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Abstract

We revise Boneh-Gentry-Hamburg’s identity-based encryption schemes and we show that we can

renounce to the use of pseudo-random functions. We then prove IND-ID-CPA and ANON-IND-ID-CPA

security of these schemes by showing that the advantage of any efficient adversary against these schemes

is less than or equal to the quadratic residuosity advantage of some efficient adversary against the RSA

generator. This greatly improves the existing upper bounds (being probably the tightest upper bound).

I. INTRODUCTION AND PRELIMINARIES

Identity-based cryptography was proposed in 1984 by Adi Shamir [5] who formulated its

basic principles. The first identity-based encryption (IBE) scheme was proposed by Boneh and

Franklin [2], being based on bilinear maps. Shortly, Cocks proposed another IBE scheme based

on the standard quadratic residuosity (QR) problem modulo an RSA composite n. Cocks’ scheme

encrypts a bit by two integers modulo n such that the bit is recovered as the Jacobi symbol of

one of these two integers together with the private key. Although the scheme is very elegant and

quite fast, its main disadvantage is the ciphertext expansion: a bit of message requires 2 log n

bits of ciphertext. In [3], Boneh, Gentry, and Hamburg proposed another two IBE schemes

related to Cocks’ scheme, with short ciphertexts. The first scheme, named BasicIBE, is IND-

ID-CPA secure in the random oracle model under the QR assumption, while the second one,

named AnonIBE, is ANON-IND-ID-CPA secure in the standard model under the interactive

QR assumption. Both security results are obtained by providing upper bounds on the advantage

of an efficient adversary against the corresponding IBE scheme.
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In this paper we revise the BasicIBE and AnonIBE schemes and show that we can avoid the

use of pseudo-random functions. We then prove IND-ID-CPA and ANON-IND-ID-CPA security

of these schemes in the random oracle model, by showing that the advantage of any efficient

adversary against these schemes is less than or equal to the QR advantage of some efficient

adversary against the RSA generator. This also greatly improve the upper bounds on the security

results in [3]. In fact, the upper bound we establish is probably the tightest one.

The rest of this section recalls basic concepts and notations that will be used in our paper (for

details, the reader is referred to [3]).

a) Identity-based encryption: An IBE scheme consists of four probabilistic polynomial-

time (PPT) algorithms: Setup, Extract, Encrypt, and Decrypt. The first one takes as input

a security parameter and outputs the system public parameters together with a master key. The

Extract algorithm takes as input an identity ID together with the public parameters and the

master key and outputs a private key associated to ID. The Encrypt algorithm, starting with a

message m, an identity ID, and the public parameters, encrypts m into some ciphertext c (the

encryption key is ID or some binary string derived from ID). The last algorithm decrypts c

into m by using the private key associated to ID.

The ANON-IND-ID-CPA security of an IBE scheme S is formulated by means of the following

Game between a challenger and an adversary A:

Setup: The challenger takes a security parameter λ and runs Setup(λ). It gives the adversary

A the resulting system parameters PP , while keeping the master key msk to itself;

Phase 1: The adversary A issues a finite number of adaptive extraction queries by sending

for each query an identity ID. In response, the challenger runs the KeyGen algorithm to

generate the private key corresponding to ID and sends it to A;

Challenge: Once the adversary decided that Phase 1 is over, it outputs two pairs (ID0,m0) and

(ID1,m1) consisting of two equal length plain-texts m0 and m1 and two identities ID0

and ID1 that did not appear in any query in Phase 1. The challenger picks a random bit

b ∈ {0, 1} and computes and sends c∗ = Encrypt(PP, IDb,mb) as a challenge to A;

Phase 2: The adversary issues more adaptive queries like in Phase 1, but with the constraint

that each queried ID must be different than ID0 and ID1;

Guess : The adversary outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

The advantage of A in attacking S is AdvA,S(λ) = |P (b = b′)− 1/2|, where P (b = b′) is the

probability that b = b′ (computed over the random bits used by the challenger and the adversary
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A). An IBE scheme S is ANON-IND-ID-CPA secure if for any PPT adversary A, AdvA,S(λ) is

negligible. If we consider ID0 = ID1 in the above game, we obtain the concept of IND-ID-CPA

security.

b) Jacobi symbols and the QR assumption: The Jacobi symbol of an integer a modulo an

integer n is denoted by
(
a
n

)
. Jn stands for the set of integers in Z∗n whose Jacobi symbol is

1, QRn denotes the set of quadratic residues in Z∗n, and SQRTn(a) is the set of square roots

modulo n of a. Zn[x] is the ring of polynomials over Zn.

