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Abstract

Functional Encryption (FE) generalizes the notion of traditional encryption system by pro-
viding fine-grained access to data. In a FE scheme, the holder of a secret key SKf (associated
with a function f) and a ciphertext c (encrypting plaintext x) can learn f(x) but nothing else.

The indistinguishability (IND) based security notion of FE can be parameterized based on
whether the adversary obtains bounded/unbounded number of challenge ciphertexts, whether
she is allowed to query bounded/unbounded number of functional secret keys or whether she
is forced to commit to the challenge messages prior to seeing the public parameters (selec-
tive/adaptive). It is possible to weaken further the selective security requirement (called as
weakly selective setting) where the adversary is restricted to make all the function secret key
queries before seeing the public parameters. These notions can be formalized as {xx, yy, zzz}-
IND-FE where xx denotes the number of challenge ciphertexts, yy denotes the number of func-
tional secret keys and zzz denotes weakly selective (Sel∗) or selective (Sel) or adaptive (Adp).

In this work, we show that polynomially hard (1, 1,Sel∗)-IND-FE having weakly compact
ciphertexts implies all other notions generically. Prior results required sub-exponentially hard
(1, 1,Sel∗)-IND-FE with weakly compact ciphertexts or polynomially hard (1,Unb,Sel)-IND-FE
to imply all other notions generically.
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1 Introduction

Traditional encryption systems were envisioned to provide security for point-to-point communica-
tion between two parties. In a traditional encryption system, owner of the secret key can decrypt
any ciphertext and completely recover the underlying plaintext whereas an eavesdropper cannot
learn any information about the plaintext from the ciphertext. While this notion is sufficient for
a variety of applications, the emergence of cloud computing has brought in a new set of chal-
lenges that seem to require something beyond the traditional notions. Functional Encryption
[SW05, BSW11, O’N10] generalizes the notion of traditional encryption system by providing fine-
grained access to data. In a Functional Encryption (FE) system holder of the master secret key
MSK can derive secret keys SKf for functions f belonging to a particular family F . Given a ci-
phertext c encrypting x and the secret key SKf , one can learn f(x) but nothing else about x is
leaked.

Functional encryption emerged as a generalization of Identity based encryption [Sha84, BF01,
Coc01], Attribute based encryption [GPSW06], [GVW13] and Predicate Encryption [KSW08,
LOS+10, GVW15] each of which provided different levels of access to the underlying plaintext.
Significant research on FE [KSW08, LOS+10, AFV11] focused on understanding and expanding
the class of functions for which FE could be realized. An alternative line of work by Sahai and
Seyalioglu [SS10], Gorbunov, Vaikuntanathan and Wee [GVW12] and Goldwasser, Kalai, Popa,
Vaikuntanathan and Zeldovich [GKP+13] provided the first FE systems that could support all of
P/poly i.e. the set of functions computable by a poly sized circuit. However, these constructions
provide security only when the adversary is limited to obtaining a single function secret key.1 Fi-
nally, works of Garg, Gentry, Halevi, Raykova, Sahai and Waters [GGH+13] and Waters [Wat15]
constructed FE systems supporting unbounded number of functional secret keys assuming Indis-
tinguishability Obfuscation (iO) [BGI+12].

Indistinguishability based Security. The security notion of FE comes in two flavors: simu-
lation based (SIM) and indistinguishability based (IND). While the SIM based security notion has
been subject to strong lower bounds [BSW11, AGVW13], there are no such impossibility results
known for IND-based security and in fact, it is known that IND-based security implies SIM based
security in the random oracle model [CIJ+13]. In this work, we focus on FE systems satisfying
IND-based security and its refinements.

The IND-based security notion is modeled as a game between the challenger and an adversary.
Informally, the task of the adversary is to distinguish between encryptions of two equal length
messages x0 and x1 when given functional secret keys SKf for functions f (chosen by the adversary)
under the restriction that f(x0) = f(x1).

IND-based security of FE is parameterized by two quantities: the number of challenge ciphertexts
(whether the adversary is allowed to obtain a single ciphertext or a vector of ciphertexts) and the
number of functional secret keys (which can either be apriori bounded or unbounded). The security
notion can be further refined to selective and adaptive security. In the selective variant (Sel), the
adversary is forced to commit to the challenge messages before seeing the public parameters. In
the adaptive notion (Adp), the adversary is allowed to choose the challenge messages depending on
the public parameters and functional secret keys for arbitrary functions of its choice.

The selective notion of security considered in literature restricts the adversary to commit to

1These results could be generalized to support a priori bounded number of functional secret keys.
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the challenge messages before seeing the public parameters but still allows functional secret key
queries to be adaptively made after seeing the challenge ciphertext and the public parameters. We
consider an even weaker notion of selective security called as weakly selective security (denoted
by Sel∗) that restricts the adversary to commit to her challenge messages as well as make all the
function secret key queries prior to seeing the public parameters.

A central notion of efficiency of functional encryption is the size of the ciphertexts or more
generally the size of the encryption circuit. There are several relaxations to the efficiency notion
that have been considered in literature where the size of the ciphertext not only depends on the
size of the plaintext but also on the circuit size of the functions in the function family supported by
the system. A FE system is said to have fully compact ciphertexts (FC) if the size of the encryption
circuit is some polynomial in the size of the message to be encrypted and the security parameter.
A FE scheme supporting function family F has weakly compact ciphertexts (WC) if the size of the
encryption circuit grows sub-linearly with the maximum circuit size of functions in the function
family F . A FE system is said to have non-compact ciphertexts (NC) if the size of the encryption
circuit can depend arbitrarily on the circuit size of the functions in the function family F .

The above parameters, the refinements and the efficiency considerations give rise to the follow-
ing security and efficiency notions of IND-based FE scheme: {ww, xx, yyy, zz}-IND-FE where ww
denotes the number of challenge ciphertexts, xx denotes the number of functional secret keys ob-
tained by the adversary, yyy refers to the security setting considered i.e. Sel∗ or Sel or Adp setting
and zz denotes the efficiency of the scheme i.e {FC,WC,NC}.

The focus of this work is studying the relationship between different notions of IND-based
security of FE system. It can be easily seen from a standard hybrid argument that {1, xx, yyy, zz}-
IND-FE implies {Unb, xx, yyy, zz}-IND-FE. Hence in the rest of the introduction we focus on the
case where the adversary obtains a single challenge ciphertext.

Prior Work. Ananth, Brakerski, Segev and Vaikuntanathan [ABSV15] gave a generic transfor-
mation from selectively secure IND-FE to adaptively secure IND-FE. This transformation preserves
the number of functional secret keys i.e., starting from a selective secure scheme against unbounded
functional secret keys gives an adaptively secure scheme against unbounded functional secret keys.
Another observation about this reduction is that it does not preserve compactness. Even if the
input to this transformation is a fully compact scheme, the resulting FE scheme is non-compact.
Expressing the above results in our formulation, Ananth et al. [ABSV15] give a transformation
from (1, xx,Sel, zz)-IND-FE to (1, xx,Adp,NC)-IND-FE. Ananth and Jain [AJ15] and Bitansky and
Vaikuntanathan [BV15] showed that {1, 1, Sel∗,WC}-IND-FE implies Indistinguishability Obfusca-
tion (iO) [BGI+12] which is known to be powerful enough to imply {Unb,Unb,Adp,FC}-IND-FE
[AS16]. However, the reduction from {1, 1,Sel∗,WC}-IND-FE to iO suffers an exponential loss.
Hence, they had to start with a sub-exponentially hard {1, 1,Sel∗,WC}-IND-FE to get iO. Ananth,
Jain and Sahai [AJS15] and Bitansky and Vaikuntanthan [BV15] gave a generic transformation
from (1,Unb,Sel,NC)-IND-FE to (1,Unb, Sel,FC)-IND-FE. This result crucially relies on the fact
that the non-compact FE scheme that they start with is secure against unbounded collusions. Also,
the output of this transformation is a selectively secure system irrespective of whether we start
with (1,Unb,Adp,NC)-IND-FE or (1,Unb,Sel,NC)-IND-FE.

3



1.1 Our Results

In this work, we show that polynomially hard {1, 1,Sel∗,WC}-IND-FE implies an adaptive FE scheme
secure against unbounded collusions. In other words, to obtain (seemingly) stronger notions of
security of FE namely adaptive security against unbounded collusions, it is sufficient to construct
a FE scheme with the weakest possible notion of security satisfying “certain” efficiency criterion.
The relationships between different security notions of IND-FE including our results is shown in
Figure 1. An informal statement of our result is:

Theorem 1.1 There exists a generic transformation from polynomially hard {1, 1,Sel∗,WC}-IND-
FE to an adaptively secure FE with security against unbounded collusions.

We prove the main theorem via the following two steps:

1. We give a generic transformation from {1, 1,Sel∗,WC}-IND-FE to
{1,Unb, Sel,FC}-IND-FE. Our reduction incurs only a polynomial loss in security. Interest-
ingly, the output FE scheme is fully compact even when the starting FE scheme is only weakly
compact. An additional feature of this transformation is that the resultant FE scheme is post-
challenge ciphertext secure.2 We view this transformation as the main contribution of this
work.

2. Applying the generic transformation from selective to adaptive security of [AS16, ABSV15]
we obtain a FE scheme that is adaptively secure against unbounded collusions.

