Secure OQutsourcing of Circuit Manufacturing

Giuseppe Ateniese”, Aggelos Kiayias!, Bernardo Magrif, Yiannis Tselekounisf, and
Daniele Venturi®

“Stevens Institute of Technology
T University of Edinburgh
Y Aarhus University
$Sapienza University of Rome

January 29, 2019

Abstract

The fabrication process of integrated circuits (ICs) is complex and requires the use of
off-shore foundries to lower the costs and to have access to leading-edge manufacturing
facilities. Such an outsourcing trend leaves the possibility of inserting malicious circuitry
(a.k.a. hardware Trojans) during the fabrication process, causing serious security concerns.
Hardware Trojans are very hard and expensive to detect and can disrupt the entire circuit
or covertly leak sensitive information via a subliminal channel.

In this paper, we propose a formal model for assessing the security of ICs whose fab-
rication has been outsourced to an untrusted off-shore manufacturer. Our model captures
that the IC specification and design are trusted but the fabrication facility(ies) may be ma-
licious. Our objective is to investigate security in an ideal sense and follows a simulation
based approach that ensures that Trojans cannot release any sensitive information to the
outside. It follows that the Trojans’ impact in the overall IC operation, in case they exist,
will be negligible up to simulation.

We then establish that such level of security is in fact achievable for the case of a sin-
gle and of multiple outsourcing facilities. We present two compilers for ICs for the single
outsourcing facility case relying on verifiable computation (VC) schemes, and another two
compilers for the multiple outsourcing facilities case, one relying on multi-server VC schemes,
and the other relying on secure multiparty computation (MPC) protocols with certain suit-
able properties that are attainable by existing schemes.

Keywords: Security models, hardware Trojans, circuit compilers, fabless manufacturing,
verifiable computation.

Contents

1 Introduction 1 4.2 Compiler based on Input-
1.1 Background 1 Private VC 13
1.2 Previous Work 2 4.3 Compiler based on VC without
1.3 Our Contributions 3 Input Privacy 18
1.4 Related Work 6
5 Case Study II: Multiple Manufac-
2 Preliminaries 7 turers 29
2.1 Nf)tat.ion 7 5.1 Compilers based on VC with
2.2 Circuits 8 Multiple Servers 99
3 Secure Circuit Fabrication 8 5.2 Compiler based on MPC 26
3.1 Security 9 Lo
3.2 Undetectability 11 6 Concrete Instantiations 30
6.1 Case Study I 30
4 Case Study I: Single Manufac- 6.2 Case Study II 30

turer 11
4.1 Prelude: Verifiable Computation 12 7 Conclusion and Open Problems 32

1 Introduction

1.1 Background

The fabrication process adopted by the semiconductor industry is fundamentally global, involv-
ing several parties that may not be trusted. As a result, integrated circuits (ICs) are vulnerable
to so-called hardware Trojans that can compromise or disable critical systems, or covertly leak
sensitive information [58, 24, 9] . Analogously to a software Trojan, a hardware Trojan is a
back-door deliberately added to the circuit to disrupt its operation or disable it when certain
events occur. A Trojan can be added to the circuit during the design phase, by some malicious
designer, or more often during the manufacturing phase, by some malicious off-shore fabrication
facility. A hardware Trojan’s objectives may be to modify the functionality of the circuit (e.g.,
in order to compromise or disable critical systems), modify its specification (e.g., by changing
its energy consumption), covertly leak sensitive information (e.g., from a secret memory), or
simply disable the entire circuit when instructed to do so [7]. Once the Trojan is inserted into
the circuit it can stay active the entire time, or it can be “triggered” by some event such as a
special input to the circuit.

Reliably detecting compromised circuit components through testing and reverse engineering
appears to be an impossible task given our current technology [15]. Indeed, all non-destructive
testing techniques can easily be circumvented by properly obfuscating embedded Trojans. The
U.S. military recognized this threat and started two programs, Trust and IRIS, with the intent
of developing techniques and metrics to certify ICs going into weapon systems. The main
concern is that advanced weapons may appear to work properly but then switch off in combat
or when triggered by some special events. Another stated concern is information leakage, where
a malicious component is programmed to leak sensitive information [75].

The U.S. military however currently obtains trusted chips through the DOD Trusted Foundry
program which is currently managed by the NSA’s Trusted Access Program Office (TAPO).
Within this program, a trusted design center and foundry are established through an exclu-
sive partnership with IBM for secure semiconductor fabrication and ASIC services, along with
the involvement of several Trusted Suppliers which are accredited by an accreditation authority

(DMEA). The intent of the Trusted Foundry program is to provide national security and defense
programs with access to ICs from trusted sources. However, a report by the U.S. Government
Accountability Office (GAO) [60], released in April 2015, found that even though the Trusted
Foundry program started in 2004, IBM remained the sole-source supplier for leading-edge tech-
nologies meeting the criteria put forth by DOD. GAQO’s report highlights two main issues:
First, it notices that IBM sold its microelectronics fabrication business to a foreign-owned en-
tity (GlobalFoundries). Second, relying on a single source supplier for defense microelectronics
hinders competition and thus innovation in this critical area.

1.2 Previous Work

Inspired by the above considerations, in this work we put forward a formal security model
for the problem of utilizing off-shore fabrication facilities for IC manufacturing. Our main
motivation is that the setting of secure circuit fabrication, while being an extremely important
practical problem, almost completely lacks theoretical foundations. We discuss a few remarkable
exceptions below.

e Seifert and Bayer [74] introduced a very strong security model for the fabrication of Trojan-
resilient circuits, where the produced circuit is required to always have the same output
as the original circuit; unfortunately, they show how to achieve their definition only for
very limited classes of Trojans (i.e., the adversary is allowed to “corrupt” only a small
fraction of the gates in each layer of the IC, and a small fraction of the wires connecting
different layers).

e Recently, Wahby et al. [76] introduced a new approach to the problem of defeating hard-

ware Trojans in fabless circuit manufacturing. Their model reflects the fact that IC
specification and design are trusted but the fabrication facility is not. Rather than test-
ing or reverse engineering the IC hardware received, which only provides limited security,
they consider a class of solutions where the IC’s operations are continuously verified.
Such an approach makes sense as long as the verification circuitry can be: (i) constructed
cheaply, and (ii) run efficiently. These properties are achieved by leveraging a verifiable
computation (VC) scheme for the function implemented by the original circuit. Verifiable
computation (see, e.g., [41]) is a recent paradigm by which resource-constrained clients
can delegate the computation of some function F, on (possibly private) input X, to an
untrusted (and computationally powerful) server, without the server being able to cheat
about the outcome of the computation, and with the property that verifying the server’s
answer is much more efficient than computing the function from scratch.
In a nutshell, the goal of [76] is to make sure that the produced circuit maintains correct-
ness of the computation, meaning that the output of the circuit is either invalid, or equal
to the output of the original circuit. The main drawback is that invalid outputs might be
arbitrarily correlated with the secret state of the circuit, which could expose key material
in case the produced circuit is a cryptographic circuit. (We will formalize this fact later
in the paper.)

e In [35], the authors show how to protect against hardware Trojans using testing-based
mechanisms. Their work is based on two existing techniques for Trojan detection, called
“Input scrambling” and “split manufacturing” [50], for which the authors provide formal
models. Hence, they present a generic compiler that transforms any circuit into a new
(equivalent) circuit with the following guarantee: Assuming the attacker invokes the circuit
q times, and that the device is being tested ¢ times, for ¢ > ¢ uniform on a specific range
which is not known to the attacker, the compiled circuit is secure with probability at

least 1 — (g/t)!/?, were £ is the number of copies of the sub-circuits whose production is
outsourced.

The main limitation is that [35] assumes an a-priori known bound on the number ¢ of
interactions between the user and the device; in fact, without such a bound, their construc-
tion would require a super-polynomial number of tests. Unfortunately, in many important
applications, it is not realistic to assume an upper bound on the value ¢, and thus it is an
important open problem to design a methodology that provides security for an arbitrary
polynomial number of interactions between the user/attacker and the device.

e The approach of applying secure distributed computing to defeat hardware Trojans has
also been recently explored in [61]. However, this work is more focused on the implemen-
tation aspects of this idea, and moreover it assumes that a software developer builds and
signs the applications to be run on the possibly malicious circuit components.

