
A Full RNS Variant of FV like Somewhat Homomorphic
Encryption Schemes

Jean-Claude Bajard∗, Julien Eynard†, Anwar Hasan†, and Vincent Zucca∗

∗Sorbonne Universités, UPMC, CNRS, LIP6, Paris, France.
†Department of Electrical and Computer Engineering, University of Waterloo.

Abstract. Since Gentry’s breakthrough work in 2009, homomorphic cryptography has received a
widespread attention. Implementation of a fully homomorphic cryptographic scheme is however still
highly expensive. Somewhat Homomorphic Encryption (SHE) schemes, on the other hand, allow only
a limited number of arithmetical operations in the encrypted domain, but are more practical. Many
SHE schemes have been proposed, among which the most competitive ones rely on (Ring-) Learning
With Error (RLWE) and operations occur on high-degree polynomials with large coefficients. This
work focuses in particular on the Chinese Remainder Theorem representation (a.k.a. Residue Num-
ber Systems) applied to large coefficients. In SHE schemes like that of Fan and Vercauteren (FV),
such a representation remains hardly compatible with procedures involving coefficient-wise division
and rounding required in decryption and homomorphic multiplication. This paper suggests a way to
entirely eliminate the need for multi-precision arithmetic, and presents techniques to enable a full RNS
implementation of FV-like schemes. For dimensions between 211 and 215, we report speed-ups from 5×
to 20× for decryption, and from 2× to 4× for multiplication.

Keywords: Lattice-based Cryptography; Homomorphic Encryption; FV; Residue Number Systems;
Software Implementation

1 Introduction

Cryptographers’ deep interests in lattices are for multiple reasons. Besides possessing highly de-
sirable post-quantum security features, lattice-based cryptography relies on simple structures, al-
lowing efficient asymptotic complexities, and is quite flexible in practice. In addition to encryp-
tion/signature schemes ([15, 24, 18, 8, 20, 21]), identity-based encryption [9], multilinear maps [11,
16], lattices are also involved in homomorphic encryption (HE). The discovery of this property by
Gentry in 2009 [13], through the use of ideal rings, is a major breakthrough which has opened the
door to many opportunities in terms of applications, especially when coupled with cloud computing.

HE is generally composed of a basic layer, which is a Somewhat Homomorphic Encryption
scheme (SHE). Such a scheme allows us to compute a limited number of additions and multiplica-
tions on ciphertexts. This can be explained by the fact that any ciphertext contains an inherent noise
which increases after each homomorphic operation. Beyond a certain limit, this noise becomes too
large to allow a correct decryption. This drawback may be tackled by using bootstrapping, which
however constitutes a bottleneck in terms of efficiency. Further improvements of noise management
[7, 6] have been suggested so that, in practice, and given an applicative context, it may be wiser to
select an efficient SHE with parameters enabling a sufficient number of operations. For instance,
schemes like FV [10] and YASHE [5] have been implemented and tested for evaluating the SIMON
Feistel Cipher [17]. Among the today’s more practical SHE schemes, FV is arguably one of the most
competitive. This scheme is being currently considered by major stakeholders such as the European
H2020 HEAT consortium [1].

Work supported in part by the European Unions H2020 Programme under grant agreement # ICT-644209 and ANR ARRAND 15-CE39-0002-01.

1

Our contibution This work is focused on practical improvement of SHE schemes, in particular
FV. Despite the fact that the security of YASHE has been called into question recently [3], this
scheme can also benefit from the present work. These schemes handle elements of a polynomial
ring Zq[X]/(Xn + 1). The main modulus q is usually chosen as the product of several small moduli
fitting with practical hardware requirements (machine word, etc). This enables us to avoid the need
of multi-precision arithmetic in almost the whole scheme. However, this CRT representation (a.k.a.
Residue Number Systems, or RNS) is hardly compatible with a couple of core operations: coefficient-
wise division and rounding, occuring in multiplication and decryption, and a noise management
technique within homomorphic multiplication, relying on the access to a positional number system.

We show how to efficiently avoid any switch between RNS and the positional system for per-
forming these operations. We present a full RNS variant of FV and analyze the new bounds on noise
growth. A software implementation highlights the practical benefits of the new RNS variant.

It is important to note that this work is related to the arithmetic at the coefficient level. Thus,
the security features of the original scheme are not modified.

Outline Section 2 provides some preliminaries about FV and RNS. Section 3 provides a full RNS
variant of decryption. Section 4 gives a full RNS variant of homomorphic multiplication. Results of
a software implementation are presented in Section 5. Finally, some conclusions are drawn.

2 Preliminaries

Context High-level operations occur in a polynomial ringR = Z[X]/(Xn+1) with n being a power
of 2. R is one-to-one mapped to integer polynomials of degree < n. Most of the time, elements of R
are denoted by lower-case boldface letters and identified by their coefficients. Polynomial arithmetic
is done modulo (Xn+1). The ‘size’ of a = (a0, . . . , an−1) ∈ R is defined by ‖a‖ = max06i6n−1(|ai|).
Ciphertexts will be managed as polynomials (of degree 1) in R[Y]. For ct ∈ R[Y], we define
‖ct‖ = maxi ‖ct[i]‖. The multiplicative law of R[Y] will be denoted by ?.

Behind lattice-based cryptosystems in general, and FV in particular, lies the principle of noisy
encryption. Additionally to the plaintext, a ciphertext contains a noise (revealed by using the
secret key) which grows after each homomorphic operation. Since the homomorphic multiplication
involves multiplications in R, it is crucial that the size of a product in R does not increase too
much. This increase is related to the ring constant δ = sup{‖f ·g‖/‖f‖ · ‖g‖ : (f , g) ∈ (R\{0})2}.
It means that ‖f · g‖ 6 δ‖f‖ · ‖g‖. For the specific ring R used here, δ is equal to n.

Four our subsequent discussions on decryption and homomorphic multiplication, we denote the
‘Division and Rounding’ in R[Y] (depending on parameters t, q defined thereafter) as:

DRi : ct =
∑i

j=1 ct[j]Y j ∈ R[Y] 7→
∑i

j=1

⌊
t
qct[j]

⌉
Y j ∈ R[Y]. (1)

The notation b tqce, for any c ∈ R (e.g. ct[j] in (1)), means a coefficient-wise division-and-rounding.

Plaintext and ciphertext spaces The plaintext space is determined by an integer parameter
t (t > 2). A message is an element of Rt = R/(tR), i.e. a polynomial of degree at most n − 1
with coefficients in Zt. The notation [m]t (resp. |m|t) means that coefficients lie in [−t/2, t/2)
(resp. [0, t)). Ciphertexts will lie in Rq[Y] with q a parameter of the scheme. On one side, some
considerations about security imply a relationship between q and n which, for a given degree n,

2

establish an upper bound to log2(q) (cf. (6) in [10]). On the other side, the ratio ∆ = b qt c will
basically determine the maximal number of homomorphic operations which can be done in a row
to ensure a correct decryption.

RNS representation Beyond the upper bound on log2(q) due to security requirements, the
composition of q has no restriction. So, q can be chosen as a product of small pairwise coprime
moduli q1 . . . qk. The reason for such a choice is the Chinese Remainder Theorem (CRT) which
offers a ring isomorphism Zq

∼→
∏k
i=1 Zqi . Thus, the CRT implies the existence of a non-positional

number system (RNS) in which large integers (mod q) are mapped to sets of small residues. Beyond
this bijection, the arithmetic modulo q over large integers can be substituted by k independant
arithmetics in the small rings Zqi . The isomophism can be naturally extended to polynomials:
Rq ' Rq1 × . . . × Rqk . It means that RNS can be used at the coefficient level to accelerate the
arithmetic in Rq.

In the rest of the paper, the letter q may refer either to the product q1 . . . qk or to the ‘RNS base’
{q1, . . . , qk}. Symbol ν denotes the ‘width’ of the moduli. From now on, any modulus m (should it
belong to q or to any other RNS base) is assumed to satisfy m < 2ν .

Asymmetric keys The secret key s is picked up in R according to a discrete distribution χkey
on R (in practice, bounded by Bkey = 1, i.e. ‖s‖ 6 1).

For creating the public key, an ‘error’ distribution χerr over R is used. In practice, this is
a discrete distribution statistically close to a gaussian (with mean 0 and standard deviation σerr)
truncated atBerr (e.g.Berr = 6σerr). χerr is related to the hardness of the underlying (search version
of) RLWE problem (for which the purpose is, given samples ([−(ais + ei)]q,ai) with ei ← χerr
and a← U(Rq), to find s; U(Rq) stands for the uniform distribution on Rq). The public key pk is
created as follows: sample a← U(Rq) and e← χkey, then output pk = (p0,p1) = ([−(as+e)]q,a).

Encryption, addition, inherent noise of a ciphertext Encryption and homomorphic addition
are already fully compliant with RNS arithmetic. They are recalled hereafter:

– EncFV([m]t): from e1, e2 ← χerr, u← χkey, output ct = ([∆[m]t + p0u + e1]q, [p1u + e2]q).
– AddFV(ct1, ct2): output ([ct1[0] + ct2[0]]q, [ct1[1] + ct2[1]]q).

By definition, the inherent noise of ct (encrypting [m]t) is the polynomial v such that [ct(s)]q =
[ct[0] + ct[1]s]q = [∆[m]t + v]q. Thus, it is revealed by evaluating ct ∈ Rq[Y] on the secret key s.

Elementary operations A basic word will fit in ν bits. In RNS, an ‘inner modular multiplication’
(IMM) in a small ring like Zm is a core operation. If EM stands for an elementary multiplication of
two words, in practice an IMM is more costly than an EM. But it can be well controlled. For instance,
the moduli provided in NFLlib library [2] (cf. Sect. 5) enable a modular reduction which reduces to
one EM followed by a multiplication modulo 2ν . Furthermore, the cost of an inner reduction can be
limited by using lazy reduction, e.g. during RNS base conversions used throughout this paper. NTT
and invNTT denote the Number Theoretic Transform and its inverse in a ring Rm for a modulus
m. They enable an efficient polynomial multiplication (NTT, invNTT ∈ O(n log2(n))).

