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Abstract. In a recent work, Kim and Barbulescu (CRYPTO 2016) pro-
posed an algorithm, called exTNFS, that improves asymptotic complexity
for the discrete logarithm problems over Fpn in medium prime case, when
the extension degree n = ηκ satisfies η, κ ∈ Z>1 and gcd(η, κ) = 1. Fol-
lowing to this work, Sarkar and Singh (preprint) recently observed that
exTNFS algorithm also admits a variant that applies when n is arbitrary
composite, although their best complexity is slightly larger than that of
Kim and Barbulescu.
In this article, we show that exTNFS algorithm enjoys their best com-
plexity as well for arbitrary composite extension degree n: we show that
the discrete logarithm problem over Fpn for a medium-sized prime p and
n = ηκ, with η and κ > 1 not necessarily coprime, can be solved in time
Lpn(1/3, (48/9)1/3) for a general prime p and Lpn(1/3, (32/9)1/3) for a
special prime p.
The result asserts that one should be careful of choosing parameters in
the pairing-based construction regarding with the best-complexity of the
variant by Kim-Barbulescu whenever the embedding degree is composite.

Keywords: Discrete Logarithm Problem; Number Field Sieve; Finite
Fields; Cryptanalysis

1 Introduction

Discrete logarithm problem (DLP) plays an important role in public-key cryptosyt-
sems since its computational hardness assures the securty of the cryptosystems.
The goal of the DLP over any cyclic group G of order N is to solve an element
a ∈ ZN for given a generator g of G and a random element h uniformly chosen
from G satisfying h = ga. Two practical choices for the group are elliptic curves
and finite fields.

In this article, we focus on algorithms for the DLP over finite fields FQ for a
prime power Q = pn. An interest in this problem is particularly motivated by
pairing-based construction. A pairing is a bilinear map such that E1×E2 → Fpn ,
where E1 and E2 are elliptic curve groups defined over Fp and n is called



embedding degree. The security of the pairing-based cryptosystems relies on the
hardness of the elliptic curve DLP (ECDLP) and the DLP over finite fields.

In particular, algorithms for the DLP over finite fields are on a dramatic
progress in a recent few years. A method based on function field sieve (FFS)
yields a quasi-polynomial time attack on small characteristic fields [2]. On the
other hand, a recent breakthrough on number field sieve (NFS) by Kim and
Barbulescu [7] sets a new asymptotic complexity for a larger characteristic fields.

Recall the usual LQ-notation,

LQ(`, c) = exp
(
(c+ o(1))(logQ)`(log logQ)1−`

)
,

for some constants 0 ≤ ` ≤ 1 and c > 0. We call the characteristic p = LQ(`p, cp)
medium when 1/3 < `p < 2/3 and large when 2/3 < `p ≤ 1. We are interested in
the boundary case when `p = 2/3.

The best complexity of an NFS variant by Kim and Barbulescu, called exTNFS,
is LQ(1/3, (48/9)1/3) for medium characteristic p. The value is obtained when

n = ηκ satisfies η, κ > 1, gcd(η, κ) = 1 and κ =
(

1
121/3

+ o(1)
) ( log(Q)

log log(Q)

)1/3
.

When p is of special prime, e.g. the prime in Barreto-Naehrig curve [4], one
obtains a better complexity, LQ(1/3, (32/9)1/3).

However, their variant cannot be applied to a composite n such that gcd(η, κ) 6=
1, e.g. a prime power. Recently, Sarkar and Singh observed that exTNFS method
can be applied even when n is arbitrary composite [9]. The best complexity of
their variant is achieved by LQ(1/3, (64/9)1/3) when n is a power of 2.

In this paper, we show that the exTNFS actually easily can be extended to
the case when n is arbitrary composite, while maintaining their best complexity.
Precisely, we propose an algorithm that solves the DLP over FQ = Fpn for an

arbitrary composite n = ηκ such that κ =
(

1
121/3

+ o(1)
) ( log(Q)

log log(Q)

)1/3
in time

LQ(1/3, (48/9)1/3). Note that our variant already has a better complexity than
Sarkar-Singh’s variant, furthermore, the same complexity holds even when n is
not a power of 2. As before, if p is a special prime, then the complexity reduces
to LQ(1/3, (32/9)1/3).

