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Abstract. BasicIBE and AnonIBE are two space-efficient identity-based encryption (IBE) schemes
based on quadratic residues, proposed by Boneh, Gentry, and Hamburg, and closely related to Cocks’
IBE scheme. BasicIBE is secure in the random oracle model under the quadratic residuosity assumption,
while AnonIBE is secure in the standard model under the interactive quadratic residuosity assumption.
In this paper we revise the BasicIBE scheme and we show that if the requirements for the deterministic
algorithms used to output encryption and decryption polynomials are slightly changed, then the scheme’s
security margin can be slightly improved.

1 Introduction

Identity-based cryptography was proposed in 1984 by Adi Shamir [5] who formulated its basic principles. The
first identity-based encryption (IBE) scheme was proposed by Boneh and Franklin [2] and is based on bilinear
maps. Shortly, Cocks [4] proposed another IBE scheme based on the standard quadratic residuosity problem1

modulo an RSA composite n. Cocks’ scheme encrypts a bit by two integers modulo n such that the bit is
recovered as the Jacobi symbol of one of these two integers together with the private key. Although the
scheme is very elegant and quite fast, its main disadvantage is ciphertext expansion: a bit of message requires
2 logn bits of ciphertext. In [3], Boneh, Gentry, and Hamburg proposed two abstract IBE schemes with short
ciphertexts that are related to Cocks’ scheme. The first scheme, named BasicIBE, is ind-id-cpa1 secure in
the random oracle model (ROM) under the quadratic residuosity assumption, while the second one, named
AnonIBE, is anon-ind-id-cpa1 secure in the standard model under the interactive quadratic residuosity
assumption1. Both security results are obtained by providing upper bounds on the advantage of an efficient
adversary against the corresponding IBE scheme.

In order to provide a tighter upper bound for the BasicIBE scheme we slightly change the requirements
for the deterministic algorithms Q used to output encryption and decryption polynomials. The concrete
instantiation of Q provided in [3] satisfies the new set of restrictions. Thus, without changing the instantiation
of BasicIBE we obtain a marginally better security margin.

Structure of the paper. We introduce notations and definitions used throughout the paper in Section 2. In
Section 3 we describe the BasicIBE scheme and we provide the security margin proved in [3]. We reassess
BasicIBE’s security proof in Section 4. We conclude in Section 5.

2 Preliminaries

Notations. Throughout the paper, λ will denote a security parameter. The action of selecting a random
element x from a sample space X is denoted by x $←− X. We denote by x← y the assignment of value y to
variable x. The probability that event E happens is denoted by Pr[E]. The Jacobi symbol of an integer a
modulo an integer n is denoted by

(
a
n

)
. Jn stands for the set of integers in Z∗n whose Jacobi symbol is 1, QRn

denotes the set of quadratic residues in Z∗n and SQRTn(a) is the set of square roots of a modulo n. Zn[x] is
the ring of polynomials over Zn. We denote by PPT algorithm a probabilistic polynomial-time algorithm. By
RSAGen(λ), we understand a PPT algorithm that generates two equal size primes p and q larger then 2λ.
1 We refer the reader to Section 2 for a definition of the concept.



2.1 Security Assumptions

Definition 1 (Pseudorandom Function - prf). A function F : {0, 1}n × {0, 1}λ → {0, 1}m is a prf if:

– Given a key K ∈ {0, 1}λ and an input X ∈ {0, 1}n there is an efficient algorithm to compute FK(X) =
F (X,K).

– For any algorithm A, the prf-advantage of A, defined as

PRFAdvA,F (λ) =
∣∣∣Pr[AFK(·) = 1|K $←− {0, 1}λ]− Pr[AF (·) = 1|F $←− F ]

∣∣∣
is negligible for any PPT algorithm A, where F = {F : {0, 1}n → {0, 1}m}.