3 Towards a full RNS decryption

This section deals with the creation of a variant of the original decryption function DecFV, which
will only involve RNS representation. The definition of DecFV is recalled hereafter.

3

– DecFV(ct): given ct = (c0, c1) ∈ Rq[Y], compute [DR0([ct(s)]q)]t =
[⌊

t
q [c0 + c1s]q

⌉]
t
.

The idea is that computing [c0+c1s]q = [∆[m]t+v]q reveals the noise. If this noise is small enough,
and given that [m]t has been scaled by ∆, the function DR0 allows to cancel the noise while scaling
down ∆[m]t to recover [m]t. Concretely, decryption is correct as long as ‖v‖ < (∆ − |q|t)/2, i.e.
the size of the noise should not go further this bound after homomorphic operations.

The division-and-rounding operation makes DecFV hardly compatible with RNS at a first sight.
Because RNS is of non positional nature, only exact integer division can be naturally performed
(as a multiplication by a modular inverse). But it is not the case here. And the rounding operation
involves comparisons which require to switch from RNS to another positional system anyway, should
it be a classical binary system or a mixed-radix one [12]. To provide an efficient RNS variant of
DecFV, we use an idea of [4]. To this end, we introduce relevant RNS tools.

3.1 Fast RNS base conversion

At some point, the decryption requires, among others, a polynomial to be converted from Rq to
Rt. To achieve such kind of operations as efficiently as possible, we suggest to use a ‘fast base
conversion’. In order to convert residues of x ∈ [0, q) from base q to a coprime base B (e.g. {t}), we
compute:

FastBconv(x, q,B) = (
∑k

i=1 |xi
qi
q |qi ×

q
qi

mod m)m∈B. (2)

This conversion is relatively faster. This is because the sum should ideally be reduced mod q to
provide the exact value x; instead, (2) provides x+αxq for some integer αx ∈ [0, k−1]. Computing
αx requires costly operations in RNS. So this step is by-passed, at the cost of an approximate result.

FastBconv naturally extends to polynomials of R by applying it coefficient-wise.

3.2 Approximate RNS rounding

The above mentioned fast conversion allows us to efficiently compute an approximation of b tq [c0 +
c1s]qe modulo t. The next step consists of correcting this approximation.

A source of error is due to the use of |ct(s)|q instead of [ct(s)]q. Computing a centered remainder
means making a comparison. This is hardly compatible with RNS so it is avoided. At this point
the result is not guaranteed to be correct. So we propose to simplify the computation a bit more,
albeit at the price of extra errors, by replacing rounding by flooring. To this end, we use the formula

b tq |ct(s)|qc =
t|ct(s)|q−|t.ct(s)|q

q . Since it has to be done modulo t, the term t|ct(s)|q cancels and
|t.ct(s)|q mod t is obtained through a fast conversion. Lemma 1 sums up the strategy by replacing
|ct(s)|q by γ|ct(s)|q, where γ is an integer which will help in correcting the approximation error.

Lemma 1. Let ct be such that [ct(s)]q = ∆[m]t + v + qr, and denote vc := tv − [m]t|q|t. Let γ
be an integer coprime to q. Then, for m ∈ {t, γ}, the following equalities are satisfied modulo m:

FastBconv(|tγ.ct(s)|q, q, {t, γ})× | − q−1|m =
⌊
γ
t[ct(s)]q

q

⌉
− e = γ ([m]t + tr) +

⌊
γ vc
q

⌉
− e (3)

where each integer coefficient of the error polynomial e ∈ R lies in [0, k].

The error e is due to the fast conversion and the replacement of rounding by flooring. It is the same
error for residues modulo t and γ. The residues modulo γ will enable a fast correction of it and of
the term bγ vc

q e at a same time. Also, note that r vanishes since it is multiplied by both t and γ.

4

3.3 Correcting the approximate RNS rounding

The next step is to show how γ in (3) can be used to correct the term (bγ vc
q e−e) in the particular

case where vc is such that ‖vc‖ 6 q(12 − ε), for some real number ε ∈ (0, 1/2].

Lemma 2. Let ‖vc‖ 6 q(12 − ε), e ∈ R with coefficients in [0, k], and γ an integer. Then,

γε > k ⇒
[⌊
γ vc
q

⌉
− e
]
γ

=
⌊
γ vc
q

⌉
− e. (4)

Lemma 2 enables an efficient and correct RNS rounding as long as k(12−
‖vc‖
q)−1 ∼ γ has the size of

a modulus [4]. Concretely, one computes (3) and uses the centered remainder modulo γ to obtain
γ ([m]t + tr) modulo t, that is γ[m]t mod t. And it remains to multiply by |γ−1|t to recover [m]t.

3.4 A full RNS variant of DecFV

The new variant of the decryption is detailed in Alg. 1. The main modification for the proposed
RNS decryption is due to Lem. 2. As stated by Thm. 1, given a γ, the correctness of rounding
requires a new bound on the noise to make the γ-correction technique successful.

Theorem 1. Let ct(s) = ∆[m]t + v (mod q). Let γ be a positive integer coprime to t and q such

that γ > 2k/(1− t|q|t
q). For Alg. 1 returning [m]t, it suffices that v satisfies the following bound:

‖v‖ 6 q
t (

1
2 −

k
γ)− |q|t2 . (5)

There is a trade-off between the size of γ and the bound in (5). Ideally, γ ∼ 2k at the price of a (a
priori) quite small bound on the noise. But taking γ ∼ 2p+1k for p < ν − 1− dlog2(k)e (i.e. γ < 2ν

is a standard modulus), the bound (∆(1 − 2−p) − |q|t)/2 for a correct decryption should be close
to the original bound (∆− |q|t)/2 for practical values of ν. A concrete estimation of γ in Sect. 5.1
will show that γ can be chosen very close to 2k in practice, and thus fitting on a basic word by far.

Algorithm 1 DecRNS(ct, s, γ)

Require: ct an encryption of [m]t, and s the secret key, both in base q; an integer γ coprime to t and q
Ensure: [m]t
1: for m ∈ {t, γ} do
2: s(m) ← | − FastBconv(|γt.ct(s)|q, q, {m})× |q−1|m|m
3: end for
4: s̃(γ) ← [s(γ)]γ
5: m(t) ← [(s(t) − s̃(γ))× |γ−1|t]t
6: return m(t)

3.5 Staying in RNS is asymptotically better

In any decryption technique, (ct(s) mod q) has to be computed. To optimize this polynomial prod-
uct, one basically performs kNTT → knIMM → kinvNTT. For next steps, a simple strategy is to
compute (b tq [ct(s)]qe mod t) by doing an RNS to binary conversion for performing the division and

5

rounding. By denoting xi = |ct(s) qiq |qi , one computes
∑k

i=1 xi
q
qi

mod q, compares it to q/2 to center
the result, and performs division and rounding. That way, the division-and-rounding would require
O(k2n)EM. In practice, security analysis (cf. e.g. [10, 5, 17]) requires at most kν = dlog2(q)e ∈ O(n).
So, the asymptotic computational complexity is determined by the fact of leaving RNS to access
a positional system. Staying in RNS then enables a better asymptotic complexity. Indeed, it is
easy to see that Alg. 1 requires O(kn) operations (excluding the polynomial product), thus the
cost of NTT is dominant in this case. By considering k ∈ O(n), we deduce C(DecFV) ∈ O(n3), while
C(DecRNS) ∈ O(n2 log2(n)). But the hidden constant in ‘k ∈ O(n)’ is small, and the NTT, common to
both variants, should avoid any noticeable divergence (cf. 5.3) for practical ranges for parameters.

We make two remarks. First, the reduction modulo q is not necessary. Indeed, any extra multiple
of q in

∑k
i=1 xi

q
qi

is multiplied by t
q , making the resulting term a multiple of t, which is not

affected by the rounding and is finally cancelled modulo t. Second, it is possible to precompute
t
q as a multiprecision floating point number in order to avoid a costly integer division. But given

the first remark, it suffices to precompute the floating point numbers Qi ∼ t
qi

with a precision
of 2ν + log2(k) − log2(t) bits (∼ 2 words of precision). In this case, one does not have to use
multiprecision floating point arithmetic, but only standard double or quadruple (depending on ν)
precision. In other words, it is sufficient to compute b

∑k
i=1 xiQie mod t. This represents about

2knEM. Reducing modulo t is nearly free of cost when t is a power of 2.
A second optimized RNS variant, with only integer arithmetic, is based on Alg. 1, in which

γ is assumed to be coprime to t. It is possible to be slightly more efficient by noticing that the
coprimality assumption can be avoided. This is because the division by γ is exact. To do it, the
for loop can be done modulo γ × t. For instance, even if t a power of 2, one can choose γ as being
a power of 2, and use the following lemma to finish the decryption very efficiently.

Lemma 3. Let γ be a power of 2. Let z := |γ[m]t + bγ vc
q e − e|γt coming from (3) when computed

modulo γt. If γ satisfies (4), then (� denotes the right bit-shifting, and & the bit-wise and)

[(z + (z&(γ − 1)))� log2(γ)]t = [m]t. (6)

Lemma 3 can be adapted to other values for γ, but choosing it as a power of 2 makes the computation
very easy because of simple operations on bits. Finally, as soon as γt fits in 1 word, the cost of
such variant (besides the polynomial product) reduces to knIMM, or simply to knEM modulo 2log2(γt)

whenever t is a power of 2.