2 Extended TNFS

2.1 Setting

Throughout this paper, we target fields FQ with Q = pn where n = ηκ such that
η, κ 6= 1 and the characteristic p is medium or large, i.e. `p > 1/3. Unlike the
exTNFS by Kim and Barbulescu [7], we don’t require the coprimality condition
of η and κ.

A main idea of our work with them is that we take the coefficients of f(x)
and g(x) fully from R not restricted to Z. It makes us possible to remove the gcd
condition on the factors of the extension degree n. A similar approach is recently
discussed by Sarkar and Singh [9].
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We briefly review how to select polynomials in exTNFS algorithm. Basically,
we follow the commutative diagram by Kim and Barbulescu (Fig. 1). First we
select a polynomial h(t) ∈ Z[t] of degree η which is irreducible modulo p. We
put R := Z[t]/h(t) = Z(ι) and note that R/pR ' Fpη . Then we select two
polynomials f and g with coefficients in R whose reductions modulo p have a
common factor k(x) of degree κ which is irreducible over Fpη .

The conditions on f , g and h yield two ring homomorphisms from R[x]/f(x)
(resp. R[x]/g(x)) to (R/pR)/k(x) = Fpηκ : in order to compute the reduction of a
polynomial in R[x] modulo p then modulo k(x) one can start by reducing modulo
f (resp. g) and continue by reducing modulo p and then modulo k(x). The result
is the same if we use f as when we use g. Thus one has the commutative diagram
in Figure 1 which is a generalization of the classical diagram of NFS.

R[x]

Kf ⊃ R[x]/〈f(x)〉 R[x]/〈g(x)〉 ⊂ Kg

(R/pR)[x]/〈k(x)〉
mod p

mod k(x)

mod p

mod k(x)

Fig. 1: Commutative diagram of exTNFS. We can choose f and g to be irreducible
polynomials over R such that k = gcd(f, g) mod p is irreducible over R/pR = Fpη .

After the polynomial selection, the exTNFS algorithm proceeds as all the
variants of NFS, following the same steps: relations collection, linear algebra and
individual logarithm. Most of these steps are very similar to the TNFS algorithms
as we shall explain below.

2.2 Detailed Descriptions

Polynomial Selection

Choice of h We have to select a polynomial h(t) ∈ Z[x] of degree η which is
irreducible modulo p and whose coefficients are as small as possible. As in TNFS
we try random polynomials h with small coefficients and factor them in Fp[t]
to test irreducibility. Heuristically, one succeeds after η trials and since η ≤ 3η

we expect to find h such that ‖h‖∞ = 1. For a more rigorous description on the
existence of such polynomials one can refer to [3].

Next we select f and g in R[x] which have a common factor k(x) modulo
p of degree κ which remains irreducible over Fpη = R/pR. We choose such
polynomials based on a generalized Conjugation method. In a recent work [9],
Sarkar and Singh considered a generalization of gJL method but a generalization
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of Conjugation method and the case of special prime were not discussed. As
exTNFS with Conj provides a better complexity than exTNFS with gJL, our
approach is superior to Sarkar and Singh’s variant using generalized gJL method.

Generalized Conjugation method We describe a polynomial selection method
called generalized Conjugation method (gConj method). It generalizes the Con-
jugation method described in [7,1]. First, one chooses two bivariate polynomials
g1(t, x) and g0(t, x) in Z[t, x] of form

g1(t, x) = g1,0(t) + g1,1(t)x+ · · ·+ g1,κ−1(t)xκ−1

and
g0(t, x) = g0,0(t) + g0,1(t)x+ · · ·+ g0,κ(t)xκ,

where gi,j(t) ∈ Z[t] are polynomials with small coefficients in Z and of degree less
than or equal to η−1. Note that if ι denotes a root of h(t) over the algebraic closure
of Fp, then g0(ι, x) and g1(ι, x) are polynomials over Fpη = Fp(ι) = Fp[t]/h(t) (in
this paper, we abuse the notation of ι for a root of h both in C and algebraic
closure of Fp).