1.3 Owur Contributions

We put forward a formal framework for assessing security of a circuit whose production has been,
in part, outsourced to a set of manufacturers that are not trusted. Our security definition implies
that using the produced circuit in the wild leaks no information on its secrets. Additionally, the
adversarial model we consider does not assume any a-priori bound on the number of executions,
and allows the manufacturer(s) to make arbitrary modifications to the outsourced components.
In essence, our security model captures any attack in which the backdoored circuit communicates
with the user/attacker through the input/output gates of the produced circuit. (This includes
digital and analog Trojans, but not hidden antennas as considered in [35].)

With such a framework in hand, we give several design methodologies that achieve our
definition with different tradeoffs in terms of security, efficiency, and underlying assumptions.
Thus, our work establishes the theoretical feasibility of utilizing off-shore fabrication facilities
for IC manufacturing. A more detailed explanation of our main contributions follows below.

Secure circuit fabrication. Let I' be the original circuit to be produced. Instead of pro-
ducing I' directly, we first “compile” it into a different circuit r using an efficient, possibly
randomized, procedure ® that we call an outsourcing compiler. The compiler ® takes as input
a description of I' and returns a description of f, together with some auxiliary information
specifying how T can be divided into sub-components, and which of these components can be
produced off-shore; the remaining components will be instead built in-house. After all com-
ponents have been produced, the circuit designer re-assembles the circuit r (by combining the
outsourced components and the components built in-house), which is then initialized with some
initial secret memory M, and used in the wild.

In order to make sense, the above approach needs to satisfy a few important requirements.
The first requirement is that ® needs to be functionality preserving, meaning that the compiled
circuit T should compute the same functionality as the original circuit T (for all possible initial
memories M, and for all possible inputs). The second requirement is that the effort needed to
manufacture the trusted sub-components should be (much) less compared to the effort required
to manufacture the original circuit I'. The third requirement is that ® should be secure, meaning
that, under an acceptable assumption about the manufacturers who construct the outsourced
components, the produced circuit I' can be safely used in real-life applications.

Our security definition follows the simulation paradigm, and is inspired by similar definitions
in the setting of tamper-proof circuit compilers [52, 38] . We refer the reader to Section 1.4 for
a more detailed comparison between the two approaches. In a nutshell, security of ® is defined
by requiring that whatever an adversary can learn by interacting with the fabricated circuit r

(produced following the steps outlined above), can be simulated given only black-box access to
the original circuit I'. This essentially means that, no matter how the outsourced components
are maliciously modified (e.g., by inserting a hardware Trojan), using circuit T is as secure as
using the original circuit I', and thus, in particular, does not leak sensitive information on the
secret memory. See Section 3 for a precise definition.

We also consider a weakening of the above definition, in which the simulator is allowed to
receive a short advice (or leakage) on the secret memory M;. This models a setting where
the adversary might be able to learn a short amount of information on the secret memory, but
still yields a meaningful security guarantee provided that the original circuit is resilient to such
a short leakage. An appealing advantage of this weaker definition is that it might allow for
significantly more efficient circuit compilers.

Case study I: Single manufacturer. In Section 4, we show how to construct secure out-
sourcing compilers that work for arbitrary circuits I' in the setting where all outsourcing man-
ufacturers are corrupted. Similarly to [76], our compilers generically leverage a VC scheme for
the function F implemented by I'. Recent breakthrough research on verifiable computation
led to nearly practical schemes that work for any function [67, 26]; some schemes additionally
preserve the privacy of the inputs on which the function is being computed on [39]. VC schemes
satisfying the latter property are called input-private.

The main idea of how to use verifiable computation in order to build secure outsourcing
compilers is simple enough to describe it here. The fabrication of the chips that perform the
entire bulk of computation will be outsourced to the untrusted fabrication facility, whereas the
only circuit components that need to be built in-house are: (i) the component corresponding
to the algorithm for encoding the inputs (in case of input-private VC), (ii) the component
corresponding to the algorithm run by the client in order to verify correctness of the server’s
computation, and (iii) the component used to generate fresh random coins as needed for com-
puting the function (in case of randomized functions). Thanks to the nature of VC, the size
of the components in (i) and (ii) is independent of the size of the original circuit computing
the function. As for the component in (iii), we can use any existing (and trusted) circuitry
for generating true random numbers (RNG). A good example is the Intel on-chip hardware
random number generator which can be accessed through the RDRAND instruction available
on all modern processors [54, 49].1

We implement the above idea in two ways, depending on the properties satisfied by the
underlying VC scheme, as explained below.

e Our first compiler relies on VC schemes with input-privacy, and achieves our strongest
security notion (i.e., no leakage required for the simulation).

e Our second compiler relies on VC schemes without input-privacy, and achieves security

provided the original primitive (implemented by the circuit I') is resilient against a loga-
rithmic amount of leakage on the private memory.
Remarkably, any public-key encryption or signature scheme is resilient to such an amount
of leakage at the price of a polynomial loss in the concrete security, and recently many
leakage-resilient schemes [36, 69, 56, 34, 64, 19, 65, 37] have been constructed, where the
concrete security does not degrade with the total amount of tolerated leakage.

The second compiler additionally relies on a special “self-destruct” feature (which is imple-

'ntel’s generator relies on unpredictable thermal noise to generate bits that are fed to a cryptographic “con-
ditioner” (AES in CBC-MAC mode) which produces a 256-bit seed that is then passed through a NIST SP800-
90A-based pseudorandom generator.

mented? in one of the components built in-house), meaning that after the first invalid output is
ever processed, the entire memory is overwritten. As we show, this is an inherent requirement for
this compiler, in that, without such a property, there exist generic attacks that allow to recover
the entire private memory. Moreover, such attacks are undetectable by all polynomial-time
(black-box) tests.

Our definition of undetectability (see Section 3.2) is similar in spirit to analogous definitions
in the context of subversion-resilient cryptography [12, 11].

Case study II: Multiple manufacturers. In Section 5, we show how to construct secure
outsourcing compilers for arbitrary circuits I' in the setting where m > 2 outsourcing manu-
facturers are available, and a certain unknown subset of them is malicious. This is a strictly
stronger assumption compared to the setting of a single manufacturer, nevertheless, as we show,
it opens the possibility for more efficient constructions and stronger availability guarantees. We
present two different approaches.

e The first approach yields an outsourcing compiler utilizing a general client-server secure
multiparty computation (MPC) protocol, i.e., a protocol that, for any function, enables a
set of clients to privately communicate their inputs to a set of servers that will perform a
computation and return the output to a single designated recipient. We stress that many
MPC protocols follow this paradigm (e.g., [30]), while others, as we comment later, can
be easily adapted to it.

Given such a protocol, the compiler operates in the following way (see also Section 5.2).
For a given circuit I' it produces the MPC protocol implementing it, isolates the client
and recipient computation for manufacturing in-house, and outsources each of the other
components (representing a server in the MPC protocol) to the untrusted manufacturers.
The key points of this compiler construction are as follows: (i) The client and recipient
computation are typically quite lightweight; the client, in many protocols, simply performs
an encryption or a secret-sharing operation, and the recipient a secret-reconstruction
protocol; in either case, the computation is independent of the circuit that is outsourced.
(ii) There are MPC protocols that can tolerate up to m — 1 malicious servers, something
we can leverage to argue that if at least one of the outsourcing manufacturer is honest the
compiled circuit would be safe for use.

Additional properties of the underlying MPC protocol can also be very valuable by our
compiler: for instance, if the underlying MPC protocol supports guaranteed output de-
livery, we can use this guarantee to argue that the final circuit will be resilient to a
certain faulty outsourced sub-component. Moreover, if the underlying protocol satisfies
the identifiable abort property, cf. [51], we can enable our compiled circuit to switch-off
an outsourced sub-component that is discovered to be faulty (or malicious), thus reducing
energy consumption.

e The second approach yields outsourcing compilers based on so-called multi-server VC [21,
1]; these are VC schemes where the client outsources the computation of the function to
multiple servers. In particular, one of our construction leverages a special type of multi-
server VC scheme called Refereed Delegation of Computation (RDoC) [21, 22, 23]. This
yields a very simple outsourcing compiler achieving the very strong guarantee that the
compiled circuit outputs the same as the (untampered) original circuit with overwhelming
probability. Furthermore, in this construction it is also possible to identify the malicious

2The self-destruct feature can be realized in several ways. One option is to have the decoder overwrite the
memory with all zeroes after an invalid output is produced. Alternatively, one could let the decoder keep a single
bit of state, which is written to 1 as soon as the first invalid output is produced.

components, which can then be switched-off providing additional advantages in terms of
efficiency and energy consumption.

The main technical ideas behind the compilers based on multi-server VC are similar in
spirit to the ones underlying our first compiler based on single-server VC. We refer the
reader directly to Section 5.1 for a high-level description of these compilers and their
security analysis.

