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Abstract

Power (along with EM, cache and timing) leaks are of considerable concern for
developers who have to deal with cryptographic components as part of their over-
all software implementation, in particular in the context of embedded devices.
Whilst there exist some compiler tools to detect timing leaks, similar progress
towards pinpointing power and EM leaks has been hampered by limits on the
amount of information available about the physical components from which such
leaks originate.

We suggest a novel modelling technique capable of producing high-quality
instruction-level power (and/or EM) models without requiring a detailed hard-
ware description of a processor nor information about the used process technol-
ogy (access to both of which is typically restricted). We show that our method-
ology is effective at capturing differential data-dependent effects as neighbouring
instructions in a sequence vary. We also explore register effects, and verify our
models across several measurement boards to comment on board effects and
portability. We confirm its versatility by demonstrating the basic technique on
two processors (the ARM Cortex-M0 and M4), and use the M0 models to develop
ELMO, the first leakage simulator for the ARM Cortex M0.

1 Introduction

Early evaluation of the leakage properties of security-critical code is an essential
step in the design of secure technology. A developer in possession of a good
quality explanatory model for (e.g.) the power consumption or electromagnetic
radiation of a particular device can use this to predict the leakage traces arising
from a particular code sequence and so identify (and address) possible points of
weakness. Whilst the smart-card community is accustomed to support from side-
channel testing facilities (either in-house or via external evaluation labs), there
is a distinct lack of equivalent dedicated expertise in the fast-growing realm
of the Internet-of-Things (IoT). This new market is rife with small start-ups
whose limited budgets and rapid pace of advancement are incompatible with
the prices and typical workflow of independent evaluators. Thus there arises
a pressing need for user-friendly tools which easily integrate with established
software development practice—typically in C and/or assembly, depending on



the performance requirements of a given application—to assist in making that
practice more security-aware.

Whilst there are tools to identify timing leaks such as ctgrind [16], there
are no such easy tools for detecting power or EM leaks in programs. The reason
for this is easily explained: timing information for instructions is readily avail-
able, however, accurate models for the instantaneous power consumption or EM
emanations are not available.

The challenge of acquiring a good quality power model is in choosing what
to include far more than it is in choosing between particular statistical tech-
niques. The power consumption of a device bears a complex relationship with
its various components and processes, necessitating a trade-off between pre-
cisely capturing as many details as possible and keeping within reasonable com-
putational and sampling bounds. Transistor (respectively cell) netlists can be
used to derive accurate gate-level models [17, Ch. 3], but for the purposes of
development-stage side-channel testing in software, we require assembly level
models.

Earlier efforts focused on assembly instructions to ensure covering vulnera-
bilities which might be introduced at compilation time, but (over-) simplified
the modelling aspect by relying on Hamming weight and distance assumptions
[7,26]. A more recent, higher-level proposal based on C++ code representation
also uses simplified leakage assumptions, although the author does acknowledge
the potential for more sophisticated profiling [28]. Among the existing works
only Debande et al. [6] emphasise the importance of (and the complexities in-
volved in) deriving realistic leakage models empirically. They fit linear models
in function of the state bits and state transitions using the techniques of linear
regression.

However, such models are still considerably simplified relative to what is
known about the complex factors driving device power consumption. For in-
stance, much earlier efforts to model total energy consumption for the purposes
of optimising code for constrained devices [27] showed clearly that the power con-
sumed by a particular instruction varies according to the instructions previous
in the sequence.

Another important aspect of power model construction, as emphasised by
recent contributions in the template building literature [5,11,20], is portability
between different devices of the same design.

1.1 Our Contributions

We present a strategy for building refined assembly code instruction-level power
trace simulators and show that it is applicable to two processors relevant to the
IoT context: the ARM Cortex M0 and M4. We develop the tool fully for the M0
and verify its utility for side-channel early evaluation.

The first part of our contribution is a side-channel modelling procedure novel
for the thoroughness it attains by incorporating established linear regression
model-selection techniques. We combine a priori knowledge about the M0 and



the M4 with power (respectively EM) leakage samples obtained in carefully de-
signed experiments, and use ordinary least squares (OLS) estimation and joint
F-tests to decide between candidate explanatory variables in pursuit of models
which account well for the exploitable aspects of the side-channel leakage whilst
avoiding redundant complexity. The effects that we explore include instruction
operands, bit-flips between consecutive operands, data-dependent interactions
with previous and subsequent instructions in a sequence, register interactions,
and higher-order operand and transition interactions. We verify portability by
testing for board effects, which show no evidence of varying differentially with
the processed data. We also show (via clustering analysis) that a set of 21 key M0
instructions can be meaningfully reduced to just five similarly-leaking classes,
thereby greatly reducing the complexity of the modelling task. As well as enhanc-
ing the accuracy and nuance of our predicted traces relative to previous work,
our systematic method of selecting and testing potential explanatory variables
provides valuable insights into the leakage features of the ARM Cortex devices
examined, which are of independent interest.

The second part of our contribution is a procedure to extract the data flows of
arbitrary code sequences which can subsequently be mapped to trace predictions
via our carefully refined models. We do this for the M0 by adapting an open-
source instruction set simulator, chosen to enable us to eventually release a full
open-source version of our own tool. We then demonstrate the utility of the sim-
ulator for flagging up even unexpected leaks in cryptographic implementations,
by performing leakage detection tests against simulated and real measurements
associated with an imperfectly-protected code sequence.

The remainder of the paper proceeds as follows: in Section 2 we review the
previous work on leakage modelling, and provide a very brief overview of the key
features of the ARM Cortex architecture and the Thumb instruction set, along-
side some information about our tailored acquisition procedure. In Section 3 we
outline our methodology for leakage characterisation and for testing for signif-
icant contributory effects. In Section 4 we explore the data-dependent leakage
characteristics of each considered instruction taken individually, and empirically
confirm the natural clustering of like instructions. In Section 5 we build com-
plex models for the M0, allowing for the effects of neighbouring instructions and
higher-order interactions and testing for the possibility of board and register
effects. In Section 6 we explain how to use the models to simulate power traces,
analyse them, and draw conclusions about leaking instructions. Closing remarks
and open questions follow in Section 7.

2 Background

In this section we aim to provide enough context for our paper to be reasonably
self-contained for a reader not familiar with the tasks of leakage modelling and
model evaluation (Sect. 2.1), the ARM Cortex-M processor family (Sect. 2.2),
assembly code instructions (Sect. 2.3) and/or typical side-channel measurement
set-ups (Sect. 2.4).



2.1 Leakage Modelling Techniques

Modelling power consumption always involves a trade-off between precision and
economy (with respect to time, memory usage and input data required). The
most detailed (‘white box’) efforts take place at the analog or logic level and
aim to characterise the power consumed by every component in (part of) a
circuit. For the purposes of side-channel analysis, simpler, targeted (‘black box’)
models can be estimated from sampled traces for particular intermediate values.
Instruction-level models of the type we propose represent a (‘grey box’) middle
ground, combining some relatively detailed knowledge of the implementation
with empirical analysis of carefully sampled leakage traces. We briefly overview
these three research directions below, followed by a summary of some typical
approaches to the difficult task of model quality evaluation.

Model Building Utilising Processor/Implementation Specific Informa-
tion Netlists describing all the transistor connections in a circuit, along with
their parasitic capacitances, can be used to perform analog simulations of the
whole or a part of the circuit. This process involves solving numerous difference
equations and is highly resource intensive. A less costly (but also less precise)
logic-level alternative uses cell-level netlists, back-annotated with information
about signal delays and rise and fall times. These are used to simulate the tran-
sitions occurring in the circuit, which are subsequently mapped to a power trace
according to knowledge of the capacitive loads of the cell outputs. Alternatively,
the number of transitions occurring can be taken as a simplified approximation
of the power consumption, which implicitly amounts to the assumption that all
0→ 1 transitions contribute equally to 1→ 0 transitions (and similarly for 0→ 0
and 1 → 1 transitions). See Chapter 3 of [17] for more details. Note that even
these most exhaustive of strategies, which may be collectively classed as ‘white
box’ modelling due to their reliance on comprehensive implementation details,
fail to account for influences on the leakage outside the information provided
by the netlist (for instance crosstalk) and therefore represent simplifications of
varying imperfection.