Next one chooses a quadratic, monic, irreducible polynomial µ(x) ∈ Z[x]
with small coefficients. If µ(x) has a root δ modulo p and g0(ι, x) + δg1(ι, x) is
irreducible over Fpη , then set k(x) = g0(ι, x) + δg1(ι, x) ∈ Fpη [x]. Otherwise, one
repeats the above steps until such g1, g0, and δ are found. Once it has been
done, find u and v such that δ ≡ u/v (mod p) and u, v ≤ O(

√
p) using rational

reconstruction. Finally, we set f(t, x) = ResY (µ(Y ), g0(t, x) + Y g1(t, x)) and
g(t, x) = vg0(t, x) + ug1(t, x). By construction we have

– degx(f) = 2κ and ‖f‖∞ = max{fi,j} = O(1);

– degx(g) = κ and ‖g‖∞ = max{gi,j} = O(
√
p) = O(Q

1
2ηκ ).

The bound on ‖f‖∞ depends on the number of polynomials g0 +δg1 tested before
we find one which is irreducible over Fpη . Heuristically this happens on average
after κ trials. Since there are 32ηκ > κ choices of g0(t, x) and g1(t, x) of norm
1 (here, the norm means the maximum size of its integer coefficients) we have
‖f‖∞ = O(1).

We give some examples in the followings.

Example 1. We target a field Fp4 for p ≡ 7 mod 8 prime. For example, we take
p = 1000010903. If we choose h(t) = t2 + 1 then h mod p is irreducible over
Fp. Consider R = Z(ι) = Z[t]/h(t) and Fp2 = Fp(ι) = Fp[t]/h(t). Choose an
irreducible polynomial µ(x) = x2 − 2 ∈ Z[x] with small coefficients. It has a
root

√
2 = 219983819 ∈ Fp. We take k(x) = (x2 + ι) +

√
2x ∈ Fp2 [x] and

f(x) = (x2 + ι+
√

2x)(x2 + ι−
√

2x) = x4 + (2ι− 2)x2 + 1 ∈ R[x]. Then we find
u, v ∈ Z such that u/v ≡

√
2 mod p where their order are of

√
p. Now we take

g(x) = v(x2 + ι) + ux = 25834(x2 − ι + 2) + 18297 ∈ R[x]. One easily checks
that f and g are irreducible over R and k is irreducible over Fp2 so that they are
suitable for exTNFS algorithm.
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Example 2. Now we target a field Fp9 . Choose an irreducible polynomial h(t) =
t3 + t + 1 ∈ Z[t] such that it still remains prime modulo p. Again, we take
p = 1000010903 for example. Choose h(t) = t3 + t + 1 ∈ Z[t] which remains
irreducible modulo p. Let R = Z(ι) = Z[t]/h(t) and Fp3 = Fp(ι) = Fp[t]/h(t).

We set µ(x) = x2 − 3. Compute u and v such that u/v ≡
√

3 mod p. Then the
polynomials k(x) = (x3 + ι) +

√
3x ∈ Fp3 [x], f(x) = (x3 + ι)2 − 3x2 ∈ R[x] and

g(x) = v(x3 + ι) + ux ∈ R[x] satisfy the conditions of polynomial selection for
exTNFS algorithm.

