
Secure Outsourcing of Circuit Manufacturing

Giuseppe Ateniese1, Aggelos Kiayias2, Bernardo Magri3, Yiannis Tselekounis4, and
Daniele Venturi5

1Stevens Institute of Technology
2University of Edinburgh

3Sapienza University of Rome
4University of Edinburgh

5University of Trento

September 15, 2016

Abstract

The fabrication process of integrated circuits (ICs) is complex and requires the use of
off-shore foundries to lower the costs and to have access to leading-edge manufacturing
facilities. Such an outsourcing trend leaves the possibility of inserting malicious circuitry
(a.k.a. hardware Trojans) during the fabrication process, causing serious security issues.
Hardware Trojans are very hard and expensive to detect and can disrupt the entire circuit
or covertly leak sensitive information.

In this paper, we propose a formal model for assessing the security of ICs whose fabri-
cation has been outsourced to an untrusted off-shore manufacturer. We assume that the IC
specification and design are trusted but the fabrication facility(ies) may be untrusted. Our
objective is to stop Trojans from releasing sensitive information to the outside while still
using its circuitry for day-to-day operations.

We also provide two different methodologies for constructing compilers relying on verifi-
able computation (VC) schemes and secure multiparty computation (MPC) protocols with
certain properties. Suitable VC schemes, with the properties we require, were recently con-
structed, e.g., by Parno et al. (Oakland ’13), and by Fiore, Gennaro, and Pastro (CCS ’14).
Similarly, many MPC protocols readily comply (or can be easily adapted to comply) with
our requirements.

By allowing manufacturers to use off-shore fabrication facilities, we ensure a high degree
of competition among suppliers, thus providing lower cost without hindering innovation or
access to leading-edge microelectronics.
Keywords: hardware Trojans, circuit compilers, fabless manufacturing, verifiable compu-
tation.

Contents

1 Introduction 1
1.1 Background 1
1.2 Our Contributions 2
1.3 Related Work 4

2 Preliminaries 6
2.1 Notation 6
2.2 Circuits 6

3 Secure Circuit Fabrication 7
3.1 Security 8
3.2 Undetectability 9

4 Compilers based on VC 10
4.1 Prelude: Verifiable Computation 10
4.2 First Compiler 12
4.3 Second Compiler 17
4.4 Concrete Instantiations 21

5 Compiler based on MPC 22
5.1 MPC in the Client-Server Model 22
5.2 The Compiler 23
5.3 Concrete Instantiations 26

6 Conclusion and Open Problems 26

1 Introduction

1.1 Background

The fabrication process adopted by the semiconductor industry is fundamentally global, involv-
ing several parties that may not be trusted. As a result, integrated circuits (ICs) are vulnerable
to so-called hardware Trojans that can compromise or disable critical systems, or covertly leak
sensitive information [53, 21, 9]. Analogously to a software Trojan, a hardware Trojan is a
back-door deliberately added to the circuit to disrupt its operation or disable it when certain
events occur. A Trojan can be added to the circuit during the design phase, by some malicious
designer, or more often during the manufacturing phase, by some malicious off-shore fabrication
facility. A hardware Trojan’s objectives may be to modify the functionality of the circuit (e.g.,
in order to compromise or disable critical systems), modify its specification (e.g., by changing
its energy consumption), covertly leak sensitive information (e.g., from a secret memory), or
simply disable the entire circuit when instructed to do so [7]. Once the Trojan is inserted into
the circuit it can stay activated the entire time, or it can be “triggered” by some event such as
a special input to the circuit.

Reliably detecting compromised circuit components through testing and reverse engineering
appears to be an impossible task given our current technology [15]. Indeed, all non-destructive
testing techniques can easily be circumvented by properly obfuscating embedded Trojans. The
U.S. military recognized this threat and started two programs, Trust and IRIS, with the intent
of developing techniques and metrics to certify ICs going into weapon systems. The main
concern is that advanced weapons may appear to work properly but then switch off in combat
or when triggered by some special events. Another stated concern is information leakage, where
a malicious component is programmed to leak sensitive information [66].

The U.S. military however currently obtains trusted chips through the DOD Trusted Foundry
program which is currently managed by the NSA’s Trusted Access Program Office (TAPO).
Within this program, a trusted design center and foundry are established through an exclu-
sive partnership with IBM for secure semiconductor fabrication and ASIC services, along with
the involvement of several Trusted Suppliers which are accredited by an accreditation author-
ity (DMEA). The intent of the Trusted Foundry program is to provide national security and
defense programs with access to ICs from trusted sources. However, a recent report by the
U.S. Government Accountability Office (GAO) [55], released in April 2015, found that even
though the Trusted Foundry program started in 2004, IBM remained the sole-source supplier
for leading-edge technologies meeting the criteria put forth by DOD. GAO’s report highlights

1

two main issues: First, it notices that IBM sold its microelectronics fabrication business to a
foreign-owned entity (GlobalFoundries). Second, relying on a single source supplier for defense
microelectronics hinders competition and thus innovation in this critical area.

In this paper, we propose a new approach to the untrusted fabrication problem. We assume
that the IC specification and design are trusted but the fabrication facility is not. Rather
than testing or reverse engineering the IC hardware received, we employ it in a controlled
environment and continuously verify its operations. Our approach makes sense as long as the
controlled environment can be: (i) made cheaply, and (ii) run efficiently. We show how to reach
these two goals whenever the main objective is to prevent hardware Trojans from releasing
sensitive information.

By allowing manufacturers to use off-shore fabrication facilities, we ensure a high degree
of competition among suppliers, thus providing lower cost, improved innovation, and access to
leading-edge microelectronics.

1.2 Our Contributions

We put forward a formal framework for assessing security of a circuit whose production has been,
in part, outsourced to a set of manufacturers that are not trusted. With such a framework
in hand, we give two design methodologies. Our first methodology borrows ideas from the
setting of verifiable computing (see, e.g., [37]), while the second one relies on secure multiparty
computation (see, e.g., [40]) in the client-server model [8]. A more detailed explanation of our
main contributions follows below.

Secure circuit fabrication. Let Γ be the original circuit to be produced. Instead of pro-
ducing Γ directly, we first “compile” it into a different circuit Γ̂ using an efficient, possibly
randomized, procedure Φ that we call an outsourcing compiler. The compiler Φ takes as input
a description of Γ and returns a description of Γ̂, together with some auxiliary information
specifying how Γ̂ can be divided into sub-components, and which of these components can be
produced off-shore; the remaining components will be instead built in-house. After all com-
ponents have been produced, the circuit designer re-assembles the circuit Γ̂ (by combining the
outsourced components and the components built in-house), which is then initialized with some
initial secret memory M1, and used in the wild.

In order to make sense, the above approach needs to satisfy a few important requirements.
The first requirement is that Φ needs to be functionality preserving, meaning that the compiled
circuit Γ̂ should compute the same functionality as the original circuit Γ (for all possible initial
memories M1, and for all possible inputs). The second requirement is that the effort needed
to fabricate the trusted sub-components should be (much) less compared to the effort required
to build the original circuit Γ. The third requirement is that Φ should be secure, meaning
that, under an acceptable assumption about the manufacturers who construct the outsourced
components, the produced circuit Γ̂ can be safely used in real-life applications.

Our security definition follows the simulation paradigm, and is inspired by similar definitions
in the setting of tamper-proof circuit compilers [48, 35]. We refer the reader to Section 1.3 for
a more detailed comparison between the two approaches. In a nutshell, security of Φ is defined
by requiring that whatever an adversary can learn by interacting with the fabricated circuit Γ̂
(produced following the steps outlined above), can be simulated given only black-box access to
the original circuit Γ. This essentially means that, no matter how the outsourced components
are maliciously modified (e.g., by inserting a hardware Trojan), using circuit Γ̂ is as secure as
using the original circuit Γ, and thus, in particular, does not leak sensitive information on the
secret memory. See Section 3 for a precise definition.

2

We also consider a weakening of the above definition, in which the simulator is allowed to
receive a short advice (or leakage) on the secret memory M1. This models a setting where
the adversary might be able to learn a short amount of information on the secret memory, but
still yields a meaningful security guarantee provided that the original circuit is resilient to such
a short leakage. An appealing advantage of this weaker definition is that it might allow for
significantly more efficient circuit compilers.

A solution using VC. Next, in Section 4, we show how to construct secure outsourcing
compilers that work for arbitrary circuits Γ in the setting where all outsourcing manufacturers
are corrupted. Our compilers generically leverage a verifiable computation (VC) scheme for
the function F implemented by Γ. Verifiable computing (see, e.g., [37]) is a recent paradigm
by which resource-constrained clients can delegate the computation of some function F , on
(possibly private) input X, to an untrusted (and computationally powerful) server, without the
server being able to cheat about the outcome of the computation, and with the property that
verifying the server’s answer is much more efficient than computing the function from scratch.

Recent breakthrough research on verifiable computing led to nearly practical schemes that
work for any function [61, 23]; some schemes additionally preserve the privacy of the inputs on
which the function is being computed on [36]. VC schemes satisfying the latter property are
called input-private.

The main idea of how to use verifiable computing in order to build secure outsourcing
compilers is simple enough to describe it here. The entire bulk of the computation will be
outsourced to the untrusted fabrication facility, whereas the only circuit components that need
to be built in-house are: (i) the component corresponding to the algorithm for encoding the
inputs (in case of input-private VC), (ii) the component corresponding to the algorithm run by
the client in order to verify correctness of the server’s computation, and (iii) the component used
to generate fresh random coins as needed for computing the function (in case of randomized
functions). Thanks to the nature of VC, the size of the components in (i) and (ii) is independent
of the size of the original circuit computing the function. As for the component in (iii), we can
use any existing (and trusted) circuitry for generating true random numbers (RNG). A good
example is the Intel on-chip hardware random number generator which can be accessed through
the RDRAND instruction available on all modern processors [50, 46].1

Hence, the effort needed to fabricate the components built in-house is much less (and, in
fact, independent) of the effort needed to fabricate the original circuit.

We implement the above idea in two ways, depending on the properties satisfied by the
underlying VC scheme, as explained below.

• Our first compiler relies on VC schemes with input-privacy, and achieves our strongest
security notion (i.e., no leakage required for the simulation).
• Our second compiler relies on VC schemes without input-privacy, and achieves security

provided the original primitive (implemented by the circuit Γ) is resilient against a loga-
rithmic amount of leakage on the private memory.
Remarkably, any public-key encryption or signature scheme is resilient to such an amount
of leakage at the price of a polynomial loss in the concrete security, and recently many
leakage-resilient schemes [33, 63, 51, 31, 58, 19, 59, 34] have been constructed, where the
concrete security does not degrade with the total amount of tolerated leakage.

1Intel’s generator relies on unpredictable thermal noise to generates bits that are fed to a cryptographic
“conditioner” (AES in CBC-MAC mode) which produces a 256-bit seed that is then passed through a NIST
SP800-90A-based pseudorandom generator.

3

The second compiler additionally relies on a special “self-destruct” feature (which is imple-
mented in one of the components built in-house), meaning that after the first invalid output
is ever processed, the entire memory is overwritten. As we show, for this compiler, this is an
inherent requirement, in that, without such a property, there exist generic attacks that allow to
recover the entire private memory. Moreover, such attacks are undetectable by all polynomial-
time (black-box) tests. Our definition of undetectability (see Section 3.2) is similar in spirit to
analogous definitions in the context of subversion-resilient cryptography [12, 11].