On efficiency. In Section 6, we describe several instantiations of our compilers, based on state-
of-the-art construction in the settings of VC and MPC. This yields several concrete constructions
with different tradeoffs in terms of security, efficiency, and underlying hardness assumptions.
We do stress, however, that the main contributions of this paper are the security models and
precise definitions put forward for the problem of fabless ICs manufacturing. The constructions
presented in Section 6 are described mainly to evidence the feasibility of our proposed model.

An important remark is that all our approaches require a partitioning and assembly proce-
dure which must be performed in-house. To lower the cost, trusted and untrusted sub-circuits
will likely be diced in their own wafers and packaged independently. We note that recent ad-
vanced designs and emerging technologies in the electronics assembly and packaging industry
make interconnecting different components a reasonably cost-efficient operation.

1.4 Related Work

Hardware Trojans. Prevention of hardware Trojans in ICs is a common practice that might
take place during the design, manufacturing, and post-manufacturing stage [70, 59]. However,
since it is not always possible to efficiently prevent Trojans insertion, Trojans detection has also
been vastly explored [15]; once a Trojan is detected, the circuit can be disposed and not used.
Common methodologies used to perform Trojans detection vary from invasive ones (that destroy
the IC to examine it inside), to non-invasive ones (where the circuit is executed and compared
against a trusted copy of the circuit, or against some expected output values). Trojan detection
is typically a very expensive and unreliable process, therefore the best practice is usually not to
rely on any kind of testing to protect against Trojans. Explicit countermeasures against Trojans
also exist, where the objective is to guarantee the functionality or security of the circuit even in
the presence of some unknown Trojan. For instance, the so-called “data guards” are designed to
prevent a Trojan from being activated and/or to access sensitive data [77]. Another approach
is the duplication of logic elements and the division of the sensitive data to independent parts
of the circuit [62, 77].

Tamper-proof hardware. The existence of tamper-proof hardware is a physical assumption
that found several applications in cryptography, for instance in the setting of secure computa-
tion [55]. Here, parties in a protocol can exchange (and rely on) tamper-proof hardware tokens,
executing (possibly stateful) programs in a black-box manner, upon inputs of the parties’ choice.

In this vein, our work is related to the challenging scenario where the parties rely on tamper-
proof tokens that might have been produced by one (or more), possibly malicious, outsourcing
facility. Such a question was studied in [40] for the special case of secure protocols for set
intersection, and very recently in [25] for the more general case of arbitrary multi-party func-
tionalities.

Tamper-proof circuits. Our main security definition shares similarities with analogous def-
initions in the context of protecting circuit implementations against tampering attacks. This
line of research received considerable attention in the past few years [52, 38, 27, 57, 28]. The

main difference between this setting and the one considered in our paper is that tamper-proof
circuit compilers are typically used to protect against fault injection [66] and tampering attacks
at run-time; such attacks are usually carried out in an adaptive manner, depending on the out-
come of previous attempts. Outsourcing compilers, instead, only protect against (non-adaptive)
tampering taking place during the circuit fabrication process. Importantly, the latter restriction
allows to obtain security against arbitrary modifications, whereas in circuit tampering one has
to consider very restricted attacks (e.g., wire tampering [52] or gate tampering [57]).

Subversion. The above type of non-adaptive tampering is, in fact, reminiscent of the setting
of subversion attacks against cryptographic primitives and algorithms. Inspired by the recent
revelations of Edward Snowden [68, 5, 47|, this line of research recently led to constructing
several concrete primitives resisting large classes of subversion attacks [12, 32, 33, 3, 71, 72, 73].
In this light, our work could be interpreted as formalizing the security of circuits that might
have been subject to subversion during fabrication.

Conference version. An extended abstract of this paper appeared in the proceedings of the
12th International Conference on Provable Security (ProvSec 2018). This is the full version of
that paper, with revised proofs and new material, including, e.g., the constructions based on
VC without input privacy (cf. Section 4.2) and on VC with multiple servers (cf. Section 5.1), as
well as the notion of undetectability (cf. Section 3.2) and the negative result showing necessity
of the self-destruct capability for the compiler of Section 4.3.

2 Preliminaries

2.1 Notation

For a string x, we denote its length by |z|; if S is a set, |S| represents the number of elements
in S; for a natural number n, [n] denotes the set {1,...,n}. When z is chosen randomly in S,
we write x <—s.S. When A is an algorithm, we write y < A(z) to denote a run of A on input x
and output y; if A is randomized, then y is a random variable and A(z;7) denotes a run of 4
on input z and randomness r. An algorithm A is probabilistic polynomial-time (PPT) if A is
randomized and for any input x,r € {0,1}* the computation of A(x;r) terminates in at most
poly(|x|) steps. We denote with A € N the security parameter. A function v : N — [0,1] is
negligible in the security parameter (or simply negligible) if it vanishes faster than the inverse
of any polynomial in A, i.e. v(\) = A=),

The statistical distance between two random variables Z and Z’ defined over some common
set Z is defined as A(Z;Z') = 13", ., [P[Z = 2] —P[Z' = z]|. For two ensembles Z := {Z)} en
and Z' := {Z} } en, we write Z = Z' to denote that the two ensembles are identically distributed.
We also write Z ~. Z' to denote that the ensembles are computationally indistinguishable, i.e.
for all PPT distinguishers D there exists a negligible function v : N — [0, 1] such that

AP(Z;Z)) = [P[D(z) =1: 2+sZ] —P[D(2) = 1] : z+sZ'| <v(N).

We rely on the following lemma (which follows directly from the definition of statistical
distance):

Lemma 1. Let Z and Z' be a pair of random variables, and W be an event defined over the
probability space of Z and Z'. Then,

AZ;Z) < A(Z; Z)|-W) + P [W].

2.2 Circuits

A (Boolean) circuit I' = (V, F) is a directed graph. The vertices V are logical gates, and the
edges F are wires connecting the gates. For the case of deterministic circuits, the gates can be
of type AND, XOR and copy, where AND (resp. XOR) have fan-in two and fan-out one, and output
the AND (resp. XOR) operation on the input bits; a copy gate, denoted copy, simply forwards
the input bit into two output wires. The depth of a circuit is defined as the longest path from
an input to an output; the size of a circuit is defined as its total number of gates. Sometimes we
explicitly write (I") for the description of the circuit I'. A circuit is clocked if it evolves in clock
cycles (or rounds). The input and output values of the circuit I" in clock cycle i are denoted
by X; and Y;, respectively. A circuit is probabilistic if it uses internal randomness as part of
its logic. We call such probabilistic logic randomness gates and denote them with $. In each
clock cycle $ outputs a fresh random bit. Additionally, a circuit may contain memory gates.
Memory gates, which have a single incoming edge and any number of outgoing edges, maintain
state: at any clock cycle, a memory gate sends its current state down its outgoing edges and
updates it according to the value of its incoming edge. Any cycle in the circuit graph must
contain at least one memory gate. The state of all memory gates at clock cycle ¢ is denoted
by M;, with M; denoting the initial state. When a circuit is run in state M; on input Xj;, the
circuit will output Y; and the memory gates will be in a new state M;;1. We will denote this
by (Yi, Miy1) < T[M](X;).

3 Secure Circuit Fabrication

In this section we put forward a formal model for assessing security of a (cryptographic) circuit
whose production is outsourced to one or more untrusted facilities. We start by recalling the
standard notion of connected component of a circuit or graph.

Definition 1 (Component). A circuit IV = (V' E’) is a (connected) component of circuit
= (V,E)if V' CV, E'CFE and for all g1,g2 € V' we have that (¢1,92) € E’ iff (g1,92) € E.

Next, we introduce the notion of an outsourcing circuit compiler (or simply compiler). In
a nutshell, a circuit compiler is an efficient algorithm ® that takes as input (the description
of) a circuit I', and outputs (the description of) a compiled circuit L. Additionally, ® returns
a list of sub-components IA“Z of T whose production can be outsourced to one or more external
manufacturers, together with the relevant information on how to connect those sub-components
with the remaining ones (that need to be built in-house) in order to re-assemble the compiled
circuit I'.

Definition 2 (Outsourcing circuit compiler). Let I be an arbitrary circuit. A (p,m)-outsour-
cing compiler ® is a PPT algorithm (I',aux) <— ®(T"), such that the following holds:

e aux := ((fl,...,fn),/\/l,(fl,...,[m)), with n € N and I; C [n], for j € [m], mutually
disjoint subsets. R

o (I'n,...,I'n) are disjoint (connected) components of I' such that V' = U;ep, Vi, where
I = (Vi, Ey).

e M:V xV —{0,1} is a function such that M(v,v") =1 iff v,v" € V;,V; for some i # j
and (v,v'") € E.