Definition 2 (Quadratic Residuosity - qr). Let n = pq, where (p, q)← RSAGen(λ) and let A be a PPT
algorithm which returns 1 on input (x, n) if x is a quadratic residue modulo n. We define the advantage

QRAdvA,RSAGen(λ) =
∣∣∣Pr[A(x, n) = 1|x $←− QRn]− Pr[A(x, n) = 1|x $←− Jn \QRn]

∣∣∣
The Quadratic Residuosity assumption states that for any efficient PPT algorithm A the advantage

QRAdvA,RSAGen(λ) is negligible.

2.2 Identity-based encryption

An IBE scheme consists of four PPT algorithms: Setup, Extract, Encrypt, and Decrypt. The first one takes
as input a security parameter and outputs the system public parameters together with a master key. The
Extract algorithm takes as input an identity ID together with the public parameters and the master key
and outputs a private key associated to ID. The Encrypt algorithm, starting with a message m, an identity
ID, and the public parameters, encrypts m into some ciphertext c (the encryption key is ID or some binary
string derived from ID). The last algorithm decrypts c into m by using the private key associated to ID.

Definition 3 (Anonymity and Indistinguishability under Selective Identity and Chosen Plain-
text Attacks - anon-ind-id-cpa). The anon-ind-id-cpa security of an IBE scheme S is formulated by
means of the following game between a challenger C and an adversary A:

Setup(λ): The challenger C generates the public parameters PP and sends them to adversary A, while
keeping the master key msk to himself.

Queries: The adversary issues a finite number of adaptive queries. A query can be one of the following
types:
– Private key query. When A requests a query for an identity, the challenger runs the Extract algorithm
and returns the resulting private key to A.

– Encryption query. Adversary A can issue only one query of this type. He sends C two pairs (ID0,m0)
and (ID1,m1) consisting of two equal length plaintexts m0 and m1 and two identities ID0 and ID1.
The challenger flips a coin b ∈ {0, 1} and encrypts mb using IDb. The resulting ciphertext c is sent
to the adversary. The following restrictions are in place: private key queries for ID0 and ID1 must
never be issued.

Guess: In this phase, the adversary outputs a guess b′ ∈ {0, 1}. He wins the game, if b′ = b.

The advantage of an adversary A attacking an IBE scheme is defined as

IBEAdvA,S(λ) = |Pr[b = b′]− 1/2|

where the probability is computed over the random bits used by C and A. An IBE scheme is anon-ind-id-cpa
secure, if for any PPT adversary A the advantage IBEAdvA,S(λ) is negligible. If we consider ID0 = ID1 in
the above game, we obtain the concept of ind-id-cpa security.
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3 Boneh-Gentry-Hamburg’s BasicIBE Scheme

Let n be an RSA composite and r the private key of the recipient. Cocks’ IBE scheme [4] encrypts a bit
m ∈ {±1} by two integers c1 and c2 such that either the Jacobi symbol of (c1 + 2r) or the Jacobi symbol of
(c2 + 2r) modulo n is m. The scheme is ind-id-cpa secure in ROM under the qr assumption.

Despite its elegance, Cocks’ scheme produces large ciphertext: 2 logn bits are used to encrypt just one bit.
Moreover, it is not anonymous [1]. In 2007, Boneh, Gentry and Hamburg proposed two space efficient IBE
schemes related to Cocks’ scheme, whose security is also based on the qr problem [3]. Additionally, one of
the schemes is anonymous. Below we describe the BasicIBE scheme.

Setup(λ): Let n = pq, where (p, q) ← RSAGen(λ). Generate u ∈ Jn \ QRn, and choose a hash function
h : {0, 1}∗ × {1, . . . , `} → Jn, for some integer ` ≥ 1. Choose a deterministic algorithm Q, that takes as
input n and any R,S ∈ Z∗n and outputs two polynomials f, g ∈ Zn[x]. Output the public parameters
PP = (n, u, h, `,Q). The master key is msk = (p, q,K), where K is a random key for a pseudorandom
function FK : {0, 1}∗ × {1, . . . , `} → {0, 1, 2, 3}.