Algorithm 1 Polynomial selection with the generalized Conjugation
method (gConj)

Input: p prime and n = ηκ integer such that η, κ > 1
Output: f, g, k, h with h ∈ Z[t] irreducible of degree η, and f, g ∈ R[x] irreducible over

R = Z[t]/hZ[t], and k = gcd(f mod p, g mod p) in Fpη = Fp[t]/h(t) irreducible of
degree κ

1: Choose h ∈ Z[t], irreducible of degree η such that p is inert in Q[t]/h(t)
2: repeat
3: Select g0,0(t), . . . , g0,κ−1(t), polynomials of degree ≤ η − 1 with small integer

coefficients;
4: Select g1,0(t), . . . , g1,κ′−1(t), polynomials of degree ≤ η−1, and g0,κ′(t), a constant

polynomial with small integer coefficients, for an integer κ′ < κ;

5: Set g0(t, x) = xκ +
∑κ−1
i=0 g0,i(t)x

i and g1(t, x) =
∑κ′

i=0 g1,i(t)x
i;

6: Select µ(x) a quadratic, monic, irreducible polynomial over Z with small coeffi-
cients;

7: until µ(x) has a root δ modulo p and k(x) = g0(ι, x) + δg1(ι, x) is irreducible in
Fpη [x];

8: (u, v)← a rational reconstruction of δ;
9: f ← ResY (µ(Y ), g0(ι, x) + Y g1(ι, x));

10: g ← vg0(ι, x) + ug1(ι, x);
11: return (f, g, k, h)

Relation Collection The elements of R = Z[t]/h(t) can be represented uniquely
as polynomials of Z[t] of degree less than deg h.

We proceed as in TNFS and enumerate all the pairs (a, b) ∈ Z[t]2 of degree
≤ η − 1 such that ‖a‖∞, ‖b‖∞ ≤ A for a parameter A to be determined. We say
that we obtain a relation for the pair (a, b) if

Nf (a, b) := Rest(Resx(a(t)− b(t)x, f(x)), h(t)) and
Ng(a, b) := Rest(Resx(a(t)− b(t)x, g(x)), h(t))

are B-smooth for a parameter B to be determined (an integer is B-smooth if all
its prime factors are less than B). If ι denotes a root of h in R our enumeration
is equivalent to putting linear polynomials a(ι)− b(ι)x in the top of the diagram
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of Figure 1. One can generalize exTNFS to the case where one puts non-linear
polynomials r(x) ∈ R[x] of degree τ − 1 in the diagram.

For each pair (a, b) one obtains a linear equation where the unknowns are
logarithms of elements of the factor base as in the classical variant of NFS for
discrete logarithms. Other than the polynomial selection step, our algorithm
is basically the same with the description of the exTNFS algorithm. For full
description of the algorithm, refer to [7].

3 Complexity

From now on, we often abuse the notation for a bivariate polynomial f(t, x)
in Z[t, x] and a polynomial f(x) = f(ι, x) in R[x] for R = Z[ι]. Unless stated,
deg(f) denotes both the degree of f(x) ∈ R[x] and the degree of f(t, x) ∈ Z[t, x]
with respect to x. The norm of f(x) ∈ R[x], denoted by ‖f‖∞, is defined by the
maximum of the absolute value of the integer coefficients of f(t, x) where f is
considered as f(x) = f(ι, x) ∈ R[x].

We need the following lemma that can be found in [7, Lemma 2].

Lemma 1 ([7], Lemma 2.). Let h be an irreducible polynomial over Z of
degree η and f be an irreducible polynomial over Z[ι] of degree deg(f). Let ι
(resp. α) be a root of h (resp. f) in its number field and set Kf := Q(ι, α). Let
A > 0 be a real number and T an integer such that 2 ≤ T ≤ deg(f). For each
i = 0, . . . ,deg(f) − 1, let ai(t) ∈ Z[t] be polynomials of degree ≤ η − 1 with
‖ai‖∞ ≤ A.

1. We have

∣∣NKf/Q( T−1∑
i=0

ai(ι)α
i
)∣∣ < Aη deg(f)‖f‖(T−1)η∞ ‖h‖(T+deg(f)−1)(η−1)

∞ D(η,deg(f)),

where D(η, κ) =
(
(2κ− 1)(η − 1) + 1

)η/2
(η + 1)(2κ−1)(η−1)/2

(
(2κ− 1)!η2κ

)η
.