A solution using MPC. In Section 5, we show how to construct secure outsourcing compil-
ers for arbitrary circuits Γ in the setting where m ≥ 2 outsourcing manufacturers are available,
and a certain unknown subset of them is untrustworthy. This is a strictly stronger assumption
compared to the VC setting, nevertheless, opens the possibility for more efficient constructions
and stronger availability guarantees. Our compiler utilizes a general client-server secure multi-
party computation (MPC) protocol, i.e., a protocol that for any function enables a set of clients
to privately communicate their inputs to a set of servers that will perform a computation and
return the output to a single designated recipient. We stress that many MPC protocols follow
this paradigm (e.g., [27]), while others, as we comment later, can be easily adapted to it.

Given such a protocol, the compiler operates as follows. For a given circuit Γ it produces the
MPC protocol implementing it, isolates the client and recipient computation for manufacturing
in-house, and outsources each of the other components (representing a server in the MPC
protocol) to the untrusted manufacturers. The key points of this compiler construction are as
follows: (i) The client and recipient computation are typically quite lightweight; the client, in
many protocols, simply performs an encryption or a secret-sharing operation, and the recipient
a secret-reconstruction protocol; in either case, the computation is independent of the circuit
that is outsourced. (ii) There are MPC protocols that can tolerate up to m − 1 malicious
servers, something we can leverage to argue that if at least one of the outsourcing manufacturer
is honest the compiled circuit would be safe for use. Additional properties of the underlying
MPC protocol can also be very valuable by our compiler: for instance, if the underlying MPC
protocol supports guaranteed output delivery, we can use this guarantee to argue that the
final circuit will be resilient to a certain faulty outsourced sub-component. Moreover, if the
underlying protocol satisfies the identifiable abort property, cf. [47], we can enable our compiled
circuit to partially shutdown an outsourced sub-component that is discovered to be faulty, thus
reducing energy consumption. By adapting an efficient protocol, e.g, [28], in the client-server
model, we can provide a very efficient compiled circuit (with an overhead linear in the size of
the original circuit |Γ|).

We refer the reader to Section 5 for a more detailed discussion how one can instantiate our
compilers using MPC protocols.

A remark. Both our approaches require a partitioning and assembly procedure which must
be performed in-house. To lower the cost, trusted and untrusted sub-circuits will likely be diced
in their own wafers and packaged independently. Fortunately, recent advanced designs and
emerging technologies in the electronics assembly and packaging industry are making the entire
process of interconnecting different components more affordable, reliable, and automatic.

1.3 Related Work

Hardware Trojans. Prevention of hardware Trojans in ICs is a common practice, that might
take place during the design, manufacturing, and post-manufacturing stage [64, 54].

4

However, since it is not always possible to efficiently prevent Trojans insertion, Trojans
detection has also been vastly explored [15]; once a Trojan is detected, the circuit can be
disposed and not used. Common methodologies used to perform Trojans detection vary from
invasive ones (that destroy the IC to examine it inside), to non-invasive ones (where the circuit
is executed and compared against a trusted copy of the circuit or against some expected output
values). Trojan detection is typically a very expensive and unreliable process, therefore the best
practice is usually not to rely on any kind of testing to protect against Trojans.

Explicit countermeasures against Trojans also exist, where the objective is to guarantee
the functionality or security of the circuit even in the presence of some unknown Trojan. For
instance, the so-called “data guards” are designed to prevent a Trojan from being activated
and/or to access sensitive data [68]. Another approach is the duplication of logic elements and
the division of the sensitive data to independent parts of the circuit [56, 68].

To the best of our knowledge, our work is the first introducing a formal model for assessing
security of ICs in the presence of arbitrary hardware Trojans. The only exception is [65] that
considered an even stronger definition than ours (where the output of the produced circuit
must always be the same as that of the original circuit), but could only achieve security for very
limited classes of Trojans (i.e., the adversary is allowed to “corrupt” only a small fraction of
the gates in each layer of the IC, and a small fraction of the wires connecting different layers).

Very recently, Wahby et al. [67] also explored the idea of using VC to address the issue of
hardware Trojans in fabless circuit manufacturing. That paper, however, greatly differ in scope
and techniques from this, and, in fact, can be regarded as incomparable as explained below.

First, our goal is to make sure the secret memory of the rebuilt circuit cannot be leaked
to an outsider (even in the presence of arbitrary hardware Trojans), whereas [67] aims at the
incomparable goal of ensuring correctness of the computation (which makes sense also for non-
cryptographic functionalities); note that, as we prove, correctness implies security in our sense
using self-destruct (up to logarithmic leakage on the memory). Second, our main focus is on
precise definitions and proofs in the style of provable security (characterizing which properties
are needed for the VC scheme in order for our approach to go through), while [67] addresses
the orthogonal question of how to implement the idea of using VC for the problem at hand in
practice (providing a concrete ASIC implementation based on an optimized existing VC scheme,
and measuring its performances in terms of energy consumption, circuit area, and throughput).
Lastly, we also provide a solution to the problem based on MPC.

In [32] the authors show how to protect against hardware Trojans using testing-based mech-
anisms. Their work is based on two existing techniques for Trojan detection, called “input
scrambling” and “split manufacturing”, for which the authors provide formal models and they
use them to construct a compiler satisfying a quantitative notion of security: They present a
generic compiler that transforms any circuit into another one that satisfies certain guarantees
with respect to the number of correct executions. The trusted verification mechanism of [32] is
simpler than the trusted components employed by our constructions, still our approach provides
stronger security guarantees against broader classes of attackers, that are allowed to interact
with the circuit for an arbitrary (polynomially many) number of executions.

Tamper-proof circuits. Our main security definition shares similarities with analogous def-
initions in the context of protecting circuit implementations against tampering attacks. This
line of research received considerable attention in the past few years [48, 35, 24, 52, 25].

The main difference between this setting and the one considered in this paper is that tamper-
proof circuit compilers are typically used to protect against fault injection [60] and tampering
attacks at run-time; such attacks are usually carried out in an adaptive manner, depending on
the outcome of previous attempts. Outsourcing compilers, instead, only protect against (non-

5

adaptive) tampering taking place during the circuit fabrication process. Importantly, the latter
restriction allows to obtain security against arbitrary modifications, whereas in circuit tampering
one has to consider very restricted attacks (e.g., wire tampering [48] or gate tampering [52]).

Subversion. The above type of non-adaptive tampering is, in fact, reminiscent of the setting
of subversion attacks against cryptographic primitives and algorithms. Inspired by the recent
revelations of Edward Snowden [62, 5, 44], this line of research recently led to constructing
several concrete primitives resisting large classes of subversion attacks [12, 29, 30, 3].

In this light, our work could be interpreted as formalizing the security of circuits that might
have been subject to subversion during fabrication.

2 Preliminaries

2.1 Notation

For a string x, we denote its length by |x|; if S is a set, |S| represents the number of elements
in S; for a natural number n, [n] denotes the set {1, . . . , n}. When x is chosen randomly in S,
we write x←$ S. When A is an algorithm, we write y ← A(x) to denote a run of A on input x
and output y; if A is randomized, then y is a random variable and A(x; r) denotes a run of A
on input x and randomness r. An algorithm A is probabilistic polynomial-time (PPT) if A is
randomized and for any input x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in at most
poly(|x|) steps.

We denote with λ ∈ N the security parameter. A function ν : N→ [0, 1] is negligible in the
security parameter (or simply negligible) if it vanishes faster than the inverse of any polynomial
in λ, i.e. ν(λ) = λ−ω(1).

The statistical distance between two random variables Z and Z′ defined over some common
set Z is defined as ∆(Z; Z′) = 1

2

∑
z∈Z |P [Z = z]− P [Z′ = z]|. We rely on the following lemma

(which follows directly from the definition of statistical distance):

Lemma 1. Let Z and Z′ be a pair of random variables, and W be an event defined over the
probability space of Z and Z′. Then,

∆(Z; Z′) ≤ ∆(Z; Z′|¬W) + P [W].

For two ensembles Z := {Zλ}λ∈N and Z′ := {Z ′λ}λ∈N, we write Z ≡ Z′ to denote that the
two ensembles are identically distributed. We also write Z ≈c Z′ to denote that the ensembles
are computationally indistinguishable, i.e. for all PPT distinguishers D there exists a negligible
function ν : N→ [0, 1] such that

∆D(Z; Z′) :=
∣∣P [D(z) = 1 : z←$ Z]− P [D(z) = 1] : z←$ Z′

∣∣ ≤ ν(λ).

2.2 Circuits

A (Boolean) circuit Γ = (V,E) is a directed acyclic graph. The vertices V are logical gates,
and the edges E are wires connecting the gates. For the case of deterministic circuits, the gates
can be of type AND, XOR and copy, where AND (resp. XOR) have fan-in two and fan-out one, and
output the AND (resp. XOR) operation on the input bits; a copy gate, denoted copy, simply
forwards the input bit into two output wires.

The depth of a circuit is defined as the longest path from an input to an output; the size
of a circuit is defined as its total number of gates. Sometimes we explicitly write 〈Γ〉 for the
description of the circuit Γ.

6

A circuit is clocked if it evolves in clock cycles (or rounds). The input and output values of
the circuit Γ in clock cycle i are denoted by Xi and Yi, respectively. A circuit is probabilistic
if it uses internal randomness as part of its logic. We call such probabilistic logic randomness
gates and denote them with $. In each clock cycle $ outputs a fresh random bit. Additionally,
a circuit may contain memory gates. Memory gates, which have a single incoming edge and any
number of outgoing edges, maintain state: at any clock cycle, a memory gate sends its current
state down its outgoing edges and updates it according to the value of its incoming edge. Any
cycle in the circuit graph must contain at least one memory gate. The state of all memory gates
at clock cycle i is denoted by Mi, with M1 denoting the initial state. When a circuit is run in
state Mi on input Xi, the circuit will output Yi and the memory gates will be in a new state
Mi+1. We will denote this by (Yi,Mi+1)← Γ[Mi](Xi).

3 Secure Circuit Fabrication

In this section we put forward a formal model for assessing security of a (cryptographic) circuit
whose production is outsourced to one or more untrusted facilities. We start by recalling the
standard notion of connected component of a circuit or graph.

Definition 1 (Component). A circuit Γ′ = (V ′, E′) is a (connected) component of circuit
Γ = (V,E) if V ′ ⊆ V , E′ ⊆ E and for all g1, g2 ∈ V ′ we have that (g1, g2) ∈ E′ iff (g1, g2) ∈ E.

Next, we introduce the notion of an outsourcing circuit compiler (or simply compiler). In
a nutshell a circuit compiler is an efficient algorithm Φ that takes as input (the description of)
a circuit Γ, and outputs (the description of) a compiled circuit Γ̂. Additionally, Φ returns a
list of sub-components Γ̂i of Γ̂ whose production can be outsourced to one or more external
manufacturers, together with the relevant information how to connect those sub-components
with the remaining ones (that need to be built in-house) in order to re-assemble the compiled
circuit Γ̂.

Definition 2 (Outsourcing circuit compiler). Let Γ be an arbitrary circuit. A (ρ,m)-outsour-
cing compiler Φ is a PPT algorithm (Γ̂, aux)← Φ(Γ), such that the following holds:

• aux := ((Γ̂1, . . . , Γ̂n),M, (I1, . . . , Im)), with n ∈ N and Ij ⊆ [n], for j ∈ [m], mutually
disjoint subsets.
• (Γ̂1, . . . , Γ̂n) are disjoint (connected) components of Γ̂ such that V =

⋃
i∈[n] Vi, where

Γi = (Vi, Ei).
• M : V × V → {0, 1} is a function such that M(v, v′) = 1 iff v, v′ ∈ Vi, Vj for some i 6= j

and (v, v′) ∈ E.

We call ρ :=

∑
i∈[n]\I1∪...∪Im

|Γ̂i|
|Γ| the outsourcing ratio of the compiler.