Extract(msk, ID, `): For each j ∈ {1, . . . , `}, let Rj = h(ID, j) and ij = FK(ID, j). If r0, r1, r2, r3 is a fixed
total ordering of the square roots of Rj or uRj (depending on which of them is a quadratic residue), then
the private key is r = (ri1 , . . . , ri`).

Encrypt(PP, ID,m): Let m = m1 . . .m` ∈ {±1}` be an `-bit sequence. Generate at random s ∈ Z∗n and set
S = s2 mod n. For each j ∈ {1, . . . , `}, let Rj = h(ID, j). Use algorithm Q to compute the polynomials
(fj , gj)← Q(n,Rj , S) and (f̄j , ḡj)← Q(n, uRj , S). Set cj ← mj ·

(
gj(s)
n

)
and c̄j ← mj ·

(
ḡj(s)
n

)
. Output

(c, c̄, S), where c = c1 · · · c` and c̄ = c̄1 · · · c̄`.
Decrypt(c, c̄, S, r, PP ): For each j ∈ {1, . . . , `}, let Rj = h(ID, j). If Rj = r2

j , then (f ′j , g′j) = Q(n,Rj , S),

else (f ′j , g′j) = Q(n, uRj , S). Compute mj = cj ·
(
f ′

j(rij
)

n

)
. Output the message m = m1 · · ·m`.

Before stating the security result from [3], we first need to introduce some properties that need to be
satisfied by Q.

Definition 4 (IBE Compatible). Let n be a positive integer and R,S ∈ Z∗n. Let Q be a deterministic
algorithm that takes as input n,R, S and outputs two polynomials f, g ∈ Zn[x]. Algorithm Q is IBE Compatible
if the following conditions are satisfied

1. If R,S ∈ QRn, then f(r)g(s) ∈ QRn, where r ∈ SQRTn(R) and s ∈ SQRTn(S).
2. If R ∈ QRn and S ∈ Jn \QRn, then

(
f(r)
n

)
is uniformly distributed in {±1}, where r $←− SQRTn(R).

Definition 4 is introduced in [3] in another form. If R ∈ QRn, the authors require that f(r)f(−r)S ∈ QRn
for all r ∈ SQRTn(R). In [3, Lemma 3.3] it is proven that if r $←− SQRTn(R) and S ∈ Jn \ QRn, then
f(r)f(−r)S ∈ QRn implies Definition 4, Condition 2.

In the security proof of BasicIBE, Boneh, Gentry and Hamburg [3] use that
(
f(r)
n

)
is uniformly

distributed in {±1} and not that f(r)f(−r)S ∈ QRn. Thus, Definition 4, Condition 2 captures the exact
security requirement for Q.

If Q is IBE compatible, then Definition 4, Condition 1 guarantees the soundness of decryption. As with
respect to security, the following result is proven in [3].

Theorem 1. If the qr assumption holds and Q is IBE compatible, then the BasicIBE scheme is ind-id-cpa
secure in ROM. Formally, for any efficient PPT adversary A there exist efficient PPT algorithms B1 and B2
such that

IBEAdvA,BasicIBE(λ) ≤ PRFAdvB1,F (λ) + 2QRAdvB2,RSAGen(λ).

3



A few words are in place about Theorem 1. The proof of this theorem as it is in [3], exploits the fact
that h outputs truly random elements from Jn and replaces h with H(ID, j) = uajv2

j , where aj
$←− {0, 1},

vj
$←− Z∗n. The initial ind-id-cpa game is successively changed into another game where the challenge

ciphertext is created by decrypting the message (that is, by encrypting it by f ’s instead of g’s). In order to
have Rj , uRj ∈ QRn and S ∈ Jn \QRn, the qr assumption is used two times, which gives rise to the factor
2QRAdvB2,RSAGen(λ). Moreover, to ensure that rj is a random square root of Rj or uRj , FK is replaced by
a truly random function, and this gives rise to the factor PRFAdvB1,F (λ).