The QR advantage of an adversary A against an RSA generator RSAgen(λ) is denoted by

QRAdvA,RSAgen(λ) (λ is a security parameter). If this advantage is negligible for all adversaries

A, we say that the QR assumption holds for RSAgen. Given a pseudorandom function (PRF)

F , PRFAdvA,F stands for the PRF advantage of A against F . F is secure if PRFAdvA,F is

negligible for all A.

II. BONEH-GENTRY-HAMBURG’S IBE SCHEMES

Cocks’ IBE scheme [4] encrypts a bit m ∈ {−1, 1} by two integers c1 and c2 such that either

the Jacobi symbol of (c1 + 2r) or the Jacobi symbol of (c2 + 2r) modulo an RSA composite

n is m, where r is the private key computed from the identity of the decryptor. The scheme is

IND-ID-CPA secure in the random oracle model under the QR assumption.

Despite its elegance, Cocks’ scheme produces large ciphertexts: 2 log n bits are used to encrypt

just one bit. Moreover, it is not anonymous [1]. In 2007, Boneh, Gentry and Hamburg proposed

two space efficient IBE schemes related to Cocks’ scheme, whose security is similarly based

on the QR problem in the random oracle model, one of them being additionally anonymous

[3]. These schemes are based on associated polynomials as defined below (our approach tries

to capture the essence of using such polynomials and, therefore, it is slightly different than the

one in [3]).

Definition 2.1: Let n be a positive integer, a, S ∈ Z∗n, and f, g ∈ Zn[x].

1) We say that (f, g) is a pair of (a, S)-associated polynomials if(
f(r)

n

)
=

(
g(s)

n

)
for all r ∈ SQRTn(a) and s ∈ SQRTn(S), whenever a, S ∈ QRn.

2) We say that f is a-secure if
(
f(r)
n

)
is uniformly distributed in {−1, 1} when r is uniformly

chosen from SQRTn(a), whenever a ∈ QRn.
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3) We say that (f, g) is a pair of a-secure (S-secure) (a, S)-associated polynomials if (f, g)

is a pair of (a, S)-associated polynomials and f (g) is a-secure (S-secure).

We are now able to introduce the first scheme proposed in [3] and called BasicIBE.

The BasicIBE scheme [3]

% In this scheme, D is an unspecified deterministic algorithm that on input (n, a, S) outputs a

% pair (f, g) of (a, S)-associated polynomials, where n is a positive integer and a, S ∈ Z∗n.

% Moreover, (f, g) is a-secure when a ∈ QRn and S ∈ Jn \QRn.

Setup(λ): Generate (p, q) ← RSAgen(λ), compute n = pq, generate e ∈ Jn \ QRn, and

choose a hash function h : {0, 1}∗ × {1, . . . , `} → Jn for some integer ` ≥ 1. Output the

public parameters PP = (n, e, h); the master key msk = (p, q,K) is the factorization of n

together with a random key K of some pseudo-random function FK : {0, 1}∗×{1, . . . , `} →

{0, 1, 2, 3} (FK chooses one of the four square roots of h(ID, i) or eh(ID, i), depending

on which of them is a quadratic residue);

Extract(msk, ID): For each j ∈ {1, . . . , `}, let aj = h(ID, j) and ij = FK(ID, j). If

r0, r1, r2, r3 is a fixed total ordering of the square roots of aj or eaj (depending on which

of them is a quadratic residue), then the private key is r = (ri1 , . . . , ri`);

Encrypt(PP, ID,m): Assume m = m1 · · ·m` ∈ {−1, 1}` is the `-bit sequence to be encrypted.