Recall that the generic transformation of Ananth et al. in [ABSV15] does not preserve com-
pactness. But as noted in the work of Hemenway et al. in [HJO+15] it is possible to combine
the transformation of Ananth and Sahai in [AS16] along with adaptively secure garbled circuits
[HJO+15] to obtain an adaptively secure FE scheme whose ciphertext size grows with the on-line
complexity of adaptively secure garbled circuit scheme. The state of the art construction of adap-
tively secure garbled circuits [HJO+15] achieves an online-complexity that grows with the width of
the circuit to be garbled. A FE scheme supporting function family F has width compact ciphertexts
(WidC) if the size of the encryption circuit grows with the width of circuits in the function family
F . We obtain the following corollary:

Corollary 1.2 There exists a generic transformation from polynomially hard {1, 1,Sel∗,WC}-IND-
FE to an (1,Unb,Adp,WidC)-IND-FE scheme.

An application of Theorem 1.1 is a construction of adaptively secure Private Linear Broadcast
Encryption (PLBE) supporting apriori-bounded length identity space [BSW06, BZ14, NWZ16] with
security against unbounded collusions from {1, 1,Sel∗,WC}-IND-FE. A private linear broadcast en-
cryption enables generation of a ciphertext with respect to some threshold T ∈ [N ] (where [N ]
denotes the set of identities) such that a user with identity i can decrypt the broadcast cipher-
text if and only if i ≤ T . The security guarantee is that the ciphertext “hides” the threshold T .
Private Linear Broadcast encryption is used as an intermediate step to construct Traitor Tracing
scheme [CFN94, BSW06]. Initial constructions of PLBE systems focused on the case where N is

2Post challenge ciphertext security notion is a weakening of the adaptive security where the adversary is allowed to
choose the challenge messages after seeing the public parameters but before making any functional secret key queries.
Post challenge ciphertext security lies in between the selective and the adaptive notions of security.
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(1,Unb,Adp,NC)(1,Unb,Adp,WidC)(1,Unb,Adp,FC)

iO

Our Work

[AJS15, BV15]

[ABSV15][AS16, HJO+15][AS16]

[BV15, AJ15], exponential loss

Figure 1: Relationships between different notions of IND-FE. Non-trivial relationships are given
by solid arrows, and trivial relationships are given by dashed arrows.

some polynomial in the security parameter. Nishimaki, Wichs and Zhandry [NWZ16] generalized
this to the case where N could be exponential by requiring that the length of the identities to be
polynomial in the security parameter. They also noted (following an observation by Garg et al.
in [GGH+13]) that an adaptive FE scheme with security against unbounded collusions (without
any requirement on compactness) implies an adaptive PLBE that supports apriori-bounded length
identities with security against unbounded collusions. Combining this result with the tracing algo-
rithm of Nishimaki et al. [NWZ16] we get a Traitor Tracing system which supports apriori-bounded
length identities from {1, 1,Sel∗,WC}-IND-FE.

Corollary 1.3 There exists a construction of Traitor Tracing scheme that supports apriori bounded
length identity space from (1, 1,Sel∗,WC)-IND-FE.

1.2 Our Techniques

In this section we give an overview of the techniques used in constructing selective FE with security
against unbounded collusions from single-key, selective FE with weak compactness. Recall that
applying the transformation of Ananth and Sahai [AS16] to the resultant scheme we can get adaptive
security against unbounded collusions.

We first give a description of a selective FE scheme secure against unbounded collusions based on
indistinguishability obfuscation (iO). Though this result is not new, our construction is arguably
simpler than the schemes of Garg et al. [GGH+13] and Waters [Wat15] and makes use of garbled
circuits [Yao86]. Later, using techniques that are new to this work and also techniques from works of
Garg et al. [GPS15, GPSZ16] we obtain a FE scheme whose security can be based on polynomially
hard single-key selective FE.

1.2.1 iO based construction

Recall that a circuit garbling scheme (or randomized encoding in general) allows to encode an input
x and a circuit C to obtain garbled input labels x̃ and garbled circuit C̃ respectively. Informally,
the security of garbled circuits ensures that given x̃ and C̃ it is possible to learn C(x) but nothing
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Input: r
Constants: PRF key S

1. Compute t = PRG(r).

2. Output (t,K = PRF(S, t))

Figure 2: Program implementing the Public Key

else. An additional feature of Yao’s garbled circuits is that it is possible to encode the input x and
the circuit C separately as long as the two encoding schemes share the same random tape.

At a high level the ciphertext of our FE scheme corresponds to garbled input labels and the
functional secret key corresponds to the garbled circuit. Intuitively, from the security of gabrled
circuits we can deduce that given the FE ciphertext c (encrypting x) and the functional secret key
SKf it is possible to learn f(x) but nothing else. But as mentioned before, to enable encoding
the input x and the circuit C separately, the random coins used must be correlated in a certain
way. The main crux of the construction is in achieving this correlation using indistinguishability
obfuscation (iO).

The correlation between randomness used for garbling the input labels and the circuit is achieved
by deriving the coins pseudorandomly using a PRF key S. This PRF key S also serves as the master
secret key of our FE scheme. We now give the details of how the public key and the functional
secret keys are derived from the master secret key S.

The public key of our FE scheme is an obfuscation of a program that takes as input some
randomness r and outputs a “token” t = PRG(r) where PRG is a length doubling pseudorandom
generator and a key K = PRF(S, t). The key K is used for deriving the input labels for the garbled
circuit scheme say, that the two labels of the i-th input wire are given by {PRF(K, i‖b)}b∈{0,1}. The
FE ciphertext encrypting a message m is given by the token t and the input labels corresponding
to m i.e (t, {PRF(K, i‖mi)}i∈[n]). The description of the program implementing the public key is
given in Figure 2.

The functional secret key for a circuit Cf is an obfuscation of another program that takes as

input the token t and first derives the key K = PRF(S, t). It then outputs a garbled circuit C̃f
where the garbled input labels are derived using key K. In particular, the input labels “encrypted”
in the garbled evaluation table of C̃f are given by {PRF(K, i‖b)}i∈[n],b∈{0,1}. The description of the
program implementing the functional secret key is given in Figure 3. The FE decryption corresponds
to evaluation of this garbled circuit using the input labels given in the ciphertext.

The correctness of the above construction follows from having the “correct” input labels en-
crypted in the garbled evaluation tables in C̃f . It remains to show that the security holds when the
obfuscation is instantiated with iO. To achieve this we use the punctured programming approach
of Sahai and Waters [SW14]. We now give a high level overview of the security proof using hybrid
argument.

The goal is to change from a hybrid where the adversary is given a challenge ciphertext en-
crypting message mb for some b ∈ {0, 1} to a hybrid where she is given a challenge ciphertext
independent of the bit b. In the first hybrid we change the token t in the challenge ciphertext to an

6



Input: Token t
Constants: PRF key S, PRF key Sf , Circuit Cf

1. Compute K = PRF(S, t).

2. Compute Li,bi = PRF(K, i‖bi) for all i ∈ [n] and bi ∈ {0, 1}.

3. Output the garbled circuit C̃f with {Li,bi}i∈[n],bi∈{0,1} as the input labels and using
PRF(Sf , t) as the random coins.

Figure 3: Program implementing the Functional Secret Key for a circuit Cf

uniformly chosen random string t∗ relying on the pseudorandomness property of the PRG. Next we
change the public key to be an obfuscation of a program that has the PRF key S punctured at t∗

hardwired instead of S. The rest of the program is same as described in Figure 2. Intuitively, the
indistinguishability follows from iO security as the PRG has sparse images. In the next hybrid the
functional secret keys are generated as described in Figure 4 where C̃∗f hardwired in the program is

exactly equal to garbled circuit C̃f with {PRF(K, i‖bi)}i∈[n],bi∈{0,1} (where K = PRF(S, t∗)) as the
input labels and generated using PRF(Sf , t

∗) as the random coins. The indistinguishability of the
two hybrids follows from iO security as the two programs described in Figure 3 and Figure 4 are
functionally equivalent. Now relying on the pseudorandomness at punctured point property of the
PRF we change the input labels in the challenge ciphertext as well as the random coins used for
generating C̃∗f to uniformly chosen random strings. We can now change the challenge ciphertext
to be independent of the bit b by relying on the security of garbled circuit. To be more precise, we
change the input labels in the challenge ciphertext and C̃∗f to be output of the garbled circuit sim-
ulator. Notice that we can still use the security of garbled circuits even if several garbled circuits
share the same input labels. Thus the above construction achieves security against unbounded
collusions.

1.2.2 Construction from poly hard FE

The main idea behind our construction from polynomially hard, single-key, selectively secure FE
is to simulate the effect of the obfuscation in the above construction using FE. To give a better
insight into our construction it would be helpful to recall the FE to iO transformation of Ananth
and Jain [AJ15] and Bitansky and Vaikuntanathan [BV15]. Though this reduction suffers an
exponential loss in security, we will be modifying this construction to achieve our goal of relying
only on polynomially hard FE scheme. Parts of this section are adapted from [GPS15, GPSZ16].

FE to iO transformation. We describe a modification of iO construction from FE of Bitansky
and Vaikuntanathan [BV15] (Ananth and Jain [AJ15] take a slightly different route to achieve the
same result). We note that the modified construction is not sufficient to obtain iO security but is
good enough for our purposes.

The “obfuscation” of a circuit C : {0, 1}κ → {0, 1}κ consists of the following components: a
FE ciphertext CTφ and κ+ 1 functional secret keys SK1, · · · ,SKκ+1 generated using independently
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Input: Token t
Constants: t∗, PRF key S{t∗}, PRF key Sf{t∗}, Circuit Cf , C̃∗f

• If t 6= t∗

1. Compute K = PRF(S{t∗}, t).
2. Compute Li,bi = PRF(K, i‖bi) for all i ∈ [n] and bi ∈ {0, 1}.

3. Output the garbled circuit C̃f with {Li,bi}i∈[n],bi∈{0,1} as the input labels and using
PRF(Sf{t∗}, t) as the random coins.