Model Building for Intermediate Instructions For the purposes of side-
channel analysis and evaluation, it suffices to build models only for power con-
sumption which (potentially) bears a relationship to the processing of security-
sensitive data or operations. These strategies bypass the requirement for detailed
knowledge of the implementation and may be thought of as ‘black box’ mod-
elling. A typical approach has been to focus on (searchably small) target inter-
mediate values of interest (for example, the output of an S-box). By measuring
large numbers of leakage traces as the output of the target function varies in a
known way, it is possible to estimate the parameters of (for example) a multi-
variate Gaussian distribution associated with each possible value taken by the
intermediate. Traces acquired from an equivalent device with an unknown key
(and therefore unknown intermediates) can then be compared against these fit-
ted models (‘templates’) for the purposes of classification [3,5]. Linear regression



techniques can be used to reduce the complexity of the leakage characterisation
[23,29]; the assumption of normality can be avoided, for example by building
models using machine learning classification techniques [14].

Model Building for Processor Instructions In order to simulate leakage of
arbitrary code sequences on a given device we opt for (‘grey box’) instruction-
level characterisation. Previous instruction-level (and higher code-level) simula-
tions for the purposes of side-channel analysis have settled for Hamming weight
or Hamming distance assumptions [26,28] or have estimated simple models con-
strained to be close to such approximations [7,6]. However, much earlier work by
Tiwari et al. [27] explores more complex model configurations for the purposes of
simulating and minimising the total power cost of software to be run on resource-
constrained devices. The authors find that not only do instructions have different
costs, but that those costs are influenced by preceding instructions in a circuit.
Their models are thus comprised of instruction-specific average base costs ad-
ditively combined with instruction-pair-specific average circuit state overheads.
This methodology is not adequate for our purposes, as it essentially averages
over all possible data inputs—precisely the source of variation that most needs
to be captured and understood in a side-channel context. Hence, we combine
similar instruction and instruction-interaction terms with data-state, -transition
and -interaction terms, drawing on modern approaches to linear regression-based
profiling [4,29] to handle the considerable added complexity.

Evaluating Model Quality To build a model is to attempt to capture the
most important features of an underlying reality which is (at least in the cases
where such an exercise is useful and interesting) unknown. For this reason it is
generally not possible to definitively establish the quality of any model (i.e., the
extent to which it matches reality). However, there do exist methods, depending
on the various model-fitting strategies adopted, for indicating whether the output
result is suitable for its desired purpose. An approach popular in the side-channel
evaluation literature is to estimate the amount of information (in bits) in the
true leakage which is successfully captured by an evaluator’s model for that
leakage with a metric called the perceived information (PI) [21,8]. This retains
the usual shortfalling in that the question of how good the model is essentially
corresponds to the one of how close the PI is to the true (as always, unknown)
mutual information. However, in [8] the authors show how to combine cross-
correlation and distance sampling to increase confidence (or highlight problems)
in models used for evaluation.

Nevertheless, for our purposes, the established tools traditionally associated
with linear regression model building are better suited as they allow disentan-
gling the contributions of component parts of the model as well as commenting
on overall model quality. The coefficient of determination, or R2, is a popular
goodness-of-fit measure which can be thought of as the proportion of the total
variation in the sample which is explained by (i.e. can be predicted by) the model.
However, the R2 is notoriously difficult to interpret as it always increases with



the number of explanatory variables, hampering attempts to compare models of
different sizes. It can be adjusted by penalising for the number of variables, but
it is normally recommended to compute the F-statistic (see Sect. 3.1) to test for
the statistically significant improvement of one model over another. The F-test
can also be used to test overall model significance, which is useful in our case
where the exploitable (i.e. data dependent) variation may only represent a small
fraction of the total variation in the traces (which includes noise and unrelated
processes). That is, a low R2 need not imply that a model is unfit for purpose, as
long as it represents a statistically significant data-dependent component of the
leakage; conversely, a high R2 need not indicate a model as more fit for purpose
if the extra variation explained is irrelevant to the data-dependent side-channel
leakage or is a result of over-fit.

However, F-tests offer no reassurance that other important contributory fac-
tors have not been omitted from the model. In the context of modelling for
side-channel detection, it is established practice to verify the adequacy of the
trace simulations by demonstrating that they reliably reveal the same vulnera-
bilities as real trace measurements. Previously, this has largely been attempted
by performing DPA attacks [7,26]; for the purposes of rigour, we propose to also
utilise the leakage detection framework of [10] (see Sect. 6.3).

2.2 ARM Cortex-M Processor Family

The ARM Cortex-M processor family[19] was first introduced by ARM in 2004
to be used specifically within small microcontrollers, unlike the Cortex-A and
Cortex-R families which, although introduced at the same time, are aimed at
higher-end applications. Within the family there are six variants of processor:
the M0, M0+, M1, M3, M4 and M7, where the M0 provides the lowest cost,
size and power device, the M7 the highest performing device, and the M0+, M3
and M4 processors sit in-between. The M1 is much the same as the M0 however
it has been designed as a “soft core” to run inside a Field Programmable Gate
Array (FPGA). The M0 and M3 share the same architecture as the M0+ and
M4 respectively, though the M0+ and M4 have additional features on top of the
basic processor architecture to provide them with greater performance. The M7
processor is the most recent (2014) and high performing of the Cortex-M family.

Whilst the exact CPU architecture of the Cortex-M devices is not publicly
available, it can be assumed to resemble the basic architecture of ARM cores,
as detailed in [9]. Figure 1 shows a simplified version of the basic architectural
components: besides the arithmetic-logic unit (ALU), there exists a hardware
multiplier, and a (barrel) shifter. The register banks feed into the ALU via two
buses, one of which is also connected to some data in/out registers. There is a
third bus that connects the output of the ALU back into the register banks.

We select the Cortex-M0 and M4 processors (see Tab. 2 in the Appendix for
comparison) to evaluate using our clustering profiling methodology and go on to
further analyse and produce a leakage emulator for the Cortex-M0. The reason
for the selection of these two processors is that they represent either ends of the



spectrum for the older, more widely used, of the Cortex-M family, allowing us
to demonstrate that our methodology can be applied to a range of processors.

Fig. 1. Simplified ARM CPU architecture (redrawn from [9]) for a 3-stage pipeline
architecture.

2.3 Instructions

In this work we focus on profiling a select number (21) of Thumb instructions
that are highly relevant for implementing symmetric cryptography, which run
on both the Cortex-M0 and M4 processors: ldr, ldrb, ldrh, str, strb, strh,
lsls, lsrs, rors, muls, eors, ands, adds, adds #imm, subs, subs #imm,
orrs, cmp, cmp #imm, movs and movs #imm. Note that adds #imm and subs

#imm use 3-bit immediate values rather than 8-bit values. All non-memory
instructions use the s suffix and so update the conditional flags and, in the
case of the Cortex-M0, can only use low registers. The implementation of the
muls instruction takes a single cycle to execute on both processors. We made
this selection to include core instructions with particular use within (symmetric
key) cryptographic algorithms, which tend to perform operations on the set of
unsigned integers. We also focus on the instructions which contain the s suffix to
comply with restrictions required for many of the Cortex-M0 instructions and,
where there is the option to use the non-suffixed instruction with higher registers
(as with the adds, subs and movs instructions), we chose the suffixed version to
maintain consistency with the other instructions.