2. Assume in addition that ‖h‖∞ is bounded by an absolute constant H and
that p = LQ(`p, c) for some `p > 1/3 and c > 0. Then

Nf (a, b) ≤ Edeg(f)‖f‖η∞LQ(2/3, o(1)), (1)

where E = Aη

The above formula remains the same when we restrict the coefficients of f to be
integers.

Proof. The proof can be found in [7].
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3.1 exTNFS-gConj

We propose here a variant of NFS which combines exTNFS with generalized
Conjugation method of polynomial selection. Since our polynomial selection is
done over R not Z, we can work with n = ηκ even when gcd(η, κ) 6= 1. As we
shall observe, the bound of the norms remains the same with exTNFS-Conj. It
yields the same complexity as before.

Theorem 1 (exTNFS with gConj method). (under the classical NFS heuris-
tics) If Q = pn is a prime power such that

– p = LQ(`p, cp) with 1/3 < `p ≤ 2/3;

– n = ηκ such that η, κ 6= 1 and κ =
(

1
121/3

+ o(1)
) ( log(Q)

log log(Q)

)1/3
,

then the discrete logarithm over FQ can be solved in LQ(1/3, (48/9)1/3).

Proof. Evaluating the values coming from the Conjugation method (Section 2.2)
in Equation (1), we have

|Nf (a, b)| < E2κLQ(2/3, o(1)), (2)

|Ng(a, b)| < Eκ(pκη)1/(2κ)LQ(2/3, o(1)). (3)

When we combine Equations (2) and (3) we obtain

|Nf (a, b)| · |Ng(a, b)| < E3κQ(1+o(1))/(2κ).

But this is Equation (5) in [1] when τ = 2 (the parameter τ is written as t
in [1], the number of coefficients of the sieving polynomial r). The rest of the
computations are identical as in point 3. of Theorem 1 in [1], so

complexity(exTNFS-gConj) = LQ(1/3, (48/9)1/3).

4 Variants

4.1 The case when p has a special form (SexTNFS)

A generalized polynomial selection method also admits a variant for special prime.
It includes the primes that are used for pairing-based construction. The previous
SexTNFS by Kim and Barbulescu cannot be applied to pairing-friendly fields
with prime power embedding degree, such as Kachisa-Schaefer-Scott curve [6]
p = (u10 + 2u9 + 5u8 + 48u6 + 152u5 + 240u4 + 625u2 + 2398u+ 3125)/980 of
embedding degree 16. For a given integer d, an integer p is d-SNFS if there exists
an integer u and a polynomial Π(x) with integer coefficients so that

p = Π(u),

degΠ = d and ‖Π‖∞ is bounded by an absolute constant.

We consider the case when n = ηκ, gcd(η, κ) = 1 with κ = o

((
logQ

log logQ

)1/3)
and p is d-SNFS. In this case our exTNFS selects h, f and g so that
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– h is a polynomial over Z and irreducible modulo p, deg h = η and ‖h‖∞ =
O(1);

– f and g are two polynomials with coefficients from R = Z[ι], have a common
factor k(x) modulo p which is irreducible over R/pR = Fpη = F(ι) of degree κ.

We choose such polynomials using the method of Joux and Pierrot [5]. Find
a bivariate polynomial S of degree κ− 1 w.r.t. x such that

S(t, x) = S0(t) + S1(t)x+ · · ·+ Sκ−1(t)xκ−1 ∈ Z[t, x],

where Si(t)’s have their coefficients in {−1, 0, 1} and are of degree ≤ η − 1. We
further require that k(ι, x) = xκ + S(ι, x) − u is irreducible over Fpη modulo
p. Since the proportion of irreducible polynomials in Fq (q: a prime power) of
degree κ is 1/κ and there are 3ηκ choices we expect this step to succeed. Then
we set {

g = xκ + S(ι, x)− u
f = Π(xκ + S(ι, x)).