The encryption process is as follows:

• Generate at random s ∈ Z∗n and set S = s2 mod n;

• For j := 1 to ` do

– Compute aj = h(ID, j);

– Compute (fj, gj) = D(n, aj, S) and (f̄j, ḡj) = D(n, eaj, S);

– Compute cj = mj ·
(
gj(s)

n

)
and c̄j = mj ·

(
ḡj(s)

n

)
;

• Return (c, c̄, S), where c = c1 · · · c` and c̄ = c̄1 · · · c̄`;

Decrypt((c, c̄, S), r): The decryption process is as follows:

• For j := 1 to ` do

– Compute aj = h(ID, j);

– If aj ∈ QRn then a′j = aj else a′j = eaj;

– Compute (f ′j, g
′
j) = D(n, a′j, S);

– Compute mj = cj ·
(
f ′j(rij )

n

)
;

• Return m = m1 · · ·m`.
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Definition 2.1(1) guarantees the soundness of decryption. As with respect to security, the

following result proved in [3] shows that BasicIBE is IND-ID-CPA secure in the random

oracle model under the QR assumption.

Theorem 2.1 ([3]): For any efficient IND-ID-CPA adversary A against BasicIBE, there exist

efficient algorithms B1 and B2, whose running time is about the same as that of A, such that

IBEAdvA,BasicIBE(λ) ≤ PRFAdvB1,F (λ) + 2 ·QRAdvB2,RSAgen(λ),

provided that h is modeled as a random oracle, the QR assumption holds for RSAgen, and F

is a secure pseudo-random function.

Remark 2.1: A few words about the inequality in Theorem 2.1 are in order. The proof of this

theorem as it is in [3] exploits the fact that D outputs pairs of (aj, S)-associated polynomials that

are aj-secure when aj ∈ QRn and S ∈ Jn \QRn, for all 1 ≤ j ≤ ` (we use the notations in the

BasicIBE scheme). According to this, the initial IND-ID-CPA game is successively changed

into another game where the challenge ciphertext is created by decrypting the message (that is,

by encrypting it by f ’s instead of g’s). In order to have aj ∈ QRn and S ∈ Jn \QRn, the QR

assumption is used two times, which gives rise to the factor 2 ·QRAdvB2,RSAgen(λ). Moreover,

to ensure that fj (and f̄j) is aj-secure (eaj-secure), the PRF Fk is replaced by a truly random

function, and this gives rise to the factor PRFAdvB1,F (λ).

Remark 2.2: We emphasize that the BasicIBE scheme is an abstract IBE scheme because no

concrete algorithm D to compute (a, S)-associated polynomials is presented. In [3], the method

proposed to construct such polynomials is based on the congruence QCn(a, S) given by

ax2 + Sy2 ≡ 1 mod n, (1)

where n = pq is an RSA modulus and a, S ∈ Z∗n.

Any solution (x0, y0) to QCn(a, S) gives rise to two polynomials f and g

f(r) = x0r + 1 mod n

g(s) = 2(y0s+ 1) mod n

that are (a, S)-associated. Moreover, (f, g) is a-secure when a ∈ QRn and S ∈ Jn \ QRn (see

Lemma 3.3 in [3]).

The proof of Theorem 2.1 in [3] exploits the fact that D outputs pairs of (a, S)-associated

polynomials that are a-secure when a ∈ QRn and S ∈ Jn \QRn.
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If we assume that D outputs pairs of (a, S)-associated polynomials that are S-secure when

S ∈ QRn and a ∈ Jn \ QRn, then we are able to improve the upper bound in Theorem 2.1.

Moreover, there will be no need for a pseudo-random function because in the security game the

challenger encrypts the message by g’s as it is specified in the scheme and not by f ’s as in

the proof of Theorem 2.1 (see [3] and Remark 2.1 for details). Therefore, we slightly change

BasicIBE into BasicIBE ′ as follows.

The BasicIBE ′ scheme

% In this scheme, D is an unspecified deterministic algorithm that on input (n, a, S) outputs a

% pair (f, g) of (a, S)-associated polynomials, where n is a positive integer and a, S ∈ Z∗n.

% Moreover, (f, g) is S-secure when S ∈ QRn and a ∈ Jn \QRn.