• Else, output C̃∗f .

Figure 4: Program implementing the Functional Secret Key for a circuit Cf in the Security Proof

sampled master secret keys MSK1, · · · ,MSKκ+1. CTφ encrypts the empty string φ under the public
key PK1. The first κ functional secret keys SK1, · · · ,SKκ implement the bit-extension functionality.
To be more precise, SKi implements the function Fi that takes as input an (i− 1)-bit string x and
outputs two ciphertexts CTx‖0 and CTx‖1 encrypting x‖0 and x‖1 respectively under PKi+1. The
final function secret key SKκ+1 implements the circuit C.

Let us discuss how to evaluate the “obfuscated” circuit on an input x = x1 · · ·xκ where xi ∈
{0, 1}. The first step is to decrypt CTφ using SK1 to obtain CT0,CT1. Depending on x1 we choose
either the left encryption (CT0) or the right encryption (CT1) and recursively decrypt the chosen
ciphertext under SK2 and so on. After κ + 1 FE decryptions, we obtain the output of the circuit
on input x1 · · ·xκ.

An alternate way to view this evaluation is as a traversal along a path from the root to a leaf
node of a complete binary tree. The binary tree has the empty string at the root and traversal
chooses either the left or the right child depending on the bits x1, x2, · · · , xκ i.e at level i, bit xi is
used to determine whether to go left or right. We would refer to this binary tree as the evaluation
binary tree.

Our Construction. Recall that our main idea is to simulate the effect of obfuscation by appro-
priately modifying the above FE to iO transformation. We first explain the modifications to the
“obfuscation” computing the master public key.

Let Cpk[S] (having S hardwired) be the circuit that implements the public key of our iO-based
construction. Recall that this circuit takes as input some randomness r, expands it using the PRG
to obtain the token t and outputs (t,PRF(S, t)). The goal is to produce an “obfuscation” of this
circuit using FE to iO transformation explained above. Recall that the FE to iO transformation
has κ+1 functional secret keys SK1, · · · , SKκ+1 and an initial ciphertext CTφ encrypting the empty
string. The final functional secret key SKκ+1 implements the circuit Cpk[S]. The first observation
is that we cannot naively hardwire the PRF key in the circuit Cpk. This is because to achieve some
“meaningful” mechanisms of hiding the PRF key (via puncturing) we need to go via the iO route
that incurs an exponential loss in security. Therefore, the first modification is to change Cpk such
that it takes the PRF key S as input instead of having it hardwired. We also include the PRF key
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S in the initial ciphertext CTφ i.e CTφ is now an encryption of (φ, S). We run into the following
problem: the initial ciphertext now contains the PRF key S whereas we actually need S to be given
as input to the final circuit Cpk that is implemented in SKκ+1. Therefore we need a mechanism to
make the PRF key S “available” to the final functional secret key SKκ+1 so that it can compute
PRF evaluation on the token.

On way to do this is to change every functional secret key SKi to implement a functionality
Fi that takes in (x, S) as input and outputs two ciphertexts encrypting (x‖0, S) and (x‖1, S)
respectively. In other words, the “obfuscation” propagates S onto every root to leaf path in the
evaluation binary tree. Just as in previous works [GPS15, GPSZ16] this strategy fails because the
security proof needs to proceed by puncturing the PRF key S and in order to do such a puncturing we
need to change the distribution of FE ciphertexts along every root to leaf path that are exponential
in number. Hence this approach leads to an exponential loss in security which we wanted to avoid
in first place. Therefore we need some notion of “fine-grained” puncturing of the PRF key.

To propagate the PRF key we make use of the “puncturing along the path” idea of Garg, Pandey
and Srinivasan [GPS15]. This idea uses a primitive called as prefix puncturable PRF introduced in
[GPS15]. Informally, prefix puncturable PRF allows to puncture the PRF key S at a specific prefix
z to obtain Sz. The correctness guarantee is that given Sz, one can evaluate the PRF on any input
x such that z is a prefix of x. The security guarantee is that as long as any adversary does not
get access to Sz where z is a prefix of x, PRF(S, x) is indistinguishable from random string. An
additional feature is that prefix puncturing can be done recursively i.e given Sz one can obtain Sz‖0
and Sz‖1. If we design a mechanism wherein the PRF key S prefix punctured at token t is available
at the final functional secret key SKκ+1 then this can be used to derive PRF(S, t). Additionally,
if we need to puncture the PRF key at an input x it is sufficient to change the distribution of FE
ciphertexts only along the root to the leaf x in the evaluation binary tree. This gives us hope of
basing security on polynomially hard FE. The second modification is to propagate the appropriate
prefix punctured key instead of naively propagating the PRF key S along every path. To be more
precise, every functional secret key SKi implement a functionality Fi that takes as input x, Sx
as input and outputs CTx‖0,Sx‖0 ,CTx‖1,Sx‖1 i.e it outputs ciphertext encrypting one-bit extensions
along with the appropriate prefix punctured keys.

Recall that the circuit Cpk generates the token t as PRG(r) by taking r as input. If we naively
try to combine this circuit with the “puncturing along the way” trick of Garg et al. we obtain Sr
at the final functional secret key. It is not clear if there is a way of obtaining SPRG(r) from Sr. Garg
et al. [GPSZ16] faced a similar challenge in designing the sampler for trapdoor permutation and
the solution they provide is applicable to our setting. Instead of generating the token as an output
of a PRG on the input randomness r, the circuit Cpk takes as input P which is a public key of a
semantically secure public key encryption scheme. It computes PRF(S, P ) and outputs a public key
encryption of PRF(S, P ) using P as the public key. The token for our FE system would correspond
to the public key P . We combine this circuit with the “puncturing along the way” technique of
Garg et al. to obtain the “obfuscation” of our public key.

The functional secret key for a function Cf (denoted by SKf ) is constructed similarly to that
of the public key. Recall that the functional secret key takes as input the token t (which is now
given by the public key P ) and computes K = PRF(S, t). It then uses the key K to derive the
input garbled labels and outputs a garbled circuit C̃f . SKf also implements the “puncturing along
the way” trick of Garg et al. to obtain SP which is used by the final circuit to derive the garbled
input labels. A more detailed description of our construction is given in Section 3.
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Proof Technique: “Tunneling”. We now briefly explain the main proof technique which is
adapted from Garg et al.’s works [GPS15, GPSZ16]. Recall that the proof of our iO based con-
struction relies on the punctured programming approach of Sahai and Waters [SW14]. We also
follow a similar proof strategy. Let us explain how to “puncture” the master public key on the
token P . Once we have punctured the PRF key at P we can rely on the security guarantee of prefix
punctured PRF to replace PRF(S, P ) with a random string.

Puncturing the PRF key S at a string P involves “removing” Sz for every z such that z is a
strict prefix of P from the “obfuscation”. To get better intuition on how the puncturing works it
would be helpful to view the “obfuscation” as a complete binary tree. The initial ciphertext CTφ
is at the root of the binary tree and each level of the binary tree is implemented by one functional
secret key. The evaluation of the obfuscation corresponds to a traversal along the root to a leaf
path and partial evaluation corresponds to traversal from the root to an appropriate internal node.
Now puncturing the PRF key S at token P can be re-imagined as removing Sz for every z such
that z is a strict prefix of P from this complete binary tree. The crucial observation that helps
us to base security on polynomially hard FE is that Sz where z is a prefix of P occurs only along
the path from the root to the leaf node P in this complete binary tree. Hence it is sufficient to
change the distribution of the FE ciphertexts only along this path in such a manner that they don’t
contain Sz. To implement this change we rely on the “Hidden trapdoor mechanism” (also called
as the Trojan method) of Ananth et al. in [ABSV15]. To give more details, every functional secret
key SKi implements a function Fi that has two “threads” of execution. In thread-1 or the normal
mode of operation, it performs the bit-extension on input x and the prefix puncturing on input Sx.
In thread-2 or the trapdoor mode, it does not perform any computation on the input (x, Sx) and
instead outputs some fixed value that is hardwired. We change the FE ciphertexts in such a way
that the trapdoor thread is invoked in every functional secret key when the “obfuscation” is run on
input P . Metaphorically, we create a “tunnel” from the root to the leaf labeled P in the complete
binary tree corresponding to the obfuscation. Additionally, we change the FE ciphertexts along the
path from root to leaf P such that they do not contain any prefix punctured keys. A consequence
of our “tunneling” is that along the way we would have removed Sz for every z which is a strict
prefix of P from the “obfuscation.”

2 Preliminaries

κ denotes the security parameter. A function µ(·) : N → R+ is said to be negligible if for all
polynomials poly(·), µ(κ) < 1

poly(κ) for large enough κ. For a probabilistic algorithm A, we denote

by A(x; r) the output of A on input x with the content of the random tape being r. We will omit
r when it is implicit from the context. We denote y ← A(x) as the process of sampling y from the
output distribution of A(x) with a uniform random tape. For a finite set S, we denote x← S as the
process of sampling x uniformly from the set S. We model non-uniform adversaries A = {Aκ} as
circuits such that for all κ, Aκ is of size p(κ) where p(·) is a polynomial. We will drop the subscript
κ from the adversary’s description when it is clear from the context. We will also assume that
all algorithms are given the unary representation of security parameter 1κ as input and will not
mention this explicitly when it is clear from the context. We will use PPT to denote Probabilistic
Polynomial Time algorithm. We denote [κ] to be the set {1, · · · , k}. We will use negl(·) to denote
an unspecified negligible function and poly(·) to denote an unspecified polynomial. We assume
without loss of generality that all cryptographic randomized algorithms use κ-bits of randomness.
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If the algorithm needs more than κ-bit of randomness it can extend to arbitrary polynomial stretch
using a pseudorandom generator (PRG).