4 Towards a full RNS homomorphic multiplication

4.1 Preliminaries about MultFV

Below we recall the main mechanisms of the homomorphic multiplication MultFV from [10]. More
precisely, we focus on the variant with version 1 for relinearisation step. First, two functions, of
which the purpose is to limit of too rapid noise growth during a multiplication, are recalled (these
functions will be denoted as in [5]). They are appliable to any a ∈ R, for any radix ω, and with
the subsequent parameter `ω,q = blogω(q)c+ 1. Dω,q is a decomposition in radix base ω, while Pω,q
gets back powers of ω which are lost within the decomposition process.

Dω,q(a) = ([a]ω, [baω c]ω, . . . , [b
a

ω`ω,q−1 c]ω) ∈ R`ω,qω ,Pω,q(a) = ([a]q, [aω]q, . . . , [aω
`ω,q−1]q) ∈ R

`ω,q
q .

(7)
In particular, for any (a, b) ∈ R2, 〈Dω,q(a),Pω,q(b)〉 ≡ ab mod q. Next, MultFV is built as follows:

6

– public rlkFV =
(
[Pω,q(s2)− (−→e + s−→a)]q,

−→a
)

where −→e ← χ
`ω,q
err , −→a ← U(Rq)`ω,q ,

– RelinFV(c0, c1, c2): compute ([c0 + 〈Dω,q(c2), rlkFV[0]〉]q, [c1 + 〈Dω,q(c2), rlkFV[1]〉]q),
– MultFV(ct1, ct2): denote ct? = ct1 ? ct2 (degree-2 element of R[Y]),
• Step 1: c̃tmult = [DR2(ct?)]q = ([DR0(ct?[i])]q)i∈{0,1,2},

• Step 2: ctmult = RelinFV(c̃tmult).

There are two main obstacles to a full RNS variant. First, the three calls to DR0 in Step 1, for which
the context is different than for the decryption. While in the decryption we are working with a noise
whose size can be controlled, and while we are reducing a value from q to {t}, here the polynomial
coefficients of the product ct1 ?ct2 have kind of random size modulo q (for each integer coefficient)
and have to be reduced towards q. Second, the function Dω,q (in RelinFV) requires, by definition,
an access to a positional system (in radix base ω), which is hardly compatible with RNS.

4.2 Auxiliary RNS bases

Step 1 requires to use enough moduli to contain any product, in R[Y] (i.e. on Z), of degree-1
elements from Rq[Y]. So, we need an auxiliary base B, additonally to the base q. We assume that
B contains ` moduli (while q owns k elements). A sufficient size for ` will be given later. An extra
modulus msk is added to B to create Bsk. It will be used for a transition between the new steps 1 and
2. Computing the residues of ciphertexts in Bsk is done through a fast conversion from q. In order
to reduce the extra mutiples of q (called ‘q-overflows’ from now on) this conversion can produce, a
single-modulus base m̃ is introduced. All these bases are assumed to be pairwise coprime.

Reducing (mod q) a ciphertext in Bsk A FastBconv from q can create q-overflows (i.e. unnec-
essary multiples of q) in the output. To limit the impact on noise growth (because of division by q
in step 1), we give an efficient way to reduce a polynomial c + qu in Bsk. It should be done prior
to each multiplication. For that purpose, we use the residues modulo m̃ as done in Alg. 2.

Algorithm 2 SmMRqm̃((c′′m)m∈Bsk∪{m̃}): Small Montgomery Reduction modulo q

Require: c′′ in Bsk ∪ {m̃}
1: rm̃ ← [−c′′m̃/q]m̃
2: for m ∈ Bsk do
3: c′m ← |(c′′m + qrm̃)m̃−1|m
4: end for
5: return c′ in Bsk

Lemma 4. On input c′′m = |[m̃c]q + qu|m for all m ∈ Bsk ∪ {m̃}, with ‖u‖ 6 τ , and given a
parameter ρ > 0, then Alg. 2 returns c′ in Bsk with c′ ≡ c mod q and ‖c′‖ 6 q

2(1 +ρ) if m̃ satisfies:

m̃ρ > 2τ + 1. (8)

To use this fast reduction, the ciphertexts have to be handled in base q through the Montgomery
[19] representation with respect to m̃ (i.e. |m̃c|q instead of |c|q). This can be done for free of cost
during the base conversions (in (2), multiply residues of c by precomputed | m̃qiq |qi instead of | qiq |qi).
Since {m̃} is a single-modulus base, the conversion of rm̃ from {m̃} to Bsk (line 3 of Alg. 2) is a
simple copy-paste when m̃ < mi. Finally, if SmMRqm̃ is performed right after a FastBconv from q,
τ is nothing but k (recall that, in this case, we would convert |m̃c|q instead of [m̃c]q).

7

4.3 Adapting the first step

We recall that originally this step is the computation of [DR2(ct?)]q. Unlike the decryption, a γ-
correction technique does not guarantee an exact rounding. Indeed, for the decryption we wanted
to get DR0([ct(s)]q), and through s we had acces to the noise of ct, on which we have some control.
In the present context, we cannot ensure a condition like ‖[t.ct?]q‖ 6 q(12 − ε), for some ε−1 ∼ 2ν ,
which would enable the use of an efficient γ-correction. Thus, we suggest to perform a simple
uncorrected RNS flooring. For that purpose, we define:

∀a ∈ R, fastRNSFloorq(a,m) := (a− FastBconv(|a|q, q,m))|q−1|m mod m.

First, Alg. 2 should be executed. Consequently, by Lem. 4, if m̃ satisfies the bound in (8) for a
given parameter ρ > 0, we assume having, in Bsk, the residues of ct′i ≡ cti mod q such that:

‖ct′? := ct′1 ? ct
′
2‖ 6 δ

q2

2 (1 + ρ)2. (9)

The parameter ρ will be determined in practice. Notice that, in base q, ct′i and cti are equal.

Lemma 5. Let’s assume that the residues of ct′i ≡ cti mod q are given in base q ∪ Bsk, and that
‖ct′i‖ 6

q
2(1 + ρ) for i ∈ {1, 2}. Let ct′? = ct′1 ? ct

′
2. Then, for j ∈ {0, 1, 2},

fastRNSFloorq(t.ct
′
?[j],Bsk) =

⌊
t
qct
′
?[j]
⌉

+ bj in Bsk, with ‖bj‖ 6 k. (10)

A first part of the noise growth is detailed in the following proposition.

Proposition 1. Let c̃tmult = DR2(ct
′
?) with (9) satisfied, and r∞ := 1+ρ

2 (1 + δBkey) + 1. Let vi be

the inherent noise of ct′i. Then c̃tmult(s) = ∆ [m1m2]t + ṽmult(mod q) with:

‖ṽmult‖ < δt(r∞+ 1
2)(‖v1‖+‖v2‖)+ δ

2 min ‖vi‖+δt|q|t(r∞+1)+ 1
2(3+|q|t+δBkey(1+δBkey)). (11)

4.4 Transitional step

Lemma 5 states that we have got back DR2(ct
′
?)+b in Bsk so far, where we have denoted (b0, b1, b2)

by b. To perform the second step of multiplication, we need to convert it in base q. However, the
conversion has to be exact because extra multiples of M = m1 . . .m` cannot be tolerated. msk

allows us to perform a complete Shenoy and Kumaresan like conversion [22]. The next lemma
describes such kind of conversion for a more general context where the input can be either positive
or negative, and can be larger, in absolute value, than M .

Lemma 6. Let B be an RNS base and msk be a modulus coprime to M =
∏
m∈Bm. Let x be an

integer such that |x| < λM (for some real number λ > 1) and whose residues are given in Bsk.
Let’s assume that msk satisfies msk > 2(|B|+ dλe). Let αsk,x be the following integer:

αsk,x :=
[
(FastBconv(x,B, {msk})− xsk)M−1

]
msk

. (12)

Then, for x being either positive or negative, the following equality holds:

FastBconvSK(x,Bsk, q) := (FastBconv(x,B, q)− αsk,xM) mod q = x mod q. (13)

Consequently, since ‖DR2(ct′?)+b‖ 6 δt q2(1+ρ)2+ 1
2 +k, we can establish the following proposition.

Proposition 2. Given a positive real number λ, let msk and B be such that:

λM > δt q2(1 + ρ)2 + 1
2 + k, msk > 2(|B|+ dλe). (14)

Let’s assume that DR2(ct
′
?) + b is given in Bsk, with ‖b‖ 6 k. Then,

FastBconvSK(DR2(ct
′
?) + b,Bsk, q) =

(
DR2(ct

′
?) + b

)
mod q.

8

4.5 Adapting the second step

At this point, c̃tmult + b = (c0, c1, c2) is known in base q (c̃tmult := DR2(ct
′
?)). We recall that the

original second step of homomorphic multiplication would be done as follows:

ctmult =
(
[c0 + 〈Dω,q(c2),Pω,q(s2)− (−→e + s−→a)〉]q, [c1 + 〈Dω,q(c2),−→a 〉]q

)
(15)

where −→e ← χ
`ω,q
err , −→a ← U(Rq)`ω,q . The decomposition of c2 in radix ω enables a crucial reduction of

the noise growth due to the multiplications by the terms ei+sai. It cannot be done directly in RNS
as is. Indeed, it would require a costly switch between RNS and radix-ω positional representation.
However, we can do something very similar. We recall that we can write c2 =

∑k
i=1 |c2

qi
q |qi ×

q
qi

(mod q). If ω has the same order of magnitude than 2ν (size of moduli in q), we obtain a

similar limitation of the noise growth by using the vectors ξq(c2) = (|c2 q1q |q1 , . . . , |c2
qk
q |qk) and

PRNS,q(s2) = (|s2 qq1 |q, . . . , |s
2 q
qk
|q), both in Rk. This is justified by the following lemma.

Lemma 7. ∀c ∈ R, 〈ξq(c),PRNS,q(s2)〉 ≡ cs2 mod q.