1) Setup(λ) outputs the public parameters PP = (n, e, h) and the master key msk = (p, q)

exactly as in the BasicIBE scheme, except that the PRF F is not required;

2) Extract(msk, ID) chooses a square root rij of h(ID, j) or eh(ID, j) depending on which

of them is a quadratic residue, for all 1 ≤ j ≤ `, and returns r = (ri1 , . . . , ri`);

3) Encrypt(PP, ID,m) and Decrypt((c, c̄, S), r) are unchanged.

The security of this new IBE scheme is settled by the following theorem, which shows that

the scheme is IND-ID-CPA secure in the random oracle model under the QR assumption.

Theorem 2.2: For any efficient IND-ID-CPA adversary A against the BasicIBE ′ scheme,

there exists an efficient algorithm B, whose running time is about the same as that of A, such

that

IBEAdvA,BasicIBE′(λ) ≤ QRAdvB,RSAgen(λ),

provided that h is modeled as a random oracle and the QR assumption holds for RSAgen.

Proof. Let A be an adversary against the BasicIBE ′ scheme. We present the proof as a sequence

of games, Game 0,. . . ,Game 3, and we let P (Gi) denote the probability that the adversary wins

Game i, for all 0 ≤ i ≤ 3.

Game 0. This is the IND-ID-CPA game defined in Section I, between A and a challenger

implementing the BasicIBE ′ scheme. Moreover, it is assumed that h : {0, 1}∗×{1, . . . , `} → Jn

is a random oracle chosen at random by the challenger from the set of all such functions, and

A is allowed to query it at arbitrary points. Therefore,

IBEAdvA,BasicIBE′(λ) = |P (G0)− 1/2| (2)
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Recall that the challenger keeps the master key msk.

Game 1. In this game, the random oracle h is changed as follows. For an arbitrary identity

ID and a point 1 ≤ j ≤ `, the challenger does the following:

• randomly choose bj ∈ {0, 1} and vj ∈ Jn \QRn (recall that the challenger knows msk and,

therefore, he can choose vj in this way by using the factorization of n);

• set h(ID, j) = ebj · vj mod n.

It is clear that ebj ·vj mod n is a random integer in Jn and, therefore, the challenger implements

a random function h as in Game 0.

When the adversary queries a private key for ID, the challenger answers with a square root

of evj , for all 1 ≤ j ≤ `, as in Game 0 (remark that h(ID, j) is either vj or evj and, in the

former case, eh(ID, j) = evj). Thus we have

P (G0) = P (G1) (3)

Game 2. In this game, the challenger chooses e in QRn instead of Jn \QRn. Since this is the

only change between Game 1 and Game 2, there exists an algorithm B, whose running time is

about the same as that of A, such that

|P (G1)− P (G2)| = QRAdvB,RSAgen(λ) (4)

We notice that, according to the way h is implemented by challenger, we have both h(ID, j)

and eh(ID, j) in Jn \QRn, for all ID and j. As an effect, each of the Jacobi symbols
(
gj(s)

n

)
and

(
ḡj(s)

n

)
used to encrypt the bit mj is uniformly distributed in {−1, 1}, for all 1 ≤ j ≤ `

((fj, gj) is a pair of S-secure (aj, S)-associated polynomials and (f̄j, ḡj) is a pair of S-secure

(eaj, S)-associated polynomials).

Game 3. We change Game 2 in order to make the challenge ciphertext independent of the

challenge bit b. Thus, the challenger randomly chooses s ∈ Z∗n. Then, for each 1 ≤ j ≤ ` the

challenger randomly generates a bit zj and computes cj and c̄j by

cj = zj ·
(
gj(s)

n

)
and c̄j = zj ·

(
ḡj(s)

n

)
Clearly,

P (G2) = P (G3) (5)

Moreover, P (G3) = 1/2 because we encrypt a random message that is independent of the

challenge bit. Combining this with (2), (3), (4), and (5), we obtain the theorem.
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Remark 2.3: The algorithm D in the BasicIBE ′ scheme can be instantiated exactly as in

Remark 2.1 because the pairs (f, g) obtained from solutions to QCn(a, S) are S-secure as well

when a ∈ Jn \ QRn and S ∈ QRn (the proof is similar to the one in Lemma 3.3 in [3]: just

replace the role of a by the role of S, and vice versa).