; r; . ‘ .
We call p := Zze["]\lﬁﬁ”uml | the outsourcing ratio of the compiler.

B

——
El

i
v

{

Figure 1: On the left side we present the description of a (compiled) circuit. On the right
side the same circuit is represented as three different components. The mapping function M
establishes the connections between the blue component and the green and red components.

Intuitively, in the above definition, the outsourcing ratio p represents the fraction of the
compiled circuit (w.r.t. the original circuit) that should be built in-house. Note that the sub-
components (I';);c(,) “cover” the entire compiled circuit I' (without overlap), and the mapping

function M specifies how to connect the different components in order to reconstruct [. The
sets of indexes I; C [n] represents the sub-components whose production will be outsourced to
manufacturer j € [m]. See Fig. 1 for a pictorial representation in a simple toy example.

Correctness of an outsourcing compiler demands that the compiled circuit maintains the
same functionality of the original circuit.

Definition 3 (Correctness). We say that an outsourcing compiler ® is functionality preserving
if for all circuits T', for all values of the initial memory My, and for any set of public inputs
X1,...,Xy, the sequence of outputs Y1, ...,Y, produced by running the original circuit I' starting
with state My is identical to the sequence of outputs produced by running the transformed circuit
r starting with state My (with all but negligible probability over the randomness of the compiler
and the randomness of the original and compiled circuit).

For randomized functionalities we require the output distributions of the original and the
compiled circuits, to be statistically close.

3.1 Security

We define security using the simulation paradigm. Our approach is similar in spirit to previous
work on tamper-resilient circuit compilers (see, e.g., [52, 38]). In a nutshell, security is defined by
comparing two experiments. In the first experiment, also called the real experiment, the circuit
designer compiles the circuit and outsources the production of some of the components in the
compiled circuit to a set of m untrusted manufacturers. A subset of size t of the manufacturers
are malicious, and controlled by a monolithic adversary A; of course the circuit designer does
not know which manufacturers are malicious and which ones are honest. During production, A
is allowed to completely change the outsourced circuit components under its control, whether
by adding, removing or changing gates and/or wires. Later, the designer assembles the circuit
by re-combining all the components (the outsourced ones and the ones built in-house). Finally,
A can access the assembled circuit in a black-box way, that is, it can observe inputs/outputs
produced by running the assembled circuit (with some initial memory M;j). In the second
experiment, also called the ideal experiment, a simulator is given black-box access to the original
circuit (initialized with initial memory Mj). The goal of the simulator is to produce an output
distribution which is indistinguishable from the one in the real experiment. In its most general

form, our definition allows the simulator to obtain a short leakage on the initial memory. This
captures the (reasonable) scenario where the adversary, in the real experiment, could learn at
most a short amount of information on the private memory.

Real experiment. The distribution Reals o ¢, (A) is parameterized by the adversary
A = (Ap, A1), the set of corrupt manufacturers C, the compiler ®, and the original circuit T’
with initial memory Mj.

1. (f, aux) < ®(I"): In the first step, the description of the original circuit I" is given as input
to the compiler ®; the compiler outputs the description of the compiled circuit r plus
the auxiliary information aux := ((I'y,...,T), M, (I1,. .., L)) which is used to specify
how the compiled circuit is split into sub-components, how the different sub-components
are connected (via the mapping function M), and the subset of sub-components whose
production is outsourced to each manufacturer (in the index sets I, for j € [m]).

2. ({f;}ieb 7) + Ao(1*, {(T) Yier, (T), (T)): The adversary is given as input the description
of the components from the index set I = Ujecl;, the description of the original circuit
I', the description of the compiled circuit f, and returns the modified components along
with some value 7 that may contain some auxiliary state information.

3. TV = (XA/’ , E): The compiled circuit I is rebuilt by replacing the components (fz)zg 7 with
the modified components (f;)le 1, and by connecting the different components as specified
by the mapping function M.

4. A{,[Ml](')(l)‘, 7): Adversary Aj;, with auxiliary information 7, is given oracle access to the
rebuilt circuit IV with compiled private memory M.

Simulation. The distribution Ideals 4 & ¢ a, ¢(A) is parameterized by the simulator S, the
adversary A = (Ap, A1), the compiler @, the set of corrupt manufacturers C, the original circuit
I" with initial memory M7, and some value £ € N.

1. f + S (I'),®,A,C,¢): Given as input a description of the original circuit, of the
compiler and of the adversary, the subset of corrupt manufacturers, and the parameter
¢ € N, the simulator specifies an arbitrary polynomial-time computable function f :
{0,1}* — {0,1}".

2. SATIMIG) (1A L) : The simulator takes as input leakage L = f(M;), and is given oracle
access to adversary A = (Ap,.A;) and to the original circuit I' with private memory Mj.
We remark that the simulator is restricted to be fully black-box. In particular, S only
accesses the modified sub-components returned by 4¢ in a black-box way (i.e., without
knowing their description).

Definition 4 (Security). We say that a (p, m)-outsourcing circuit compiler ® is (¢,t)-secure if
the following conditions are met.

(i) Non-triviality: p < 1, for sufficiently large values of X € N.

(11) Simulatability: For all C C [m] of size at most t and for all PPT adversaries A, for all
circuits T, there exists a simulator S with running time poly(|A|, |T'|), such that for all
initial values of the memory My € {0,1}*,

{Realyocran (M)} ey ~c {Ideals 400000 ,0(A) ey -

In the above definitions the adversary is allowed to modify each fl arbitrarily, i.e., there
is no restriction on the edges and nodes of I}, as long as the input and output gates enable

10

connectivity with the remaining components. We also allow arbitrary modifications of the
circuit memory (cf. Remark 1). Observe that, the above definition is only interesting for small
values of ¢ (as, e.g., it becomes trivial in case £ = |M;|). The non-triviality condition demands
that the ratio between the size of the sub-components of the compiled circuit built in-house,
and the size of the original circuit, should be less than one. This is necessary, as otherwise a
manufacturer could simply produce the entire circuit by itself, without the help of any off-shore
facility. Clearly, the smaller p is, the better, as this means that a large fraction of the original
circuit production can be outsourced.

3.2 Undetectability

We formally define what it means for an adversarial strategy to be undetectable by all black-box
polynomial-time tests. Informally, this means that it is hard to distinguish the output of the
original circuit from the output of the compiled circuit (after the outsourced sub-components
have been maliciously modified). Importantly, the latter has to hold even if the testing strategy
knows the initial content of the private memory and the description of all sub-components in
the compiled circuit.

For simplicity, we give the definition in the case of a single manufacturer (i.e., m = 1); a
generalization to the case m > 2 is immediate. The formalization borrows ideas from similar
definitions in the setting of subversion and algorithm-substitution attacks [12, 11].

Definition 5. Let ® be an outsourcing circuit compiler, and I' be a circuit. We say that
an adversary A is undetectable for I' w.r.t. ® if for all PPT algorithms Test there exists a
negligible function v : N — [0,1] such that, for all initial values of the memory My, we have
that P [Test wins] < 1/2 + v(\) in the following game:

1. The challenger samples b <s {0, 1}, runs (F, (fl, el lA“n), M, I) <+ ®(T), and returns (M,
(T, (F) (<F1> (n)), M, I) to Test.
2. Let T be the czr’cuzt implicitly defined by the sub- components {F Yien) N U {F Yier together

with the mapping function M, where {F Vier A {{T) Yier, (D), (T)).
3. Algorithm Test can ask polynomially many queries of the type X;; upon input such query,
the answer from the challenger depends on the value of the bit b:

e In case b =0, the output is (Y, Mj+1) <5 I:[MZ} (X;).
e In case b =1, the output is (Y;, Mi11) s I'[M;](X;).

4. Algorithm Test outputs a bit V', and wins iff b’ = b.

As we mention above, we allow the adversary to completely modify the circuit memory, thus
in the above definition, I’ can just omit M; and compute over an adversarially chosen M;. In
this setting, the manufacturer can execute I'[M;](X;) (i.e., for memory value M;), however the
circuit may perform computation over an arbitrary memory value M;, that the manufacturer
has no access to.