A binary string x ∈ {0, 1}κ is represented as x1 · · ·xκ. x1 is the most significant (or the highest
order bit) and xκ is the least significant (or the lowest order bit). The i-bit prefix x1 · · ·xi of the
binary string x is denoted by x[i]. We use x‖y to denote concatenation of binary strings x and y.
We say that a binary string y is a prefix of x if and only if there exists a string z ∈ {0, 1}∗ such
that x = y‖z.

Puncturable pseudorandom Function. We recall the notion of puncturable pseudorandom
function from [SW14]. The construction of pseudorandom function given in [GGM86] satisfies the
following definition [BW13, KPTZ13, BGI14].

Definition 2.1 A puncturable pseudorandom function PRF is a tuple of PPT algorithms
(KeyGenPRF,PRF,Punc) with the following properties:

• Efficiently Computable: For all κ and for all S ← KeyGenPRF(1κ), PRFS : {0, 1}poly(κ) →
{0, 1}κ is polynomial time computable.

• Functionality is preserved under puncturing: For all κ, for all y ∈ {0, 1}κ and ∀x 6= y,

Pr[PRFS{y}(x) = PRFS(x)] = 1

where S ← KeyGenPRF(1κ) and S{y} ← Punc(S, y).

• Pseudorandomness at punctured points: For all κ, for all y ∈ {0, 1}κ, and for all poly
sized adversaries A

|Pr[A(PRFS(y), S{y}) = 1]− Pr[A(Uκ, S{y}) = 1]| ≤ negl(κ)

where S ← KeyGenPRF(1κ), S{y} ← Punc(S, y) and Uκ denotes the uniform distribution over
{0, 1}κ.

Symmetric Key Encryption. A Symmetric-Key Encryption scheme SKE is a tuple of algo-
rithms (SK.KeyGen,SK.Enc, SK.Dec) with the following syntax:

• SK.KeyGen(1κ) : Takes as input an unary encoding of the security parameter κ and outputs
a symmetric key SK.

• SK.EncSK(m) : Takes as input a message m ∈ {0, 1}∗ and outputs an encryption C of the
message m under the symmetric key SK.

• SK.DecSK(C): Takes as input a ciphertext C and outputs a message m′.

We say that SKE is correct if for all κ and for all messages m ∈ {0, 1}∗, Pr[SK.DecSK(C) =
m] = 1 where SK ← SK.KeyGen(1κ) and C ← SK.EncSK(m).

Definition 2.2 For all κ and for all polysized adversaries A,∣∣Pr[Expt1κ,0,A = 1]− Pr[Expt1κ,1,A = 1]
∣∣ ≤ negl(κ)

where Expt1κ,b,A is defined below:
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• Challenge Message Queries: The adversary A outputs two messages m0 and m1 such
that |m0| = |m1| for all i ∈ [n].

• The challenger samples SK ← SK.KeyGen(1κ) and generates the challenge ciphertext C where
C ← SK.EncSK(mb). It then sends C to A.

• Output is b′ which is the output of A.

Remark 2.3 We will denote range of a secret key SK (denoted by Rangen(SK)) to be {SK.Enc(SK, x)}x∈{0,1}n
for a specific n. We will require that for any two secret keys SK1, SK2 where SK1 6= SK2 we have
Rangen(SK1) ∩ Rangen(SK2) = φ with overwhelming probability. We will also require that the
existence of an efficient procedure that checks if a given ciphertext c belongs to Rangen(SK) for a
particular secret key SK.

Public Key Encryption. A public-key Encryption scheme PKE is a tuple of algorithms (PK.KeyGen,
PK.Enc,PK.Dec) with the following syntax:

• PK.KeyGen(1κ) : Takes as input an unary encoding of the security parameter κ and outputs
a public key, secret key pair (pk, sk).

• PK.Encpk(m) : Takes as input a message m ∈ {0, 1}∗ and outputs an encryption C of the
message m under the public key pk.

• PK.Decsk(C): Takes as input a ciphertext C and outputs a message m′.

We say that PKE is correct if for all κ and for all messagesm ∈ {0, 1}∗, Pr[PK.Decsk(C) = m] = 1
where (pk, sk)← PK.KeyGen(1κ) and C ← PK.Encpk(m).

Definition 2.4 For all κ and for all polysized adversaries A and for all messages m0,m1 ∈ {0, 1}∗
such that |m0| = |m1|,

|Pr[A(pk,PK.Encpk(m0)) = 1]− Pr[A(pk,PK.Encpk(m1)) = 1]| ≤ negl(κ)

where (pk, sk)← PK.KeyGen(1κ).

Prefix Puncturable pseudorandom Functions. We now define the notion of prefix punc-
turable pseudorandom function PPRF which is satisfied by the construction of the pseudorandom
function in [GGM86].

Definition 2.5 A prefix puncturable pseudorandom function PPRF is a tuple of PPT algorithms
(KeyGenPPRF,PrefixPunc) satisfying the following properties:

• Functionality is preserved under repeated puncturing: For all κ, for all y ∈ ∪poly(κ)k=0 {0, 1}k
and for all x ∈ {0, 1}poly(κ) such that there exists a z ∈ {0, 1}∗ s.t. x = y‖z,

Pr[PrefixPunc(PrefixPunc(S, y), z) = PrefixPunc(S, x)] = 1

where S ← KeyGenPPRF.

• Pseudorandomness at punctured prefix: For all κ, for all x ∈ {0, 1}poly(κ), and for all
poly sized adversaries A

|Pr[A(PrefixPunc(S, x),Keys) = 1]− Pr[A(Uκ,Keys) = 1]| ≤ negl(κ)

where S ← KeyGenPRF(1κ) and Keys = {PrefixPunc(S, x[i−1]‖(1− xi))}i∈[poly(κ)].

12



Notation. For brevity of notation, we will be denoting PrefixPunc(S, y) by Sy.

Garbled Circuits. We now define the circuit garbling scheme of Yao [Yao86] and state the
required properties.

Definition 2.6 A circuit garbling scheme is a tuple of PPT algorithms given by (Garb.Circuit,Garb.Eval)
with the following syntax:

• Garb.Circuit(C) : This is a randomized algorithm that takes in the circuit to be garbled and
outputs garbled circuit and the set of garbled input labels: C̃, {Inpi,bi}i∈[κ],bi∈{0,1}.

• Garb.Eval(C̃, {Inpi,xi}i∈[κ]) : This is a deterministic algorithm that takes in {Inpi,xi}i∈[κ] and

C̃ as input and outputs a string y.

Definition 2.7 (Correctness) We say a circuit garbling scheme is correct if for all circuits C
and for all inputs x:

Pr[Garb.Eval(C̃, {Inpi,xi}i∈[κ]) = C(x)] = 1

where C̃, {Inpi,bi}i∈[κ],bi∈[κ] ← Garb.Circuit(K,C).

Definition 2.8 (Security) There exists a simulator Sim such that for all circuits C and input x:

{C̃, {Inpi,xi}i∈[κ]}
c
≈ {Sim(1κ, C, C(x))}

Lemma 2.9 ([Yao86],[LP09]) Assuming the existence of one-way functions there exists a circuit
garbling scheme satisfying the security notion given in Definition 2.8.

2.1 Functional Encryption

We recall the syntax and security notions of functional encryption [BSW11, O’N10].
A functional encryption FE with the message space {0, 1}∗ and function space F is a tuple of

PPT algorithms (FE.Setup,FE.Enc,FE.KeyGen,FE.Dec) having the following syntax:

• FE.Setup(1κ) : Takes as input the unary encoding of the security parameter κ and outputs a
public key PK and a master secret key MSK.

• FE.Enc(PK,m): Takes as input a message m ∈ {0, 1}∗ and outputs an encryption c of m
under the public key PK.

• FE.KeyGen(MSK, f) : Takes as input the master secret key MSK and a function f ∈ F (given
as a circuit) as input and outputs the function key SKf .

• FE.Dec(SKf , c): Takes as input the function key SKf and the ciphertext c and outputs a
string y.

Definition 2.10 (Correctness) The functional encryption scheme FE is correct if for all κ and
for all messages m ∈ {0, 1}∗,

Pr

y = f(m)

∣∣∣∣∣∣∣∣
(PK,MSK)← FE.Setup(1κ)
c← FE.Enc(PK,m)
SKf ← FE.KeyGen(MSK, f)
y ← FE.Dec(SKf , c)

 = 1

13



In the introduction we took a joint view of the security and efficiency of a functional encryption
scheme. We now decouple the efficiency and the security requirement. We first describe the security
requirements and then describe the efficiency requirements.

Security. The indistinguishability based security of function encryption scheme is parameterized
by two quantities: the number of challenge ciphertexts (which is apriori bounded or unbounded)
and the number of functional secret keys (which is either apriori bounded or unbounded). The
security notion can be further refined to: selective and adaptive security. In the selective variant,
the adversary is forced to commit to the challenge messages prior to seeing the public parameters.
In the adaptive notion, the adversary can choose the challenge messages depending on the public
parameters and functional secret keys for arbitrary functions of its choice. We consider a further
weakening of the selective security notion denoted as weakly selective security where the adversary
is forced to commit to the functional secret keys before viewing the public parameters.