Understanding and interpreting the input format of the instructions is neces-
sary in order to correctly model them and the interactions between them. From
Fig. 1 we would expect three buses to be used for the ALU instructions, as well
as for shift and multiply instructions where the barrel shifter and hardware mul-
tiplier are present: the A bus for operand 1, the B bus for operand 2 and the
output of the operation on the ALU bus. In our analysis we do not consider the
effects of ALU outputs, as we assume the output of an instruction to be used as
an input to a following instruction; we focus on the two operands of the oper-
ation which we would expect to leak via the A and B buses. We therefore take
these to correspond to operands 1 and 2 respectively. For memory instructions
we expect the data being loaded or stored to leak on bus B, as well as the data
bus. To include this leakage and any interactions it may have with the previous
data value that was on this bus, we set the data to be loaded or stored as the
value of operand 2 for all memory instructions. How we model these operands
based on the register selection of the instructions is described below.

For the majority of non-memory instructions (i.e. those other than ldr, ldrb,
ldrh, str, strb, strh), three different registers may be selected for use in the
format “inst rd, rn, rm/#imm”, where rd is the destination register for the
output, rn the register holding the first operand and rm the register containing
the second operand. However, mov and cmp instructions each have only two
registers: rd, rn and rn, rm respectively.

To simplify our configuration for modelling instructions, and to ensure enough
registers for the analysis of three instructions (where each register must be fixed
beforehand), rd was the same as rn for all of these, limiting the number of regis-
ters required for each instruction to 2. This method also allowed us to more easily
assess switching effects in the destination register. We therefore took operand 1
to be rd/rn and operand 2 to be rm.

Memory instructions have a slightly different configuration as the second
operand needs to be a valid memory address. They typically have the form “inst
rt, [rn, rm/#imm]” where rt is the register to which the data is to be stored or
from which it is to be loaded (according to the functionality of the instruction),
rn is the memory address and rm/#imm is the offset to this memory address
which can either be in a register rm or input as an immediate value (#imm).
The ldr instruction analysed was of this form rather than the alternative form
which loads the memory address of a label. For our analysis we did not consider
the leakage of memory addresses and so the value of the offset was simply set to
0 for all memory instructions with the memory address of rn fixed beforehand.
We therefore have one main operand for memory instructions which is the data
in rt for store instructions and the value in the memory address of rn (data[rn])
for load instructions which we set to operand 2 in both instances. For store
instructions, we set the data in memory which is to be overwritten (data[rn])
and for load instructions the register into which the data is to be loaded (rt) to
be random data which we model as operand 1 in both cases. This is to include
any potential leaks that could come from either of these sources, however we
would do expect this to include bit interactions with operand 1 of the previous



instructions as we do not expect either of these data values to be transmitted
on bus A in Fig. 1.

2.4 Measurement Setups

We work with implementations of the two processors by ST Microelectronics
on STM Discovery Boards, with the ARM Cortex-M0 being implemented on an
STM32F0 (30R8T6) Discovery Board and the ARM Cotex-M4 on the STM32F4
(07VGT6). These boards both feature an ST-Link to flash programs to the
processor and provide on-chip debugging capabilities as well as on-board RC
oscillator clock signals (8Mhz and 16Mhz for the STM32F0 and STM32F4 re-
spectively). Further details about the devices can be found in datasheets [24]
and [25].

In order to get accurate power measurements for the Cortex-M0, we modified
the STM32F0 board by extracting the power pins of the processor, and passing
the power supply through a 360Ω resistor over which a differential probe was
connected. This was to minimise the potential for board and setup effects. We
also verified the stability of our power supply. To measure the EM emissions on
the Cortex-M4 processor we placed a small EM probe over the output of one of
the capacitors leading to one of the power supply pins of the processor.

We used a Lecroy Waverunner 700 Zi scope at a sampling rate of 500 MS/S for
both the power and EM analyses. The sampling rate was selected by observing
DPA outcomes on the Cortex-M0 across different sampling rates: 500 MS/S was
the lowest sampling rate at which the best DPA outcomes were achieved. The
clock speed of the Cortex-M0 was set to 8Mhz and the Cortex-M4 set to 16 Mhz.
To lower the independent noise, we averaged over five acquisitions per input for
the power measurements for the M0 (as this was found to be the lowest number
that brought the most signal gain) and 10 for the EM measurements for the M4
(to further reduce the additional noise associated with this method of taking
traces). No filtering or further signal processing took place for the Cortex-M0
power measurements, however a 48Mhz low-pass filter was used before amplifying
the EM signal for the Cortex-M4.

We note that our measurement of EM uses only one probe over one of multiple
power inputs to the processor (for the M0 we reduced the number of power
inputs to a single one over which to measure) and that, whilst we have applied
some pre-processing to the (noisier) EM measurements, we could have attempted
more thorough techniques to enhance the signal. We view, therefore, our two
measurement setups for the different boards to represent different ends of the
spectrum in terms of the time and effort invested to get improved measurements.
In this way we aim to gain an understanding of how our profiling methodology
adapts to different setup scenarios as well as for different processors.



3 A Novel Methodology to Characterise a Modern
Microprocessor

In principle all components (i.e. on the lowest level of gates and interconnects)
contribute to the side channel leakage in the form of power or EM and so could
be modelled as predictor variables. The skill and challenge in model building
is then to select and test (and possibly discard) potential predictors in a sys-
tematic manner, manoeuvring the trade-off between infeasible complexity and
oversimplification. We opt for a ‘grey box’ approach which does not require de-
tailed hardware descriptions but does assume access to assembly code in order to
construct models at the instruction level. We concentrate on predictor variables
that can be derived from assembly sequences (i.e. input data, register locations),
but we also want to potentially account for board-specific effects.

Linear regression model-fitting techniques have been used by the research
community for some years already to profile side-channel leakage [23]. We refine
the adopted procedures according to well-established statistical hypothesis test-
ing strategies, in order to better understand the true functional form of the leak-
age and to make informed judgements about candidate explanatory variables.
Specifically, we perform F-tests for the joint significance of groups of related
variables, and include or exclude them accordingly, thus producing meaningful
explanatory models which are not unnecessarily complex.

3.1 Model Building

We fit models of the following form (written in matrix notation) to the measured
leakage of different instructions via OLS estimation (see, e.g., Chapter 3 of [12]):

y = δ + [ O1 |O2 |T1 |T2 ] β + ε (1)

where Oi = [ xi[0] |xi[1] | . . . |xi[31] ] is the matrix of operand bits across bus
i = 1, 2, Ti = [ xi[0]⊕ zi[0]| . . . |xi[31]⊕ zi[31] ] is the matrix of bit transitions
across bus i = 1, 2 (i.e., [b] denotes the bth-bit, xi denotes the ith operand to a
given instruction, zi denotes the ith operand to the previous instruction, and ‘|’
denotes matrix concatenation). The scalar intercept δ and the vector of coeffi-
cients β are the model parameters to be estimated, and ε is the vector of error
terms (noise), assumed for inference to have constant, uncorrelated variance
across all observations.1 If the noise can additionally be assumed to be nor-
mally distributed then the validity of the hypothesis tests holds without need of
recourse to asymptotic properties of the test statistics.

3.2 Selecting Explanatory Variables

The innovations we propose over previous uses of linear regression for modelling
side-channel leakage are with respect to informed model selection. The task

1 By mean-centering each trace prior to analysis we remove drift, which could other-
wise introduce auto-correlation.



of selecting a meaningful subset from a large number of candidate explanatory
variables is well-recognised as non-trivial. Techniques such as stepwise regression
[15] fully automate the procedure by iteratively adding and removing individual
terms according to their contribution to the current configuration of the model.
This approach is sensitive to the order in which terms are introduced and prone
to over-fitting, and has attracted criticism for greatly understating the uncer-
tainty of the finalised models as typically reported. Stepwise regression has been
used to achieve so-called ‘generic-emulating’ DPA [30]; it is effective in this con-
text because attack success does not derive from the actual construction of the
produced models but requires only that the proportion of variance accounted for
is greater under the correct key hypothesis than under the alternatives. However,
we require our models to be meaningful, not just (artificially) close-fitting. Thus
we adopt a more conservative and traditional approach towards model building
by which informed intuition about likely (jointly) contributing factors precedes
formal statistical testing for inclusion or exclusion.