Remark 2.4: If we instantiate the algorithm D in BasicIBE (or BasicIBE ′) as in Remark

2.1, then the encryptor must find solutions to 2` congruences of the form QCn(a, S), while

the decryptor needs solutions to ` of these congruences. Boneh, Gentry, and Hamburg [3] have

proposed the following Combining Lemma in order to reduce the number of congruences to be

solved by the encryptor:

• If (x1, y1) ∈ Z2
n is a solution to the congruence QCn(a1, S) and (x2, y2) ∈ Z2

n is a

solution to the congruence QCn(a2, S), then (x1,2, y1,2) ∈ Z2
n is a solution to the congruence

QCn(a1a2, S), where

x1,2 =
x1x2

Sy1y2 + 1
mod n and y1,2 =

y1 + y2

Sy1y2 + 1
mod n, (6)

provided that (Sy1y2 + 1, n) = 1.

By this result, the encryptor first finds solutions to QCn(e, S) and QCn(aj, S), for all 1 ≤

j ≤ `, and then combines these solutions to obtain solutions to QCn(eaj, S), for all 1 ≤ j ≤ `.

Therefore, the encryptor needs to find solutions to only `+ 1 congruences.

It is to be remarked that, by reducing the number of congruences to be solved in this way,

the inequality in Theorem 2.2 still holds.

The BasicIBE (BasicIBE ′) scheme is IND-ID-CPA secure but it is not anonymous [3]

because there are instances of the algorithm D for which anyone can test which identity created

a given ciphertext. This scheme can be transformed into an anonymous one if the associated

polynomials are chosen in a different way.

Definition 2.2: Let n be a positive integer, a, e, S ∈ Z∗n, and f, f̄ , g, τ ∈ Zn[x].

1) We say that (f, f̄ , g, τ) is a 4-tuple of (a, ea, S)-associated polynomials if (f, g) are (a, S)-

associated, (f̄ , g · τ) are (ea, S)-associated, and τ is independent of a.

2) We say that (f, f̄ , g, τ) is a 4-tuple of (a, ea)-secure (a, ea, S)-associated polynomials if

it is a tuple of (a, ea, S)-associated polynomials, and f is a-secure or f̄ is ea-secure.

3) We say that (f, f̄ , g, τ) is a 4-tuple of S-secure (a, ea, S)-associated polynomials if it is a

tuple of (a, ea, S)-associated polynomials and g and τ are S-secure.
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A few remarks are in order about (a, ea, S)-associated polynomials. The polynomial g is used

for encryption, and f for decryption, exactly as in the BasicIBE scheme. The encryption by

ḡ in the BasicIBE scheme is replaced now by sending the Jacobi symbol of τ(s). This is

because g(s)τ(s) will play the role of ḡ(s) and the decryption will be performed by f̄ (remark

that (f̄ , g · τ) are (ea, S)-associated). The anonymity of the scheme is obtained due to the fact

that τ is independent of a.

In the scheme below, D′ is a deterministic algorithm that on input (n, a, e, S), where n

is a positive integer and a, e, S ∈ Z∗n, outputs a 4-tuple (f, f̄ , g, τ) of (a, ea, S)-associated

polynomials. Moreover, (f, f̄ , g, τ) is (a, ea)-secure when e, S ∈ Jn \QRn.

The AnonIBE scheme [3]

% In this scheme, D′ is an unspecified deterministic algorithm that on input (n, a, e, S), where

% n is a positive integer and a, e, S ∈ Z∗n, outputs a 4-tuple (f, f̄ , g, τ) of (a, ea, S)-associated

% polynomials. Moreover, (f, f̄ , g, τ) is (a, ea)-secure when e, S ∈ Jn \QRn.

Setup(λ): the same as in the BasicIBE scheme;

Extract(msk, ID): the same as in the BasicIBE scheme;

Encrypt(PP, ID,m): Assume m = m1 · · ·m` is the `-bit sequence to be encrypted. Generate

at random s ∈ Z∗n, set S = s2 mod n, and let aj = h(ID, j) and (fj, f̄j, gj, τ) =

D′(n, aj, e, S), for all 1 ≤ j ≤ `. Encrypt then m by (c, c̄, S), where c̄ =
(
τ(s)
n

)
, c =

c1 · · · c`, and cj = mj ·
(
gj(s)

n

)
for all 1 ≤ j ≤ `;

Decrypt((c, c̄, S), r): For each 1 ≤ j ≤ `, let aj = h(ID, j) and (fj, f̄j, gj, τ) = D′(n, aj, e, S).