We now give the formal definitions of the security notions. We start with the weakest notion
of security namely weakly selective security.

Definition 2.11 (Weakly Selective Security) The functional encryption scheme is said to be
(Unb,Unb, Sel∗)-IND secure if for all κ and for all poly sized adversaries A,∣∣Pr[ExptSel∗,1κ,0,A = 1]− Pr[ExptSel∗,1κ,1,A = 1]

∣∣ ≤ negl(κ)

where ExptSel,1κ,b,A is defined below:

• Challenge Message Queries: The adversary A outputs two message vectors ~m0, ~m1 such
that |~m0| = |~m1| and for all i ∈ [|~m0|], |m0,i| = |m1,i| and a set of functions f1, · · · , fq ∈ F to
the challenger. The parameter q and the size of message vectors are apriori-unbounded.

• The challenger samples (PK,MSK) ← FE.Setup(1κ) and generates the challenge ciphertext
vector ~c ← FE.Enc(PK, ~mb). The challenger also computes SKfi ← FE.KeyGen(MSK, fi) for
all i ∈ [q]. It then sends (PK,~c), {SKfi}i∈[q] to A.

• If A makes a query fj for some j ∈ [q] to functional key generation oracle such that for any
i ∈ [|~m0|], fj(m0,i) 6= fj(m1,i), output of the experiment is ⊥. Otherwise, the output is b′

which is the output of A.

Remark 2.12 We say that the functional encryption scheme FE is single-key, weakly selec-
tively secure if the adversary A in ExptSel∗,1κ,b,A is allowed to obtain the functional key for a
single function f .

We now give the definition of selectively secure FE.

Definition 2.13 (Selective Security) The functional encryption scheme is said to be (Unb,Unb, Sel)-
IND secure if for all κ and for all poly sized adversaries A,∣∣Pr[ExptSel,1κ,0,A = 1]− Pr[ExptSel,1κ,1,A = 1]

∣∣ ≤ negl(κ)

where ExptSel,1κ,b,A is defined below:
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• Challenge Message Queries: The adversary A outputs two message vectors ~m0, ~m1 such
that |~m0| = |~m1| and for all i ∈ [|~m0|], |m0,i| = |m1,i| to the challenger.

• The challenger samples (PK,MSK) ← FE.Setup(1κ) and generates the challenge ciphertext
vector ~c← FE.Enc(PK, ~mb). It then sends (PK,~c) to A.

• Function Queries: A adaptively chooses a function f ∈ F and sends it to the challenger.
The challenger responds with SKf ← FE.KeyGen(MSK, f). The number of function queries
made by the adversary is unbounded.

• If A makes a query f to functional key generation oracle such that for any i ∈ [|~m0|], f(m0,i) 6=
f(m1,i), output of the experiment is ⊥. Otherwise, the output is b′ which is the output of A.

We now give the definition of adaptively secure FE.

Definition 2.14 (Adaptive Security) The functional encryption scheme is said to be (Unb,Unb,Adp)-
IND secure if for all κ and for all poly sized adversaries A,∣∣Pr[ExptAdp,1κ,0,A = 1]− Pr[ExptAdp,1κ,1,A = 1]

∣∣ ≤ negl(κ)

where ExptAdp,1κ,b,A is defined below:

• The challenger samples (PK,MSK)← FE.Setup(1κ) and PK to the adversary.

• Phase-1: A adaptively chooses a function f ∈ F and sends it to the challenger. The
challenger responds with SKf ← FE.KeyGen(MSK, f).

• Challenge Message Queries: The adversary A outputs two message vectors ~m0, ~m1 such
that |~m0| = |~m1| and for all i ∈ [|~m0|], |m0,i| = |m1,i| to the challenger.

• Phase-2: A adaptively chooses a function f ∈ F and sends it to the challenger. The chal-
lenger responds with SKf ← FE.KeyGen(MSK, f).

• If A makes a query f to functional key generation oracle (in Phase-1 or Phase-2) such that
for any i ∈ [|~m0|], f(m0,i) 6= f(m1,i), output of the experiment is ⊥. Otherwise, the output is
b′ which is the output of A.

It can be easily shown through a standard hybrid argument that (1, yy, zzz)-IND based security
notion implies (Unb, yy, zzz)-IND based security. Thus, without loss of generality we would consider
(1, yy, zzz)-IND based security.

Lemma 2.15 There exists a generic transformation from a FE-scheme satisfying (1, yy, zzz)-IND
based security to one that satisfies (Unb, yy, zzz)-IND based security.
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Efficiency We now define the efficiency requirements of a FE scheme.

Definition 2.16 (Fully Compact) A functional encryption scheme FE is said to be fully compact
if for all κ ∈ N and for all m ∈ {0, 1}∗ the running time of the encryption algorithm FE.Enc is
poly(κ, |m|).

Definition 2.17 (Weakly Compact) A functional encryption scheme is said to be weakly com-
pact if the running time of the encryption algorithm FE.Enc is |F|1−ε.poly(κ, |m|) for some ε > 0
where |F| = maxf∈F |Cf | where Cf is the circuit implementing f .

A functional encryption scheme is said to have non-compact ciphertexts if the running time
of the encryption algorithm can depend arbitrarily on the maximum circuit size of the function
family.

3 Our Transformation

In this section we describe our transformation from single-key, selectively secure weakly compact
functional encryption to selective functional encryption scheme with fully compact ciphertexts that
is secure against unbounded key generation queries. We will assume that single-key scheme is fully
compact and later relax the requirement in Section 4.

The primitives that are used in the transformation are:

• A (1, 1,Sel∗,FC)-IND-FE scheme (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec).

• A prefix puncturable PRF (PPRF,PrefixPunc).

• A Circuit garbling scheme (Garb.Circuit,Garb.Eval).

• A public key encryption scheme (PK.KeyGen,PK.Enc,PK.Dec).

• A symmetric key encryption scheme (SK.KeyGen,SK.Enc, SK.Dec).

The output of the transformation is a FE scheme (UFE.Setup,UFE.KeyGen,UFE.Enc,UFE.Dec)
that is secure against unbounded key generation queries. The formal description our construction
appears in Figure 6 and we provide an overview below.

Overview. The master public key of our UFE scheme consists of κ + 1 function secret keys
SK1

1, · · · ,SK1
κ+1 (generated using independently sampled {PK1

i ,MSK1
i }i∈[κ+1]) and an initial FE

ciphertext CT1
φ. The initial ciphertext CT1

φ encrypts (φ, S) under the public key PK1
1 where S is a

fresh prefix puncturable key working on κ-bit inputs. The master secret key is set to S. We now
describe the functionality implemented by the κ+ 1 function secret keys given by SK1

1, · · · , SK1
κ+1.

The first κ keys SK1
1, · · · ,SK1

κ implement a function that performs bit-extension and prefix punc-
turing. To be more precise, SK1

i corresponds to a function BitExt1i that takes in (y ∈ {0, 1}i−1, Sy)
where Sy is a PRF key S prefix punctured at y as input and outputs FE encryptions of (y‖0, Sy‖0)
and (y‖1, Sy‖1) under PK1

i+1.
3 The final key SK1

κ+1 corresponds to the output functionality that
on input (x, Sx), outputs an encryption of Sx using x as the public key.4

3In this exposition we ignore the randomness required for computing the encryptions. In the actual construction
the randomness is generated using an independent prefix puncturable PRF key.

4We again use a separate prefix puncturable PRF key to generate the randomness needed for encryption.
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To encrypt a message m, we first sample a public key-secret key pair (pk, sk). We then decrypt
the initial ciphertext CT1

φ (which is part of the master public key) using SK1
1 to obtain an FE

encryption of (0, S0) and (1, S1) under PK1
2. Depending on the first bit of pk we choose either

the left encryption or the right and then repeat the decryption under SK1
2 and so on. We call this

procedure of successively decrypting along the FE-binary tree as Iterated Decryption on a particular
input. Iterated decryption procedure is illustrated in Figure 5. In this case, we iteratively decrypt
the master public key on input pk. Thus, after κ+1 FE decryptions we get a public key encryption
of Spk under pk. We then recover Spk using the secret key sk. The UFE ciphertext is given by
(pk, {PRF(Spk, i‖mi)}i∈[κ]). In the introduction, we had remarked that {PRF(Spk, i‖mi)}i∈[κ] would
serve as the input labels of the a garbled circuit. In the actual construction, we would be deviating
from this intuition as we would be using {PRF(Spk, i‖mi)}i∈[κ] as a key to decrypt encrypted garbled
input labels.

The structure of the secret key SKf corresponding to a function f is similar to that of the

master public key in the sense that it too consists of κ + 1 function secret keys SKf
1 , · · · , SKf

κ+1

and an initial ciphertext CTfφ encrypting the empty string φ and the master secret key S. Looking
ahead, our UFE decryption procedure on a ciphertext (pk, {{PRF(Spk, i‖mi)}i∈[κ]) and a secret key
SKf corresponds to the iterated decryption of the SKf with the pk as input and a subsequent

evaluation of a garbled circuit (more details follow). The first κ secret keys SKf
1 , · · · ,SKf

κ are
exactly same as that of the master public key i.e they implement the bit-extension and the prefix
puncturing functionality. The last functionality takes in Spk as input, garbles Cf where Cf is the
circuit computing f , encrypts the input labels under PRF(Spk, i‖bi) for all i ∈ [κ] and bi ∈ {0, 1}
and outputs the garbled circuit along with the encrypted input labels.5 The decryption procedure
of our scheme obtains the garbled circuit and the encrypted input labels by iterated decryption.
We then decrypt the relevant ciphertexts using PRF(Spk, i‖mi) to obtain the corresponding input
labels. The output is the evaluation of the garbled circuit on the input labels.