The criterion for model inclusion is based on the F-test. Consider two models,
A and B, such that A is ‘nested’ within B—that is, it has pA < pB parameters as-
sociated with a subset of model B’s fitted terms (e.g. y = δ′+[ O2 |T1 |T2 ] β′+
ε′ versus (1) above). We are interested in the joint significance of the terms omit-
ted from A (in our example case, the bits of the first operand). The test statistic
is computed via the residual sums of squares (RSS) of each model, along with
their respective numbers of parameters pA, pB and the sample size n as follows:

F =

(
RSSA−RSSB

pB−pA

)
(

RSSB

n−pB

) (2)

Under the null hypothesis that the terms have no effect, F has an F-distribution
with (pB − pA, n− pB) degrees of freedom. If then, for a given significance level
(usually α = 5%, as we opt for throughout)2, F is larger than the ‘critical value’
of the FpB−pA,n−pB

distribution3 we reject the null hypothesis and conclude that
the tested terms do have an effect. If F is smaller than the critical value, we say
that there is no evidence to reject the null hypothesis.

In the same way, we can add other terms to model (1) and test appropriate
subsets in order to rigorously explore which factors influence the form of the
leakage and should therefore be taken into account in the final model. We are
especially concerned with sources of variation that have a differential impact
on the data-dependent contributions, as these will determine how well we are
able to proportionally approximate the exploitable part of the leakage (whereas
‘level’ (average) effects will simply shift the model by an additive constant).
In particular, we test (in Sect. 5) for register, board and adjacent instruction

2 The significance level should be understood as the probability of rejecting the null
hypothesis when it is in fact true.

3 The number large enough to imply inconsistency with the distributional assumption
fixing the probability of error at α.



effects on the operand and bit-flip contributions by computing F-statistics for
the associated sets of interaction terms.

4 Identifying Basic Leakage Characteristics

We first investigate the instruction-dependent form of the leakage in a simple
setting, where differential effects from other factors do not yet play a role. For this
purpose, we perform the same fixed sequence mov-instr-mov 5,000 times for each
selected instruction, as the two 32-bit operands vary. We measure the power
consumption (or EM, in the case of the M4) associated with each sequence,
and identify as a suitable point the maximum peak4 in the clock cycle during
which the instruction leaks. We fit the model (1) to the (drift-adjusted) vector
of measurements at this point.

Table 3 in the Appendix confirms the overall significance of the model for
each M0 instruction. This supports our point selection and the intuition that the
leakage depends in part on the data being operated on. However, some differences
can be observed in the contributing factors:

– The load instructions depend only on the bits of the operands (operand 2 or
both for ldrh) and not the bit flips.

– The store instructions depend only on the bits and the bit transitions of the
second operands.

– The operations on immediate values essentially have no second operand on
which to depend.

– For all the other instructions all tested sets of explanatory variables are
judged significant at the 5% level, which the exception of the second operand
bit transitions for the mul.5

4.1 Further observations and indicators for model quality

Although we caution in the back ground section that over-interpreting the ‘raw’
value of resulting R-squareds is not advisable, their relative values can provide
some evidence about the relative quality between (same-type) models obtained
via e.g. different setups and devices.

Hence we now discuss same-type models for the M4, which we obtained
using traces from a deliberately weaker measurement setup. Table 4, also in the
Appendix, shows the model results for the M4. The model for the mov instruction
is not found to be significant, implying that there is insufficient evidence to
conclude that the EM radiation of mov depends on its data operands and bus
transitions. The models for other instructions are overall significant, but fewer
of the data-dependent terms are identified as contributing.

4 This choice is specific to our measurements and is by no means the only option.
5 ‘Significant at the 5% level’ is a shorthand way of saying that the null hypothesis of

‘no effect’ is rejected by the F-test when the probability of a false rejection (Type I
error) is fixed at 5%.



– Both operands to the ALU instructions contribute, except in the case of
those involving immediate values (which, again, essentially have no second
operand).

– Only the second operand to the load and store instructions contributes sig-
nificantly.

– Bus transitions contribute to the instructions on immediate values, and also
to cmp.

Whilst we again advise against over-interpreting the R-squareds (see Section 2.1),
a comparison between the first rows of 3 and 4 indicates that, in the case of the
ALU and shift instructions, model (1) accounts for substantially less of the vari-
ation in the M4 EM traces than it does of the variation in the M0 power traces.
Although this could be taken as evidence that the instructions in question leak
more in the case of the M0 and less in the case of the M4, it is more likely that
the M4 model is weaker because of the weaker setup as discussed in Sect. 2.4).
We take this as further evidence that statistical measures that we suggest as
part of our methodology are suitable to judge model quality.

4.2 Clustering Analysis to Identify Like Instructions

We eventually want to allow for possible differences in the leakage behaviours of
instructions depending on adjacent activity in sequences of code (as per [27]).
This will be much easier to achieve if we can reduce the number of distinct
instructions requiring consideration. For instance, we might expect instructions
invoking the same processor components (as visualised in Fig. 1) to leak simi-
larly: ALU instructions as one group (i.e. adds, adds #imm, ands, eors, movs,
movs #imm, orrs, subs, subs #imm, cmp, cmp #imm), shifts as another, al-
beit closely-related group (lsls, lsrs, rors), loads (ldr, ldrb, ldrh) and stores
(str, strb, strh) that interact with the data in/out registers as two more groups,
and the multiply instruction (muls) as a group on its own with a distinct profile
due to its single cycle implementation.

We compare this intuitive grouping with that which is empirically suggested
by the data by performing clustering analysis (see, e.g., Chapter 14 of [12]) on
the per-instruction data term coefficients β obtained by fitting model (1) for
both the M0 and the M4. We use the average Euclidean distance between in-
struction models to form a hierarchy of clusters (represented by the dendrograms
in Fig. 6). Adjusting the inconsistency threshold6 between 0.7 and 1.2 produces
the groupings reported in Tables 5 and 6. In the case of the M0, these align nicely
with our intuitive grouping: at threshold 0.9 the match is exact; at a threshold
of 1.1 the shifts join the ALU instructions; at a threshold of 1.2 the instructions
form a single cluster. In the case of the M4, the intuition is confirmed to a degree:
at threshold 0.8, the ALU instructions are spread out over four groups, and the

6 The inconsistency coefficient is defined as the height of the individual link minus the
mean height of all links at the same hierarchical level, all divided by the standard
deviation of all the heights on that level (see Matlab’s cluster command: http:
//uk.mathworks.com/help/stats/cluster.html).



store operations over two; but the shift operations cluster together, as do the
loads, and the mul is again identified as distinct. There is no overlap between
the nine groups until they form a single cluster at threshold 1.0.

A ‘good’ cluster arrangement will achieve high similarity within groups and
high dissimilarity between groups. The silhouette value is a useful measure to
gauge this, defined for the ith object as Si = bi−ai

max(ai,bi)
, where ai is the average

distance from the ith object to the other objects in the same cluster, and bi is the
minimum (over all clusters) average distance from the ith object to the objects
in a different cluster [22]. Fig. 2 plots the M0 cluster silhouettes for a selection of
the arrangements in Tab. 5. The consistency threshold of 0.9 is associated with
the highest median silhouette value (0.56), supporting our a priori intuition.
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Fig. 2. Silhouette plots for each M0 cluster arrangement (numbers in parentheses re-
port median silhouette indices).