Intuitively, in the above definition, the outsourcing ratio ρ represents the fraction of the
compiled circuit (w.r.t. the original circuit) that should be built in-house. Note that the sub-
components (Γ̂i)i∈[n] “cover” the entire compiled circuit Γ̂ (without overlap), and the mapping

function M specifies how to connect the different components in order to reconstruct Γ̂. The
sets of indexes Ij ⊆ [n] represents the sub-components whose production will be outsourced to
manufacturer j ∈ [m]. See Fig. 1 for a pictorial representation in a simple toy example.

Correctness of an outsourcing compiler demands that the compiled circuit maintains the
same functionality of the original circuit.

7

i1

i2

i3

i4

i5

i6

o1

o2

o3

o4

o5

i1

i2

i3

i4

o1

o2

o1

o2

i1

i2

i3

Figure 1: On the left side we present the description of a (compiled) circuit. On the right
side the same circuit is represented as three different components. The mapping function M
establishes the connections between the blue component and the green and red components.

Definition 3 (Correctness). We say that an outsourcing compiler Φ is functionality preserving
if for all circuits Γ, for all values of the initial memory M1, and for any set of public inputs
X1, . . . , Xq, the sequence of outputs Y1, . . . , Yq produced by running the original circuit Γ starting
with state M1 is identical to the sequence of outputs produced by running the transformed circuit
Γ̂ starting with state M1 (with all but negligible probability over the randomness of the compiler
and the randomness of the original and compiled circuit).

3.1 Security

We define security using the simulation paradigm. Our approach is similar in spirit to previous
work on tamper-resilient circuit compilers (see, e.g., [48, 35]). In a nutshell, security is defined by
comparing two experiments. In the first experiment, also called the real experiment, the circuit
designer compiles the circuit and outsources the production of some of the components in the
compiled circuit to a set of m untrusted manufacturer. A subset of size t of the manufacturers
are malicious, and controlled by a monolithic adversary A; of course the circuit designer does
not know which manufacturers are malicious and which ones are honest. During production, A
is allowed to completely change the outsourced circuit components under its control, whether
by adding, removing or changing gates and/or wires. Later, the designer assembles the circuit
by re-combining all the components (the outsourced ones and the ones built in-house). Finally
A can access the assembled circuit in a black-box way, that is, it can observe inputs/outputs
produced by running the assembled circuit (with some initial memory M1).

In the second experiment, also called the ideal experiment, a simulator is given black-box
access to the original circuit (initialized with initial memory M1). The goal of the simulator is to
produce an output distribution which is indistinguishable from the one in the real experiment.
In its most general form, our definition allows the simulator to obtain a short leakage on the
initial memory. This captures the feature that the adversary in the real experiment could learn
at most a short amount of information on the private memory.

Real experiment. The distribution RealA,Φ,C,Γ,M1(λ) is parameterized by the adversary
A = (A0,A1), the set of corrupt manufacturers C, the compiler Φ, and the original circuit Γ
with initial memory M1.

1. (Γ̂, aux)← Φ(Γ): In the first step, the description of the original circuit Γ is given as input
to the compiler Φ; the compiler outputs the description of the compiled circuit Γ̂ plus
the auxiliary information aux := ((Γ̂1, . . . , Γ̂n),M, (I1, . . . , Im)) which is used to specify
how the compiled circuit is split into sub-components, how the different sub-components

8

are connected (via the mapping function M), and the subset of sub-components whose
production is outsourced to each manufacturer (in the index sets Ij , for j ∈ [m]).

2. ({Γ̂′i}i∈I , τ)← A0(1λ, {〈Γ̂i〉}i∈I , 〈Γ〉, 〈Γ̂〉): The adversary is given as input the description
of the components from the index set I = ∪j∈CIj , the description of the original circuit

Γ, the description of the compiled circuit Γ̂, and returns the modified components along
with some value τ that may contain some auxiliary state information.

3. Γ̂′ := (V̂ ′, Ê′): The compiled circuit Γ̂′ is rebuilt by replacing the components (Γ̂i)i∈I with
the modified components (Γ̂′i)i∈I , and by connecting the different components as specified
by the mapping function M.

4. AΓ̂′[M1](·)
1 (1λ, τ): Adversary A1, with auxiliary information τ , is given oracle access to the

rebuilt circuit Γ̂′ with compiled private memory M1.

Simulation. The distribution IdealS,A,Φ,C,Γ,M1,`(λ) is parametrized by the simulator S, the
adversary A = (A0,A1), the compiler Φ, the set of corrupt manufacturers C, the original circuit
Γ with initial memory M1, and some value ` ∈ N.

1. f ← S(1λ, 〈Γ〉,Φ,A, C, `): Given as input a description of the original circuit, of the
compiler and of the adversary, the subset of corrupt manufacturers, and the parameter
` ∈ N, the simulator specifies an arbitrary polynomial-time computable function f :
{0, 1}∗ → {0, 1}`.

2. SA,Γ[M1](·)(1λ, L) : The simulator takes as input leakage L = f(M1), and is given oracle
access to adversary A = (A0,A1) and to the original circuit Γ with private memory M1.
We remark that the simulator is restricted to be fully black-box. In particular, S only
accesses the modified sub-components returned by A0 in a black-box way (i.e., without
knowing their description).

Definition 4 (Security). We say that a (ρ,m)-outsourcing circuit compiler Φ is (`, t)-secure if
the following conditions are met.

(i) Non-triviality: ρ < 1, for sufficiently large values of λ ∈ N.
(ii) Simulatability: For all C ⊆ [m] of size at most t and for all PPT adversaries A, for all

circuits Γ, and for all initial values of the memory M1 ∈ {0, 1}∗, there exists a simulator
S with running time poly(|A|, |Γ[M1]|) such that

{RealA,Φ,C,Γ,M1(λ)}λ∈N ≈c {IdealS,A,Φ,C,Γ,M1,`(λ)}λ∈N .

We observe that the above definition is only interesting for small values of ` (as, e.g., it
becomes trivial in case ` = |M1|). Also notice that the non-triviality condition demands that
the ratio between the size of the sub-components of the compiled circuit built in-house, and
the size of the original circuit, should be less than one. This is necessary, as otherwise a
manufacturer could simply produce the entire circuit by itself, without the help of any off-shore
facility. Clearly, the smaller ρ the better, as this means that a large fraction of the original
circuit production can be outsourced.

3.2 Undetectability

We formally define what it means for an adversarial strategy to be undetectable by all black-box
polynomial-time tests. Informally, this means that it is hard to distinguish the output of the
original circuit from the output of the compiled circuit (after the outsourced sub-components
have been maliciously modified). Importantly, the latter has to hold even if the testing strategy

9

knows the initial content of the private memory and the description of all sub-components in
the compiled circuit.

For simplicity, we give the definition in the case of a single manufacturer (i.e., m = 1); a
generalization to the case m ≥ 2 is immediate. The formalization borrows ideas from similar
definitions in the setting of subversion and algorithm-substitution attacks [12, 11].

Definition 5 (Undetectability). Let Φ be an outsourcing circuit compiler, and Γ be a circuit.
We say that an adversary A is undetectable for Γ w.r.t. Φ if for all PPT algorithms Test there
exists a negligible function ν : N→ [0, 1] such that, for all initial values of the memory M1, we
have that P [Test wins] ≤ 1/2 + ν(λ) in the following game:

1. The challenger picks b←$ {0, 1}, runs (Γ̂, (Γ̂1, . . . , Γ̂n),M, I) ← Φ(Γ), and returns (M1,
〈Γ〉, 〈Γ̂〉, (〈Γ̂1〉, . . . , 〈Γ̂n〉),M, I) to Test.

2. Let Γ̂′ be the circuit implicitly defined by the sub-components {Γ̂i}i∈[n]\I ∪{Γ̂′i}i∈I together

with the mapping function M, where {Γ̂′i}i∈I ← A(1λ, {〈Γ̂i〉}i∈I , 〈Γ〉, 〈Γ̂〉).
3. Algorithm Test, can ask polynomially many queries of the type Xi. Upon input such query,

the answer from the challenger depends on the value of the bit b:

• In case b = 0, the output is Yi where (Yi,Mi+1)←$ Γ[Mi](Xi).
• In case b = 1, the output is Yi where (Yi,Mi+1)←$ Γ̂′[Mi](Xi).

4. Algorithm Test outputs a bit b′, and wins iff b′ = b.

4 Compilers based on VC

In this section we build secure outsourcing compilers that work for any circuit, in the presence
of a single malicious manufacturer. The compilers are based on any verifiable computation (VC)
scheme (satisfying certain properties) for the function computed by the underlying circuit.

We start by recalling the basic definitions for VC schemes in Section 4.1. In Section 4.2 we
describe our first compiler, which requires a VC scheme satisfying input privacy. In Section 4.3
we describe our second compiler, which can be instantiated with non-input-private VC schemes;
our second compiler requires that once the first invalid output is produced, the compiled circuit
overwrites its entire memory with the all-zero string and “self-destructs.” As we show, this re-
striction is necessary. Finally, in Section 4.4 we discuss concrete instantiations of our compilers,
based on state-of-the-art research on verifiable computing.

4.1 Prelude: Verifiable Computation

A verifiable computation scheme allows for a client to outsource the computation of a function
to a (untrusted) server; the server produces a proof of correctness along with the output of the
function. The client checks the correctness proof to decide whether the output provided by the
server is accepted or not.

Definition 6 (Verifiable Computation). Let F be a function. A VC scheme VC = (KeyGen,
ProbGen,Compute,Verify) for function F consists of the algorithms described below.

• (SK ,PK) ← KeyGen(F , λ) : The (randomized) key generation algorithm takes as input
the function F and the security parameter λ, and outputs a public key PK and a secret
key SK .
• (ΣX , V KX)← ProbGenSK (X) : The (randomized) problem generation algorithm takes as

input the value X and uses the secret key SK to compute an encoding ΣX of X and a
secret verification key V KX .

10

• ΣY ← ComputePK (ΣX) : The (deterministic) compute algorithm takes as input the en-
coded value ΣX and uses the public key PK to compute an encoding of Y = F(X).
• Y ← VerifySK (V KX ,ΣY) : The (deterministic) verify algorithm takes as input the veri-

fication key V KX and the value ΣY ; it uses the secret key SK and V KX to compute a
value Y ∈ {0, 1}∗ ∪ {⊥}, where symbol ⊥ denotes that the algorithm rejects the value ΣY .

A typical VC scheme needs to satisfy some properties that we formalize below.

Correctness. A VC scheme is correct if the ProbGen algorithm produces problem instances
that allow for a honest server to successfully compute values ΣY such that Y = F(X).

Definition 7 (Correctness for VC schemes). Let VC be a VC scheme for some function F . We
say that VC is correct if for all values X the following holds:

P

[
Y = F(X) :

(SK ,PK)← KeyGen(F , λ); (ΣX , V KX)← ProbGenPK (X)
ΣY ← ComputePK (ΣX);Y ← VerifySK (V KX ,ΣY)

]
= 1.

Soundness. A VC scheme is sound if no malicious server can “trick” a client into accepting
an incorrect output, i.e, some value Y such that Y 6= F(X). We require this to hold even in
the presence of so-called verification queries [36].

Definition 8 (Soundness for VC schemes). Let VC be a VC scheme for some function F .
We say that VC is sound if for all PPT adversaries A there exists some negligible function
ν : N→ [0, 1] such that P [A wins] ≤ ν(λ) in the following game.

1. The challenger runs (SK ,PK)← KeyGen(F , λ) to obtain the secret key SK and the public
key PK , and sends PK to A.

2. Adversary A can make the following two types of queries to the challenger, that can be
carried out polinomially many times in any order and in an adaptive way.

(i) Adversary A can specify an input Xi; the challenger computes (V Ki,Σi)← ProbGenSK (Xi)
and sends Σi to A.