Correctness. We first argue that our FE ciphertext is distributed as (pk, {PRF(Spk, i‖mi)}i∈[κ]).
From the correctness of the iterated decryption procedure of the master public key with input pk
(which in turn depends on the correctness of the FE decryption under SK1

1, · · · , SK1
κ+1) we observe

that decrypting CTpk under SK1
κ+1 yields a public key encryption of Spk under public key pk. From

the correctness of public key decryption, we correctly recover Spk. Hence our FE ciphertext is
distributed as (pk, {PRF(Spk, i‖mi)}i∈[κ]).

Now from the correctness of iterated decryption procedure of SKf with pk as input (which in

turn depends on the correctness of the FE decryption under SKf
1 , · · · , SK1

κ+1), we obtain C̃f , ci,bi
where ci,bi ← SK.Enc(PRF(i‖mi), Inpi,bi). It follows from the correctness of SK.Dec we correctly
obtain {Inpi,mi}i∈[κ]. The correctness of our UFE decryption follows from the correctness of garbled
circuit evaluation.

3.1 Security

In this section we prove that our UFE construction described in Figure 6 is selectively secure against
unbounded collusions.

5The randomness required for garbling and encrypting is drawn pseudorandomly using a separate PRF key.
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Figure 5: Example of iterated decryption of public key on input 010 and κ = 3.

Theorem 3.1 Assuming the security of prefix puncturable PRF, single key selective security of FE,
the UFE construction described in Figure 6 is selectively secure against unbounded collusions.

Proof Overview. We present an high level overview of the proof.
In the real world the adversary is given an UFE encryption of the message mb given by

(pk∗, {Li,(mb)i}i∈[κ]) where (pk∗, sk∗) ← PK.KeyGen(1κ) and Li,(mb)i := PRF(Spk∗ , i‖(mb)i). We
wish to indistinguishably change to a hybrid that is independent of the challenge bit b. We would
using the security of garbling scheme to achieve this purpose. To use the security of garbled circuits
we need to do the following:

1. Replace {Li,(mb)i}i∈[κ] with uniformly chosen random strings in the challenge ciphertext.

2. Replace {Li,1−(mb)i}i∈[κ] generated in Output2[Ψf
κ+1, f ] (described in Figure 9) with uniformly

chosen random strings for every functional secret key query f .

3. Use uniformly chosen random tape to generate {ci,bi}i∈[κ],bi∈{0,1} and C̃f in Output2[Ψf
κ+1, f ]

for every functional secret key query f .

4. Replace {ci,1−(mb)i}i∈[κ] to encrypt some junk value say the all zeroes string.

Once the above steps are accomplished it is easy to observe that the adversary gets access to C̃f
and exactly one label (corresponding to bits of mb) for each input wire for every functional secret
key query f . The result now directly follows from the security of garbled circuits. Let us see how
the above steps are accomplished.

The first step of our proof strategy is to replace Spk∗ with an uniformly chosen random string.
We proceed as follows. We start by removing traces of the key Spk∗ from the master public key our
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• UFE.KeyGen(1κ) :

1. Sample S,K1
φ ← {0, 1}κ to serve as keys for prefix puncturable PRF. PPRFS works

on inputs of length κ. PPRFK1
φ

works on inputs of length 2κ.

2. Sample sk11, · · · , sk1κ+1 ← SK.KeyGen(1κ) (where |sk1| = κ) and compute Ψ1
i ←

SK.Enc(sk1i , 0
leni(κ)) for all i ∈ [κ + 1] where leni(·) is a length function that would

be specified later.

3. Sample (PK1
i ,MSK1

i ) ← FE.KeyGen(1κ) for i ∈ [κ + 1]. Compute
SK1

i ← FE.KeyGen(MSK1
i ,BitExt1i [Ψ

1
i ,PK1

i+1]) for all i ∈ [κ] and SK1
κ+1 ←

FE.KeyGen(MSK1
κ+1,Output1[Ψ1

κ+1]) where BitExt1i [Ψ
1
i ,PK1

i+1] is described in Fig-
ure 7 and Output1[Ψ1

κ+1] is described in Figure 8.

4. Compute CT1
φ ← FE.Enc(PK1

1, (φ, S,K
1
φ, 0

κ(κ+1), 0)).

5. Output the master public key PK to be (CT1
φ, {SK1

i }i∈[κ]) and the master secret key
MSK = S.

• UFE.Enc(PK,m) :

1. Sample (pk, sk)← PK.KeyGen(1κ) where |pk| = κ.

2. For i = 1, · · · , κ compute: (CT1
pk[i−1]‖0,CT1

pk[i−1]‖0) ← FE.Dec(SK1
i ,CT1

pk[i−1]
) where

CT1
pk[0]

is defined to be CT1
φ.

3. Compute c := FE.Dec(SK1
κ+1,CTpk) and recover Spk = PK.Dec(sk, c).

4. Compute {Li,mi}i∈[κ] ← PRF(Spk, i‖m) where mi denotes the i-th bit of the message
m.

5. Output (pk, {Li,mi}i∈[κ]).

• UFE.KeyGen(MSK, f) :

1. Sample Kf
φ ← {0, 1}

κ to serve as key for prefix puncturable PRF. PPRF
Kf
φ

works

on inputs of length 2κ.

2. Sample skf1 , · · · , sk
f
κ+1 ← SK.KeyGen(1κ) (where |skf | = κ) and compute Ψf

i ←
SK.Enc(skfi , 0

lenfi (κ)) for all i ∈ [κ+ 1] where lenfi (·) is a length function that would
be specified later.

3. Sample (PKf
i ,MSKf

i )← FE.KeyGen(1κ) for i ∈ [κ+ 1].

4. Compute SKf
i ← FE.KeyGen(MSKf

i ,BitExt1i [Ψ
f
i ,PKf

i+1]) for all i ∈ [κ] and SKf
κ+1 ←

FE.KeyGen(MSKf
κ+1,Output2[Ψf

κ+1, Cf ]) where BitExt1i [Ψ
f
i ,PKf

i+1] is described in

Figure 7, Cf is the description of the circuit computing f and Output2[Ψf
κ+1, Cf ]

is described in Figure 9.

5. Compute CTfφ ← FE.Enc(PKf
1 , (φ, S,K

f
φ , 0

κ(κ+1), 0)).

6. Output SKf = (CTfφ, {SKf
i }i∈[κ+1]).

Figure 6: Transformation from Single key to Unbounded Key Secure19



• UFE.Dec(SKf ,CT) :

1. Parse CT as (pk, {Li,mi}i∈[κ])
2. For i = 1, · · · , κ compute

(CTf(pk)[i−1]‖0
,CTf(pk)[i−1]‖1

)← FE.Dec(SKi,CTf(pk)[i−1]
)

where CTf(pk)[0]
is defined to be CTfφ.

3. Compute C̃f , {ci,bi}i∈[κ],bi∈{0,1} ← FE.Dec(SKκ+1,CTfpk). Decrypt ci,mi using Li,mi
as the key and obtain Inpi,mi .

4. Output Garb.Eval(C̃f , {Inpi,mi}i∈[κ]).

Figure 6: Transformation from Single key to Unbounded Key Secure

Input. x ∈ {0, 1}i−1, Sx, K1
x, (sk11, · · · , sk1κ+1), mode

Constants. Ψ1
i , PK1

i+1

• If mode = 0

1. Compute Sx‖b ← PrefixPunc(Sx, b), K1
x‖b ← PrefixPunc(K1

x, b‖0) and K ′1x‖b ←
PrefixPunc(K1

x, b‖1) for b ∈ {0, 1}.
2. Output {FE.Enc(PK1

i+1, x‖b, Sx‖b,K1
x‖b, sk1,mode;K ′1x‖b)}b∈{0,1}.

• Else,

1. Recover (x‖0,CT1
x‖0) and (x‖1,CT1

x‖1) from SK.Dec(sk1i ,Ψ
1
i ) and output

{CT1
x‖0,CT1

x‖1}.

Figure 7: BitExt1i [Ψ
1
i ,PK1

i+1]

Input. x ∈ {0, 1}κ, Sx, K1
x, (sk11, · · · , sk1κ+1), mode

Constants. Ψ1
κ+1

• If mode = 0, output PK.Enc(x, Sx;K1
x).

• Else, recover (x,Valx) from SK.Dec(sk1κ+1,Ψ
1
κ+1) and output Valx.

Figure 8: Output1[Ψ1
κ+1]
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Input. x where x ∈ {0, 1}κ, Sx, Kf
x , (skf1 , · · · , sk

f
κ+1), mode

Constants. Ψf
κ+1, Cf

• If mode = 0,

1. Compute (C̃f , {Inpi,bi}i∈[κ],bi∈{0,1}) = Garb.Circuit(Cf ;Kf
x‖0‖0).

2. Compute Li,bi ← PRF(Spk, i‖bi) for all i ∈ [κ] and bi ∈ {0, 1}.

3. Compute ci,bi ← SK.Enc(Li,bi , Inpi,bi ;K
f
x‖1‖i‖bi) for all i ∈ [κ] and bi ∈ {0, 1}. For

each bit i ∈ [κ], permute ci,0 and ci,1 as per the bits of Kf
x‖0‖1.