The public rlkFV is then replaced by rlkRNS =
(
[PRNS,q(s2)− (−→e + s−→a)]q,

−→a
)
. The following

lemma helps for providing a bound on the extra noise introduced by this step.

Lemma 8. Let −→e ← χkerr,
−→a ← U(Rq)k, and c ∈ R. Then,

‖
(
〈ξq(c),−(−→e +−→a s)〉+ s〈ξq(c),−→a 〉

)
mod q‖ < δBerrk2ν . (16)

Remark 1. Appendix B.1 provides a variant of this second step in which a second level of decompo-
sition is included to limit a bit more the noise growth. Appendix B.2 details how the size of rlkRNS
can be reduced in a similar way that rlkFV could be through the method described in ([5], 5.4).

Finally, the output of the new variant of multiplication, ctmult, is the following one:

ctmult =
([

c0 + 〈ξq(c2),PRNS,q(s2)− (−→e +−→a s)〉
]
q
,
[
c1 + 〈ξq(c2),−→a 〉

]
q

)
. (17)

Proposition 3. Let ctmult be as in (17), and vmult (resp. ṽmult) the inherent noise of ctmult (resp.
c̃tmult). Then ctmult(s) = ∆ [m1m2]t + vmult(mod q) with:

‖vmult‖ < ‖ṽmult‖+ k(1 + δBkey(1 + δBkey)) + δBerrk2ν+1. (18)

Algorithm 3 depicts the scheme of the RNS variant MultRNS.

4.6 About computational complexity

In a classical multi-precision (MP) variant, for the purpose of efficiency the multiplication should
perform the ciphertext product by using NTT-based polynomial multiplication (e.g. as in [23]). This
approach requires the use of a base B′ (besides q) with |B′| = k+ 1 (cf. App. B.3 for more details).
Notice that, in RNS variant, we also have |Bsk| = k+ 1. Thus, it can be shown (cf. App. B.3) that
RNS and MP variants (in the case where `ω,q = k) contain the same number of NTT and invNTT

operations. In other words, they embed the same number of polynomial products.

9

Algorithm 3 Overview of the RNS homomorphic multiplication MultRNS
Require: ct1, ct2 in q
Ensure: ctmult in q
S0: Convert fast ct1 and ct2 from q to Bsk ∪ {m̃}: ct′′i = cti + q-overflows
S1: Reduce q-overflows in Bsk: (ct′i in Bsk)← SmMRqm̃(((ct′′i)m)m∈Bsk∪{m̃})
S2: Compute the product ct′? = ct′1 ? ct

′
2 in q ∪ Bsk

S3: Convert fast from q to Bsk to achieve the first step (approximate rounding) in Bsk:
(c̃tmult + b = DR2(ct′?) + p in Bsk)← . . .← FastBconv(t.ct′?, q,Bsk)

S4: Convert exactly from Bsk to q to achieve the transitional step: (c̃tmult+b in q)← FastBconvSK(c̃tmult+b,Bsk, q)
S5: Perform second step (relinearization) in q: ctmult ← RelinRNS(c̃tmult + b) mod (q1, . . . , qk)

The RNS variant decreases the computational cost of other parts. Despite the fact that the
asymptotic computational complexity of these parts remains identical for both variants, i.e. O(k2n)
elementary multiplications, the RNS variant only involves single-precision integer arithmetic.

To sum up, because of a complexity of O(k2n log2(n)) due to the NTT’s, we keep the same
asymptotic computational complexity C(MultFV) ∼n→+∞ C(MultRNS). However, the most important
fact is that multi-precision multiplications within MP variant are replaced in RNS by fast base
conversions, which are simple matrix-vector products. Thus, MultRNS retains all the benefits of RNS
properties and is highly parallelizable.

5 Software implementation

The C++ NFLlib library [2] was used for arithmetic inR. It provides an efficient NTT-based product
in Rp for p a product of 30 or 62-bit prime integers, and with degree n as a power of 2, up to 215.

5.1 Concrete examples of parameter settings

In this part, we analyze what depth can be reached in a multiplicative tree, and for which param-
eters. The initial noise is at most V = Berr(1 + 2δBkey) [17]. The output of a tree of depth L has
a noise bounded by CLRNS,1V + LCL−1RNS,1CRNS,2 (cf. [5], Lem. 9) with, for the present RNS variant:{

CRNS,1 = 2δ2t (1+ρ)
2

Bkey + δt(4 + ρ) + δ
2
;

CRNS,2 = (1 + δBkey)(δt|q|t 1+ρ2 + δBkey(k + 1
2
)) + 2δt|q|t + k(δBerr2

ν+1 + 1) + 1
2
(3 + |q|t).

We denote by LRNS = max{L ∈ N | CLRNS,1V +LCL−1RNS,1CRNS,2 6
q
t (

1
2 −

k
γ)− |q|t2 } the depth allowed by

MultRNS, with DecRNS used for decryption.

n k t LRNS (Lstd) ρ m̃ dlog2(msk)e γ

211 3
2 2 (2) 5 (no need) 18 7
210 1 (1) 5 (no need) 27 7

212 6
2 5 (6) 11 (no need) 21 13
210 4 (4) 10 2 29 54

213 13
2 13 (13) 1

3
81 15 36

210 9 (9) 13 3 31 58

214 26
2 25 (25) 1

2
106 17 53

210 19 (19) 1 53 27 53

215 53
2 50 (50) 1

20
2140 20 203

210 38 (38) 1
2

214 30 107

Table 1: Parameters, using the 30-bit moduli of NFLlib.

For an 80-bit security level and parameters
Bkey = 1, σerr = 8, Berr = 6σerr, we consider the
security analysis in [17], which provides ranges for
(log2(q), n) (cf. [17], Tab. 2). We analyze parameters
by using the moduli available in NFLlib since those
were used for concrete testing. For a 32-bit (resp. 64)
implementation, a set of 291 30-bit (resp. 1000 62-
bit) moduli is available. These moduli are chosen to
enable efficient modular reduction (cf. [2], Alg. 2).
Table 1 lists parameters when q and B are built with

10

the 30-bit moduli of NFLlib. These parameters were determined by choosing the largest ρ (up to
2k − 1) allowing to reach depth LRNS. Lstd corresponds to the bounds given in [17]. Sufficient sizes
for γ, and msk (allowing to set |B| = k through (14) and by choosing, for q, the k greatest moduli
available) are provided. For these specific parameters, the new bounds on noise in RNS variant
causes a smaller depth in only one case.

Remark 2. The effect of q-overflow reduction by using SmMRqm̃ is illustrated in App. C. Taking m̃
larger than necessary has a noticeable effect on noise growth. So, even when it is not required to
reach depth LRNS, it is worth doing it. Furthermore, a larger m̃ decreases the minimal size of γ and
msk (as shown in the table, one set of parameters leads to dlog2(msk)e = 31, avoiding the use of a
30-bit modulus; this can be solved by taking a larger m̃). For our purpose, choosing m̃ larger than
necessary, like 28 or 216, is for achieving an efficient implementation.

5.2 Some remarks

Convenient m̃ and γ Given values of ρ in Tab. 1, m̃ = 28 (resp. m̃ = 216) satisfies, by far,
any set of analyzed parameters. This enables an efficient and straightforward modular arithmetic
through standard types like uint8 t (resp. uint16 t) and casting towards the signed int8 t (resp.
int16 t) immediatly gives the centered remainder. According to Sect. 3.5 and Tab. 1 (cf. App. C
for parameters corresponding to m̃ = 28 or 216), γ = 28 is sufficient to ensure a correct decryption.
The reduction modulo γ can be achieved through a simple type cast to uint8 t.

Tested algorithms The code1 we compared with was implemented in the context of HEAT [1] and is
based on NFLlib too. Multi-precision arithmetic is handled with GMP 6.1.0 [14], and multiplications
by t

q are performed through integer divisions. MultMP and DecMP denote functions from this code.

MultRNS has been implemented in the way described by Alg. 3. Could the use of SmMRqm̃ be
avoided to reach the maximal theoretical depth, it is however systematically used. Its cost is neg-
ligible and it enables a noticeable decrease of noise growth (cf. App. C).

Two variants of DecRNS (cf. Sect. 3.5) have been implemented. Depending on ν, the one with
floating point arithmetic (named DecRNS-flp thereafter) uses double (resp. long double) for double
(resp. quadruple) precision, and then does not rely on any other external library at all.

5.3 Results

The tests have been run on a laptop with Intel R© Core
TM

i7-4810MQ CPU @ 2.80GHz, under Linux.
Hyper-Threading and Turbo Boost were disactivated.

Figure 1 presents timings for DecMP, DecRNS and DecRNS-flp, and Fig. 2 depicts timings for MultMP
and MultRNS (all the data are provided in App. D). Both figures gather data for two modulus sizes:
ν = 30 and ν = 62. Step 2 of MultMP uses a decomposition in radix-base ω = 232 when ν = 30, and
ω = 262 when ν = 62. The auxiliary bases Bsk and B′ involved in MultRNS and MultMP contain k+ 1
moduli each. Table 2 shows which values of k have been tested (depending on n). Multiplication
timing for (n, ν, k) = (211, 62, 1) is not given since L = 1 already causes decryption failures.

In Fig. 2, the convergence of complexities of MultRNS and MultMP (as explained in Sect. 4.6) is
well illustrated. The new algorithm presented in this paper allows speed-ups from ∼ 4.3× to ∼ 1.7×
1 https://github.com/CryptoExperts/FV-NFLlib

11

log2(n) 11 12 13 14 15

k (ν = 30) 3 6 13 26 53

k (ν = 62) 1 3 6 12 25

Table 2: Parameter k used in the tests (i.e. dlog2(q)e = kν).