(ii) Adversary A can specify verification queries (i, Σ̂); the challenger computes Y =
VerifySK (V Ki, Σ̂) and returns 1 if Y 6= ⊥, otherwise returns 0.

3. Eventually, adversary A will output a pair (i∗,Σ∗); we say that A wins iff Y ∗ 6= F(Xi∗)
and Y ∗ 6= ⊥, such that Y ∗ = VerifySK (V Ki∗ ,Σ

∗).

Input privacy. A VC scheme is input-private if no server can learn the input value X that
the function is being computed on.

Definition 9 (Input-privacy for VC schemes). Let VC be a VC scheme for some function F .
We say that VC is input private if for all PPT adversaries A there exists some negligible function
ν : N→ [0, 1] such that P [A wins] ≤ ν(λ) in the following game.

1. The challenger runs (SK ,PK)← KeyGen(F , λ) to obtain the secret key SK and the public
key PK , and sends PK to A.

2. Adversary A can make the following two types of queries to the challenger, that can be
carried out polinomially many times in any order and in an adaptive way.

(i) Adversary A can specify an input Xi; the challenger computes (V Ki,Σi)← ProbGenSK (Xi)
and sends Σi to A.

11

(ii) Adversary A can specify verification queries (i, Σ̂); the challenger computes Y =
VerifySK (V Ki, Σ̂) and returns 1 if Y 6= ⊥, otherwise returns 0.

3. Adversary A chooses two values X0 and X1 and sends them to the challenger.
4. The challenger samples a random bit b←$ {0, 1} and computes (V K∗,Σ∗)← ProbGenSK (Xb)

forwarding Σ∗ to A.
5. Adversary A can still specify to the challenger the queries described above, including special

verification queries for the verification key V K∗.
6. Finally, A outputs a bit b′; we say that A wins if and only if b = b′.

Outsourceability. A VC scheme is outsourceable if the time to encode the input plus the
time to run a verification is smaller than the time to compute the function itself.

Definition 10 (Outsourceability for VC schemes). A VC scheme can be outsourced if it allows
efficient generation and efficient verification. This means that for any X and any ΣY the
time (or circuit size) required for ProbGenSK (X) plus the time (or circuit size) required for
VerifySK (V K,ΣY) is o(T), where T is the time (or circuit size) required to compute F(X).

VC without input-privacy. The above definitions can be adapted to cast VC schemes
without input-privacy, i.e schemes where the server is allowed to learn the input value X used
by the client. For such VC schemes, algorithm ProbGen returns the value X in the clear along
with the secret verification key V KX ; the correctness, soundness and outsourceability definitions
can easily be adapted to this setting.

4.2 First Compiler

In this section we construct an outsourcing circuit compiler by using a VC scheme that satisfies
the properties of correctness, soundness, input-privacy and outsourceability. Let Γ be a cir-
cuit. The idea is to invoke a VC scheme for the function F corresponding to the functionality
computed by Γ. The compiled circuit will consist of four main components Γ̂ProbGen, Γ̂Compute,

Γ̂Verify, and Γ̂$. The first three components are the circuit representations of the algorithms
ProbGen, Compute and Verify corresponding to the underlying VC scheme; such components
hard-wire keys (SK ,PK) generated using algorithm KeyGen. The fourth component samples
the random coins Ri to be used during each invocation of the circuit.

The production of component Γ̂Compute will then be outsourced to a single untrusted facility,
whereas all other components are built in-house (as their implementation needs to be trusted).
Notice that the implementation of algorithm KeyGen can be thought of as a pre-processing stage
that runs only once (and could be carried out in software).

An important observation is that the size of circuit Γ̂Verify and Γ̂ProbGen is independent, and

much smaller, than the size of circuit Γ̂Compute. As discussed in the introduction, the size of Γ̂$

can also be considered to be constant (consisting only of a few gates). We describe our first
compiler below in more details.

The compiler Φ1
VC. Let Γ be a circuit, and VC = (KeyGen,ProbGen,Compute,Verify) be a

VC scheme for the function F implemented by Γ. Our first compiler is depicted in Fig. 2, and
can be described as follows.

1. First run (SK ,PK)← KeyGen(F , λ) once, obtaining the pair of keys (SK ,PK).
2. Let Γ̂Memory be a circuit component consisting only of memory gates, as needed by the

original circuit Γ, storing the initial value of the private memory M1.

12

KeyGen

Γ̂Memory

Γ̂ProbGen

Γ̂$

Γ̂Compute Γ̂Verify

1λ

F

Xi

PK

SK

ΣXi,Mi,Ri

V KXi,Mi,Ri

ΣYi,Mi+1

R̂i

Mi+1

Yi

Figure 2: The description of compiler Φ1
VC . The green parts (i.e., Γ̂ProbGen, Γ̂Verify, and Γ̂$) need

to be built in-house, while the production of the red part (i.e., Γ̂Compute) can be outsourced; the
blue part (i.e., KeyGen) is built only once (not necessarily in hardware). The dotted line depicts
the circuit boundaries.

3. Let Γ̂$ be a circuit outputting random coins R̂i (as needed in each invocation of the
compiled circuit).

4. Define a component for each function ProbGen, Compute and Verify of the VC scheme as
explained below.

• Γ̂ProbGen: This component embeds the secret key SK , and it takes three inputs;
the input Xi, the (current) private memory Mi, and random coins R̂i := Ri||R′i.
It implements function ProbGenSK (Xi||Mi||Ri;R′i), that produces two outputs: an
encoding ΣXi,Mi,Ri , and a verification key V KXi,Mi,Ri .

• Γ̂Compute: This component embeds the public key PK , and it takes as input the
encoding ΣXi,Mi,Ri . It implements function ComputePK (ΣXi,Mi,Ri), that produces
the encoding ΣYi,Mi+1 of (Yi,Mi+1) = F(Xi,Mi;Ri) as output.

• Γ̂Verify: This component embeds the secret key SK , and it takes two inputs; the
encoding ΣYi,Mi+1 and the verification key V KXi,Mi,Ri . It implements function
VerifySK (V KXi,Mi,Ri ,ΣYi,Mi+1), to produce the output Yi ∈ {0, 1}∗ ∪ {⊥}, and even-
tually update the circuit private memory to Mi+1.

5. The output of Φ1
VC is defined as follows. The first output is a (description of the) compiled

circuit Γ̂ as depicted in Fig. 2. The auxiliary information aux consists of the components
Γ̂ProbGen, Γ̂Compute, Γ̂Verify, Γ̂Memory, and Γ̂$, the mapping function M that describes the
physical connections between such components (i.e., the arrows in Fig. 2), and the index
set I = {2} specifying the component Γ̂Compute as a candidate for outsourcing.

The theorem below states that the compiler from Fig. 2 satisfies our strongest security
notion (i.e., Definition 4 with ` = 0), provided that the underlying VC scheme is correct, sound,
input-private, and outsourceable.

Theorem 1. Let Γ be an arbitrary circuit and let VC be a verifiable computation scheme for the
function F computed by Γ, satisfying the properties of correctness, soundness, input-privacy and
outsourceability. Then the compiler Φ1

VC is a correct, (0, 1)-secure (o(1), 1)-outsourcing circuit
compiler.

13

Remark 1 (On outsourcing memory gates). In the compiler depicted in Figure 2, Γ̂$ is being
built in-house. In order to outsource private memory to a potentially malicious manufacturer
we modify the above compiler as follows: instead of storing in Γ̂$ the value Mi in plaintext, we
store c ← AESK′(Mi), where c is the encryption of Mi using a symmetric, semantically secure
authenticated encryption scheme, with secret key SK ′. Moreover, Γ̂ProbGen is modified such that
when receiving the private memory value c, it first decrypts it using SK′ and then executes the
original circuit Γ̂ProbGen on the resulting plaintext. We also substitute Γ̂Verify so that it outputs
the encryption of Mi+1, under SK ′. This modification enables the simulator to execute the
circuit using the all-zeros bit-string as the initial memory value, and security follows by the
semantic security of the encryption scheme. Finally, whenever the decryption of c gives ⊥ the
circuit output is ⊥.

Proof idea. We give an intuition for the security proof. Correctness of the compiler and the
fact that ρ = o(1) follow immediately, respectively, from the correctness and the outsourceability
of the underlying VC scheme. As for security, we need to build a simulator S that is able to
“fake” the real experiment for all adversaries A, for all circuits Γ, and for all initial memory
values M1. The simulator runs compiler Φ1

VC upon input Γ, forwards the circuit component

Γ̂Compute to A obtaining a modified component Γ̂′Compute, and re-assembles the compiled circuit

Γ̂′ plugging together all the required components. Thus, upon input a query Xi from A, the
simulator simply runs Γ̂ upon input Xi and using some fixed memory (e.g., the all-zero string);
if the output is invalid, S answers the query with ⊥, and otherwise it answers the query by
using black-box access to the original circuit.

Intuitively, by soundness of the underlying VC scheme, whenever the output of Γ̂[Mi](·) is
not ⊥, such value must be equal to the output of the function F(·,Mi). On the other hand,
the fact that the output is valid or not must be independent of the actual memory used for
the computation, as otherwise one could break the input-privacy property of the VC scheme.
With this in mind, on can show the indistinguishability between the real and the simulated
experiment using a hybrid argument.

Proof. We start by showing that the outsourcing ratio parameter ρ of the compiler Φ1
VC is

always smaller than 1, for sufficiently large values of the security parameter λ, thus meeting the
non-triviality condition.

Claim 1. ρ = o(1).

Proof. The non-triviality requirement from Definition 4 states that

ρ =
|Γ̂ProbGen|+ |Γ̂Verify|+ |Γ̂$|+ |Γ̂Memory|

|Γ|
< 1.

The claim is that ρ = o(1), i.e. limλ→∞
ρ
1 = 0. By the outsourceability property of the VC scheme

we know that |Γ̂ProbGen|+ |Γ̂Verify| = o(|Γ|), i.e. limλ→∞
|Γ̂ProbGen|+|Γ̂Verify|

|Γ| = 0. By substituting the

expression for ρ, and by using the fact that the size of Γ̂$ can assumed to be constant and that
the original and the compiled circuit contain the same number of memory gates, we obtain:

lim
λ→∞

(|Γ̂ProbGen|+ |Γ̂Verify|+ |Γ̂$|+ |Γ̂Memory|)/|Γ|
1

= 0.

This shows that function ρ converges to 0. As the size of each component is monotonously
increasing with the security parameter, for sufficiently large λ, the outsourcing ratio ρ will
always be smaller than 1, as desired.

14

Claim 2. The compiler Φ1
VC satisfies correctness.

Proof. The correctness of the compiler Φ1
VC follows immediately from the correctness property

of the underlying VC scheme.

We proceed to prove security of Φ1
VC . We need to build a simulator S that is able to “fake”

experiment Real for all adversaries A, for all circuits Γ, and for all initial memory values M1.
A description of the simulator follows.

• Run the compiler Φ1
VC(Γ) supplying (a description of) the original circuit Γ; the out-

put is (a description of) the compiled circuit Γ̂, and the auxiliary information aux :=
((Γ̂ProbGen, Γ̂Compute, Γ̂Verify, Γ̂Memory, Γ̂$),M, {2}).
• The description of component Γ̂Compute is sent to adversary A together with the descrip-

tions of Γ and Γ̂.
• Adversary A produces the component Γ̂′Compute (that may be malicious) and sends it to

the simulator; the circuit Γ̂′ is assembled using the components (Γ̂ProbGen, Γ̂
′
Compute, Γ̂Verify,

Γ̂Memory, Γ̂$), via the mapping function M.