4.3 Functional Form of the Leakage

We next look more closely at the form of the estimated leakage models. Fig. 3
plots the mean data-dependent coefficients associated with the different terms in
the model equations, for each of the five M0 groups suggested by the clustering
analysis with a threshold of 0.9.

The differences between the groups are immediately clear. We make the fol-
lowing observations for the M0:

– ALU instructions (adds, ands, cmps, eors, movs, orrs and subs, and their
immediate value equivalents where relevant) leak primarily in the transition
between the first operands given to the current and previous instruction.
However, not all the bits of this transition contribute; most of the explained
leakage is in three bits of the third operand byte and one in the fourth.

– Shifts (lsls, lsrs, rors) appear to leak in the first operand (which contains
the data being shifted) and the transition between that and the first operand
for the preceding instruction. The coefficients are largest for the third and
(to a lesser extent) the fourth bytes. The transition leakage applies only to
a few bits, while the operand leakage is more spread out between the bits.
There is some evidence of leakage from the first three bits of the second
operand.
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Fig. 3. Average estimated coefficients on the model terms for each ‘found’ M0 instruc-
tion cluster

– Stores (str, strb, strh) leak primarily in the first byte of the second
operand.

– Loads (ldr, ldrb, ldrh) leak across most bits of the second operand. This
shape is closest to the typically-made Hamming weight assumption.

– Multiply (muls) leaks mostly in the first two bytes of the first and second
operand. The coefficients on the first operand are large for just six of the
bits while the second operand coefficients are medium-sized across all bits of
the first two bytes.

In summary, our exploratory analysis of the data-dependent form of the in-
struction leakages confirms many of our a priori intuitions about the architecture
and supports our model building approach as sensible and meaningful. It also
indicates that we can lessen the burden of the task by reducing the number of
distinct instructions to be modelled to a meaningfully representative subset of
the initial 21. Reducing unnecessary complexity in the instruction set increases
the scope for adding meaningfully explanatory complexity to the models them-
selves, which we proceed to do in the next section for the power consumption of
the M0.

5 Building Complex Models for the M0

From this point forward we concentrate on the M0 and seek to build more
complex, sequence-dependent models for five instructions chosen to represent
the groups identified by the clustering analysis of Sect. 4.2: eors, lsls, str,
ldr and muls. The model coefficients for each of these are shown in Fig. 7 (see
Appendix). As we would hope, they can be observed (by comparing with Fig. 3)
to match well the mean coefficients for the groups that they represent, with the



possible exception of str, which has smaller coefficients on the first byte than
the average within its group.

We are confident that these five are adequate for understanding the leakage
behaviour of all 21. Restricting the analysis in this way enables exhaustive explo-
ration of the effects of preceding and subsequent operations when instructions
are performed in sequence.7

5.1 Exploring Board Effects

To understand if we need to account for variation between boards we replicate the
M0 acquisition described at the start of Section 4 for a further 7 boards. We find
the leaking point for each acquisition and pool the data. We then fit model (1)
with the addition of a dummy for (level) board effects and we compare this
against a model with the further addition of board/data interaction dummies,
in order to test the joint significance of the latter.

We find a remarkable degree of consistency in the data-dependent leakage
of the different boards. F-tests for the joint interaction between board and data
effects do not reject the null hypothesis of ‘no effect’ for any of the instructions
This also implies that our setup has minimised (or even removed) any measurable
impact on the processor’s power consumption.

5.2 Exploring Register Effects

The ARM Cortex-M0 architecture distinguishes between low (r0–r7) and high
(r8–r15) registers. The latter, which can only be accessed by the mov instruc-
tion, are used for fast temporary storage. These were observed by inspection to
have different leakage characteristics to the low registers. However, due to their
singular usage we consider them outside of the scope of this particular analysis
and focus only on the low registers. For the purposes of future extensions to our
methodology, we propose modelling high register movs as an additional distinct
instruction.

We test for variation between the eight low registers by collecting 5,000 traces
for each source register (rn) and destination register (rd) (evenly distributed over
the possible source/destination pairs) as movs are performed on random inputs.
We then fit model (1) with the addition of dummy variables for source register
and for destination register, and compare this against a model with the further
addition of register/data interaction dummies, in order to test the significance
of the latter.

We find that the registers do have a jointly significant effect on the leakage
data-dependency (see LHS of Tab. 7 in Appendix A). Considered separately,
only the source register effect remains significant; at the 5% level we do not
reject the null hypothesis that the destination register has no effect. Moreover,
the effect can be isolated (by testing one ‘source register interaction’ at a time

7 Such an approach implicitly makes the further assumption that instructions within
each identified cluster are affected similarly by the sequence of which they are a part.



relative to the model with no source register interactions) to just half the source
registers (r0, r1, r4 and r7).

This analysis suggests that the inclusion of (some) source register effects
would increase the ability of the model to accurately approximate the data-
dependent leakage. However, such an extension would add considerable com-
plexity; it is important to examine the practical significance of the effects as well
as the statistical significance which, in large sample sizes (such as we deal with
here), will eventually be detected even for very small differences. The figure on
the right of Tab. 7 (Appendix A) shows the estimated coefficients on the data
terms as the source register varies. The ‘significant’ effect is at least small enough
that it cannot be easily visualised—a legitimate criteria for assessing practical
significance according to [2], although we have not carried out the formal visual
inspection there proposed. We judge it acceptable, for now, to exclude it from
the model in order to incorporate more important factors such as the effect of
previous and subsequent instructions, which we consider in Sect. 5.3.

5.3 Allowing For Sequence Dependency

In this section we work towards extending our instruction level models to control
(and test) for the possible effects of the previous and subsequent instructions in
a given sequence.

To achieve this we acquired 1,000 traces for each of the possible 125 com-
binations of three out of the five instructions, with random data inputs. We
alternated the sequences within a single acquisition to minimise the possibility
of conflating instruction sequence effects with drift or acquisition effects, and
mean-centered them to adjust for any overall drift. We compressed the traces to
a single point (the maximum power peak) in each clock cycle, and selected the
clock cycle most strongly associated with the data inputs to the target (middle)
instruction. For the ldr instruction (which is two cycles long) the relevant point
was one cycle ahead of that of the muls, lsls and eors; for str, the relevant
point was three clock cycles ahead, implying that the data leaked during the
subsequent instruction.

Using these relevant points, we then built models for each target instruc-
tion in function of its operands, as in model (1), with the addition of dummy
variables for previous and subsequent instructions. We further allow for the data-
dependent component to vary via four sets of interaction terms: the product of
the instruction dummies with the Hamming weights of each operand and also
with the corresponding Hamming distances (the sum of bit-flips). This enables a
degree of flexibility in estimating the form of the data dependency whilst avoid-
ing the introduction of an infeasible number of instruction/data bit interaction
terms into the model equation.

For ease of presentation consider the following groups of variables which
together comprise the full set of explanatory variables:

– Ip: The previous instruction in the sequence, fitted as a dummy variable
(with eors as baseline to preserve linear independence).



– Is: The subsequent instruction in the sequence, fitted similarly to Ip.
– D = [ O1 |O2 |T1 |T2 ]: All 128 operand bit and transition dummies.
– DxIp = [ O1xIp |O2xIp |T1xIp |T2xIp ]: The Hamming weights of the two

32-bit operands and their Hamming distances from the previous two inputs,
interacted with the ‘previous instruction’ dummies (i.e. the products of the
four summarised data terms with each of the four instruction dummies).

– DxIs = [ O1xIs |O2xIs |T1xIs |T2xIs ]: The Hamming weights of the two
32-bit operands and their Hamming distances from the previous two inputs,
interacted with the ‘subsequent instruction’ dummies, as above.