4. Output C̃f , {ci,bi}i∈[κ],bi∈{0,1}.

• Else, recover (x,Valx) from SK.Dec(skfκ+1,Ψ
f
κ+1) and output Valx.

Figure 9: Output2[Ψf
κ+1, f ]

UFE scheme. Concretely, we tunnel through the path from the root to the leaf labeled pk∗ in the
master public key. This ensures that the master public key does not contain Sz where z is a strict
prefix of pk∗. But the final value that is output by the master public key on input pk∗ is a public
key encryption of Spk∗ under pk∗. We now rely on the semantic security of public key encryption
scheme (under pk∗) to change Spk∗ (in the encryption) to some junk value, say the all zeroes string.
At this stage the master public key is devoid of any trace of Spk∗ or Sz where z is a prefix of pk∗.

Now we tunnel through the path labeled pk∗ in each of the function secret keys SKf to remove
traces of Spk∗ . Once this is done Spk∗ is used only in the generation of the challenge ciphertext
and in the computation of the garbled circuit in each of SKf on input pk∗. We rely on the
pseudorandomness at prefix punctured point property of the PRF to replace Spk∗ with a random
string. This also means that we can replace Li,bi = PRF(Spk∗ , i‖bi) for all i ∈ [κ], bi ∈ {0, 1} used
in generating the challenge ciphertext and in generating the encrypted input labels in each of the
functional secret key to uniformly chosen random strings. Thus, we have accomplished Steps 1,2.

While tunneling through the root to leaf pk∗ path in each of the functional secret keys SKf

we additionally remove traces of Kf
pk∗ along with Spk∗ . This means that we can rely on pseudo-

randomness at prefix punctured property of PRF to replace the random coins used in generating
{ci,bi}i∈[κ],bi∈{0,1} and C̃f in every functional secret key with uniformly chosen ones. Thus, Step 3
is accomplished. We now rely on the semantic security of the encryption under Li,(1−mb)i to change
encryptions of the actual input label inpi,(1−(mb)i) to encryptions of some junk value say the all
zeroes string thus accomplishing Step 4.

Proof of Theorem 3.1 We first set up some notation.

Notation. Let Prefixes(x) denote the set of all prefixes (κ in number) of the string x. Formally,

Prefixes(x) := {x[i]}i∈[κ]
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Let Siblings(x) denote the set of siblings of all prefixes of x. Formally,

Siblings(x) := {y[i−1]‖(1− yi) : ∀y ∈ Prefixes(x), i ∈ [κ] where |y| = i}

The proof proceeds via a hybrid argument.

• Hyb0 : In this hybrid the adversary is given the challenge ciphertext encrypting the mes-
sage mb. To be more precise, the challenge ciphertext is given by (pk∗, {Li,(mb)i}i∈[κ]) where
(pk∗, sk∗) ← PK.KeyGen(1κ) and Li,(mb)i ← PRF(Spk∗ , i‖(mb)i) for all i ∈ [κ]. All key gener-
ation queries are generated as per the construction described in Figure 6.

• Hyb1 : In this hybrid we are going to “tunnel” through the path from root to the leaf node
labeled pk∗ in the master public key. This step is realized through a couple of intermediate
hybrids.

Let P1 := Prefixes(pk∗) and Q1 = Siblings(pk∗) 4 P1. For every z ∈ P1 ∪ Q1 let CT1
z be

the result of the iterated decryption procedure on the master public key with z as input.
Additionally, let Val1pk∗ be the output of the decryption of CT1

pk∗ under SK1
κ+1. Let

stri = ‖z∈P1∪Q1∧|z|=i(z,CTz)

strκ+1 = (pk∗,Val1pk∗)

We set leni(κ) to be the maximum length of stri over all choices of pk∗. We pad stri to this
size.

– Hyb0,1 : In this hybrid we are going to change how Ψ1
i is generated. Instead of encrypting

the all zeroes string of length leni(κ) we encrypt stri. Indistinguishability follows from
the semantic security of the symmetric key encryption since the keys sk11, · · · , sk1κ+1 are
not needed to simulate Hyb0 or Hyb0,1.

– Hyb0,2 : In this hybrid, we change how CT1
φ is generated. Instead of generating CT1

φ to be

FE.Enc(PK1
1, (φ, S,K

1
φ, 0

κ(κ+1), 0)) we generate it as FE.Enc(PK1
1, (φ, 0

κ, 0κ, (sk11, · · · , sk1κ+1), 1)).
We now argue that Hyb0,2 is indistinguishable from Hyb0,1. Notice that output of

BitExt11[Ψ
1
1,PK1

2] is same on (φ, S,K1
φ, 0

κ(κ+1), 0) and (φ, 0κ, 0κ, (sk11, · · · , sk1κ+1), 1). Also,
the choice of the two messages and the functionality for which the secret key is obtained
do not depend on the public parameters. Hence, it follows from the selective security of
FE scheme under PK1

1 that Hyb0,1 and Hyb0,2 are indistinguishable.

– Hyb0,3 : In this hybrid we are going to tunnel through the paths from the root to the leaf
labeled pk∗. To achieve this we are going to change CTz that is encrypted in Ψ1

1 for every
z ∈ P1. We don’t change the encryption when z ∈ Q1. In particular, we change CT1

z =
FE.Enc(PK1

|z|+1, (z, Sz,K
1
z , 0

κ(κ+1), 0);K ′1z) to FE.Enc(PK1
|z|+1, (z, 0

κ, 0κ, (sk11, · · · , sk1κ+1), 1); rz)
where rz is chosen uniformly at random. Notice that as a result Sz for every z that is a
strict prefix of pk∗ does not appear in the public key of our UFE scheme.

We introduce an ordering of strings in P1. For every string x, y ∈ P1 x ≺ y if and only
if |x| ≤ |y|. This induces a partial ordering of the strings in P1. Notice that x ≺ x as
a result of this ordering. We let Hyb0,2,x to denote the hybrid where for all z ≺ x, CTz
has been changed from FE.Enc(PK1

|z|+1, (z, Sz,K
1
z ,
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0κ(κ+1), 0);K ′1z) to FE.Enc(PK1
|z|+1, (z, 0

κ, 0κ, (sk11, · · · , sk1κ+1), 1); rz). We prove for any

two adjacent strings x, x′ where x′ ≺ x in ordered P1 we prove Hyb0,2,x is indistinguish-
able to Hyb0,2,x′ . Since |P1| ≤ κ we get Hyb0,2 is indistinguishable to Hyb0,2 through a
series a κ hybrids.

∗ Hyb0,2,x′,1: In this hybrid we change CT1
x to FE.Enc(PK1

|x|+1, (x, Sx,K
1
x, 0

κ(κ+1), 0); rx)
where rx is chosen uniformly at random. Notice that for all strings y that are prefixes
of x, CT1

y has already been changed to FE.Enc(PK1
|y|+1, (y, 0

κ, 0κ, (sk11, · · · , sk1κ+1), 1); ry)

because y ≺ x by our ordering. For every y that is a prefix of x, K1
y is not needed

to simulate Hyb0,2,x′ and Hyb0,2,x′,1. It follows from the pseudorandomness at prefix
punctured point property of PRF key K1

φ we have Hyb0,2,x′ is indistinguishable to
Hyb0,2,x′,1. Illustration for this hybrid change is given in Figure 10.

K1
φ

K1
0 K1

0
′ K1

1

K1
10 K1

10
′ K1

11 K1
11
′

K1
1
′

Figure 10: Illustration for Hyb0,2,x′,1 where x′ = 1 and x = 10. The blackened nodes are not
needed for simulation.

∗ Hyb0,2,x′,2 : In this hybrid we change CTx to FE.Enc(PK1
|x|+1, (x, 0

κ, 0κ, (sk11, · · · , sk1κ+1)

, 1); rx). Notice that decrypting FE.Enc(PK1
|x|+1, (x, 0

κ, 0κ, (sk11, · · · , sk1κ+1), 1); rx))

and FE.Enc(PK1
|x|+1, (x, Sx,K

1
x, 0

κ(κ+1), 0); rx) under the secret key SK1
|x|+1 has the

same output due to the choice of Ψ∗1. Also, the choice of the two messages and
the functionality for which the secret key is obtained do not depend on the public
parameters. Hence, it follows from the selective security of FE scheme under PK1

|x|+1

that Hyb0,2,x′,1 and Hyb0,2,x′,2 are indistinguishable.

Notice that Hyb0,2,x′,2 is distributed identically to Hyb0,2,x.

• Hyb2 : In this hybrid we are going to change Valpk∗ encrypted in Ψ∗1. Notice that in Hyb2,
Valpk∗ is set to be an public key encryption of Spk∗ under the public key pk∗ (using pseu-
dorandomly generated random bits). In this hybrid, we are going to change Valpk∗ to be an
public key encryption of all zeroes string (0κ) under pk∗.

– Hyb1,1 : In this hybrid, we generate the randomness used for encrypting Spk∗ under the
public key pk∗ uniformly instead of generating it pseudorandomly using the key K1

pk∗ .

Notice that K1
z for every z that is a prefix of pk∗ is not needed to simulate either Hyb1
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or Hyb1,1. Therefore, from the pseudorandomness at prefix punctured point property of
PRF under key K1

φ, Hyb1 is indistinguishable from Hyb1,1.

– Hyb1,2 : In this hybrid, we change Valpk∗ to be an encryption of 0κ under pk∗. Indis-
tinguishability of Hyb1,1 and Hyb1,2 follows from the semantic security of public key
encryption.