4 Case Study I: Single Manufacturer

In this section we build secure outsourcing compilers that work for any circuit, in the presence of
a single malicious manufacturer. The compilers are based on any verifiable computation (VC)
scheme (satisfying certain properties) for the function computed by the underlying circuit.
We start by recalling the basic definitions for VC schemes in Section 4.1. In Section 4.2, we
describe our first compiler, which requires a VC scheme satisfying input privacy. In Section 4.3,
we describe our second compiler, which can be instantiated with non-input-private VC schemes;

11

our second compiler requires that once the first invalid output is produced, the compiled circuit
overwrites its entire memory with the all-zero string and “self-destructs.” As we will show,
this restriction is necessary. We refer the reader to Section 6 for concrete instantiations of our
compilers based on state-of-the-art research on verifiable computation.

4.1 Prelude: Verifiable Computation

A verifiable computation scheme allows for a client to outsource the computation of a function
to a (untrusted) server; the server produces a proof of correctness along with the output of the
function. The client checks the correctness proof to decide whether the output provided by the
server is accepted or not.

Definition 6 (Verifiable Computation). Let F be a function. A VC scheme VC = (KeyGen,
ProbGen, Compute, Verify) for function F consists of the algorithms described below.

o (SK,PK) < KeyGen(F,\) : The (randomized) key generation algorithm takes as input
the function F and the security parameter \, and outputs a public key PK and a secret
key SK.

e (Xx,VKx) < ProbGengg(X) : The (randomized) problem generation algorithm takes as
mput the value X and uses the secret key SK to compute an encoding Xx of X and a
secret verification key VK x.

e Yy < Computepy (Xx) : The (deterministic) compute algorithm takes as input the en-
coded value Xx and uses the public key PK to compute an encoding of Y = F(X).

o YV «— Verifyg (VKx,Xy) : The (deterministic) verify algorithm takes as input the veri-
fication key VKx and the value Xy ; it uses the secret key SK and VKx to compute a
value Y € {0,1}* U{L}, where symbol L denotes that the algorithm rejects the value Xy .

A typical VC scheme needs to satisfy some properties that we formalize below.

Correctness. A VC scheme is correct if the ProbGen algorithm produces problem instances
that allow for a honest server to successfully compute values ¥y such that Y = F(X).

Definition 7 (Correctness for VC schemes). Let VC be a VC scheme for some function F. We
say that VC is correct if for all values X, the following holds:

(SK, PK) + KeyGen(F,\); (Sx, VKx) < ProbGenpg (X)

Yy + Computepy (Sx); Y « Verify gy (VEKx, Sy) =L

P|lY = F(X):

Soundness. A VC scheme is sound if no malicious server can “trick” a client into accepting
an incorrect output, i.e, some value Y such that Y # F(X). We require this to hold even in
the presence of so-called verification queries [39].

Definition 8 (Soundness for VC schemes). Let VC be a VC scheme for some function F.
We say that VC is sound if for all PPT adversaries A there exists some negligible function
v: N — [0,1] such that P[A wins] < v(X) in the following game.

1. The challenger runs (SK, PK) < KeyGen(F, \) to obtain the secret key SK and the public
key PK, and sends PK to A.

2. Adversary A can make the following two types of queries to the challenger, that can be
carried out polinomially many times in any order and in an adaptive way.

(i) Adversary A can specify an input X;; the challenger computes (VK;,¥;) <
ProbGengx (X;) and sends ¥; to A.

12

(i) Adversary A can specify verification queries (i,f]); the challenger computes Y =
Verify g (VK;, X) and returns 1 if Y # L, otherwise returns 0.

3. Eventually, adversary A will output a pair (i*,%*); we say that A wins iff Y* # F(X;»)
and Y* # L, such that Y* = Verify g (V K=, £*).

Input privacy. A VC scheme is input-private if no server can learn the input value X that
the function is being computed on.

Definition 9 (Input-privacy for VC schemes). Let VC be a VC scheme for some function F.
We say that VC is input private if for all PPT adversaries A there exists some negligible function
v:N = [0,1] such that P[A wins| — 3 < v()) in the following game.

1. The challenger runs (SK, PK) < KeyGen(F, \) to obtain the secret key SK and the public
key PK, and sends PK to A.

2. Adversary A can make the following two types of queries to the challenger, that can be
carried out polinomially many times in any order and in an adaptive way.

(i) Adversary A can specify an input X;; the challenger computes (VK;,%;) <«
ProbGengk (X;) and sends ¥; to A.

(ii) Adversary A can specify verification queries (i,%); the challenger computes Y =
Verify i (VK;, 2) and returns 1 if Y # L, otherwise returns 0.

3. Adversary A chooses two values Xy and X1 and sends them to the challenger.

4. The challenger samples a random bit b<s{0,1} and computes (VK* ¥X*) <«
ProbGengk (X3) forwarding ¥* to A.

5. Adversary A can still specify to the challenger the queries described above, including special
verification queries for the verification key V K*.

6. Finally, A outputs a bit V'; we say that A wins if and only if b=1V'.

Outsourceability. A VC scheme is outsourceable if the time to encode the input plus the
time to run a verification is smaller than the time to compute the function itself.

Definition 10 (Outsourceability for VC schemes). A VC scheme can be outsourced if it allows
efficient generation and efficient verification. This means that for any X and any Xy the
time (or circuit size) required for ProbGengg (X) plus the time (or circuit size) required for
Verify i (VK, Xy) is o(T'), where T is the time (or circuit size) required to compute F(X).

VC without input-privacy. The above definitions can be adapted to cast VC schemes
without input-privacy, i.e schemes where the server is allowed to learn the input value X used
by the client. For such VC schemes, algorithm ProbGen returns the value X in the clear along
with the secret verification key V K x; the correctness, soundness and outsourceability definitions
can easily be adapted to this setting.

4.2 Compiler based on Input-Private VC

In this section we construct an outsourcing circuit compiler by using a VC scheme that satisfies
the properties of correctness, soundness, input-privacy and outsourceability. Let I' be a circuit;
the idea is to invoke a VC scheme for the function F corresponding to the functionality computed
by I'. The compiled circuit will consist of four main components fprobgen, fcompute, fverify, and
f$. The first three components are the circuit representations of the algorithms ProbGen,
Compute and Verify corresponding to the underlying VC scheme; such components hard-wire

13

keys (SK, PK) generated using algorithm KeyGen. The fourth component samples the random
coins R; to be used during each invocation of the circuit. The production of component fcompute
will then be outsourced to a single untrusted facility, whereas all other components are built
in-house (as their implementation needs to be trusted). Notice that the implementation of
algorithm KeyGen can be thought of as a pre-processing stage that runs only once (and could
be carried out in software).

An important observation is that the size of circuit fverify and fprobGen is independent, and
much smaller, than the size of circuit fCompute‘ As discussed in the introduction, the size of f$
can also be considered to be constant (consisting only of a few gates). We describe our first
compiler below in more details.

The compiler <I>%,C. Let T' be a circuit, and VC = (KeyGen, ProbGen, Compute, Verify) be a
VC scheme for the function F implemented by I'. Our first compiler is depicted in Fig. 2, and
can be described as follows.

1. First run (SK, PK) < KeyGen(F,) once, obtaining the pair of keys (SK, PK).

2. Let I'lemory be a circuit component consisting only of memory gates, as needed by the
original circuit I', storing the initial value of the private memory M.

3. Let f$ be a circuit outputting random coins R; (as needed in each invocation of the
compiled circuit).

4. Define a component for each function ProbGen, Compute and Verify of the VC scheme as
explained below.

° fprobGenZ This component embeds the secret key SK, and it takes three inputs;
the input X, the (current) private memory M;, and random coins R, = R;||R..
It implements function ProbGengg (X;||M;||R;; R;), that produces two outputs: an
encoding ¥ x; ar,,R;, and a verification key V Kx, ar,. R, -

° fCompute: This component embeds the public key PK, and it takes as input an encod-
ing. It implements the function Computepy (Xx, as;, R,), that produces the encoding
Z}/iuMi-‘rl Of (Y;, Mz’+1) = f(XZ, Mi; RZ) as output.

° fverify: This component embeds the secret key SK, and it takes two inputs; the
encoding Yy, p7,,, and the verification key V Kx, a; gr,- It implements function
Verify g;c (V K x, ;R » 2Y;,M;4,)> to produce the output Y; € {0,1}* U {L}, and even-
tually update the circuit private memory to M;;.

5. The output of <I>]1/C is defined as follows. The first output is a (description of the) compiled
circuit r as depicted in Fig. 2. The auxiliary information aux consists of the components
FPrObGen,Fcompute,rve”fy,FMemory, and F$, the mapping function M that describes the
physical connections between such components (i.e., the arrows in Fig. 2), and the index
set I = {2} specifying the component fCompute as a candidate for outsourcing.