The extended model, in our matrix notation, is therefore:

y = δ + [ Ip | Is |D |DxIp |DxIs ] β + ε (3)

For the purposes of building comprehensive instruction-level models we are
especially interested in confirming (or otherwise) the presence of sequence-varying
data-dependency, which we again achieve by performing F-tests for the contri-
bution of the interaction terms. Table 8, in the Appendix, shows that the full
set of interaction terms are jointly significant (at the 5% level) in all cases, as
are the previous and subsequent instruction interactions considered separately.
We also divide the interaction terms into four groups according to the operand
or transition with which they are each associated, in order to test whether the
varying data-dependency arises from all or just a subset (in which case we could
reduce the complexity of the model). Only for the str model do we fail to find
evidence of significant effects for all four, suggesting (in that case) the possibility
of removing operand 1 and transition 2 terms without cost to the model.

We thus conclude that the form of the data-dependent leakage depends sig-
nificantly on the previous and subsequent instructions within a sequence, and
recommend that they be taken into account (as we have done here) when seeking
to build comprehensive instruction-level models.

5.4 Exploring Higher-Order Effects

An obvious limitation of model (3) is that it restricts the relationship between
the bits/transitions and the leakage to be linear. In practice, it is reasonable to
suppose (for example) that bits carried on adjacent wires may produce some sort
of interaction. Previous analyses fitting linear regression models to target values
[13,29] have allowed for these and for other higher-order interactions, increasing
the possibility of accounting for even more exploitable variation in the leakage.
However, they have failed to investigate if such effects are in fact present.

We therefore test for the inclusion of adjacent and non-adjacent bit inter-
actions in model (3). Table 9, in the Appendix, shows that we find significant
effects precisely (and only) where we would expect to: in the leakages of lsls
and muls, instructions which explicitly involve the joint manipulation of bits
within the operands. We also test for adjacent bit flip interactions, which are
not found to contribute significantly towards any of the instruction leakages. For



the purposes of simulation, we therefore elect to use model (3) in the case of
eors, str and ldr, and model (3) with the addition of input bit interactions in
the case of lsls and muls.

6 Using and Evaluating our Grey Box Models in a
Practical Context

Up until know we have considered short instruction sequences. We have shown
that our novel approach produces models which, when evaluated in the context of
an instruction triplet, include statistically relevant and architecturally justified
terms. Furthermore, our methodology clearly indicates model quality: the models
derived from a dedicated setup for monitoring the power consumption showed
much better statistics then the models derived from the much less sophisticated
EM setup.

However, to make the final argument that our approach results in models
that are useful in the context of arbitrary instruction sequences, we need to
consider code that is longer and more varied then the triplets that we used
for model building. We also need to define a measure that allows us to judge
how good the ‘match’ between model-simulated and real power traces is. We
could consider randomly generating arbitrary code sequences (of some prede-
fined length), and defining some distance measure. However, because we have a
very clear application for these models in mind, we opt for a more decisive and
targeted evaluation strategy. The ultimate test, arguably, is to utilise our models
for the M0 to evaluate the security different implementation of a cryptographic
algorithm (e.g. AES). To conduct such a test, we build an Emulator for power
Leakages for the M0 (short: ELMO, elaborated on in the next section). In this
context we expect that leakage simulations based our newly constructed models
enable to detect leaks that relate to the modelled instructions, but also (maybe
more simply) that our models correlate well to measured traces.

6.1 ELMO

As follows from Sect. 3, our instruction-level models work with code that has
been compiled down to assembly level, easily obtained via the ARM toolchain.
Computing model predictions requires knowledge of the inputs to instructions,
which entails emulating a given piece of code in order to extract the data flow.
There are a number of instruction-level emulators available for the ARM, Thumb
and Thumb2 instruction sets due to the popularity of these processors.

We choose an open source (programmed in C) emulator called Thumbulator8.
We choose this over more well-known emulators9 for its simplicity and ease
of adaptivity for our purposes. One disadvantage of this choice is that it is

8 Source code at: https://github.com/dwelch67/thumbulator.git/
9 E.g. QEMU http://wiki.qemu.org/, Armulator https://sourceforge.net/

projects/armulator/



inevitably less well-tested than its more popular rivals; it also omits the handful
of Thumb-2 instructions which are available in the ARMv6-M instruction set,
although we did not profile any of these. Of course, any of the other emulators
could be equally incorporated within our methodology.

The Thumbulator takes as input a binary program in Thumb assembly, and
decodes and executes each instruction sequentially, using a number of inbuilt
functions to handle loads and stores to memory and reads and writes to registers.
It provides the capability to trace the instruction and memory flow of a program
for the purpose of debugging. Our data flow adaptation is built around a linked
list data structure: in addition to the instruction type, the values of the two
operands and the associated bit-flips from the preceding operands are stored in
32-element binary arrays.

The operand values, and associated bit-flips from the preceding operations,
are then used as input to the model equations (as derived in Sect. 5; see Eqn. (1)),
one for each profiled instruction group. Summarising, simulating the power con-
sumption requires deriving, from the data flow information, the variables corre-
sponding to the terms in the equations: the previous and subsequent instructions,
the bits and the bit-flips of each operand, the Hamming weight and Hamming
distances, and the adjacent bit interactions where relevant (i.e. for lsls and
muls). The variables are then weighted by the appropriate coefficient vector and
summed to give a leakage value, which is written to a trace file and saved.

6.2 Evaluating Model Correlation to Real Leakages

A simple way to check how well a model corresponds to real leakage behaviour
is to compute the (Pearson) correlation between the model predictions for a par-
ticular instruction (operating on a set of known inputs) and the measured traces
corresponding to a code sequence containing that same instruction (operating
on the same inputs). This procedure can be used to demonstrate the improve-
ment of our derived models over weaker, assumed models, such as the Hamming
weight.

Figure 4 juxtaposes the correlation traces produced by the Hamming weight
prediction of the leakage associated with the first round output as the M0 per-
forms AES (top), and by the ELMO prediction corresponding to the same inter-
mediate being loaded into the register (middle). It can be clearly seen that the
ELMO model generates larger peaks, and more of them. The bottom of Figure 4
shows, for comparison, the peaks which are exhibited when the model predictions
are correlated with an equivalent set of ELMO-emulated traces. These indicate
the same leakage points as displayed in the measured traces, with the advantage
of enhanced definition thanks to the lack of (data-independent) noise in the sim-
ulations. It thus emerges that Hamming weight-based simulations do not give
a full picture of the true leakage of an implementation on an M0, and should
not be relied upon for pre-empting data sensitivities. The same picture emerges
for the other instructions but we do not include an exhaustive analysis for the
sake of brevity. In conclusion, our models represent a marked improvement over
simply using the Hamming weight.



100 200 300 400 500 600

0

0.5

1

M
E

A
SU

R
E

D

co
rr

el
at

io
n

HW Model

100 200 300 400 500 600

0

0.5

1

M
E

A
SU

R
E

D

co
rr

el
at

io
n

ELMO Generated Model

100 200 300 400 500 600
0

0.5

1

Clock cycle

SI
M

U
L

A
T

E
D

co
rr

el
at

io
n

ELMO Generated Model

Fig. 4. Correlation traces for ELMO-predicted intermediate values (top) and Hamming
weight model predictions (middle) in 500 real M0 traces; correlation trace for ELMO-
predicted intermediate values in the equivalent set of ELMO-emulated traces (bottom).



6.3 Evaluating Models via Leakage Detection

Further to the capability of our models to improve correlation analysis, we now
show that they can also be applied to the task of (automated) leakage detection
on assembly implementations. They can thereby be used to spot ‘subtle’ leaks
– that is, leaks that would be difficult for non-specialist software engineers to
understand and pinpoint.

To aid readability we briefly overview the leakage detection procedures pro-
posed by Goodwill et al. [10]. These are based on classical statistical hypothesis
tests, and can be categorised as specific or non-specific. Specific tests divide
the traces into two subsets based on some known intermediate value such as
an output bit of an S-box or the equality (or otherwise) of a round output
byte to a particular value. The non-specific ‘fixed-versus-random’ test acquires
traces associated with a particular fixed data input and compares them against
traces associated with random inputs. In all cases the Welch’s two-sample t-test
for equality of means is then performed; results that are larger than a defined
threshold, which we indicate via a dotted line in our figures, are taken as evidence
for a leak.