11 12 13 14 15

10−1

100

101

102

log2(n)

ti
m
e
in

m
s

DecMP

DecRNS-flp

DecRNS

Fig. 1: Decryption time (t = 210), with ν = 30 (plain lines) and
ν = 62 (dashed lines).

11 12 13 14 15

101

102

103

104

log2(n)

ti
m
e
in

m
s

MultMP

MultRNS

Fig. 2: Multiplication time (t = 210), with ν = 30 (plain lines)
and ν = 62 (dashed lines).

for degree n from 211 to 215 when ν = 30, and from ∼ 3.6× to ∼ 1.9× for n from 212 to 215 when
ν = 62 (cf. App. D).

In Fig. 1, the two variants described in 3.5 are almost equally fast. Indeed, they perform the
same number of elementary (floating point or integer) operations. Between degree 211 and 215, the
RNS variants allow speed-ups varying from 6.1 to 4.4 when ν = 30, and from 20.4 to 5.6 when
ν = 62. All the implemented decryption functions take as input a ciphertext in NTT representation.
Thus, only one invNTT is performed (after the product of residues) within each decryption. As
explained (cf. 3.5), despite a better asymptotic computational complexity for RNS decryption, the
efficiency remains in practice highly related to this invNTT procedure, even justifying the slight
convergence between MP and RNS decryption times observed in Fig. 1.

6 Conclusion

In this paper, the somewhat homomorphic encryption scheme FV has been fully adapted to Residue
Number Systems. Prior to this work, RNS was used to accelerate polynomial additions and multi-
plications. However, the decryption and the homomorphic multiplication involve operations at the
coefficient level which are hardly compatible with RNS, such as division and rounding.

Our proposed solutions overcome these incompatibilities, without modifying the security fea-
tures of the original scheme. As a consequence, we have provided a SHE scheme which only involves
RNS arithmetic. It means that only single-precision integer arithmetic is required, and the new vari-
ant fully benefits from the properties of RNS, such as parallelization.

The proposed scheme has been implemented in sotfware using C++. Because arithmetic on
polynomials (in particular polynomial product) is not concerned by the new optimizations provided
here, the implementation has been based on the NFLlib library, which embeds a very efficient NTT-
based polynomial product. Our implementation has been compared to a classical version of FV
(based on NFLlib, and GMP). For degrees from 211 to 215, the new decryption (resp. homomorphic
multiplication) offers speed-ups from 20 to 5 (resp. 4 to 2) folds for cryptographic parameters.

Further work should demonstrate the high potential of the new variant by exploiting all the
concurrency properties of RNS, in particular through dedicated hardware implementations.

12

References

1. Homomorphic Encryption, Applications and Technology (HEAT). https://heat-project.eu. H2020-ICT-2014-
1, Project reference: 644209.

2. C. Aguilar-Melchor, J. Barrier, S. Guelton, A. Guinet, M.-O. Killijian, and T. Lepoint. Topics in Cryptology
- CT-RSA 2016: The Cryptographers’ Track at the RSA Conference 2016, San Francisco, CA, USA, February
29 - March 4, 2016, Proceedings, chapter NFLlib: NTT-Based Fast Lattice Library, pages 341–356. Springer
International Publishing, Cham, 2016.

3. M. Albrecht, S. Bai, and L. Ducas. A subfield lattice attack on overstretched NTRU assumptions: Cryptanalysis
of some FHE and Graded Encoding Schemes. IACR Cryptology ePrint Archive, 2016:127, 2016.

4. J.-C. Bajard, J. Eynard, N. Merkiche, and T. Plantard. RNS Arithmetic Approach in Lattice-Based Cryptog-
raphy: Accelerating the ”Rounding-off” Core Procedure. In Computer Arithmetic (ARITH), 2015 IEEE 22nd
Symposium on, pages 113–120, June 2015.

5. J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig. Improved Security for a Ring-Based Fully Homomorphic
Encryption Scheme. In Martijn Stam, editor, Cryptography and Coding, volume 8308 of Lecture Notes in Computer
Science, pages 45–64. Springer Berlin Heidelberg, 2013.

6. Z. Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP. In In Advances
in Cryptology - Crypto 2012, volume 7417 of Lecture, 2012.

7. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) Fully Homomorphic Encryption Without Boot-
strapping. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS ’12, pages
309–325, New York, NY, USA, 2012. ACM.

8. L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Advances in Cryptology – CRYPTO 2013: 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, chapter Lattice
Signatures and Bimodal Gaussians, pages 40–56. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

9. L. Ducas, Vadim Lyubashevsky, and Thomas Prest. Advances in Cryptology – ASIACRYPT 2014: 20th Interna-
tional Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014, Proceedings, Part II, chapter Efficient Identity-Based Encryption over NTRU
Lattices, pages 22–41. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

10. J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint Archive,
page 2012.

11. S. Garg, C. Gentry, and S. Halevi. Advances in Cryptology – EUROCRYPT 2013: 32nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013.
Proceedings, chapter Candidate Multilinear Maps from Ideal Lattices, pages 1–17. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

12. H. L. Garner. The Residue Number System. In Papers Presented at the the March 3-5, 1959, Western Joint
Computer Conference, IRE-AIEE-ACM ’59 (Western), pages 146–153, New York, NY, USA, 1959. ACM.

13. C. Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In Proceedings of the Forty-first Annual ACM
Symposium on Theory of Computing, STOC ’09, pages 169–178, New York, NY, USA, 2009. ACM.

14. Torbjrn Granlund and the GMP development team. GNU MP: The GNU Multiple Precision Arithmetic Library,
6.1.0 edition, 2015. http://gmplib.org/.

15. J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A Ring-Based Public Key Cryptosystem. In Lecture Notes
in Computer Science, pages 267–288. Springer-Verlag, 1998.

16. A. Langlois, D. Stehlé, and R. Steinfeld. Advances in Cryptology – EUROCRYPT 2014: 33rd Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May
11-15, 2014. Proceedings, chapter GGHLite: More Efficient Multilinear Maps from Ideal Lattices, pages 239–256.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

17. T. Lepoint and M. Naehrig. Progress in Cryptology – AFRICACRYPT 2014: 7th International Conference
on Cryptology in Africa, Marrakesh, Morocco, May 28-30, 2014. Proceedings, chapter A Comparison of the
Homomorphic Encryption Schemes FV and YASHE, pages 318–335. Springer International Publishing, Cham,
2014.

18. V. Lyubashevsky. Advances in Cryptology – EUROCRYPT 2012: 31st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, chapter
Lattice Signatures without Trapdoors, pages 738–755. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

19. P. L. Montgomery. Modular Multiplication without Trial Division. Mathematics of Computation, 44(170):519–
521, 1985.

13

20. T. Oder, T. Poppelmann, and T. Gneysu. Beyond ECDSA and RSA: Lattice-based digital signatures on con-
strained devices. In Design Automation Conference (DAC), 2014 51st ACM/EDAC/IEEE, pages 1–6, June
2014.

21. C. Peikert. Post-Quantum Cryptography: 6th International Workshop, PQCrypto 2014, Waterloo, ON, Canada,
October 1-3, 2014. Proceedings, chapter Lattice Cryptography for the Internet, pages 197–219. Springer Interna-
tional Publishing, Cham, 2014.

22. A.P. Shenoy and R. Kumaresan. Fast base extension using a redundant modulus in . Computers, IEEE Trans-
actions on, 38(2):292–297, Feb 1989.

23. S. Sinha Roy, K. Järvinen, F. Vercauteren, V. Dimitrov, and I. Verbauwhede. Modular Hardware Architecture
for Somewhat Homomorphic Function Evaluation. In Cryptographic Hardware and Embedded Systems – CHES
2015, volume 9293 of Lecture Notes in Computer Science, pages 164–184. Springer Berlin Heidelberg, 2015.

24. D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa. Advances in Cryptology – ASIACRYPT 2009: 15th In-
ternational Conference on the Theory and Application of Cryptology and Information Security, Tokyo, Japan,
December 6-10, 2009. Proceedings, chapter Efficient Public Key Encryption Based on Ideal Lattices, pages 617–
635. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

A Proofs

A.1 Lemma 1

According to definition (2), FastBconv(|tγ.ct(s)|q, q, {t, γ}) provides |tγ.ct(s)|q + qa, where each
coefficient ai is an integer lying in [0, k − 1]. Let m be t or γ. Then,

FastBconv(|tγ.ct(s)|q, q, {t, γ})× | − q−1|m mod m

= (|tγ.ct(s)|q + qa)× | − q−1|m mod m

=
tγ[ct(s)]q − |tγ.ct(s)|q − qa

q
mod m (exact division)

=

(⌊
tγ[ct(s)]q

q

⌋
− a

)
mod m

=

(⌊
tγ[ct(s)]q

q

⌉
− e

)
mod m

where ei ∈ {ai,ai + 1}, i.e. ei ∈ [0, k]. To conclude the proof, it suffices to use the equality
∆t = q− |q|t. That way, one can write t[ct(s)]q = q([m]t + tr) + vc, and the second equality of (3)
follows.

A.2 Lemma 2

By hypothesis, we have −γ(12 − ε)− k 6 (γ vc
q − e)i 6 γ(12 − ε) for i ∈ [0, n− 1]. It follows that, to

have [bγ vc
q e−e]γ = bγ vc

q e−e, we require that −bγ2 c−
1
2 6 γ

vc
q −e < bγ−12 c+ 1

2 . Then, a sufficient
condition is given by:{

γ(12 − ε) < b
γ−1
2 c+ 1

2
−bγ2 c −

1
2 6 −γ(12 − ε)− k

⇔ (γ odd)

{
γε > 0
γε > k

or (γ even)

{
γε > 1

2
γε > k − 1

2

.

A.3 Theorem 1

According to Lem. 2, the γ-correction technique works as long as γ(12−
‖vc‖
q) > k ⇔ ‖vc‖ 6 q(12−

k
γ).