• Hyb3 : In this hybrid we are going to tunnel through the paths from the root to the leaf pk∗

in each function secret key SKf that is queried by the adversary. We explain the details for
a single function key SKf and we can extend to all function secret keys by a standard hybrid
argument. The indistinguishability argument for a single function secret key SKf is similar
to our argument to show indistinguishability between Hyb0 and Hyb1.

Let P2 := Prefixes(pk∗) and Q2 = Siblings(pk∗). For every z ∈ P2 ∪ Q2 let CTfz be the
result of the iterated decryption procedure on the function secret key SKf with z as input.

Additionally, let C̃f , {ci,bi}i∈[κ],bi∈{0,1} be the output of the decryption of CTpk∗ under SKf
κ+1.

Let
strfi = ‖z∈P2∪Q2∧|z|=i(z,CTz)

strfκ+1 = (pk∗, C̃f , {ci,bi}i∈[κ],bi∈{0,1})

We set len′i(κ) to be the maximum length of strfi over all choices of f . We pad strfi to this
size.

– Hyb2,1 : In this hybrid we are going to change how Ψf
i is generated. Instead of encrypting

the all zeroes string of length len′i(κ) we encrypt strfi . Indistinguishability follows from

the semantic security of the symmetric key encryption since the keys skf1 , · · · , sk
f
κ+1 are

not needed to simulate Hyb2 or Hyb2,1..

– Hyb2,2 : In this hybrid, we change how CTfφ is generated. Instead of generating CTfφ to be

FE.Enc(PKf
1 , (φ, S,K

f
φ , 0

κ(κ+1), 0)) we generate it as FE.Enc(PKf
1 , (φ, 0

κ, 0κ, (skf1 , · · · , sk
f
κ+1)

, 1)). We now argue that Hyb2,2 is indistinguishable from Hyb2,1. Notice that output

of BitExtf1 [Ψ∗f ,PKf
2 ] is same on (φ, S,Kf

φ , 0
κ(κ+1), 0) and (φ, 0κ, 0κ, (skf1 , · · · , sk

f
κ+1), 1).

Also, the choice of the two messages and the functionality for which the secret key is
obtained do not depend on the public parameters. Hence, it follows from the selective
security of FE scheme under PKf

1 that Hyb2,1 and Hyb2,2 are indistinguishable.

– Hyb2,3 : In this hybrid we are going to tunnel through the paths from the root to the leaf

labeled pk∗ in SKf . To achieve this we are going to change CTz that is encrypted in Ψf
i

for every z ∈ P2. We don’t change the encryption when z ∈ Q2. In particular, we change
CTfz = FE.Enc(PKf

|z|+1, (z, Sz,K
f
z , 0κ(κ+1), 0);K ′fz ) to FE.Enc(PKf

|z|+1, (z, 0
κ, 0κ, (skf1 , · · · ,

skfκ+1), 1); rz) where rz is chosen uniformly at random.

We introduce an ordering of strings in P2. For every string x, y ∈ P2 x ≺ y if and only if
|x| ≤ |y|. This induces a partial ordering of the strings in P2. We let Hyb2,2,x to denote

the hybrid where for all z ≺ x, CTz has been changed from FE.Enc(PKf
|z|+1, (z, Sz,K

f
z ,

0κ(κ+1), 0);K ′fz ) to FE.Enc(PKf
|z|+1, (z, 0

κ, 0κ, (skf1 , · · · , sk
f
κ+1), 1); rz). We prove for any
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two adjacent strings x, x′ where x′ ≺ x in ordered P2 we prove Hyb2,2,x is indistinguish-
able to Hyb2,2,x′ . Since |P1| ≤ κ we get Hyb2,2 is indistinguishable to Hyb2,3 through a
series a κ hybrids.

∗ Hyb2,2,x′,1: In this hybrid we change CTfx to FE.Enc(PKf
|x|+1, (x, Sx,K

f
x , 0κ(κ+1), 0); rx)

when |x| ≤ κ where rx is chosen uniformly at random. Notice that for all strings y

that are prefixes of x, CTfy has already been changed to FE.Enc(PKf
|y|+1, (y, 0

κ, 0κ,

(skf1 , · · · , sk
f
κ+1), 1); ry) because y ≺ x by our ordering. For every y that is a prefix

of x, Kf
y is not needed to simulate Hyb2,2,x′ and Hyb2,2,x′,1. It follows from the pseu-

dorandomness at prefix punctured point property of PRF key Kf
φ we have Hyb2,2,x′

is indistinguishable to Hyb2,2,x′,1.

∗ Hyb2,2,x′,2 : In this hybrid we change CTfx to FE.Enc(PKf
|x|+1, (x, 0

κ, 0κ, (skf1 , · · · , sk
f
κ+1),

1); rx). Notice that decrypting FE.Enc(PKf
|x|+1, (x, 0

κ, 0κ, (skf1 , · · · , sk
f
κ+1), 1); rx))

and FE.Enc(PKf
|x|+1, (x, Sx,K

f
x , 0κ(κ+1), 0); rx) under the secret key SKf

|x|+1 has the

same output due to the choice of Ψ
|x|+1
f . Also, the choice of the two messages and

the functionality for which the secret key is obtained do not depend on the public
parameters. Hence, it follows from the selective security of FE scheme under PKf

|x|+1
that Hyb2,2,x′,1 and Hyb2,2,x′,2 are indistinguishable.

Notice that Hyb2,2,x′,2 is distributed identically to Hyb2,2,x.

• Hyb4 : In this hybrid we are going to change Spk∗ used to generate the challenge ciphertext
to an uniformly chosen random κ-bit string T ∗. We observe that for z that is a prefix of pk∗,
Sz is not needed to simulate either Hyb3 or Hyb4 because we have tunneled through pk∗ in
the master public key and tunneled through the root to the leaf node pk∗ in all the function
secret keys SKf . Hence from the pseudorandomness at prefix punctured point property of
the PRF under the key S, Hyb4 is computationally indistinguishable to Hyb3. Notice that
this also implies from the property of the pseudorandom function that {Li,bi} for every i ∈ [κ]
and for every bi ∈ {0, 1} can be changed to uniformly chosen random strings. This change is
made to challenge ciphertext as well as encryption keys used for generating {ci,bi}i∈[κ],bi∈{0,1}
in Ψf

κ+1 in each functional secret key SKf .

• Hyb5 : In this hybrid we are going to change to change the randomness used for generating gar-
bled circuit and the encryptions ci,bi that are encrypted in Ψf

κ+1 in each of the function secret
keys SKf to uniformly chosen random strings. Observe that since we have tunneled through
pk∗ in each of the function secret keys it follows from pseudorandomness of prefix punctured
point property of the PRF under the key Kf

φ , Hyb5 is computationally indistinguishable to
Hyb6.

• Hyb6 : In this hybrid we are going to change ci,1−(mb)i to encrypting all zeroes string instead

of encrypting Inpi,1−(mb)i . This change is made in Ψf
κ+1 in each of the function secret keys

SKf . Indistinguishablity of Hyb5 and Hyb6 follows from the semantic security of secret key
encryption under Li,1−(mb)i .

• Hyb7 : In this hybrid, we are going to change {Inpi,(mb)i}i∈[κ], C̃f to be output of the simulator

for the garbled circuit. This change is made in Ψf
κ+1 in each of the function secret keys SKf .
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More precisely, we set {Inpi,(mb)i}i∈[κ], C̃f ← Sim(1κ, Cf , f(m0)) (note that f(m0) = f(mb)).
Indistinguishability of Hyb6 and Hyb7 follows from the security of garbled circuits.

In Hyb7 the view of the adversary is independent of the challenge bit b. Hence the advantage that
the adversary has in guessing the bit b is 0 in Hyb7.

4 Efficiency Analysis

In this section we relax the requirement of full compactness from our single-key selectively secure
FE scheme to weakly compact ciphertexts. Parts of the efficiency analysis are taken verbatim from
Bitansky and Vaikuntanathan [BV15].

Recall that a FE scheme with weakly compact ciphertexts has an encryption circuit whose size
grows sub-linearly with the circuit size of functions for which function secret keys are given.

Let F1, F2, · · · , Fκ+1 be the functionalities implemented by the secret keys SKf
1 , · · · , SKf

κ+1.
6

Notice that for any i = {1, · · · , κ}, Fi implements the encryption circuit Ei+1 for the functional
encryption scheme under PKi+1, symmetric decryption circuit and a prefix puncturing circuit.
The size of the functional encryption circuit and the symmetric decryption circuit is bounded by
|Ei+1|.poly(κ) and the size of the prefix puncturing circuit is bounded by poly(κ). Therefore,

|Fi| ≤ |Ei+1|.poly(κ)

From our assumption that the underlying FE scheme is weakly compact we get:

|Ei| ≤ |Fi|1−ε.poly(κ)

Notice that:
|Fκ+1| ≤ |Cf |.poly(κ)

Hence we get:
|Ei| ≤ |Fi|1−ε.poly(κ) ≤ |Ei+1|1−ε.(poly(κ))1−ε.poly(κ)

By recursively enumerating we get:

|Ei| ≤ |Cf |1−ε.poly(κ).

κ+2−i∏
j=1

poly(κ)(1−ε)
j

We observe that:
κ+2−i∏
j=1

poly(κ)(1−ε)
j ≤

∞∏
j=0

poly(κ)(1−ε)
j ≤ (poly(κ))

1
ε

Hence, for all i ∈ [κ+ 1] we get:

|Ei| ≤ |Cf |1−ε.poly(κ)1+
1
ε

which implies efficiency of our underlying construction.

6We restrict our attention to the functional secret keys of our scheme. The analysis of the master public key is
exactly the same.
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