• Upon input Xi from A, run (Yi, M̃i+1) ← Γ̂′[0µ](Xi), where µ := |M1|; if Yi = ⊥ then
forward ⊥ to A, otherwise query Xi to oracle Γ[M1](·) and forward the output to A.

Let us write R and S for the distribution of the random variables in experiment Real and
Ideal of Definition 4. Recall that these variables are parametrized by adversary A, simulator
S, initial memory M1, compiler Φ1

VC , and circuit Γ, but we omit explicitly writing all these
parameters to simplify the exposition.2 We consider a new experiment R′ that is exactly the
same as R, except that for all queries Xi such that (Y ′i ,Mi+1)← Γ̂′[Mi](Xi) with Y ′i 6= ⊥, the
experiment computes (Yi,Mi+1)← F(Xi,Mi) and outputs Yi.

The claim below shows that experiment R and R′ are computationally indistinguishable.

Claim 3. For all PPT adversaries A, and for all PPT distinguishers D, there exists a negligible
function ν : N→ [0, 1] such that ∆D(R; R′) ≤ ν(λ).

Proof. Let q ∈ poly(λ) be the number of input queries asked by A to its oracle, and let us define
an event W that becomes true whenever there is some index i∗ ∈ [q] such that in experiment
R′ we have Yi∗ 6= Y ′i∗ . Then, by Lemma 1, we have that ∆D(R; R′) ≤ ∆(R; R′|¬W) + P [W].
Note that the distributions R and R′, conditioned on event W not happening are exactly the
same. We proceed to show that the probability of event W is negligible.

Let us assume that there exists some circuit Γ, some initial memory M1 and a PPT adversary
A provoking event W with non-negligible probability. We build a PPT adversary A′ that uses
A in order to break the soundness property of the underlying VC scheme (cf. Definition 8).

Adversary A′(M1,F ,Γ,Φ):

1. Receive PK from the challenger, where (SK ,PK)← KeyGen(F , λ).
2. Run (Γ̂,M1, aux)← Φ(Γ,M1), and send (the description of) circuit components

(Γ̂Compute,Γ, Γ̂) to A. Adversary A produces the modified component Γ̂′Compute

and sends it to A′.
3. For all i ∈ [q], upon input query Xi from A, do the following.

2We also omit to mention the set of corrupt manufacturers C, as in this case there is a single malicious
manufacturer.

15

• Sample random coins Ri, create the string Zi := Xi||Mi||Ri and send it to
the challenger as an encoding query. In response the challenger computes
(V KZi ,ΣZi)← ProbGenSK (Zi) and sends back the encoding ΣZi to A′.
• Run ΣY ′i ,Mi+1

= Γ̂′Compute(PK ,ΣZi) and send a verification query (i,ΣY ′i ,Mi+1
)

to the challenger; the answer from the challenger is a verification bit d. If
d = 0, then reply with ⊥, otherwise compute (Yi,Mi+1) = F(Mi, Xi;Ri)
and reply with Yi.

4. Finally, pick a random i∗ ∈ [q] and output the pair (i∗,ΣY ′
i∗

).

For the analysis, we note that the above simulation is perfect. In particular the outputs
seen by A retain exactly the same distribution as in experiment R′. Now A provokes event W
with non-negligible probability, so there exists some index i∗ ∈ [q] such that Yi∗ is different from
Y ′i∗ where (Y ′i∗ ,Mi∗+1) ← Γ̂′[Mi∗](Xi∗). Since A′ guesses the right index i∗ with probability
1/q, we obtain that A′ wins the soundness game with non-negligible probability 1

q ·P [W]. This
contradicts the soundness property of the underlying VC scheme, and thus concludes the proof
of the claim.

Claim 4. For all PPT adversaries A, and for all PPT distinguishers D, there exists a negligible
function ν ′ : N→ [0, 1] such that ∆D(R′; S) ≤ ν ′(λ).

Proof. Let q ∈ poly(λ) be the number of input queries asked by A to its oracle. For an index
i ∈ [q] consider the hybrid experiment Hi that answers the first i queries as in R′ and all the
subsequent queries as in S. We note that experiments Hi−1 and Hi only differ in how the
output is computed in position i, and that H0 ≡ S and Hq ≡ R′.

We now show that for all circuits Γ, all initial memories M1, and all PPT adversaries A, each
pair of adjacent hybrids Hi−1 and Hi are computationally indistinguishable. Fix some i ∈ [0, q],
and assume that there exists some circuit Γ, some initial memory M1, a PPT adversary A, and
a PPT distinguisher D that distinguishes between the pair of hybrids Hi−1 and Hi. We build
an adversary A′ that uses (A,D) in order to break the input-privacy property of the underlying
VC scheme (cf. Definition 9).

Adversary A′(M1,F ,Γ,Φ, i):

1. Receive PK from the challenger, where (SK ,PK)← KeyGen(F , λ).
2. Run (Γ̂, aux)← Φ(Γ), and send (the description of) circuit components (Γ̂Compute,Γ,

Γ̂) to A. Adversary A produces the modified component Γ̂′Compute and sends it
to A′.

3. Upon input query Xj from D, such that j 6= i, answer as follows:

• Sample random coins Rj . If j < i create the string Zj := Xj ||Mj ||Rj , else
create the string Zj := Xj ||0µ||Rj .
• Send Zj to the challenger as an encoding query. In response the challenger

computes (V KZj ,ΣZj)← ProbGenSK (Zj) and sends ΣZj to A′.
• Run ΣYj ,Mj+1 = Γ̂′Compute(PK ,ΣZj), and send a verification query (j,ΣYj ,Mj+1)

to the challenger.
• The challenger replies with a decision bit d; if d = 0 then return ⊥, other-

wise compute (Yj ,Mj+1) = F(Mj , Xj ;Rj) and return Yj .

4. Upon input query Xi from A, answer as follows:

• Sample random coins Ri, and create two strings Z∗0 := Xi||Mi||Ri and
Z∗1 := Xi||0µ||Ri.

16

• Send Z∗0 and Z∗1 to the challenger as challenge inputs for the input-privacy
game; the challenger replies with ΣZ∗ (which corresponds to the encoding
of either Z∗0 or Z∗1).

• Run ΣY ∗ = Γ̂′Compute(PK ,ΣZ∗) and send a verification query (i,ΣY ∗) to
the challenger; the challenger replies with a decision bit d. If d = 0 then
return ⊥, otherwise compute (Yi,Mi+1) = F(Mi, Xi;Ri) and return Yi.

5. Finally, output whatever D outputs.

For the analysis, we note that the above simulation is perfect. In particular, depending on
Z∗ being either an encoding of Z∗0 or Z∗1 the view of (A,D) is identical to the view in either
experiment Hi−1 or Hi. Hence, A′ retains the same advantage as (A,D) which contradicts
input-privacy of the underlying VC scheme. We conclude that there exist negligible functions
ν ′, ν ′′ : N→ [0, 1] such that

∆D(R′; S) ≤
q∑
i=1

∆D(Hi−1; Hi) ≤ q · ν ′(λ) ≤ ν ′′(λ),

as desired.

The statement now follows by Claim 3 and Claim 4, and by the triangle inequality, as

∆D(R; S) ≤ ∆D(R; R′) + ∆D(R′; S) ≤ ν(λ) + ν ′(λ).

This finishes the proof.

4.3 Second Compiler

In this section we construct an outsourcing circuit compiler by using any VC scheme that
satisfies the properties of correctness, soundness and outsourceability. The construction follows
the same ideas of compiler Φ1

VC (cf. Section 4.2), with two main differences. First, as we rely on

a VC scheme without input-privacy, the component Γ̂ProbGen now outputs the values Xi, Mi, Ri
in the clear. Second, the component Γ̂Verify needs to implement a special “self-destruct” feature:
The first time the component returns the special symbol ⊥, the private memory is overwritten
with the all-zero string.

As we argue later in this section, the self-destruct feature is necessary, in that, without such
a feature, generic attacks against our compiler are possible, possibly exposing the entire private
memory in an undetectable manner.

The compiler Φ2
VC. Let Γ be a circuit, and VC = (KeyGen,ProbGen,Compute,Verify) be a

VC scheme for the function F implemented by Γ. The description of the compiler Φ2
VC(Γ) can

be found in Fig. 3. The theorem below establishes that such a compiler is secure, provided
that the original circuit to be produced is resilient to a logarithmic (in the security parameter)
amount of leakage on its private memory.

Theorem 2. Let Γ be an arbitrary circuit and let VC be a verifiable computation scheme for the
function F computed by Γ, satisfying the properties of correctness, soundness and outsource-
ability. Then the compiler Φ2

VC is a correct (log(q) + 1, 1)-secure (o(1), 1)-outsourcing circuit
compiler, where q is the number of oracle queries asked by adversary A in Definition 4.

17

Γ̂KeyGen

Γ̂Memory

Γ̂ProbGen

Γ̂$

Γ̂Compute Γ̂Verify

1λ

F

Xi

PK

SK

Xi,Mi, Ri

V KXi,Mi,Ri

ΣYi,Mi+1

Ri

Mi+1

Yi

Figure 3: The description of compiler Φ2
VC . Notice that component Γ̂ProbGen does not need to

hide its input, and that component Γ̂Verify implements the self-destruct feature. The dotted line
depicts the circuit boundaries.

Proof idea. We give an intuition for the security proof. As for our first compiler, correctness
of the compiler and the fact that ρ = o(1) follow readily from the correctness and the outsource-
ability properties of the underlying VC scheme. As for security, we need to build a simulator
S that is able to “fake” the real experiment for all adversaries A, for all circuits Γ, and for all
initial memory values M1. The simulator S is allowed to define an arbitrary polynomial-time
computable function f : {0, 1}∗ → {0, 1}log(q)+1 that leaks a logarithmic amount of information
regarding the initial private memory M1. Intuitively, the function f hard-wires the randomness
for running the entire real experiment with adversary A; note that this randomness includes
the randomness for the compiler, and the random coin tosses of A. The output of the function
consists of: (i) a predicate abort which tells whether there was some round where the output of
circuit Γ̂′ differs from the output of the original circuit Γ; (ii) the index q∗ corresponding to the
round where self-destruct was triggered.

In case abort = 1 the simulator S simply gives up and aborts. Otherwise, it emulates the real
experiment with the same randomness hard-wired in the function f , answering all the queries
from A up until round q∗ − 1 using black-box access to the original circuit, whereas all further
queries are answered with ⊥. On the one hand, this is a perfect simulation as long as abort = 0.
On the other hand, the soundness property of the underlying VC scheme ensures that abort = 0
with all but a negligible probability. The proof follows.

Proof. The proof of the non-triviality and the correctness condition are similar to the proofs
of Claim 1 and Claim 2 respectively, and are therefore omitted. We proceed to prove the
security of Φ2

VC . We need to build a simulator S that is able to “fake” experiment Real for
all adversaries A, for all circuits Γ, and for all initial memory values M1. The simulator S is
allowed to define an arbitrary polynomial-time computable function f : {0, 1}∗ → {0, 1}log(q)+1

that leaks a logarithmic amount of information regarding the initial private memory M1. The
function f is defined as follows.

• Sample all random coins for experiment Real, including the random coins ρA of adversary
A, and the random coins ρΦ of the compiler Φ.
• Function f takes as input the memory M1 and the sampled random coins ρ = (ρA, ρΦ);

note that f can completely simulate experiment Real using the memory M1 and the
sampled randomness ρ.

18

• For all i ∈ [q] function f runs simultaneously the circuits Γ̂′[Mi](Xi) and Γ[Mi](Xi) using
the initial memory M1 and adversary A’s randomness to sample the inputs Xi’s.
• Define the event W which becomes true in case there exists some index i∗ ∈ [q] such that

Γ̂′[Mi∗](Xi∗) 6= Γ[Mi∗](Xi∗).
• The outputs of function f are

– abort ∈ {0, 1}: a predicate that is 1 if event W happens;
– q∗ ∈ [q]: the index corresponding to the round in which a self-destruct is triggered

(if any).