If aj is a quadratic residue modulo n, then compute mj = cj ·
(
fj(rj)

n

)
; otherwise, compute

mj = cj · c̄ ·
(
f̄j(rj)

n

)
. Output m = m1 · · ·m`.

The correctness of the scheme follows easily from Definition 2.2. As with respect to security,

it was shown in [3] that the scheme is ANON-IND-ID-CPA secure in the standard model under

the interactive QR (IQR) assumption, namely that the QR problem is hard in the presence of a

hash square root oracle.

Theorem 2.3 ([3]): For any efficient ANON-IND-ID-CPA adversary A against the AnonIBE

scheme, there exist efficient algorithms B1 and B2, whose running time is about the same as that

of A, such that

IBEAdvA,AnonIBE(λ) ≤ PRFAdvB1,F (λ) + IQRAdvB2,(RSAgen,h)(λ),
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provided that the IQR assumption holds for (RSAgen, h) and F is a secure pseudo-random

function.

Remark 2.5: The inequality in Theorem 2.3 is obtained in a similar way to the one in

Theorem 2.1. IQR is necessary both to answer to adversary’s queries by means of its square

root oracle, and to allow choosing S in Jn \ QRn instead of QRn with the price of one

IQRAdvB2,(RSAgen,h)(λ). The change from PRF to a truly random function in order to have(
fj(rj)

n

)
or

(
f̄j(rj)

n

)
uniform in {−1, 1}, induces the factor PRFAdvB1,F (λ).

Remark 2.6: The AnonIBE scheme is abstract because no concrete algorithm D′ is specified.

However, it turns out that the quadratic congruences used to instantiate BasicIBE can also be

used to obtain tuples of (a, ea, S)-associated polynomials. More precisely, given n a positive

integer and a, e, S ∈ Z∗n, and given (x0, y0) a solution to QCn(a, S) and (α, β) a solution to

QCn(e, S), four polynomials f , f̄ , g, and τ are defined:

f(r) = x0r + 1 mod n

g(s) = 2(y0s+ 1) mod n

f̄(r̄) = αx0r̄ + βy0S + 1 mod n

τ(s) = βs+ 1 mod n.

These polynomials are (a, ea, S)-associated. Moreover, they are (a, ea)-secure when e, S ∈ Jn \

QRn (see [3] for details).

If we assume that the deterministic algorithm D′ in AnonIBE outputs tuples of S-secure

(a, ea, S)-associated polynomials when S ∈ QRn and e ∈ Jn \QRn, then we may use the same

idea as in the case of BasicIBE ′ to obtain a new scheme AnonIBE ′ with a better security

upper bound.

The AnonIBE ′ scheme

% In this scheme, D′ is an unspecified deterministic algorithm that on input (n, a, e, S), where

% n is a positive integer and a, e, S ∈ Z∗n, outputs a 4-tuple (f, f̄ , g, τ) of (a, ea, S)-associated

% polynomials. Moreover, (f, f̄ , g, τ) is S-secure when S ∈ QRn and e ∈ Jn \QRn.

1) Setup and Extract are as in the BasicIBE ′ scheme;

2) Encrypt and Decrypt are as in the AnonIBE scheme.

As with respect to the security of AnonIBE ′, the following result shows that the scheme is

ANON-IND-ID-CPA secure in the random oracle model under the QR assumption.
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Theorem 2.4: For any efficient ANON-IND-ID-CPA adversary A against the AnonIBE ′

scheme, there exists an efficient algorithm B, whose running time is about the same as that

of A, such that

IBEAdvA,AnonIBE′(λ) ≤ QRAdvB,RSAgen(λ),

provided that h is modeled as a random oracle and the QR assumption holds for RSAgen.

Proof. The proof follows the same line as the proof of Theorem 2.2, except that Game 2 is now

split into two games Game 2.1 and Game 2.2 in order to see more clearly how the challenge

ciphertext is created. So, let A be an adversary against the AnonIBE ′ scheme.