Remark 1. We emphasize that the BasicIBE scheme is an abstract IBE scheme because no concrete algorithm
Q is presented. In [3], the method proposed to construct the polynomials f and g is based on the congruence
given by

Rx2 + Sy2 ≡ 1 mod n,

where n is an integer and R,S ∈ Z∗n.
Any solution (x0, y0) to the above equation gives rise to two polynomials

f(r) = x0r + 1 mod n g(s) = 2(y0s+ 1) mod n

that satisfy the conditions from Definition 4.

If we instantiate Q as in Remark 1, then the encryptor must find solutions to 2` congruences, while the
decryptor must find solutions to ` congruences. Boneh, Gentry, and Hamburg [3] have proposed the following
Combining Lemma in order to reduce the number of congruences to be solved by the encryptor.

Lemma 1. If (x1, y1) is a solution to the congruence R1x
2 +Sy2 ≡ 1 mod n and (x2, y2) is a solution to the

congruence R2x
2 +Sy2 ≡ 1 mod n, then (x1,2, y1,2) is a solution to the congruence R1R2x

2 +Sy2 ≡ 1 mod n,
where

x1,2 = x1x2

Sy1y2 + 1 mod n and y1,2 = y1 + y2

Sy1y2 + 1 mod n,

provided that (Sy1y2 + 1, n) = 1.

Using this result, the encryptor first finds solutions to ux2 + Sy2 ≡ 1 mod n and Rjx2 + Sy2 ≡ 1 mod n,
for all 1 ≤ j ≤ `, and then combines them to obtain solutions to uRjx2 + Sy2 ≡ 1 mod n, for all 1 ≤ j ≤ `.
Therefore, the encryptor needs to find solutions to `+ 1 congruences, instead of 2`. It is to be remarked that,
the proposed method does not affect the security of the scheme.

4 A New Security Analysis for BasicIBE

In [3], the authors only require Q to be IBE compatible, but the algorithm proposed by them satisfies one
more condition, that is captured in the following definition. It is easy to see that g satisfies the Condition 3,
since Rx2 + Sy2 = 1 is symmetric.

Definition 5 (Extended IBE Compatible). Let n be a positive integer and R,S ∈ Z∗n. Let Q be a
deterministic algorithm that takes as input n,R, S and outputs two polynomials f, g ∈ Zn[x]. Algorithm Q is
Extended IBE Compatible if it is IBE compatible and the following condition is satisfied

3. If R ∈ Jn \QRn and S ∈ QRn, then
(
g(s)
n

)
is uniformly distributed in {±1}, where s $←− SQRTn(S).

Using the extra property satisfied by Q2, we slightly modify the security proof of Theorem 1 and we
obtain a tighter upper bound.
2 captured in Definition 5
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Theorem 2. If the qr assumption holds and Q is extended IBE compatible, then the BasicIBE scheme is
ind-id-cpa secure in ROM. Formally, for any efficient PPT adversary A there exist efficient PPT algorithms
B1 and B2 such that

IBEAdvA,BasicIBE(λ) ≤ PRFAdvB1,F (λ) + QRAdvB2,RSAGen(λ).

Proof. Let A be an ind-id-cpa adversary for BasicIBE. We prove that his advantage is negligible. We
present the proof as a sequence of games. Let Wi be the event that A wins game i.

Game 0. The first game is identical to the ind-id-cpa game3. Thus, we have

|P [W0]− 1/2| = IBEAdvA,BasicIBE(λ) (1)

Game 1. In this game, FK is replaced by a truly random function f : {0, 1}∗ × {1, . . . , `} → {0, 1, 2, 3}.
Adversary A will not notice the difference, since FK is a pseudorandom function. Formally, there exists an
algorithm B1 such that

|Pr[W0]− Pr[W1]| = PRFAdvB1,F (λ). (2)

Game 2. We slightly modify how the challenger answers hash queries. Thus, for a query h(ID, j) it first
chooses aj

$←− {0, 1} and vj
$←− Z∗n. Then, it outputs h(ID, j) = uajv2

j . It is easy to see that the challenger
implements a random function.