If f is not irreducible over R[x], which happens with small probability, start
over. Note that g is irreducible modulo p and that f is a multiple of g modulo
p. More precisely, as in [5], we choose S(t, x) so that the number of its terms is
approximately O(log n). Since 3logn > κ, this allows us enough chance to get an
irreducible polynomial g. The size of the largest integer coefficient of f comes
from the part S(t, x)d and it is bounded by σd = O

(
(log n)d

)
, where σ denotes

the number of the terms in S(t, x). By construction we have:

– deg(g) = κ and ‖g‖∞ = u = p1/d;

– deg(f) = κd and ‖f‖∞ = O((log n)d).

We inject these values in Equations (1) and obtain

|Nf (a, b)| ≤ EκdLQ(2/3, o(1))

|Ng(a, b)| ≤ EκP 1/dLQ(2/3, o(1)),

where E := Aη and P := |R/pR| = pη. We recognize the size of the norms in the
analysis by Joux and Pierrot [5, Section 6.3.], so we obtain the same complexity
as in their paper, and we proved the following:

Theorem 2 (SexTNFS with arbitrary composite n). If Q = pn is a prime
power such that

– p is d-SNFS prime and p = LQ(`p, cp) with 1/3 < `p;

– n = ηκ such that η, κ 6= 1;

then the discrete logarithm over FQ can be solved in LQ(1/3, (32/9)1/3).
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4.2 The multiple polynomial variants (MexTNFS-gConj)

One can also accelerate the complexity of exTNFS with generalized Conjugation
method using multiple polynomial variants. The description is similar to the
previous multiple variant of NFS: choose a polynomial µ(x) ∈ Z[x], that is
irreducible, quadratic, has small coefficients, and has a root δ modulo p. As
before, choose k = g0 + δg1 ∈ Fpη [x] and set f = ResY (µ(Y ), g0 + Y g1) ∈ R[x],
where g0 and g1 are polynomials in R[x]. This time, we find two pairs of integers
(u, v) and (u′, v′) using rational reconstrucion such that

δ ≡ u/v ≡ u′/v′ mod p,

where we require (u, v) and (u′, v′) are linearly independent over Q and the
integers u, v, u′, v′ are all of the size of

√
p.

Next we set f1 = f , f2 = vg0 + ug1 and f3 = v′g0 + u′g1 and select other
V − 3 irreducible polynomials fi := µif2 + νif3 where µi =

∑η−1
j=0 µi,jι

j and

νi =
∑η−1
j=0 νi,jι

j are elements of R = Z[t]/hZ[t] such that ‖µi‖∞, ‖νi‖∞ ≤ V
1
2η

where V = LQ(1/3, cv) is a parameter which will be selected later. Denote αi a
root of fi for i = 1, 2, . . . , V .

By construction, we have:

– deg(f1) = 2κ and ‖f1‖∞ = O(1);

– deg(fi) = κ and ‖fi‖∞ = V
1
2η (pηκ)1/(2κ) for 2 ≤ i ≤ V .

As before, evaluating these values into Equation (1), we obtain:

|Nf1(a, b)| < E2κLQ(2/3, o(1))

|Nfi(a, b)| < Eκ(pκη)
1
2κLQ(2/3, o(1)) for 2 ≤ i ≤ V.

We emphasize that
(
V 1/(2η)

)η
= V 1/2 = LQ(2/3, o(1)).

Then, one can proceed the computation identical to [8]. When P = pη =

LQ(2/3, cP ) such that cP > ( 7+2
√
13

6 )1/3 and τ is the number of coefficients of
the enumerated polynomials r, then the complexity obtained is LQ(1/3, C(τ, cP ))
where

C(τ, cP ) =
2

cP τ
+

√
20

9(cP τ)2
+

2

3
cP (τ − 1).

The best case is when cP = ( 56+24
√
6

12 )1/3 and τ = 2 (linear polynomials):

complexity(best case of MexTNFS-gConj) = LQ

1/3,
3 +

√
3(11 + 4

√
6)(

18(7 + 3
√

6)
)1/3

 ,

where the second constant being approximated by 1.71.
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