The claim below shows that the probability of event W happening is negligible.

Claim 5. For all PPT adversaries A, the probability that f returns abort = 1 is negligible.

Proof. Let us assume that there exists some circuit Γ, some memory M1, and a PPT adversary
A that provokes an abort = 1 with non-negligible probability. We build a PPT adversary A′
that uses A to break the soundness property of the underlying VC scheme (cf. Definition 8).
The description of A′ follows.

Adversary A′(M1,F ,Γ,Φ):

1. Receive PK from the challenger, where (SK ,PK)← KeyGen(F , λ).
2. Run (Γ̂, aux)← Φ(Γ) and send (the description of) circuit components Γ̂Compute,

Γ and Γ̂ to A. Adversary A produces the modified component Γ̂′Compute and
sends it to A′.

3. For all i ∈ [q], upon input query Xi answer as follows.

• Sample random coins Ri, define the string Zi := Xi||Mi||Ri, and run
ΣYi,Mi+1 = Γ̂′Compute(PK , Zi).
• Send a verification query (i,ΣYi,Mi+1) to the challenger, receiving back a

verification bit d. If d = 0 then return ⊥, and set Mi+1 := 0µ; otherwise,
compute (Yi,Mi+1) = F(Mi, Xi;Ri) and return Yi.

4. Finally, pick a random i∗ ∈ [q] and output the pair (i∗,ΣYi∗ ,Mi∗+1
).

For the analysis, note that the above simulation is perfect. In particular, the first time a
verification query is rejected, the reduction returns ⊥ and overwrites the private memory with
the all-zero string. By definition of the event W , we know that there exists an index i∗ ∈ [q]
such that the value Yi∗ corresponding to the encoding ΣYi∗ ,Mi∗+1

is different from the value Yi∗

computed via F(Mi∗ , Xi∗).
Since A′ guesses the right index i∗ with probability 1/q, we conclude that A′ breaks the

soundness property of the underlying VC scheme with non-negligible probability 1
q ·P [W]. This

concludes the claim proof.

We proceed to describe how the simulator S uses the obtained leakage in order to fake the
distribution in the real experiment (when run with the same randomness ρ initially sampled by
the simulator to define the leakage function f).

• After getting the auxiliary input (abort, q∗), check if abort = 1 and in this case stop with
output “simulation failed.” Otherwise, proceed to the next step.
• Upon input query Xi, such that i < q∗, simply forward the query Xi to oracle Γ[M1](·)

and output the answer Yi obtained from the oracle.
• Upon input query Xi, such that i = q∗, output ⊥ and initialize the memory M̃i := 0µ.
• Upon input query Xi, such that i > q∗, run (Yi, M̃i+1) = Γ̂′[M̃i](Xi) and output Yi.

19

The claim below shows that, whenever abort = 0, the above simulation is perfect.

Claim 6. Whenever abort = 0, for all circuits Γ, all initial memories M1, and for all PPT
adversaries A, the output produced by the above simulator S is identically distributed to the
output of the experiment RealA,Φ,Γ,M1(λ) (using the same randomness as sampled by S).

Proof. Notice that the simulator implements the self-destruct feature (overwriting the private
memory with the all-zero string) at round q∗; this is exactly what happens in the real experiment
(conditioning on the randomness ρ used to define the leakage function being the same as the
one used in the experiment). Moreover, all queries before round q∗ are answered by running
the original circuit Γ. Again, this is a perfect simulation (as abort = 0). The claim follows.

Let us write R for the randomness space of experiment RealA,Φ,Γ,M1(λ).3 For ρ ∈ R let us
write RealA,Φ,Γ,M1(λ)[ρ] to denote the outcome of the real experiment when using the random-
ness ρ; similarly, let us write IdealS,A,Φ,Γ,M1,`(λ)[ρ] for the outcome of the ideal experiment
when using the randomness ρ. Whenever abort = 0, by the above claim, we have that for any
ρ:

RealA,Φ,Γ,M1(λ)[ρ] = IdealS,A,Φ,Γ,M1,`(λ)[ρ].

On the other hand, by Claim 5, for a random ρ we have that abort = 1 happens only with
a negligible probability. It follows that for all PPT distinguishers D there exists a negligible
function ν : N→ [0, 1] such that

|P [D(RealA,Φ,Γ,M1(λ)) = 1]− P [D(IdealS,A,Φ,Γ,M1,`(λ)) = 1]| ≤ ν(λ),

finishing the proof.

The case of memory outsourcing is identical to that of the first compiler and we refer the
reader to Remark 1.

Necessity of self-destruct. We show that the self-destruct feature is necessary for the se-
curity of compiler Φ2

VC by presenting an undetectable attack (as per Definition 5) against the

circuit Γ̂′ produced by compiler Φ2
VC . The attack, which is described in details in Fig. 4, works

for a large class of circuits, and leaks the entire initial private memory M1 embedded in the
compiled circuit.

Theorem 3. Let Γ be any circuit with input size n = ω(log λ) and let Φ2
VC be the compiler from

Fig. 3 without the self-destruct capability. Then, the attack A∗ described in Fig. 4 is undetectable
for Γ w.r.t. Φ2

VC, and leaks the entire initial private memory M1.

Proof. The second part of the statement follows directly by observing that knowledge of the
trapdoor information τ allows to learn the value M1 with overwhelming probability.

We proceed to show undetectability. Let G be the undetectability game described in Defini-
tion 5, where the adversary A is chosen to be adversary A∗ from Fig. 4. Consider the game G0,
an identical copy of game G when b = 0, and consider the game G1 an identical copy of game
G when b = 1. Abusing notation, let us write G0 and G1 for the distribution of the random
variables corresponding to algorithm Test’s view in games G0 and game G1 respectively. For
an index i ∈ [q] consider the hybrid game Hi that answers the first i queries as in G0 and all
the subsequent queries as in G1. We note that game Hi−1 and Hi only differ in position i, and
that H0 ≡ G1 and Hq ≡ G0.

3In what follows we omit to parametrize the experiments by the set C of corrupt manufacturers, as we are
considering the case of a single malicious manufacturer.

20

We claim that, for all i ∈ [q], it holds Hi−1 ≈c Hi. Fix some index i, and define the event
W that the i-th query Xi happens to be equal to the secret value τ embedded in the modified
component Γ̂Compute (as described in Fig. 4). By Lemma 1, ∆(G0; G1) ≤ ∆(G0; G1|¬W) +
P [W]. Clearly, conditioned on event W not happening, the distributions of game G0 and G1

are identical; this is because in such a case the modified component Γ̂′Compute behaves exactly

like the original component Γ̂Compute.
On the other hand, if |τ | = ω(log λ), the probability of event W is negligible. We conclude

that for all PPT distinguishers D there exists a negligible function ν : N→ [0, 1] such that

∆D(G0; G1) ≤
q∑
i=1

∆D(Hi−1; Hi) ≤ ν(λ).

4.4 Concrete Instantiations

The area of verifiable computing has a long history in the cryptographic literature [4, 57, 41,
37]. We refer the reader to the excellent survey by Walfish and Blumberg [69] for a thorough
introduction. By now, several schemes and models for the problem of outsourcing computation
are known (see, among others, [2, 10, 16, 13, 49, 1]). Below, we focus only on VC schemes
suitable for the compilers described in this section.

First compiler. For the compiler of Section 4.2, we need a VC scheme satisfying both sound-
ness and input-privacy (in the presence of verification queries). The only known schemes meeting
these requirements are the ones recently constructed by Fiore, Gennaro, and Pastro [36] (relying
on fully homomorphic encryption [39]).

Second compiler. For the compiler of Section 4.3, we need a VC scheme satisfying soundness
(in the presence of verification queries), but no input-privacy is required. Therefore, we can
instantiate this compiler using more efficient schemes based on SNARKs [57, 43, 16, 26, 18, 17,
13, 38, 61, 14, 23, 45].

Let Γ be any circuit with input size of n bits, and consider the compiled circuit Γ̂ produced by
running Φ2

VC(Γ). Define the following adversarial strategy, aimed at building a modified circuit

component Γ̂′Compute that leaks the entire initial private memory M1 when given some secret
trapdoor information.

A∗(Xi,Mi, Ri):

1. Choose a random value τ , such that |τ | = n, and store it in a memory location.
2. Upon the first run, duplicate and store the content of memory M1 into another

memory location, and initialize a counter j := 0.
3. Upon input a tuple (Xi,Mi, Ri) such that Xi 6= τ , output ΣYi =

ComputePK (Xi,Mi, Ri). Otherwise, behave as follows:

• If M1[j] = 0, let ΣYi be the all-zero string.
• Else, compute ΣYi = Compute(Xi,Mi, Ri).
• Update counter j ← (j + 1) mod |M1| and output ΣYi .

Figure 4: Undetectable attack against compiler Φ2
VC (without the self-destruct capability).

21

Extensions. While the compilers described in this section rely on non-interactive VC schemes,
it is easy to generalize our constructions to also work with interactive VC. The difference is
that the communication pattern between the components Γ̂Compute and Γ̂Verify would consist of
multiple sequential messages, before the values Yi and Mi+1 are produced. VC schemes of this
type were designed, e.g., in [41, 22, 42]. See also [67] for an excellent discussion on how to
implement those schemes in hardware.

5 Compiler based on MPC

In this section we present a compiler which is based on multi-party computation (MPC) tech-
niques, aiming to improve the efficiency of the resulting circuit at the expense of achieving
security in the weaker model where there are m ≥ 2 manufacturers, a t-fraction of which is
malicious (for some threshold t ≤ m − 1). Before presenting our compiler, we first revisit the
core ideas of MPC, and then we give a generic definition for MPC protocols in the client-server
model, along the lines of [8].

5.1 MPC in the Client-Server Model

In MPC we consider p parties, where each party Pi, for 1 ≤ i ≤ p, possesses an input Xi and
they all wish to jointly compute the tuple (Y1, . . . , Yp) = F(X1, . . . , Xp), where Pi receives Yi.
In the client-server model, the parties are divided into two categories: the parties that provide
inputs and wish to receive the output of the computation (clients), and those performing the
computation (servers). A t-private MPC protocol ensures that any adversary who controls up
to t servers cannot leak any information related to the private inputs of the clients, besides the
information that can be inferred by inspecting the output of the computation, and regardless of
the number of corrupted clients. In our compiler the circuit corresponding to the code executed
by the servers will be outsourced to a number of possibly malicious manufacturers, that may
apply arbitrary modifications against the circuit components. Thus, we require MPC protocols
that are secure against active (malicious) attackers. Additional properties that might be useful
are the following:

1. Correctness: The protocol computes the correct output.
2. Output delivery: It guarantees that the honest parties will receive the output of the com-

putation.
3. Fairness: If at least one party learns the output, then, all the parties learn the output.
4. Identifiable abort: Whenever the protocol terminates due to an abort message, it is guaran-

teed that at least one malicious party will be caught (this might be useful for deactivating
adversarial circuit components).

The general idea behind the compiler is the following. Let Γ be a circuit implementing some
functionality F , and let ΠF be a t-private MPC protocol realizing the function F . Then,
assuming the number of malicious manufacturers is at most t < m, the circuit Γ̂ will implement
the code of ΠF , and each Γ̂i will implement the code of the i-th server. Below we define the
protocol framework that we are going to use for the rest of this section. The idea is to describe
any MPC protocol using its next message function, denoted as Next.