Let Rj = h(ID, j) for some (ID, j). The challenger also has to answer private key extraction queries.
Thus, when an extraction query for ID is received, the challenger answers with R

1/2
j = vj if aj = 0 or

(uRj)1/2 = uvj if aj = 1, where 1 ≤ j ≤ `. Since aj and vj are random elements, the challenger outputs a
random square root of either Rj or uRj . Thus, Game 1 and Game 2 are identical from A’s point of view.
Note that in this case the challenger can answer private key queries without knowing the factorization of n.
Formally, we have

Pr[W1] = Pr[W2]. (3)

Game 3. By maintaining a list with all the hash queries, the challenger can decide if Rj ∈ QRn or
uRj ∈ QRn. We change the encryption algorithm as follows

– If Rj ∈ QRn, then cj ← mj ·
(
fj(rij

)
n

)
and c̄j

$←− {±1};

– Else cj
$←− {±1} and c̄j ← mj ·

(
f̄j(rij

)
n

)
.

We will show that the ciphertext has the same distribution as in Game 2. First, recall that S ∈ QRn.
If Rj ∈ QRn, then according to Definition 4, Condition 1 cj has the same value as in Game 2. Since

uRj ∈ Jn \QRn, Definition 5, Condition 3 assures us that
(
ḡj(s)
n

)
is uniformly distributed in {±1}. Thus c̄j

chosen in this game has the same distribution as in Game 2.
A similar discussion for the case Rj ∈ Jn \QRn shows that cj and c̄j have the same distribution as in

Game 2.
Since these are the only changes between Game 2 and Game 3, A will not notice the difference assuming

Q is extended IBE compatible. Formally, this means that

Pr[W2] = Pr[W3]. (4)

Game 4. In this game the challenger chooses S ∈ Jn \QRn. Since this is the only change between Game
3 and Game 4, A will not notice the difference assuming the qr assumption holds. Formally, this means that
there exists an algorithm B2 such that

|Pr[W3]− Pr[W4]| = QRAdvB2,RSAGen(λ). (5)
3 as in Definition 3
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Game 5. To make the challenge ciphertext independent of the challenge bit b, we slightly change Game 4.
Thus, the challenger chooses cj

$←− {±1}, for j ∈ {1, . . . , `}.
We will show that Game 4 and Game 5 are identical. To do that, we prove that the ciphertext distribution

remains the same as in Game 4.
Due to the change made in Game 4, we have that S ∈ Jn \ QRn. If Rj ∈ QRn, then according to

Definition 4, Condition 2
(
fj(rij

)
n

)
is uniformly distributed in {±1}. Thus, cj has the same distribution in

both games. The case uRj ∈ QRn is treated in a similar way.
Since these are the only changes between Game 3 and Game 4, A will not notice the difference assuming

Q is extended IBE compatible. Formally, this means that

Pr[W4] = Pr[W5]. (6)

In this game, c and c̄ are independent of the challenge bit. Thus, we have

Pr[W5] = 1/2. (7)

Finally, the statement is proven by combining the equalities (1)− (7). ut

Remark 2. By tweaking the proof of Theorem 2, we obtain the same upper bound for the anon-ind-id-cpa
security4 of the AnonIBE scheme. Note that the deterministic algorithm used by the AnonIBE scheme also
satisfies the extra property stated in Definition 5.

5 Conclusions

Boneh, Gentry, and Hamburg have proposed in [3] two IBE schemes related to Cocks’ IBE scheme, called
BasicIBE and AnonIBE. Compared to BasicIBE and Cocks’ IBE scheme, AnonIBE also provides
anonymity of identity. These two schemes are more space efficient than Cocks’ IBE scheme, but the concrete
instantiations are less time efficient.

In this paper we have revisited the BasicIBE abstract scheme, by slightly modifying the requirements for
the deterministic algorithm. These requirements are already fulfilled by the concrete instantiation proposed
in [3] (however, the authors of [3] did not use them). By using a different proof approach, we managed to
obtain a tighter security margin for BasicIBE.
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