for(i = 0; i < 20; i++) {

if(transposes[idx][i] != -1) {

RK[32 + 12 * idx + i] = RK[transposes[idx][i]];

}

}

return(0);

}

/*Camellia key schedule (decryption)*/

int camellia_setkey_dec(camellia_context *ctx, const unsigned char *key,

unsigned int keybits)

{

int idx, ret;

size_t i;

camellia_context cty;

uint32_t *RK;

uint32_t *SK;

camellia_init(&cty);

/* Also checks keybits */

if((ret = camellia_setkey_enc(&cty, key, keybits)) != 0)

goto exit;

ctx->nr = cty.nr;

idx = (ctx->nr == 4);

RK = ctx->rk;

SK = cty.rk + 24 * 2 + 8 * idx * 2;

33

*RK++ = *SK++;

*RK++ = *SK++;

*RK++ = *SK++;

*RK++ = *SK++;

for(i = 22 + 8 * idx, SK -= 6; i > 0; i--, SK -= 4)

{

*RK++ = *SK++;

*RK++ = *SK++;

}

SK -= 2;

*RK++ = *SK++;

*RK++ = *SK++;

*RK++ = *SK++;

*RK++ = *SK++;

exit:

camellia_free(&cty);

return(ret);

}

/* Camellia block encryption/decryption*/

int camellia_crypt(camellia_context *ctx,

int mode,

const unsigned char input[16],

unsigned char output[16])

{

int NR;

uint32_t *RK, X[4];

((void) mode);

NR = ctx->nr;

RK = ctx->rk;

GET_UINT32_BE(X[0], input, 0);

GET_UINT32_BE(X[1], input, 4);

GET_UINT32_BE(X[2], input, 8);

GET_UINT32_BE(X[3], input, 12);

X[0] ^= *RK++;

X[1] ^= *RK++;

X[2] ^= *RK++;

X[3] ^= *RK++;

while(NR) {

camellia_feistel(X, RK, X + 2);

34

RK += 2;

camellia_feistel(X + 2, RK, X);

RK += 2;

camellia_feistel(X, RK, X + 2);

RK += 2;

camellia_feistel(X + 2, RK, X);

RK += 2;

camellia_feistel(X, RK, X + 2);

RK += 2;

camellia_feistel(X + 2, RK, X);

RK += 2;

NR--;

if(NR) {//remove the FL/FL^-1 layer

//FL(X[0], X[1], RK[0], RK[1]);

RK += 2;

//FLInv(X[2], X[3], RK[0], RK[1]);

RK += 2;

}

}

X[2] ^= *RK++;

X[3] ^= *RK++;

X[0] ^= *RK++;

X[1] ^= *RK++;

PUT_UINT32_BE(X[2], output, 0);

PUT_UINT32_BE(X[3], output, 4);

PUT_UINT32_BE(X[0], output, 8);

PUT_UINT32_BE(X[1], output, 12);

return(0);

}

35

	Chosen-Key Distinguishers on 12-Round Feistel-SP and 11-Round Collision Attacks on Its Hashing Modes(Full version)
	Introduction
	Preliminaries
	Notations
	Feistel-SP block ciphers
	Hashing Modes Using block ciphers
	The Rebound Attack

	Sasaki and Yasuda's Work
	New Attacks on Feistel-SP block ciphers: Case (N,c)=(128,8)
	New 7-Round Inbound Differential
	12-Round Chosen-Key Distinguisher
	11-round Collision Attack

	Attacks on Feistel-SP block ciphers: Other Cases (N,c)=(128,4),(64,8) and (64,4)
	Attacks: Case (N,c)=(128,4)
	Attacks: Case (N,c)=(64,4) and (N,c)=(64,8)

	Experiment For Case (N,c)=(128,8)
	Conclusion
	Acknowledgments
	Camellia-MDS source code