Remark 1 (On outsourcing memory gates.). In the compiler depicted in Fig. 2, fMemory 1s being
built in-house. In order to outsource private memory to a potentially malicious manufacturer we
can modify the above compiler as follows: instead of storing in fMemory the value M; in plaintext,
we store C' < AEgg/(M;), where C is the encryption of M; using a symmetric, semantically
secure authenticated encryption scheme, with secret key SK'. Moreover, fpmbgen is modified
such that when receiving the private memory value C, it first decrypts it using SK' and then
executes the original circuit fpmbgen on the resulting plaintext. We also substitute fverify S0
that it outputs the encryption of M, 1, under SK'. This modification enables the simulator to
execute the circuit using the all-zeros bit-string as the initial memory value, and security follows

14

1)\
. KeyGen| PK Sy
r‘Compute n 1—‘Verify Y
SK : !
: ZXiA,MivRi

X FProbGen
‘ VEx, M.k

R;

T

Figure 2: The description of compilers <I>]1,C. The green components (i.e., fprobcen, fverify, and
T ¢) need to be built in-house, while the production of the red component (i.e., fcompute) can be
outsourced; the blue component (i.e., KeyGen) is built only once (not necessarily in hardware).
The dotted line depicts the circuit boundaries. The dotted line depicts the circuit boundaries.

by the semantic security of the encryption scheme. Finally, whenever the decryption of C' gives
L the circuit output is L.

The theorem below, states that the compiler from Fig. 2 satisfies our strongest security
notion (i.e., Definition 4 with ¢ = 0), provided that the underlying VC scheme is correct, sound,
input-private, and outsourceable.

Theorem 1. Let I' be an arbitrary circuit and let VC be a verifiable computation scheme for the
function F computed by I', satisfying the properties of correctness, soundness, input-privacy and
outsourceability. Then the compiler ®3,. is a correct, (0,1)-secure (o(1), 1)-outsourcing circuit
compiler.

Proof. We start by showing that the outsourcing ratio parameter p of the compiler <I>‘1)C is
always smaller than 1, for sufficiently large values of the security parameter A\, thus meeting the
non-triviality condition.

Claim 1. p = o(1).

Proof. The non-triviality requirement from Definition 4 states that

p= |FProbGen| + |FVerify‘ + ’F$| + ‘FMemory’ <1
Tl
The claim is that p = o(1). By the outsourceability property of the VC scheme we know that
\fpmbgen\ +]fVerify\ = o(|T]), i.e., limy 0 w = 0. By substituting the expression

for p, and by using the fact that the size of I'g can assumed to be constant and that the original
and the compiled circuit contain the same number of memory gates, we obtain:

lim (|fProbGen| + ‘fVerify‘ + ’f$‘ + ’fMemory’)/’F’ _

A—00 1

0.
This shows that function p converges to 0. As the size of each component is monotonously

increasing with the security parameter, for sufficiently large A, the outsourcing ratio p will
always be smaller than 1, as desired. O

15

Claim 2. The compiler (I))I/C satisfies correctness.

Proof. The correctness of the compiler @%,C follows immediately from the correctness property
of the underlying VC scheme. O

We proceed to prove security of (I))l/c- We need to build a simulator S that is able to “fake”
experiment Real for all adversaries A, for all circuits I', and for all initial memory values Mj.
A description of the simulator follows.

e Run the compiler @%}C(F) supplying (a description of) the original circuit I'; the out-
put is (a description of) the compiled circuit f, and the auxiliary information aux :=
((FProbGem I‘Computea 1—‘Verifya 1—‘Men/w\oryy F$)7 M? {2})

e The description of component I'compute is sent to adversary A together with the descrip-
tions of I' and T.

e Adversary A produces the component T

Compute (that may be malicious) and sends it to

the simulator; the circuit I” is assembled using the components (I'probGen, F’Compute, DVerify s

fMemory, f$), via the mapping function M.
e Upon input X; from A, run (Y, M;t1) < I'[0#](X;), where p := |M;]; if Y; = L then
forward L to A, otherwise query X; to oracle I'[M;](:) and forward the output to A.

Let us write R and S for the distribution of the random variables in experiment Real and
Ideal of Definition 4. Recall that these variables are parametrized by adversary A, simulator
S, initial memory M;, compiler <I>]1jc, and circuit I', but we omit explicitly writing all these
parameters to simplify the exposition.? We consider a new experiment R’ that is exactly the
same as R, except that for all queries X; such that (Y/, M) I'[M;)(X;) with Y/ # L, the
experiment computes (Y;, M;11) < F(X;, M;) and outputs Y;.

The claim below shows that experiment R and R’ are computationally indistinguishable.

Claim 3. For all PPT adversaries A, and for all PPT distinguishers D, there exists a negligible
function v : N — [0,1] such that AP(R;R/) < v(\).

Proof. Let q € poly(A) be the number of input queries asked by A to its oracle, and let us define
an event W that becomes true whenever there is some index i* € [g] such that in experiment
R’ we have Y= # Y/.. Then, by Lemma 1, we have that AP(R;R’) < A(R;R/|-W) + P [W].
Note that the distributions R and R/, conditioned on event W not happening are exactly the
same. We proceed to show that the probability of event W is negligible.

Let us assume that there exists some circuit I', some initial memory M; and a PPT adversary
A provoking event W with non-negligible probability. We build a PPT adversary A’ that uses
A in order to break the soundness property of the underlying VC scheme (cf. Definition 8).

Adversary A'(My, F,T, ®):

1. Receive PK from the challenger, where (SK, PK) < KeyGen(F, \).

2. Run (f, M, aux) < (T, M), and send (the description of) circuit components
(fComputea I, f) to A. Adversary A produces the modified component f’compute
and sends it to A’.

3. For all i € [¢q], upon input query X; from A, do the following.

3We also omit to mention the set of corrupt manufacturers C, as in this case there is a single malicious
manufacturer.

16

e Sample random coins R;, create the string Z; := X;||M;||R; and send it to
the challenger as an encoding query. In response, the challenger computes
(VKyz,Xz,) < ProbGengk (Z;) and sends back the encoding ¥z, to A’.

e Run Xy, = f,Compute(PK7EZi) and send a query (i, Xy) to the
challenger; the answer from the challenger is a verification bit d. If d = 0,
then reply with L, otherwise compute (Y;, M;y1) = F(M;, X;; R;) and
reply with Y.

4. Finally, pick a random i* € [¢] and output the pair (i*, Xy’).

For the analysis, we note that the above simulation is perfect. In particular the outputs
seen by A retain exactly the same distribution as in experiment R’/. Now A provokes event W
with non-negligible probability, so there exists some index i* € [¢] such that Y;« is different from
Y/, where (Y., Mi«11) I'[M;-](X). Since A’ guesses the right index i* with probability
1/q, we obtain that A" wins the soundness game with non-negligible probability % -P[W]. This
contradicts the soundness property of the underlying VC scheme, and thus concludes the proof
of the claim. O

Claim 4. For all PPT adversaries A, and for all PPT distinguishers D, there exists a negligible
function v' : N — [0,1] such that AP(R/;S) < v/()).

Proof. Let q € poly(A) be the number of input queries asked by A to its oracle. For an index
i € [q] consider the hybrid experiment H; that answers the first i queries as in R/ and all the
subsequent queries as in S. We note that experiments H; 1 and H; only differ in how the
output is computed in position ¢, and that Hy =S and H, = R/.

We now show that for all circuits I', all initial memories M7, and all PPT adversaries A, each
pair of adjacent hybrids H;_; and H; are computationally indistinguishable. Fix some ¢ € [0, ¢],
and assume that there exists some circuit I', some initial memory M7, a PPT adversary A, and
a PPT distinguisher D that distinguishes between the pair of hybrids H;_; and H;. We build
an adversary A’ that uses (A, D) in order to break the input-privacy property of the underlying
VC scheme (cf. Definition 9).

Adversary A'(My, F,T, ®,1):

1. Receive PK from the challenger, where (SK, PK) < KeyGen(F, \).

2. Run (T, aux) < ®(T'), and send (the description of) circuit components (fcompute, r,

/

Compute and sends it

f) to A. Adversary A produces the modified component r
to A’
3. Upon input query X; from D, such that j # 7, answer as follows:
e Sample random coins R;. If j < i create the string Z; := X,||M;||R;, else
create the string Z; := X;||0#||R;.
e Send Z; to the challenger as an encoding query. In response the challenger
computes (VKz;,Yz,) < ProbGengx (Z;) and sends ¥z, to A'.
e Run Xy, v, = f’compute(PK, ¥7;), and send a verification query (j, Xy; as;,,)
to the challenger.
e The challenger replies with a decision bit d; if d = 0 then return L, other-
wise compute (Y, Mj11) = F(M;j, X;; R;j) and return Yj.
4. Upon input query X; from A, answer as follows:
e Sample random coins R;, and create two strings Z§ := X;||M;||R; and
77 = X;||O"||R;.