Definition 11 (r-round protocols). Let C, S be sets of probabilistic interactive Turing ma-
chines, with cardinalities p, m, respectively. An r-round protocol Π for p clients and m servers
is a tuple (C, S,Enc,Dec,Next), where Next = (Next1, . . . ,Nextm), described as follows.

22

• Setup: Each client computes (X1
i , . . . , X

m
i)← Enc(Xi), and sends Xj

i to the server indexed

by j. Let inj := (Xj
1 , . . . , X

j
p), and τj := 0 (we assume that the network is fully connected,

still the properties of the communication channel depend on the instantiation).
• Computation: For i ∈ [r]:

– If i 6= r, for j ∈ [m] execute (oj1, . . . , o
j
m, τ ′j) ← Nextj(in

j , τj), send ojk, k 6= j, to the

server with index k. Set inj = (o1
j , . . . , o

m
j), and τj = τ ′j.

– If i = r, for j ∈ [m] execute oj ← Nextj(in
j , τj), and send oj to Dec.

• Output: Execute (Y1, . . . , Yp)← Dec(o1, . . . , om), and send Yj to the client with index j.

For any function F , the protocol computing F will be denoted by ΠF .

Informally, in the first step of the protocol execution, the clients encode their inputs, as it
is prescribed by Enc, and then the main computation begins. The code executed by the servers
at each round is defined by the function Next (the next message function). Hence, in the i-th
round, server Sj computes Nextj upon the outputs and the state information τ produced by
the other servers in round i − 1. One can also consider deterministic next message functions,
assuming the randomness is given as input in each round. Below, we formally define correctness
and privacy for MPC protocols.

Definition 12 (Correctness). Let F be a p-party functionality. We say that Π realizes F
with perfect (resp., statistical) correctness if for any input (X1, . . . , Xp), the probability that the
output delivered to the i-th client during the protocol execution, is different from Yi, is 0 (resp.,
negligible in λ), where (Y1, . . . , Yp) = F(X1, . . . , Xp) for i ∈ [p].

Definition 13 ((t,m)-privacy). Let λ be the security parameter, p be the number of parties
(clients) and m be the number of servers, and let A be an adversary that may corrupt any set
of parties Ic ⊆ [p], and servers Is ⊂ [m], where |Is| ≤ t. We say that the protocol Π realizes F
with (t,m)-privacy if there exists a PPT algorithm S such that for all sufficiently large λ ∈ N,

ViewIs,Ic(λ,X1, . . . , Xp) ≈c S(1λ, Ic, Is, (Xi, Yi)i∈Ic)

where ViewIs,Ic(λ,X1, . . . , Xp) denotes the joint view of the servers and clients in Is and Ic,
respectively, within an execution of the protocol upon inputs X1, . . . , Xp, and (Y1, . . . , Yp) =
F(X1, . . . , Xp).

The main idea behind the above definition is that the view of the attacker during the protocol
execution can be computed based on its own input and output only.

5.2 The Compiler

Let Γ be a circuit implementing the function F(M1, ·), where for any X and i ∈ N, we have
(Y,Mi+1) = F(Mi, X). Let ΠF = (C, S,Enc,Dec,Next) be an r-round protocol realizing the
function F , over a set of m servers with a single client. The compiler produces (Γ̂, aux) ←
ΦΠF (Γ), where

• Γ̂ is the circuit that implements ΠF (depicted in Figure 5 for the case m = 2 and p = 1),
having as a sub-circuit Γ̂Memory, which is a circuit consisting only of memory gates, as

needed by the original circuit Γ. During initialization, Γ̂Memory stores the initial private
memory value, M1.
• aux = ((Γ̂1, . . . , Γ̂m+2),M, (I1, . . . , Im)), where

23

Γ̂Enc

Γ̂$

Γ̂1

Γ̂1

Γ̂2

Γ̂2

Γ̂Memory

Next1 Next1 Next1

Next2 Next2 Next2

Γ̂Dec

Ri

in1

in2

τ ′1 τ ′′1

τ ′2 τ ′2

o1
2

o2
1

o1
2

o2
1

o1

o2

Mi+1

Xi Yi

Figure 5: The MPC compiler for the case of m = 2 outsourcing facilities (from which one can
be malicious). The components Γ̂1 and Γ̂2 can be outsourced, while the connectivity between
them and the remaining components are built in-house. The dotted line depicts the circuit
boundaries.

– Γ̂m+1 = Γ̂Enc and Γ̂m+2 = Γ̂Dec, i.e., the circuits Γ̂m+1 and Γ̂m+2 implement the
encoder, Enc, and the decoder Dec, of ΠF , respectively.

– For i ∈ [m], Γ̂i is the circuit that implements the code of the i-th server, for the entire
execution of ΠF (r-rounds). Those circuits can be implemented in a straightforward
way using the next message function Nexti (cf. the sub-components Γ̂1 and Γ̂2 in
Figure 5).

– The mapping function M describes the physical connections between the circuits
described above, and Ij , for j ∈ [m], specifies the components that will be outsourced
to the manufacturer with index j. In our case Ij = {j}.

– In case the original circuit is randomized, in addition to the components described
above, Φ also outputs a circuit Γ̂$ producing random coins Ri (as needed in each
invocation of the circuit).

Our construction must be non-trivial (cf. Definition 4), thus the underlying protocol Π must
satisfy the following outsourceability property.

Definition 14 (Outsourceability of procotols). A protocol Π = (C, S,Enc,Dec,Next) that real-
izes the function F can be outsourced if it satisfies the following condition: The circuit computing
the encoding and decoding procedures (Enc,Dec) must be smaller than the circuit computing the
function F .

We prove the following result.

Theorem 4. Let F be any function, and let ΠF be a (t,m)-private MPC protocol for F ,
satisfying the correctness and outsourceability properties. Then, the compiler ΦΠF is a correct,
(0, t)-secure, (o(1),m)-outsourcing circuit compiler.

Proof. The correctness property of ΦΠF follows directly by the correctness property of ΠF . By
the outsourceability property of the ΠF , we have that |Enc|+ |Dec| = o(|Γ|), which implies that

limλ→∞
|Enc|+|Dec|
|Γ| = 0. Having this in mind we can prove that the ratio ρ converges to 0, as λ

24

goes to infinity using the expression for ρ, and assuming Γ̂$ is of constant size:

lim
λ→∞

(|Enc|+ |Dec|+ |Γ̂$|)/|Γ|
1

= 0.

Thus, for sufficiently large λ the outsourcing ration ρ is smaller than 1.
Let F be any functionality and let Γ be the circuit implementing F . Assuming that ΠF is

a (t,m)-private MPC protocol for F , we will prove that ΦΠF is a (0, t)-secure, circuit compiler.
Concretely (cf. Definition 4), we need to prove that for all C ⊆ [m] of size at most t, all PPT
adversaries A, all circuits Γ, and for all initial values of the memory M1 ∈ {0, 1}∗, there exists
a simulator S with running time poly(|A|, |Γ[M1]|) such that

{RealA,Φ,C,Γ,M1(λ)}λ∈N ≈c {IdealS,A,Φ,C,Γ,M1,`(λ)}λ∈N , (1)

for all sufficiently large values of λ. Let A be an attacker ΦΠF . The idea behind the proof
is to relate the interaction between A and the circuits produced by ΦΠF , with the interaction
between an attacker A′ corrupting up to t, with a protocol ΠF . Then, we will use the simulator
S ′ that is given by the (t,m)-privacy of ΠF to construct a simulator S, satisfying relation 1. In
what follows, and for the sake of simplicity, we prove the needed assuming A is a single round
attacker, and then we discuss how the proof easily extends to the setting in which we have
multiple executions.

By the compiler definition, the protocol ΠF that ΦΠF is based on, consists of two clients,
C1, C2, where C1 is the corrupted client that provides the public input to the circuit, X, and C2

supplies the circuit with private input, Mi, and m servers. Let Γ be the circuit implementing F .
Given the adversary A for ΦΠF we define the adversary A′ = (A′0,A′1) against ΠF as follows:

• (server corruption)A′0: execute (Γ̂, aux)← Φ(Γ), where aux := ((Γ̂1, . . . , Γ̂n),M, (I1, . . . , Im)),

and sample ({Γ̂′i}i∈I , τ) ← A0(1λ, {〈Γ̂i〉}i∈I , 〈Γ〉, 〈Γ̂〉). Then corrupt the server Si, for

i ∈ I, so that Si will execute the possibly modified circuit Γ̂′i.
• (protocol execution) A′1: participate in the protocol ΠF choosing the input for client
C1 (the corrupted client), according to the input value chosen by A1. Concretely, execute
the following steps: sample X ← A1(1λ, τ), define the input of client C1 to equal to X,
receive the output of ΠF for client C1, Y , for inputs (X,M), and forward Y to A1.

We define the random variable ViewIs,Ic , Is = C, Ic = {1}, to be the view of A while indirectly
interacting with ΠF through A′1. Clearly, by the definition of A′, the view of A while being
executed by A′, matches its view while executing the real world experiment of Definition 4, thus
we have

ViewIs,Ic(λ,X,M) = RealA,Φ,C,Γ,M1(λ). (2)

Assuming ΠF is (t,m)-private against A′, there exists exists a simulator S ′′ that simulates the
view of A′ during the protocol execution. Let S ′ be code of S ′′ that only outputs the view of
A. Then we have that for all sufficiently large λ ∈ N,

ViewIs,Ic(λ,X,M) ≈c S ′(1λ, Ic, Is, (X,Y)i∈Ic). (3)

Now we define the simulator S for A against ΦΠF . S on input (1λ, 〈Γ〉,Φ,A, C, 0) executes the
following steps:

• executes A1 with oracle access to Γ[M1](·), and constructs the pair (X,Y), i.e., it con-
structs the valid output of F on input X, chosen by A1.
• executes o← S ′(λ, Ic, Is, (X,Y)i∈Ic), where Is = C and Ic = {1}, and outputs o.

25

Clearly, from Relation 3 we have that S produces outputs which is computationally indist-
inghuishable from ViewIs,Ic(λ,X,M), and then using Relation 2 we receive,

RealA,Φ,C,Γ,M1(λ) ≈c IdealS,A,Φ,C,Γ,M1,`(λ),

and this concludes the proof for attackers executing the protocol only once.
For multi-round attackers against the circuit compiler, we need to have multiple, sequen-

tial executions, of the same protocol, as a single execution computes a single circuit output.
Moreover, the attacker is non-adaptive, and corrupts the servers only before the first protocol
execution. By the composition theorem of [20], we have that any secure MPC protocol is also
secure against sequential composition, even for adaptive adversaries. Using a standard hybrid
argument, this gives rise to a simulator, S ′, that simulates the view of the attacker for all proto-
col executions, and the proof idea is identical to one given above: we relate the attacker against
the compiler to an attacker against the protocol, and we use S ′ to construct a simulator S for
the circuit compiler.

The case of memory outsourcing is identical to that of the first compiler and we refer the
reader to Remark 1.

5.3 Concrete Instantiations

Many MPC protocols satisfy the outsourceability property, as the values that feed the main
computation, i.e., the output of the encoder, are independent of the function that is being
evaluated, and mostly depends on the number of parties, as in the case of [40] (where the same
holds for decoding). An explicit (t,m)-private protocol is given in [27], for t < m/2, in which
there is a pre-processing phase that can be implemented by the encoder, with running time
independent of the function that is being evaluated. The construction uses secure point-to-
point and broadcast channels, that can be implemented directly between the components, and
besides privacy it also guarantees output delivery.

We can also easily adapt the SPDZ protocol [28] to the client-server setting. The SPDZ
protocol requires a pre-processing phase that is performed by the parties, and that will feed
the encoder circuit who will perform the actual encoding (which is only a linear operation).
The complete protocol requires a linear number of public-key operations in the circuit size |Γ|,
with the encoder requiring only a linear number of operations in m. The efficiency of the
pre-processing stage can be further improved [6]. This construction does not guarantee output
deliver, but it is secure against adversaries that corrupt up to m− 1 sub-components.