Detecting ‘Subtle’ Leaks We now choose a code sequence relating to a sup-
posedly protected AES operation. The code sequence implements a standard
countermeasure called masking [1]. Masking essentially distributes all interme-
diate variables into shares which are statistically independent, but whose com-
position (typically by way of exclusive-or) results in the (unmasked) variables.
Consequently, standard DPA attacks [18] no longer succeed. The ease of im-
plementation in software and ability to provide some sort of proof of leakage
resilience has made masking a popular side channel attack countermeasure, on
the receiving end of considerable attention from academia and industry alike.
However, it is also well-known that implementations of masking schemes can
produce subtle unanticipated leakages [17].

We faithfully implemented a masking scheme for AES (as described in [17])
in Thumb assembly to avoid the potential introduction of masking flaws by the
compiler (from C to assembly). The code sequence, which we will analyse and
discuss, relates to an operation called ShiftRows which takes place as part of
the AES round function. In a masked implementation, this results in a masked
row (i.e. which would typically be stored within a register) being rotated and
then written back into memory. Table 1 shows the assembly code for ShiftRows.
An experienced and side-channel aware implementer who has detailed leakage
information about the M0 would now be able to spot a problem with this code:
because the ror instruction also leaks a function of the Hamming distance to
its predecessor, there could be problem if the prior instruction is protected by
the same mask. Clearly an inexperienced implementer, or somebody who does
not have the necessary profiling information, would not be able to make this
inference.

We now show that ELMO traces (for this same code sequence) can be used
for the purposes of (pre-emptive) leakage detection. Since we do not expect any



specific, simple leaks to be detectable under masking, we configured a ‘fixed-
versus-random’ test to check instead for arbitrary leaks. Figure 5 shows that
the analysis of our model-simulated traces indicates the presence of leaks in
several instructions (see also Tab. 1 where they are colour-coded in red). These
leaks are precisely due to the ror leakage properties that we discussed in the
previous paragraph. The figure shows that all real-measurement leaks can be
identified from the simulations, with the exception of some lingering leakage in
the cycles after the final ldr. We believe this results from the fact that our
models are constructed at instruction level rather than clock-cycle level—so the
leakage arising from a particular instruction is tied to the cycle in which it is
performed. Whilst this degrades the visual similarity of our simulations, it has
the big advantage that we can easily track back to the ‘offending’ instruction.

In short, our grey box approach to modelling side-channel leakage proves
highly successful at capturing and replicating potentially vulnerable data-dependency
in arbitrary sequences of assembly code.

Cycle Address Machine Assembly Code
No. Code
1-2 0x08000206 0x684C ldr r4,[r1,#0x4]
3 0x08000208 0x41EC ror r4,r5
4-5 0x0800020A 0x604C str r4,[r1,#0x4]
6-7 0x0800020C 0x688C ldr r4,[r1,#0x8]
8 0x0800020E 0x41F4 ror r4,r6
9-10 0x08000210 0x608C str r4,[r1,#0x8]
11-12 0x08000212 0x68CC ldr r4,[r1,#0xC
13 0x08000214 0x41FC ror r4,r7
14-15 0x08000216 0x60CC str r4,[r1,#0xC]

Table 1. Thumb assembly implementation of ShiftRows showing (colour-coded in red)
leaky instructions as indicated by the model-simulated power consumption.

7 Conclusion

We have shown how to combine a ‘grey box’ view of a cryptographic device
with well-understood statistical techniques for model construction and evalua-
tion in order to profile and simulate instruction-level side-channel leakage traces.
Our methodology enables informed and statistically-testable decisions between
candidate predictor variables, as well as empirically-verified clustering of like
instructions. In this way, redundant complexity can be removed to increase the
scope for additional explanatory complexity in our models. The procedure is ap-
propriate for use with different devices and side-channels, and is self-equipped
with the capability to identify scenarios where the measurements in question
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Fig. 5. Fixed vs random t-tests against the (simulated and real) power consumption
of masked ShiftRows. (Dotted lines indicate the ±4.5 threshold for t-test significance).

contain little of interest (i.e. minimal data-dependency). In addition to the valu-
able insights this methodology provides into leakage behaviours, which are of
immediate interest to the side channel experts, it has considerable practical ap-
plication via the integration of our models into a side-channel simulator (ELMO).
We are thereby able to produce leakage traces for arbitrary sequences of code
which demonstrably exhibit the same vulnerabilities as the same code sequences
running on a real device. This capability suggests a variety of highly beneficial
possible uses, such as the automated detection of leakages in the software devel-
opment stage and the automated insertion (and testing) of countermeasures, as
well as hugely promising prospects for optimisation with respect to protection
level and energy efficiency.
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A Supplementary Tables and Figures

Feature Cortex M0 Cortex M4
Architecture Von-Newman Harvard
Word size 32 bit 32 bit
Multiplier Single cycle Single cycle
Instruction set Thumb (complete) Thumb (complete)

Thumb-2 (some) Thumb-2 (complete)
Additional DSP and FPU

Barrel shift instructions No Yes
Total instructions 56 137; Optional 32 for FPU

Table 2. Comparison between Cortex-M0 and Cortex-M4 microprocessors. Informa-
tion taken from [24] [25] [19].
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Fig. 6. Dendrograms representing the hierarchical clustering of the M0 (left) and M4
(right instructions according to the fitted leakage models.
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Fig. 7. Estimated coefficients on the model terms for each chosen representative M0
instruction.
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Fig. 8. Estimated coefficients on the data terms as source register varies.

adds adds ands cmp cmp eors ldr

#imm #imm

R2 0.276 0.289 0.253 0.227 0.260 0.202 0.147

F
-s
ta

ti
st
ic Operand 1 19.36 6.09 5.20 15.60 7.32 4.29 0.93

Operand 2 10.23 -0.00 7.25 4.70 0.00 3.92 22.55
Transition 1 23.35 29.52 30.40 20.25 24.12 19.35 0.93
Transition 2 5.20 24.11 9.11 3.76 20.95 10.66 1.22
Overall 14.51 15.44 12.89 11.19 13.40 9.63 6.55

ldrb ldrh lsls lsrs movs movs muls

#imm

R2 0.107 0.187 0.296 0.292 0.255 0.455 0.278

F
-s
ta

ti
st
ic Operand 1 0.82 1.53 32.88 32.70 3.18 8.80 32.68

Operand 2 14.59 30.78 7.22 5.18 3.93 -0.00 20.93
Transition 1 1.18 1.40 20.18 18.88 22.83 53.03 2.25
Transition 2 1.43 0.67 1.92 2.96 20.71 63.83 1.05
Overall 4.54 8.78 15.98 15.69 13.04 31.71 14.68

orrs rors str strb strh subs subs

#imm

R2 0.214 0.315 0.061 0.075 0.067 0.237 0.271

F
-s
ta

ti
st
ic Operand 1 3.17 24.02 1.24 0.72 1.12 13.78 5.38

Operand 2 3.52 20.28 4.99 7.36 5.18 3.45 0.00
Transition 1 15.44 23.60 1.06 1.29 1.21 24.07 27.96
Transition 2 17.25 1.90 2.46 2.66 3.55 4.68 23.53
Overall 10.34 17.50 2.46 3.10 2.73 11.82 14.16

Table 3. F-tests for significant joint data effects in the power consumption of the
M0; tests which fail to reject at the 5% level are shaded grey. Critical values shown in
brackets in the row headings. Degrees of freedom for the F-tests are (128,4871) for the
combined test, (32,4871) for the rest.