Game 0. This is the ANON-IND-ID-CPA game defined in Section I, between A and a

challenger implementing the AnonIBE ′ scheme. Similar to Game 0 in the proof of Theorem

2.2 we obtain

IBEAdvA,AnonIBE′(λ) = |P (G0)− 1/2| (7)

Game 1. In this game, the random oracle h is changed exactly as in Game 1 in the proof of

Theorem 2.2. Therefore,

P (G0) = P (G1) (8)

Game 2.1. In this game, the challenger computes the ciphertext (c, c̄, S) as in the previous

game, except that c̄ is chosen uniformly at random from {−1, 1} instead of computing it by

c̄ =
(
τ(s)
n

)
. The adversary A does not see any difference between this game and Game 1 because

τ is S-secure (remark that S ∈ QRn and e ∈ Jn \QRn). Therefore,

P (G1) = P (G2.1) (9)

Game 2.2. This is similar to Game 2 in the proof of Theorem 2.2. The challenger chooses e

in QRn instead of Jn \ QRn. Since this is the only change between Game 2.1 and Game 2.2,

there exists an algorithm B, whose running time is about the same as that of A, such that

|P (G2.1)− P (G2.2)| = QRAdvB,RSAgen(λ) (10)

According to the way h is implemented by challenger, we have h(ID, j) ∈ Jn \ QRn, for

all ID and j. As an effect, the Jacobi symbol
(
gj(s)

n

)
used to encrypt the bit mj is uniformly

distributed in {−1, 1}, for all 1 ≤ j ≤ ` (gj is S-secure). As e ∈ QRn, we may not say that(
τ(s)
n

)
is S-secure. However, this is not important now because starting with Game 2.1 τ(s) is

no longer used (its Jacobi symbol is replaced by a randomly chosen bit c̄).

11



Game 3. This game is similar to Game 3 in the proof of Theorem 2.2. The challenger randomly

generates c̄ ∈ {−1, 1} and s ∈ Z∗n. Then, for each 1 ≤ j ≤ `, the challenger randomly generates

a bit zj and computes cj = zj ·
(
gj(s)

n

)
. The ciphertext is (c, c̄, S). Clearly,

P (G2.2) = P (G3) (11)

Moreover, P (G3) = 1/2. Combining this with (7), (8), (9), (10), and (11), we obtain the

theorem.

Remark 2.7: It is mentioned in [3] that the IQR assumption follows from the QR assumption

where h is a full-domain hash function modeled as a random oracle. As a conclusion, AnonIBE

is secure in the standard model under the IQR assumption, and in the random oracle model under

the QR assumption. However, if we follow the same proof line as in the proof of Theorem 2.1,

the same upper bound is obtained for IBEAdvA,AnonIBE(λ) when we work in the random

oracle model under the QR assumption. Therefore, the result in Theorem 2.4 is a consistent

improvement of the result in Theorem 2.3.

Remark 2.8: The algorithm D′ in the AnonIBE ′ scheme can be instantiated exactly as in

Remark 2.6 because the tuples (f, f̄ , g, τ) obtained from solutions to QCn(a, S) and QCn(e, S)

are S-secure as well when e ∈ Jn\QRn and S ∈ QRn (the proof is similar to the one in Lemma

3.3 in [3]: just replace the role of a by the role of S, and vice versa).

III. CONCLUSIONS

Boneh, Gentry, and Hamburg have proposed in [3] two IBE schemes related to Cocks’ IBE

scheme, called BasicIBE and AnonIBE. The later one provides anonymity of identity in

addition (Cocks’ IBE scheme is not anonymous [1]). These two schemes are more space efficient

than Cocks’ IBE scheme (but less time efficient). Both of them use pseudo-random functions to

choose the private key.

In this paper we have revisited the BasicIBE and AnonIBE schemes and we have shown

that the pseudo-random functions can be removed from their description. Moreover, using a

different proof approach, we proved that the scheme are secure by showing that the advantage

of any efficient adversary against these schemes, in the random oracle model, is bounded from

above by the QR advantage of some efficient adversary against the RSA generator. This greatly

improves the existing upper bounds established in [3], being probably the tightest upper bound.
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