Finally, the construction of [47] can also be adapted to the client-server scenario and addi-
tionally provides security with identifiable aborts.

6 Conclusion and Open Problems

We put forward a simulation-based security definition for assessing security of ICs whose fabri-
cation has (partially) been outsourced to an untrusted off-shore manufacturer. Importantly, the
size of the components built in-house must be much smaller than the size of the original IC. Our
definition implies a strong guarantee, essentially saying that no matter how the manufacturer
modified the outsourced IC sub-components, using the re-assembled IC in the wild cannot leak
sensitive information about the private memory.

With such a framework in hand, we proposed three compilers that meet our security defini-
tion, and work for any circuit. Our constructions generically leverage a VC scheme or an MPC
protocol for the function underlying the produced IC.

26

There are several interesting open questions related to our work. First, it might be interesting
to explore variations of our model, for example by considering the case where there are several
(non-colluding) manufacturers involved in the fabrication process. In such a case, it might be
possible to obtain significant efficiency improvements, e.g., by relying on special VC schemes
already suitable for similar settings [1].

Second, one could try to instantiate our compilers with specialized VC schemes that are
tailored for specific functionalities. Although there are already some schemes with this feature—
e.g., [36] constructs VC schemes tailored for (multi-variate) polynomials and linear combinations—
to the best of our knowledge, there is no concrete VC scheme for verifying the computation of
a specific cryptographic functionality (such as AES).

Third, it would be interesting to explore different approaches in order to build compilers
meeting our security definition without relying on verifiable computing or multiparty computa-
tion.

References

[1] Prabhanjan Ananth, Nishanth Chandran, Vipul Goyal, Bhavana Kanukurthi, and Rafail
Ostrovsky. Achieving privacy in verifiable computation with multiple servers - without
FHE and without pre-processing. In PKC, pages 149–166, 2014.

[2] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Efficient
verification via secure computation. In ICALP, pages 152–163, 2010.

[3] Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. Subversion-resilient signature
schemes. In ACM CCS, pages 364–375, 2015.

[4] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations
in polylogarithmic time. In ACM STOC, pages 21–31, 1991.

[5] James Ball, Julian Borger, and Glenn Greenwald. Revealed: how US and UK spy agencies
defeat internet privacy and security. Guardian Weekly, September 2013.

[6] Carsten Baum, Ivan Damg̊ard, Tomas Toft, and Rasmus Winther Zakarias. Better prepro-
cessing for secure multiparty computation. In ACNS, pages 327–345, 2016.

[7] Mark Beaumont, Bradley Hopkins, and Tristan Newby. Hardware trojans — prevention,
detection, countermeasures (a literature review). Technical report, Australian Government
Department of Defence, 07 2011.

[8] Donald Beaver. Commodity-based cryptography (extended abstract). In ACM STOC,
pages 446–455, 1997.

[9] Georg T. Becker, Francesco Regazzoni, Christof Paar, and Wayne P. Burleson. Stealthy
dopant-level hardware trojans: extended version. J. Cryptographic Engineering, 4(1):19–31,
2014.

[10] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling with
applications to one-time programs and secure outsourcing. In ASIACRYPT, pages 134–153,
2012.

[11] Mihir Bellare, Joseph Jaeger, and Daniel Kane. Mass-surveillance without the state:
Strongly undetectable algorithm-substitution attacks. In ACM CCS, pages 1431–1440,
2015.

27

[12] Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of symmetric encryp-
tion against mass surveillance. In CRYPTO, pages 1–19, 2014.

[13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
SNARKs for C: verifying program executions succinctly and in zero knowledge. In
CRYPTO, pages 90–108, 2013.

[14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-
interactive zero knowledge for a von neumann architecture. In USENIX Security Sym-
posium, pages 781–796, 2014.

[15] Shivam Bhasin and Francesco Regazzoni. A survey on hardware trojan detection tech-
niques. In IEEE ISCAS, pages 2021–2024, 2015.

[16] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In ICS,
pages 326–349, 2012.

[17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition
and bootstrapping for SNARKS and proof-carrying data. In ACM STOC, pages 111–120,
2013.

[18] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct
non-interactive arguments via linear interactive proofs. In TCC, pages 315–333, 2013.

[19] Elette Boyle, Gil Segev, and Daniel Wichs. Fully leakage-resilient signatures. J. Cryptology,
26(3):513–558, 2013.

[20] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of
Cryptology, 2000.

[21] Rajat Subhra Chakraborty, Seetharam Narasimhan, and Swarup Bhunia. Hardware trojan:
Threats and emerging solutions. In IEEE HLDVT, pages 166–171, 2009.

[22] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computa-
tion with streaming interactive proofs. In Innovations in Theoretical Computer Science,
pages 90–112, 2012.

[23] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael
Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable computation. In
IEEE Symposium on Security and Privacy, pages 253–270, 2015.

[24] Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits against constant-rate
tampering. In CRYPTO, pages 533–551, 2012.

[25] Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits and protocols against
1/poly(k) tampering rate. In TCC, pages 540–565, 2014.

[26] Ivan Damg̊ard, Sebastian Faust, and Carmit Hazay. Secure two-party computation with
low communication. In TCC, pages 54–74, 2012.

[27] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a black-box
pseudorandom generator. In CRYPTO, pages 378–394, 2005.

28

[28] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In CRYPTO, pages 643–662, 2012.

[29] Jean Paul Degabriele, Pooya Farshim, and Bertram Poettering. A more cautious approach
to security against mass surveillance. In FSE, pages 579–598, 2015.

[30] Yevgeniy Dodis, Chaya Ganesh, Alexander Golovnev, Ari Juels, and Thomas Ristenpart.
A formal treatment of backdoored pseudorandom generators. In EUROCRYPT, pages
101–126, 2015.

[31] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs. Efficient
public-key cryptography in the presence of key leakage. In ASIACRYPT, pages 613–631,
2010.

[32] S. Dziembowski, S. Faust, and F.-X. Standaert. Private circuits iii: Hardware trojan-
resilience via testing amplification. http://perso.uclouvain.be/fstandae/PUBLIS/177.
pdf, 2016.

[33] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In FOCS,
pages 293–302, 2008.

[34] Antonio Faonio, Jesper Buus Nielsen, and Daniele Venturi. Mind your coins: Fully leakage-
resilient signatures with graceful degradation. In ICALP, pages 456–468, 2015.

[35] Sebastian Faust, Krzysztof Pietrzak, and Daniele Venturi. Tamper-proof circuits: How to
trade leakage for tamper-resilience. In ICALP, pages 391–402, 2011.

[36] Dario Fiore, Rosario Gennaro, and Valerio Pastro. Efficiently verifiable computation on
encrypted data. In ACM CCS, pages 844–855, 2014.

[37] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing:
Outsourcing computation to untrusted workers. In CRYPTO, pages 465–482, 2010.

[38] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct NIZKs without PCPs. In EUROCRYPT, pages 626–645, 2013.

[39] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178,
2009.

[40] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In ACM STOC, pages 218–229,
1987.

[41] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In ACM STOC, pages 113–122, 2008.

[42] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
Interactive proofs for muggles. J. ACM, 62(4):27, 2015.

[43] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation without
rejection problem from designated verifier cs-proofs. IACR Cryptology ePrint Archive,
2011:456, 2011.

[44] Glenn Greenwald. No place to hide: Edward Snowden, the NSA, and the U.S. surveillance
state. Metropolitan Books, May 2014.

29

http://perso.uclouvain.be/fstandae/PUBLIS/177.pdf
http://perso.uclouvain.be/fstandae/PUBLIS/177.pdf

[45] Jens Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT,
pages 305–326, 2016.

[46] Mike Hamburg, Paul Kocher, and Mark Marson. Analysis of Intel’s Ivy Bridge digital
random number generator. Technical report, Cryptography Research, Inc., 03 2012.

[47] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computation with
identifiable abort. In CRYPTO, pages 369–386, 2014.

[48] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private circuits II:
keeping secrets in tamperable circuits. In EUROCRYPT, pages 308–327, 2006.

[49] Thomas P. Jakobsen, Jesper Buus Nielsen, and Claudio Orlandi. A framework for out-
sourcing of secure computation. In CCSW, pages 81–92, 2014.

[50] Benjamin Jun and Paul Kocher. The Intel random number generator. Technical report,
Cryptography Research, Inc., 04 1999.

[51] Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded leakage re-
silience. In ASIACRYPT, pages 703–720, 2009.

[52] Aggelos Kiayias and Yiannis Tselekounis. Tamper resilient circuits: The adversary at the
gates. In ASIACRYPT, pages 161–180, 2013.

[53] Lang Lin, Markus Kasper, Tim Güneysu, Christof Paar, and Wayne Burleson. Trojan
side-channels: Lightweight hardware trojans through side-channel engineering. In CHES,
pages 382–395, 2009.

[54] Eric Love, Yier Jin, and Yiorgos Makris. Enhancing security via provably trustworthy
hardware intellectual property. In IEEE HOST, pages 12–17, 2011.

[55] Marie A. Mak. Trusted Defense Microelectronics: Future Access and Capabilities Are
Uncertain. Technical report, United States Government Accountability Office, 10 2015.

[56] David R. McIntyre, Francis G. Wolff, Christos A. Papachristou, and Swarup Bhunia. Dy-
namic evaluation of hardware trust. In IEEE HOST, pages 108–111, 2009.

[57] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.

[58] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. SIAM J.
Comput., 41(4):772–814, 2012.

[59] Jesper Buus Nielsen, Daniele Venturi, and Angela Zottarel. Leakage-resilient signatures
with graceful degradation. In PKC, pages 362–379, 2014.

[60] Martin Otto. Fault Attacks and Countermeasures. PhD thesis, University of Paderborn,
Germany, 2006.

[61] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In IEEE Symposium on Security and Privacy, pages 238–252, 2013.

[62] Nicole Perlroth, Jeff Larson, and Scott Shane. N.S.A. able to foil basic safeguards of privacy
on web. The New York Times, September 2013.

[63] Krzysztof Pietrzak. A leakage-resilient mode of operation. In EUROCRYPT, pages 462–
482, 2009.

30

[64] Miodrag Potkonjak. Synthesis of trustable ics using untrusted CAD tools. In DAC, pages
633–634, 2010.

[65] Jean-Pierre Seifert and Christoph Bayer. Trojan-resilient circuits. In Al-Sakib Khan
Pathan, editor, Securing Cyber-Physical Systems, chapter 14, pages 349–370. CRC Press,
Boca Raton, London, New York, 2015.

[66] Brian Sharkey. Trust in Integrated Circuits Program. Technical report, DARPA, 03 2007.

[67] Riad S. Wahby, Max Howald, Siddharth J. Garg, Abhi Shelat, and Michael Walfish. Veri-
fiable asics. In IEEE S&P, pages 759–778, 2016.

[68] Adam Waksman and Simha Sethumadhavan. Silencing hardware backdoors. In IEEE
Symposium on Security and Privacy, pages 49–63, 2011.

[69] Michael Walfish and Andrew J. Blumberg. Verifying computations without reexecuting
them. Commun. ACM, 58(2):74–84, 2015.

31

	Introduction
	Background
	Our Contributions
	Related Work

	Preliminaries
	Notation
	Circuits

	Secure Circuit Fabrication
	Security
	Undetectability

	Compilers based on VC
	Prelude: Verifiable Computation
	First Compiler
	Second Compiler
	Concrete Instantiations

	Compiler based on MPC
	MPC in the Client-Server Model
	The Compiler
	Concrete Instantiations

	Conclusion and Open Problems