17

e Send Z;j and Z7 to the challenger as challenge inputs for the input-privacy
game; the challenger replies with Xz« (which corresponds to the encoding
of either Z or Z7).

e Run Xy« = f/Compute(PK’EZ*> and send a verification query (i,Xy~) to
the challenger; the challenger replies with a decision bit d. If d = 0 then
return L, otherwise compute (Y;, M;11) = F(M;, X;; R;) and return Y.

5. Finally, output whatever D outputs.

For the analysis, we note that the above simulation is perfect. In particular, depending on
Z* being either an encoding of Zj or Zj the view of (A, D) is identical to the view in either
experiment H;_; or H;. Hence, A’ retains the same advantage as (A, D) which contradicts
input-privacy of the underlying VC scheme. We conclude that there exist negligible functions
Vv N — [0, 1] such that

q
AP(R’;S) < ZAD(Hi—1§Hi) <q- V(N <V,
i=1

as desired. O

The statement now follows by Claim 3 and Claim 4, and by the triangle inequality, as
AP(R;S) < AP(R;R)) + AP(R/;S) < v(\) +V/(N).

This finishes the proof. O

4.3 Compiler based on VC without Input Privacy

In this section, we construct an outsourcing circuit compiler by using any VC scheme that
satisfies the properties of correctness, soundness and outsourceability. The construction follows
the same ideas of compiler ®,, (cf. Section 4.2), with two main differences. First, as we rely on
a VC scheme without input-privacy, the component fprobcen now outputs the values X;, M;, R;
in the clear. Second, the component I'verif, needs to implement a special “self-destruct” feature:
The first time the component returns the special symbol L, the private memory is overwritten
with the all-zero string.

As we argue later in this section, the self-destruct feature is necessary, in that, without such
a feature, generic attacks against our compiler are possible, possibly exposing the entire private
memory in an undetectable manner.

The compiler @%C. Let T be a circuit, and VC = (KeyGen, ProbGen, Compute, Verify) be a
VC scheme for the function F implemented by I'. The description of the compiler ®%,.(I') can
be found in Fig. 3. The case of memory outsourcing is identical to that of the first compiler and
we refer the reader to Remark 1. The theorem below establishes that such a compiler is secure,
provided that the original circuit to be produced is resilient to a logarithmic (in the security
parameter) amount of leakage on its private memory.

Theorem 2. Let I' be an arbitrary circuit and let VC be a verifiable computation scheme for the
function F computed by I', satisfying the properties of correctness, soundness and outsource-
ability. Then the compiler ®%,, is a correct (log(q) + 1,1)-secure (o(1),1)-outsourcing circuit
compiler, where q is the number of oracle queries asked by adversary A in Definition 4.

18

1)\
F FKeyGen PK = EY,‘,,MLH =
Ccom pute FVEFif}’ Y;
SK : :
: Xi, M;, R;
¥ FProbGen
i VKX, MR,
R;
Ts

Figure 3: The description of compiler @%C. Notice that component fprobgen does not need to
hide its input, and that component I'verif, implements the self-destruct feature. The dotted line
depicts the circuit boundaries.

Proof. The proof of the non-triviality and the correctness condition are similar to the proofs of
Claim 1 and Claim 2 respectively, and are therefore omitted.

We proceed to prove the security of @%C. We need to build a simulator S that is able to
“fake” experiment Real for all adversaries A, for all circuits I', and for all initial memory values
M. The simulator S is allowed to define an arbitrary polynomial-time computable function
f:{0,1}* — {0, 1}1os(@+1! that leaks a logarithmic amount of information regarding the initial
private memory M;j. The function f is defined as follows.

e Sample all random coins for experiment Real, including the random coins p 4 of adversary
A, and the random coins pg of the compiler ®.

e Function f takes as input the memory M; and the sampled random coins p = (p4, ps);
note that f can completely simulate experiment Real using the memory M; and the
sampled randomness p.

e For all i € [g] function f runs simultaneously the circuits I'[M;](X;) and T[M;](X;) using
the initial memory M; and adversary A’s randomness to sample the inputs X;’s.

e Define the event W which becomes true in case there exists some index i* € [g] such that
T [M=) (X) # T[Mi=](Xi#).

e The outputs of function f are

— abort € {0,1}: a predicate that is 1 if event W happens;
— ¢* € [q]: the index corresponding to the round in which a self-destruct is triggered

(if any).
The claim below shows that the probability of event W happening is negligible.
Claim 5. For all PPT adversaries A, the probability that f returns abort = 1 is negligible.

Proof. Let us assume that there exists some circuit I', some memory M, and a PPT adversary
A that provokes an abort = 1 with non-negligible probability. We build a PPT adversary A’

that uses A to break the soundness property of the underlying VC scheme (cf. Definition 8).
The description of A’ follows.

Adversary A'(My, F,T, ®):

19

1. Receive PK from the challenger, where (SK, PK) < KeyGen(F, \).

2. Run (T, aux) + ®(I') and send (the description of) circuit components fComputea

/

Compute and

' and T to A. Adversary A produces the modified component I'
sends it to A’

3. For all i € [¢], upon input query X; answer as follows.

e Sample ran/(\iom coins R;, define the string Z; := X;||M;||R;, and run
2viMiy1 = Leompute(PK s Zi).

e Send a verification query (i, Xy; a7,,,) to the challenger, receiving back a

verification bit d. If d = 0 then return 1, and set M;;1 := 0#; otherwise,

compute (Y;, M;+1) = F(M;, X;; R;) and return Y;.

4. Finally, pick a random i* € [g] and output the pair (i*, Xv,. as,.,,)-

For the analysis, note that the above simulation is perfect. In particular, the first time a
verification query is rejected, the reduction returns | and overwrites the private memory with
the all-zero string. By definition of the event W, we know that there exists an index i* € [g]
such that the value Y« corresponding to the encoding Xy, az.. 18 different from the value Y;+
computed via F(M;«, Xj+).

Since A’ guesses the right index i* with probability 1/¢g, we conclude that A’ breaks the
soundness property of the underlying VC scheme with non-negligible probability % -P[W]. This
concludes the claim proof. O

We proceed to describe how the simulator S uses the obtained leakage in order to fake the
distribution in the real experiment (when run with the same randomness p initially sampled by
the simulator to define the leakage function f).

e After getting the auxiliary input (abort, ¢*), check if abort = 1 and in this case stop with
output “simulation failed.” Otherwise, proceed to the next step.

e Upon input query X, such that ¢ < ¢*, simply forward the query X; to oracle I'[M;](+)
and output the answer Y; obtained from the oracle. .

e Upon input query Xj, such that i = ¢*, output L and initialize the memory M; := 0*.

e Upon input query X;, such that i > ¢*, run (Y, M;41) = f’[Ml] (X;) and output Yj.

The claim below shows that, whenever abort = 0, the above simulation is perfect.

Claim 6. Whenever abort = 0, for all circuits I', all initial memories My, and for all PPT
adversaries A, the output produced by the above simulator S is identically distributed to the
output of the experiment Real 4 o 1, (A) (using the same randomness as sampled by S).

Proof. Notice that the simulator implements the self-destruct feature (overwriting the private
memory with the all-zero string) at round ¢*; this is exactly what happens in the real experiment
(conditioning on the randomness p used to define the leakage function being the same as the
one used in the experiment). Moreover, all queries before round ¢* are answered by running
the original circuit I'. Again, this is a perfect simulation (as abort = 0). The claim follows. [

Let us write R for the randomness space of experiment Real s o ar, (A).* For p € R let us
write Real s .o, ar, (A)[p] to denote the outcome of the real experiment when using the random-
ness p; similarly, let us write Ideals 4 o 1, ¢(A)[p] for the outcome of the ideal experiment

4In what follows we omit to parametrize the experiments by the set C of corrupt manufacturers, as we are
considering the case of a single malicious manufacturer.

20

Let I' be any circuit with input size of n bits, and consider the compiled circuit r produced by
running CI%C(F). Define the following adversarial strategy, aimed at building a modified circuit

component F’Compute that leaks the entire initial private memory M; when given some secret
trapdoor information.