Moreover, ‖vc‖ = ‖tv− |q|t[m]t‖ 6 t‖v‖+ |q|t t2 . Then, the bound (5) follows. The lower bound on
γ guarantees that the bound (5) for the noise is positive.

14

A.4 Lemma 3

Let’s denote ṽc := bγ vc
q e − e. By computing (3) modulo γt, then we obtain z = |γ[m]t + ṽc|γt.

First, we notice that we can also write z = |γ|m|t + ṽc|γt. Indeed, γ|m|t = γ([m]t + ta), where
ai ∈ {0, 1}. Thus, γta vanishes modulo γt. Next, for any t, and because γ is a power of 2, we have
z&(γ − 1) = |z|γ = |ṽc|γ . Consequently, z + z&(γ − 1) = |γ|m|t + ṽc|γt + |ṽc|γ .

Now, (4) means that γ is chosen such that (ṽc)i lies in [−γ
2 ,

γ
2). This, together with the fact that

(γ|m|t)i ∈ [0, γ(t− 1)], implies that we can write |γ|m|t + ṽc|γt = γ|m|t + ṽc + γtb with bi ∈ {0, 1}
(bi = 1⇔ ((γ|m|t)i = 0 and (ṽc)i < 0)).

To sum up, we have established that z + z&(γ − 1) = γ|m|t + ṽc + |ṽc|γ + γtb so far. The next
step is to show that any coefficient of ṽc + |ṽc|γ lies in [0, γ). This is a direct consequence of the
fact that (ṽc)i ∈ [−γ

2 ,
γ
2). Indeed, we have:

∀i ∈ [0, n− 1],

{
(ṽc)i ∈ [−γ

2 , 0)⇒ (|ṽc|γ)i = (ṽc)i + γ ⇒ (ṽc + |ṽc|γ)i ∈ [0, γ − 2],
(ṽc)i ∈ [0, γ2) ⇒ (|ṽc|γ)i = (ṽc)i ⇒ (ṽc + |ṽc|γ)i ∈ [0, γ − 2].

Consequently, (z + z&(γ − 1))� log2(γ) = |m|t + tb, and (6) follows.

A.5 Lemma 4

Algorithm 2 performs in Bsk the computation of
[cm̃]q+qu+q[−([cm̃]q+qu)/q]m̃

m̃ . This quantity is clearly

congruent to c modulo q. In accordance with hypothesis (8), its norm is bounded by q(1/2+τ+m̃/2)
m̃ 6

q
2(1 + ρ).

A.6 Lemma 5

We recall that FastBconv(|t.ct′?[j]|q, q,Bsk) outputs |t.ct′?[j]|q + qu with ‖u‖∞ 6 k− 1. Then, the

proof is complete by using the general equalities
x−|x|q
q = bxq c = bxq e+ τ , τ ∈ {−1, 0}.

A.7 Proposition 1

The following noise analysis is inspired from the one provided in [5]. So, some of the tools and
bounds from there are re-used here. In the following, we write ct′i = (c′i,0, c

′
i,1). In particular, we

have ct′? = (c′1,0c
′
2,0, c

′
1,1c
′
2,0 + c′1,0c

′
2,1, c

′
1,1c
′
2,1). By hypothesis, each c′i,j satisfies ‖c′i,j‖ 6

q
2(1 + ρ).

In particular, the bound in (9) comes from the fact that ‖c′1,1c′2,0 + c′1,0c
′
2,1‖ 6 δ

q2

2 (1 + ρ)2.

Since ct′i = cti mod q and ‖ct′i‖ 6
q
2(1 + ρ), and by using ‖s‖ 6 Bkey, ‖vi‖ < ∆

2 < q
2t ,

‖∆[m]t‖ < t∆
2 < q

2 and t > 2, we can write:

ct′i(s) = c′i,0 + c′i,1s = ∆[mi]t + vi + qri with ‖ri‖ < r∞ := 1+ρ
2 (1 + δBkey) + 1.

For our purpose, we use some convenient notations and bounds from [5], but appliable to the present
context: {

v1v2 = [v1v2]∆ +∆rv, ‖rv‖ < δ
2 min ‖vi‖∞ + 1

2 ,
[m1]t [m2]t = [m1m2]t + trm, ‖rm‖ < 1

2δt.
(19)

By noticing that ct′?(s) = (ct′1 ? ct
′
2)(s) = ct′1(s)× ct′2(s), we obtain:

ct′?(s) = ∆2[m1]t[m2]t +∆([m1]tv2 + [m2]tv1) + q∆([m1]tr2 + [m2]tr1)
+v1v2 + q2r1r2 + q(v1r2 + v2r1).

15

Then, by using (19) and ∆t = q − |q|t, we deduce that:

t
qct
′
?(s) = ∆[m1m2]t + q (rm + [m1]tr2 + [m2]tr1 + tr1r2)

− |q|t∆q [m1m2]t + (|q|tq − 2)|q|trm + (1− |q|tq)([m1]tv2 + [m2]tv1)

−|q|t([m1]tr2 + [m2]tr1) + t
q [v1v2]∆ + (1− |q|tq)rv

+t(v1r2 + v2r1).

Thus,

c̃tmult(s) = DR2(ct
′
?)(s) = t

qct
′
?(s) + ra = ∆ [m1m2]t + ṽmult mod q

with ra := (DR2(ct
′
?)− t

qct
′
?)(s) =

∑2
i=0

(
b tqct

′
?[i]e − t

qct
′
?[i]
)
si and:

ṽmult := ra − |q|t∆q [m1m2]t + (|q|tq − 2)|q|trm + (1− |q|tq)([m1]tv2 + [m2]tv1)

−|q|t([m1]tr2 + [m2]tr1) + t
q [v1v2]∆ + (1− |q|tq)rv + t(v1r2 + v2r1).

(20)

Below, some useful bounds are given.{
‖ [m1]t v2 + [m2]t v1‖ 6

δt
2 (‖v1‖+ ‖v2‖)

‖v1r2 + v2r1‖ < δr∞(‖v1‖+ ‖v2‖)

Next, we set a bound for each term of (20), then it suffices to put them all together to obtain (11).

‖ra‖ 6 1
2(1 + δBkey + δ2B2

key),

‖ − |q|t∆q [m1m2]t + t
q [v1v2]∆‖ 6 |q|t∆t2q + t∆

2q <
1
2(|q|t + 1),

‖(|q|tq − 2)|q|trm‖ 6 2|q|t‖rm‖∞ < δt|q|t,
‖(1− |q|tq)rv‖ 6 ‖rv‖∞ < δ

2 min ‖vi‖+ 1
2 ,

‖t(v1r2 + v2r1)‖ < δtr∞(‖v1‖+ ‖v2‖),
‖(1− |q|tq)([m1]tv2 + [m2]tv1)‖ < δt

2 (‖v1‖+ ‖v2‖),
‖ − |q|t([m1]tr2 + [m2]tr1)‖ < |q|tδtr∞.

A.8 Lemma 6

We set B = {m1, . . . ,m`} (|B| = `). The case x > 0 and λ = 1 is the classical case of Shenoy and
Kumaresan’s conversion. We recall that, by definition, FastBconv(x,B, ·) =

∑`
i=1 |x

mi
M |mi

M
mi

. There

exists an integer 0 6 α 6 ` − 1 such that
∑`

i=1 |x
mi
M |mi

M
mi

= x + αM . By inverting this equality
modulo msk, it would suffice, in this case, that msk > ` to enable us to recover α by noticing that
α = |α|msk = |αsk,x|msk .

Let’s consider the general case |x| < λM . Here, the possible negativity of x is the reason why
we have to compute a centered remainder modulo msk in (12).

First, we notice that the residues of x in B are actually those of |x|M = x+µM ∈ [0,M), where
µ is an integer lying in [−bλc, dλe]. Therefore, we deduce that∑`

i=1 |x
mi
M |mi

M
mi

= |x|M + αsk,|x|MM = (x+ µM) + αsk,(x+µM)M

16

with 0 6 αsk,(x+µM) 6 `− 1. Denoting |x|msk by xsk, it follows that the quantity computed in (12)
is the following one:

[(
∑`

i=1 |x
mi
M |mi

M
mi
− xsk)M−1]msk = [(

∑`
i=1 |x

mi
M |mi

M
mi
− (xsk + µM))M−1 + µ]msk

= [αsk,(x+µM) + µ]msk .

It remains to show that [αsk,(x+µM) + µ]msk = αsk,(x+µM) + µ or, in other words, that −bmsk2 c 6
αsk,(x+µM) + µ 6 bmsk−12 c. But by hpothesis on msk, and because ` > 1, we can write msk >
2(`+ dλe) > 2bλc+ 1. Then,{

αsk,(x+µM) + µ 6 `− 1 + dλe 6 msk
2 − 1 6 bmsk−12 c,

αsk,(x+µM) + µ > −bλc > −msk−1
2 > −bmsk2 c.

Thus, [αsk,(x+µM) + µ]msk = αsk,(x+µM) + µ, and it follows that by computing the right member of
(13), we obtain∑`

i=1 |x
mi
M |mi

M
mi
− [αsk,(x+µM) + µ]mskM = (x+ µM) + αsk,(x+µM)M − (αsk,(x+µM) + µ)M = x.

A.9 Proposition 2

By using (9), we have ‖DR2(ct′?)‖ 6 ‖ tqct
′
?‖+ 1

2 6 δt
q
2(1 + ρ)2 + 1

2 . Lem. 6 concludes the proof.

A.10 Lemma 8

First, we have (
〈ξq(c),−(−→e +−→a s)〉+ s〈ξq(c),−→a 〉

)
mod q = −〈ξq(c),−→e 〉 mod q.