adds adds ands cmp cmp eors ldr

#imm #imm

R2 0.048 0.052 0.049 0.050 0.086 0.051 0.148

F
-s
ta

ti
st
ic Operand 1 1.58 3.82 1.72 2.16 10.96 3.80 1.13

Operand 2 3.98 -0.00 3.92 3.49 0.00 2.63 22.97
Transition 1 1.33 0.63 1.25 0.73 0.81 1.02 0.92
Transition 2 0.67 4.07 0.73 1.47 2.25 0.87 0.91
Overall 1.94 2.11 1.97 1.98 3.60 2.06 6.60

ldrb ldrh lsls lsrs movs movs muls

#imm

R2 0.135 0.124 0.047 0.055 0.029 0.063 0.038

F
-s
ta

ti
st
ic Operand 1 1.04 1.11 0.76 1.09 1.09 0.76 1.30

Operand 2 20.18 18.00 4.59 6.09 1.01 0.00 1.87
Transition 1 0.90 0.97 0.70 0.51 1.13 0.88 1.58
Transition 2 0.67 0.87 1.11 1.07 1.35 8.29 1.16
Overall 5.92 5.41 1.88 2.20 1.15 2.54 1.48

orrs rors str strb strh subs subs

#imm

R2 0.038 0.117 0.546 0.814 0.691 0.046 0.068

F
-s
ta

ti
st
ic Operand 1 2.59 15.85 1.13 1.09 1.05 2.62 7.06

Operand 2 1.88 2.00 177.01 649.37 329.94 2.47 0.00
Transition 1 0.77 1.13 0.75 1.01 0.98 0.68 1.57
Transition 2 0.68 1.06 0.87 1.14 0.72 1.32 2.52
Overall 1.51 5.05 45.73 166.32 85.10 1.84 2.80

Table 4. F-tests for significant joint data effects in the EM radiation of the M4; tests
which fail to reject at the 5% level are shaded grey. Critical values shown in brackets in
the row headings. Degrees of freedom for the F-tests are (128,4871) for the combined
test, (32,4871) for the rest.



CT Intuitive group Instructions (in
1 2 3 4 5 descending order of SI)

0.7

2 0 0 0 0 cmp subs

2 0 0 0 0 cmpimm subsimm

2 0 0 0 0 orrs movs

1 0 0 0 0 addsimm

1 0 0 0 0 eors

1 0 0 0 0 ands

1 0 0 0 0 movsimm

1 0 0 0 0 adds

0 2 0 0 0 lsls lsrs

0 1 0 0 0 rors

0 0 2 0 0 strh strb

0 0 1 0 0 str

0 0 0 2 0 ldrh ldr

0 0 0 1 0 ldrb

0 0 0 0 1 muls

0.8

3 0 0 0 0 subimm cmpimm addsimm

3 0 0 0 0 movs eors orrs

2 0 0 0 0 cmp subs

1 0 0 0 0 ands

1 0 0 0 0 movsimm

1 0 0 0 0 adds

0 3 0 0 0 lsls lsrs rors

0 0 3 0 0 strb strh str

0 0 0 3 0 ldr ldrh ldrb

0 0 0 0 1 muls

0.9

11 0 0 0 0 addsimm movsimm subsimm movs

cmpimm ands orrs eors subs

cmp adds

0 3 0 0 0 lsls lsrs rors

0 0 3 0 0 strb strh str

0 0 0 3 0 ldr ldrh ldrb

0 0 0 0 1 muls

1.0

11 0 0 0 0 adds addsimm ands cmp cmpimm

eors movs movsimm orrs subs

subsimm

0 3 0 0 0 lsls lsrs rors

0 0 3 0 0 str strb strh

0 0 0 3 0 ldr ldrb ldrh

0 0 0 0 1 muls

1.1

11 3 0 0 0 adds addsimm ands cmp cmpimm

eors lsls lsrs movs movsimm

orrs rors subs subsimm

0 0 3 0 0 str strb strh

0 0 0 3 0 ldr ldrb ldrh

0 0 0 0 1 muls

1.2 11 3 3 3 1 (all; SI undefined)

Table 5. M0: Found clusters compared with intuitive grouping (1 = ALU, 2 = shifts,
3 = stores, 4 = loads, 5 = multiply) as the consistency threshold (CT) increases.



CT Intuitive group Instructions (in
1 2 3 4 5 descending order of SI)

0.7

2 0 0 0 0 cmp cmpimm

2 0 0 0 0 ands orrs

1 0 0 0 0 movsimm

1 0 0 0 0 subs

1 0 0 0 0 eors

1 0 0 0 0 addsimm

1 0 0 0 0 adds

1 0 0 0 0 movs

1 0 0 0 0 subsimm

0 2 0 0 0 rors lsrs

0 1 0 0 0 lsls

0 0 2 0 0 strh str

0 0 1 0 0 strb

0 0 0 2 0 ldrb ldrh

0 0 0 1 0 ldr

0 0 0 0 1 muls

5 0 0 0 0 cmp cmpimm subs movsimm eors

0.8

4 0 0 0 0 orrs ands addsimm adds

1 0 0 0 0 movs

1 0 0 0 0 subsimm

0.9

0 3 0 0 0 lsrs rors lsls

0 0 2 0 0 strh str

0 0 1 0 0 strb

0 0 0 3 0 ldr ldrh ldrb

0 0 0 0 1 muls

1.0 11 3 3 3 1 (all; SI undefined)

Table 6. M4: Found clusters compared with intuitive grouping (1 = ALU, 2 = shifts,
3 = stores, 4 = loads, 5 = multiply) as the consistency threshold (CT) increases.

Interaction effect F-stat Degrees of Crit.
freedom value

All registers 1.207 (896, 39025) 1.080
Source registers 1.357 (448, 39025) 1.113
Destination registers 1.034 (448, 39025) 1.113
Source register = 0 1.398 (64, 39409) 1.308
Source register = 1 1.689 (64, 39409) 1.308
Source register = 2 1.300 (64, 39409) 1.308
Source register = 3 1.151 (64, 39409) 1.308
Source register = 4 1.496 (64, 39409) 1.308
Source register = 5 1.025 (64, 39409) 1.308
Source register = 6 1.838 (64, 39409) 1.308
Source register = 7 1.098 (64, 39409) 1.308

Table 7. F-statistics for register interaction effects (tests which fail to reject at the
5% level are shaded grey).



eors lsls str ldr muls

R2

Full model 0.936 0.902 0.780 0.953 0.874
Ip only model 0.550 0.579 0.572 0.629 0.524
Is only model 0.372 0.294 0.194 0.316 0.292
D only model 0.014 0.031 0.016 0.012 0.057

F

DxIp, DxIs (32) 18.5 20.8 5.5 6.2 23.7
DxIp (16) 23.4 26.7 3.6 5.9 30.5
DxIs (16) 13.6 14.8 7.4 6.6 16.9
O1xIp, O1xIs (8) 8.9 5.3 0.4 2.6 4.4
O2xIp, O2xIs (8) 33.0 25.4 3.3 8.6 11.6
T1xIp, T1xIs (8) 43.5 25.4 11.9 3.2 15.9
T2xIp, T2xIs (8) 8.9 4.8 0.5 2.1 23.5

Table 8. R-squareds for subsets of the M0 instruction models, and F-statistics for
the marginal contributions of the interaction terms. df1 is shown in parenthesis; df2 is
24,831 in all cases. Tests which fail to reject at the 5% level are shaded grey.

Tested interactions eors lsls str ldr muls

Adjacent bits 1.026 3.877 1.075 0.885 13.390
Adjacent bit flips 0.977 0.603 1.089 1.019 1.047
Non-adjacent bits 1.068 1.295 0.930 0.969 1.372

Table 9. F-tests for significant pairwise bit interaction effects (adjacent and non-
adjacent) in the power consumption of the M0; tests which fail to reject at the 5%
level are shaded grey. Degrees of freedom are (62,24769), (62,24707) and (930,23839)
respectively.