Second, by using qi < 2ν , we obtain

‖〈ξq(c),−→e 〉‖ = ‖
∑k

i=1 |c
qi
q |qiei‖ <

∑k
i=1 δqi‖ei‖ 6 δBerr

∑k
i=1 qi < δBerrk2ν . (21)

A.11 Proposition 3

At this point, we are evaluating RelinRNS(c̃tmult + b). We denote c̃tmult = (c0, c1, c2).
A first remark is that we can write ξq(c2 + b2) = ξq(c2) + ξq(b2)−−→u , where −→u = (u1, . . . ,uk)

is such that, for any (i, j) ∈ [1, k] × [0, n − 1], (ui)j ∈ {0, qi}. In particular, it can be noticed that
‖|b2 qiq |qi − ui‖ < qi, and that 〈−→u , (s2 qq1 , . . . , s

2 q
qk

)〉 ≡ 0 mod q. Consequently, we have that, in
Rq ×Rq,

RelinRNS(c̃tmult + b) = RelinRNS(c̃tmult) + RelinRNS(b)− (〈−→u , rlkRNS[0]〉, 〈−→u , rlkRNS[1]〉).

Thus, a part of the noise comes from the following extra term:∥∥(Relin(b)(s)− 〈−→u , rlkRNS[0]〉 − 〈−→u , rlkRNS[1]〉s
)

(modq)
∥∥

=
∥∥(b0 + 〈ξq(b2)−−→u , rlkRNS[0]〉+ s(b1 + 〈ξq(b2)−−→u , rlkRNS[1]〉)

)
(modq)

∥∥
=
∥∥∥(b0 + b1s + b2s

2 −
∑k

i=1(|b2
qi
q |qi − ui)ei

)
(modq)

∥∥∥
< k(1 + δBkey + δ2B2

key) + δBerr
∑k

i=1 qi

< k(1 + δBkey + δ2B2
key) + δBerrk2ν .

Lemma 8 brings the rest of the noise.

17

B Additional elements about RNS homomorphic multiplication

B.1 Combining two levels of decomposition within step 2

To reduce the noise growth due to the relinearisation step a bit more, we can integrate another
level of decomposition in radix ω where ω = 2θ << 2ν as efficiently as in the original scheme by
doing it on the residues, because they are handled through the classical binary positional system.
By denoting `ω,2ν = dνθ e, each polynomial |c qiq |qi is decomposed into the vector of polynomials

([b|c qiq |qiω
−zc]ω)z∈[0,...,`ν−1], and the new decomposition function is defined by:

DRNS,ω,q(c) =

(
dzi =

[⌊∣∣∣c qiq ∣∣∣qi ω−z
⌋]

w

)
i∈[1,k],z∈[0,...,`ω,2ν−1]

.

Therefore, each term |s2 qqi − (ei + sai)|qj in rlkRNS[0] has to be replaced by(
|s2 qqiω

z − (ezi + sazi)|qj
)
z
, z = 0, . . . , `ω,2ν − 1, ezi ← χerr,a

z
i ← U(Rq).

It follows that the extra noise is now bounded by:

‖〈DRNS,ω,q(c),−→e 〉‖ = ‖
∑k

i=1

∑`ω,2ν−1
z=0 dzi e

z
i ‖ < δBerrωk`ω,2ν .

In other words, the term 2ν in (16) is replaced by ω`ω,2ν .

B.2 Reducing the size of the relinearization key rlkRNS

In section 5.4 of [5], a method to reduce the size of the public evaluation key evk significantly is
suggested (by truncating the ciphertext) and it is appliable to the original FV scheme. We provide
an efficient adaptation of such kind of optimization to the RNS variant of the relinearization step.

We recall that the relinearization is applied to a degree-2 ciphertext denoted here by (c0, c1, c2).
The initial suggestion was to set to zero, say, the i lowest significant components of the vector
Dω,q(c2). Doing so is equivalent to replacing c2 by c′2 = ωibc2ω−ic = c2 − |c2|ωi . Thus, only the
`ω,q− i most significant components of rlkFV[0] (and then of rlkFV[1]) are required (in other words,
when rlkFV[0] is viewed as an (`q,ω, k) RNS matrix, by decomposing each component in base q, to
do this allows to set ik entries to zero). This optimization causes a greater noise than the one in
Lemma 4 of [5]. Given (c0, c1, c2) decryptable under s, the relinearization step provides:

(c̃0, c̃1) := (c0 + 〈Dω,q(c′2),Pω,q(s2)− (−→e +−→a s)〉, c1 + 〈Dω,q(c′2),
−→a 〉).

Thus, (c̃0, c̃1)(s) = c0 + c1s+ c′2s
2−〈Dω,q(c′2),

−→e 〉 mod q. Consequently, the extra noise would
come from the following term:

‖ − |c2|ωis2 − 〈Dω,q(c′2),
−→e 〉‖ = ‖ − |c2|ωis2 −

∑`ω,q−1
j=i Dω,q(c2)jej‖ < δ2ωiB2

key + (`ω,q − i)δωBerr.
(22)

In the present RNS variant, the computation of bc2ω−ic is not straightforward. This could be
replaced by bc2(q1 . . . qi)−1c through a Newton’s like interpolation (also known as mixed-radix
conversion [12]). Though the result would be quite similar to the original optimization in terms of
noise growth, its efficiency is not satisfying. Indeed, despite ik entries of the RNS matrix rlkRNS[0]

18

can be set to zero like this, this Newton interpolation is intrinsically sequential, while the division
by ωi is just an immediate zeroing of the lowest significant coefficients in radix ω representation.
Furthermore, a direct approach consisting in zeroing, say, the first i components of ξq(c2) could not
work. Indeed, this is like using ξq(q1 . . . qi×|c2(q1 . . . qi)−1|qi+1...qk), then it introduces the following
term (when evaluating the output of relinearization in the secret key s):

〈ξq(q1 . . . qi × |c2(q1 . . . qi)−1|qi+1...qk),PRNS,q(s2)〉 = q1 . . . qi × |c2(q1 . . . qi)−1|qi+1...qks
2 mod q

= (c2 − qi+1 . . . qk × |c2(qi+1 . . . qk)
−1|q1...qi)s2 mod q

and the norm of |c2(qi+1 . . . qk)
−1|q1...qi has no reason to be small.

For our approach, we rely on the fact that rlkRNS contains the RLWE-encryptions of the polyno-
mials |s2 qqj |q. Then, we notice that only the jth-residue of |s2 qqj |q can be non-zero. So, let’s assume

that we want to cancel ik entries in rlkRNS[0] (as it has been done in rlkFV with the previous
optimization). Then we choose, for each index j, a subset of index-numbers Ij ⊆ [1, k] \ {j} with
cardinality i (i.e. at line j of rlkRNS, choose i columns, except the diagonal one; these terms will be
set to zero). Next, for each j, we introduce an RLWE-encryption of |s2 q

qjqIj
|q, where qIj =

∏
s∈Ij qs,

which is (|s2 q
qjqIj

− (ej +saj)|q,aj). So far, the underlying security features are still relevant. Now,

it remains to multiply this encryption by qIj , which gives in particular |s2 qqj − qIj (ej + saj)|q.
This is the jth-line of the new matrix rlk′RNS[0]. It is clear that this line contains zeros at columns
index-numbered by Ij . rlkRNS[1] = (a1, . . . ,ak) is modified as: rlk′RNS[1] = (|qI1a1|q, . . . , |qIkak|q).

Let’s analyze the new noise growth. By evaluating in s the output of relinearization with this
new rlk′RNS, we obtain:

c0 + 〈ξq(c2), rlk′RNS[0]〉+ s
(
c1 + 〈ξq(c2), rlk′RNS[1]〉

)
= c0 +

∑k
j=1 |c2

qj
q |qj

(
s2 qqj − qIj (ej + saj)

)
+ s

(
c1 +

∑k
j=1 |c2

qj
q |qjqIjaj

)
(mod q)

= c0 + c1s + c2s
2 −

∑k
j=1 |c2

qj
q |qjqIjej (mod q)

Consequently, the cancellation of ik terms in the public matrix rlkRNS[0] by using this method
causes an extra noise growth bounded by (this can be fairly compared to (22) in the case where
ω = 2ν , i.e. k = `ω,q):

‖
∑k

j=1 |c2
qj
q |qjqIjej‖ <

∑k
j=1 δqjqIjBerr < δk2ν(i+1)Berr.

B.3 Some details about complexity

We analyze the cost of a multi-precision variant, in order to estimate the benefits of the new RNS
variant of multiplication in terms of computational cost.

The product ct? = ct1?ct2 = (c1,0, c1,1)?(c2,0, c2,1) in MP variant is advantageously performed
in RNS, in order to benefit from NTT. So, the MP variant considered here is assumed to involve a
base B′ such that qM ′ > ‖ct?‖. By taking centered remainders modulo q, we consider ‖cti‖ 6 q

2 .

Then B′ must verify in particular that ‖ct?[1] = c1,0c2,1 + c1,1c2,0‖ 6 2δ q
2

4 < qM ′. Thus, |B′| has
to be at least equal to k + 1 (notice that, in RNS variant, we also have |Bsk| = k + 1).

The conversion, from q to B′, of each cti has to be as exact as possible in order to reduce the
noise growth. It can be done by computing [

∑k
i=1 |ca,b|qi × (| qiq |qi

q
qi

)]q in B′. The terms (| qiq |qi
q
qi

)

19

are precomputable and their size is k words (log2(q) bits). Thus, the sum involves k2nEM. The
reduction modulo q can be performed by using an efficient reduction as described in [2], reducing
to around 2 multiplications of k-word integers, that is O(k1+ε)nEM (where ε stands for complexity
of multi-precision multiplication in radix-base 2ν ; e.g. ε = 1 for the schoolbook multiplication).
Next, the k-word value is reduced modulo each 1-word element of B′, through around 2knEM for the
whole set of coefficients. Finally, this procedure has to be made four times. Its total cost is around
(4k2 +O(k1+ε))nEM.

Next, the product ct1 ?ct2 is done in q∪B′. First, 4(2k+ 1)NTT are applied. Second, by using a
Karatsuba like trick, the product is achieved by using only 3×(2k+1)nIMM. Third, 3(2k+1)invNTT
are applied to recover ct? = (c?,0, c?,1, c?,2) in coefficient representation.

The next step is the division and rounding of the three polynomials c?,i’s. A lift from q ∪ B′
to Z is required, for a cost of 3(2k + 1)2nEM. t

q can be precomputed with around 3k + 1 words of

precision to ensure a correct rounding. Thus, a product t
q ×c?,i is achieved with O(k1+ε)nEM. After,

the rounding of c?,0 and c?,1 are reduced in RNS base q by 2× 2knEM.
The relinearisation step (15) can be done in each RNS channel of q. By assuming that ω = 2ν ,

we would have `ω,q = k. The computation of the vector Dω,q(b tqc2e) reduces to shifting. The two

scalar products in RelinFV, with an ouput in coefficient representation, require k`ω,qNTT+2k2nIMM+
2kinvNTT. Thus, the total cost is at most the following one:

Cost(MultMP) = (k`ω,q + 8k + 4)NTT + (8k + 3)invNTT + [2k2 + 6k + 3]nIMM + [40k2 +O(k1+ε)]nEM.

Let’s analyze the cost of Alg. 3. The fast conversions at S0 from q to Bsk ∪ {m̃} require 4× k(k +
2)nIMM. Next, the reduction of q-overflows at step S1 requires 4 × (k + 1)nIMM. The product of
ciphertexts ct′1 ?ct

′
2 (S2) in q∪Bsk requires the same cost as for MP variant, that is 4(2k+1)NTT+

3(2k + 1)nIMM + 3(2k + 1)invNTT.
Let’s analyze the cost of steps S3, S4 and S5. With adequate pre-computed data, the base

conversion in S3 can integrate the flooring computation in Bsk. So, S3 is achievable with 3× k(k+
1)nIMM. The exact FastBconvSK at step S4 basically reduces to a fast conversion from B to qsk,
followed by a second one from msk to q. So, this is achieved with 3×k(k+2)nIMM. In S5, we already
have the vector ξq(c2) which is involved in the fast conversion in step S3. Indeed, the function ξq is
an automorphism of Rq. So, data in q can stay in this form throughout the computations. The two
scalar products in RelinRNS involve k2NTT + 2k2nIMM + 2kinvNTT, exactly like the relinearization
step in MP variant. And finally 2knIMM are needed to manage the Montgomery representation, in
q, with respect to m̃.

Cost(MultRNS) = (k2 + 8k + 4)NTT + (8k + 3)invNTT + [10k2 + 25k + 7]nIMM.

To summarize, the RNS variant decreases the computational cost of the whole homomorphic
multiplication algorithm except the parts concerning polynomial multiplications. Also, it involves
as many NTT and invNTT as the MP variant. Even by considering an optimized multi-precision
multiplication algorithm in MP variant (with sub-quadratic complexity), the asymptotic computa-
tional complexity remains dominated by the (k2 +O(k))nNTT. Finally, the MP and RNS variants
are asymptotically equivalent when n→ +∞.

20

C Influence of m̃ over noise growth

0 2 4 6 8 10 12 14

100

200

300

400

Depth L

lo
g
2
(‖

n
o
is
e
‖ ∞

)

Limit (388)

m̃ = 0

Bound for m̃ = 0

m̃ = 28

Bound for m̃ = 28

m̃ = 216

Bound for m̃ = 216

Fig. 3: Noise growth, for n = 213, log2(q) = 390
(ν = 30, k = 13), t = 2, σerr = 8, Bkey = 1.

In the paper, we have explained that, after a
fast conversion from q, ciphertexts in Bsk can
contain q-overflow and verify ‖ct′i‖ <

q
2(1 + τ)

. In a multiplicative tree without any addition,
one has τ 6 2k − 1 (recall that we convert |c|q,
not [c]q). By applying Alg. 2, this bound de-
creases to q

2(1 + ρ), for some 0 < ρ 6 2k − 1.
ρ = 2k − 1 would mean no reduction is nec-
essary at all: this case occurs only three times
in Tab. 1 for degrees 211 and 212). This high-
lights the necessity of such reduction before a
multiplication so as to reach the best possible
depth, especially for highest degrees. Moreover,
taking a lower ρ (i.e. higher m̃) than necessary
decreases a bit the bound for msk (cf. Tab. 3).

As an illustration of the interest of this re-
duction procedure, Fig. 3 depicts the noise growth when m̃ ∈ {0, 28, 216}. According to Tab. 1,
m̃ = 28 is well sufficient in such scenario in order to reach LRNS = 13. Against a computation with
no reduction at all (m̃ = 0, implying LRNS = 11 in this case), taking m̃ = 28 implies an average
reduction of 25%. By using m̃ = 216, we gain around 32%.

Consequently, SmMRqm̃ has been systematically integrated in the implementation of MultRNS.
Tables 3 and 4 summarize which value has been chosen for m̃ for all the configurations which have
been implemented and tested, and they list sufficient sizes for msk and γ in these cases.

n k t m̃ LRNS dlog2(msk)e γ

211 3
2

28 2 13 7
210 1 22 7

212 6
2

28 5 14 13
210 4 23 13

213 13
2

28 13 15 27
210 9 24 27

214 26
2

28 25 17 53
210 19 26 53

215 53
2

216 50 20 112
210 38 29 107

Table 3: Parameters based on 30-bit moduli of
NFLlib and depending on an a priori chosen m̃.

n k t m̃ LRNS (Lstd) dlog2(msk)e γ

211 1
2

28 0 (0) − −
210 0 (0) − −

212 3
2

28 4 (5) 14 7
210 3 (3) 23 7

213 6
2

28 11 (11) 15 13
210 8 (8) 24 13

214 12
2

28 23 (23) 16 25
210 17 (17) 25 25

215 25
2

216 47 (47) 17 51
210 37 (37) 26 52

Table 4: Parameters based on 62-bit moduli of
NFLlib and depending on an a priori chosen m̃.

21

D Timing results for decryption and multiplication

Table 5 lists timings and speed-ups of RNS vs MP variants. Also, timings of an RNS decryption
and multiplication including the use of SIMD (Single Instruction Multiple Data) have been added.

In RNS variants (as well decryption as multiplication), the replacement of division and rounding
by base conversions (i.e. matrix-vector multiplications) allows to benefit, easily and naturally, from
concurrent computation. An RNS vector-matrix multiplication naturally owns two levels of paral-
lelization: along the RNS channels, and along the dimension of the result. In NFLlib, an element
of Rq is stored in a (32-byte aligned) array data in which the n first values are the coefficients of
the polynomial in Rq1 , and so forth and so on. Advanced Vector Extensions (AVX2) have been used
to accelerate the computations.

An AVX2 register is handled (for our purpose) through the type m256i. This enables us to
handle either 8x32-bit, or 4x64-bit, or again 16x16-bit integers concurrently. Given the configuration
of the data array, reading/writing communications between 256-bit AVX2 registers and data are
the most efficient (through mm256 store si256 and mm256 load si256 intrinsics, which require
the 32-byte alignment of data) when the base conversion is parallelized along the dimension n.
This is the way it has been implemented and tested. Moreover, this has been only done within the
32-bit implementations, and not 64-bit, because the intrinsic instructions do not provide as many
convenient functions for handling 4x64 than for 8x32 (for instance, no multiplication).

Regarding the timings, the impact of AVX2 remains quite moderate. This is because it is used
to accelerate the parts of algorithms besides the NTT-based polynomial products which constitute
the main cost. For decryption, the RNS variants, floating point and integer, are already very
efficient, whereas the performance of AVX2 variant depends on time-consuming loading procedures
from/to vectorial registers, explaining the small differences. About the multiplication, as expected
the timings are converging when n grows, because of the cost of NTT’s.

22

n ν k variant Decryption (ms) Speed-up Multiplication (ms) Speed-up

211

30 3

MP 1.153 − 13.809 −
RNS-flp 0.192 6.005 − −
RNS 0.189 6.101 3.159 4.371
RNS-AVX2 0.188 6.133 2.710 5.096

62 1
MP 1.020 − − −
RNS-flp 0.054 18.880 − −
RNS 0.050 20.390 − −

212

30 6

MP 4.587 − 45.055 −
RNS-flp 0.798 5.748 − −
RNS 0.789 5.814 15.614 2.886
RNS-AVX2 0.775 5.919 13.737 3.280

62 3
MP 3.473 − 28.168 −
RNS-flp 0.339 10.245 − −
RNS 0.326 10.653 7.688 3.664

213

30 13

MP 16.051 − 218.103 −
RNS-flp 3.732 4.301 − −
RNS 3.691 4.349 100.625 2.167
RNS-AVX2 3.637 4.413 88.589 2.462

62 6
MP 10.945 − 92.093 −
RNS-flp 1.552 7.052 − −
RNS 1.513 7.234 37.738 2.440

214

30 26

MP 70.154 − 1, 249.400 −
RNS-flp 17.497 4.009 − −
RNS 17.333 4.047 622.596 2.007
RNS-AVX2 16.818 4.171 617.846 2.022

62 12
MP 38.910 − 424.014 −
RNS-flp 6.702 5.806 − −
RNS 6.494 5.992 206.511 2.053

215

30 53

MP 364.379 − 8, 396.080 −
RNS-flp 85.165 4.279 − −
RNS 81.225 4.486 4, 923.220 1.705
RNS-AVX2 72.665 5.015 5, 063.920 1.658

62 25
MP 180.848 − 2, 680.535 −
RNS-flp 33.310 5.429 − −
RNS 31.895 5.670 1, 406.960 1.905

Table 5: Timing results.

23