A* (X5, My, R):

1. Choose a random value 7, such that |7| = n, and store it in a memory location.
2. Upon the first run, duplicate and store the content of memory M; into another
memory location, and initialize a counter j := 0.
3. Upon input a tuple (Xj;, M;, R;) such that X; # 7, output Xy, =
Compute pg (X5, M;, R;). Otherwise, behave as follows:
o If M;[j] =0, let ¥y; be the all-zero string.
e Else, compute Yy, = Compute(X;, M;, R;).
e Update counter j <— (j + 1) mod |M;| and output y.

Figure 4: Undetectable attack against compiler (I)\Q/c (without the self-destruct capability).

when using the randomness p. Whenever abort = 0, by the above claim, we have that for any
p:

Rea1A7<1>7F’M1 ()\)[,0} = Idea157,47¢,7p7M1 7((}\) [p]
On the other hand, by Claim 5, for a random p we have that abort = 1 happens only with
a negligible probability. It follows that for all PPT distinguishers D there exists a negligible
function v : N — [0, 1] such that

|P[D(Realy o r (M) = 1] — P[D(Ideals 4.0.rum,,0(N) = 1]] < v(N),

finishing the proof. O

Necessity of self-destruct. We show that the self-destruct feature is necessary for the se-
curity of compiler @%C by presenting an undetectable attack (as per Definition 5) against the
circuit T produced by compiler @%C. The attack, which is described in details in Fig. 4, works
for a large class of circuits, and leaks the entire initial private memory M; embedded in the
compiled circuit.

Theorem 3. Let I" be any circuit with input size n = w(log \) and let CI%C be the compiler from
Fig. 3 without the self-destruct capability. Then, the attack A* described in Fig. / is undetectable
for T w.r.t. CID%C, and leaks the entire initial private memory M.

Proof. The second part of the statement follows directly by observing that knowledge of the
trapdoor information 7 allows to learn the value M; with overwhelming probability.

We proceed to show undetectability. Let G be the undetectability game described in Defini-
tion 5, where the adversary A is chosen to be adversary A* from Fig. 4. Consider the game Gy,
an identical copy of game G when b = 0, and consider the game G an identical copy of game
G when b = 1. Abusing notation, let us write Gy and Gy for the distribution of the random
variables corresponding to algorithm Test’s view in games Gg and game G; respectively. For
an index i € [g] consider the hybrid game H; that answers the first i queries as in Gy and all
the subsequent queries as in G1. We note that game H;_; and H; only differ in position 4, and
that Hy = G and H, = Gy.

21

We claim that, for all i € [q], it holds H;_; ~. H;. Fix some index 4, and define the event
W that the i-th query X; happens to be equal to the secret value 7 embedded in the modified
component fcompute (as described in Fig. 4). By Lemma 1, A(Go; G1) < A(Go; G1|-W) +
P[W]. Clearly, conditioned on event W not happening, the distributions of game G and Gy

are identical; this is because in such a case the modified component F’Compute behaves exactly

like the original component fCompute-
On the other hand, if |7| = w(log \), the probability of event W is negligible. We conclude
that for all PPT distinguishers D there exists a negligible function v : N — [0, 1] such that

q
AD(G(); Gl) S ZAD(Hi—1§Hi) S I/()\)
=1

5 Case Study II: Multiple Manufacturers

In this section we focus on outsourcing compilers in the presence of multiple manufacturers,
aiming to improve the efficiency of the resulting circuit at the expense of achieving security in
the weaker model where there are m > 2 manufacturers, a t-fraction of which is malicious (for
some threshold ¢t < m — 1).

Our first solution, described in Section 5.1, is based on multi-server VC protocols; our second
solution, described in Section 5.2, is based on client-server multi-party computation protocols.

5.1 Compilers based on VC with Multiple Servers

Multi-Server VC is a generalization of the VC setting described in Section 4.1, where a client
Py with private input X outsources the computation of some function F to a set of servers
Py, ..., Py; a t-fraction of the servers might be corrupted (for ¢t < m — 1) and thus controlled
by a monolithic adversary. In general, the communication pattern of a multi-server VC scheme
could be arbitrary, but known protocols typically follow very restricted and simple patterns (see
below for some examples); sometimes there is also a setup phase which is run only once, and it
is independent of the input X and of the function F being computed.

5.1.1 Refereed Delegation of Computation

First introduced by Canetti, Riva and Rothblum [21], a Refereed Delegation of Computation
(RDoC) scheme is a special case multi-server VC scheme with the following simple communica-
tion pattern: The client Py forwards the input X to each of the servers, and then each server P;
(for ¢ € [m]) sends a single message back to the client Py. Note that the servers are not allowed
to communicate with each other. In case the servers claim different results for the computation
of F(X), the client (acting as a referee) attempts to determine the correct answer.

Definition 11 (Refereed Delegation of Computation). Let Py, Py, ..., Py, be probabilistic in-
teractive Turing machines. An RDoC' scheme for computing a function F is an interactive
protocol described as follows.

o Setup: The client Py forwards some input X to the servers Py, ..., Py,.

e Computation: Each server P;, for i € [m], sends a single message Y* to the client P.

o Refereeing and output: The client Py, eventually after interrogating the servers, outputs
some value Y.

22

i1'11

Figure 5: The Refereed Delegation of Computation compiler for the case of m = 2 outsourcing
facilities (from which one is malicious). The components I'; and I'y are outsourced, while the
connectivity between them and the remaining components are built in-house.

We say that an RDoC' is correct if for all inputs X, assuming all the servers are honest, Py
outputs the value F(X) at the end of the protocol.

Soundness of an RDoC scheme demands that, at the end of the referee phase, the client Py
always outputs the correct value F(X) with high probability, even if up to m — 1 servers are
malicious and behave arbitrarily. Note that here, in contrast to the soundness guarantee for
single-server VC, the client Py never outputs L; in order to stress this difference we call this
property strong soundness.

Definition 12 (Strong soundness for RDoC). Let RDC = (Py, P, ..., Pp) be an RDoC scheme.
We say that RDC satisfies strong soundness if for any input X, any i € [m|, any set of malicious
servers Pf,...,P* |, P’ ,..., Py, there exists a negligible® function v : N — [0, 1] such that, at
the end of the protocol, the output of client Py equals F(X) with probability at least 1 — v(\).

Finally, an RDoC scheme should be outsourceable, meaning that the complexity of the
referee phase should be independent of the complexity required to evaluate the function itself.

Definition 13 (Outsourceability for RDoC). Let F be a function with input-size of n bits. An
RDoC scheme is outsourceable if the complexity of the client is at most quasi-linear in n, and
the complexity of the honest servers is polynomial in the complexity of evaluating F.

The compiler ®rpc. We now describe a natural outsourcing compiler based on any RDoC
scheme for a function F. On a high level, the designer outsources the circuits components
corresponding to the servers in the RDoC scheme, while the component corresponding to the
client is built in-house.

Let I' be a circuit implementing the function F(Mj,-;-), where for any X and i € N, we have
(Y, M;y1) = F(M;, X;R). Let RDC = (Py, Py, ..., Pp) be an RDoC scheme for the function
F. The compiler produces (I', aux) - ®rpc(T"), which we describe next.

e T is the circuit that implements RDC (depicted in Fig. 5 for the case m = 2).
e aux = ((I',..., Ty, Tenc, I'pec, I'g), M, (11, . . ., Iy,)), where:

— In case the original circuit is randomized, I's produces random coins R; (as needed
in each invocation of the circuit).

®As shown in [21], the soundness error can always be made negligible by parallel repetition.

23

~

— fEnc simply forwards the input values X;, R; to the m components fl, RN [y

— fDeC takes as input X;, R; and the outputs Yil, ..., Y™ from the components fl, cee fm,
respectively, and implements the code of the client Py in the RDoC scheme.

— For i € [m], the component T; is the circuit that implements the code of the i-th
server P; in the RDoC scheme; notice that each component fz is initialized with the
initial private memory M; of the original circuit.

— The mapping function M describes the physical connections between the circuits
described above, and I}, for j € [m], specifies the components that will be outsourced
to the manufacturer with index j. In our case I; = {j}.

The theorem below, states that if the underlying RDoC scheme satisfies strong soundness,
the above compiler is a secure outsourcing compiler. The main idea behind the proof is that
the simulator can simply answer each query from the adversary by forwarding it to its own
target oracle that computes the original circuit (with the initial memory M; embedded); this
is fine because strong soundness guarantees that, with overwhelming probability, the output of
the compiled circuit should be the same as that of the original circuit.

Theorem 4. Let T' be an arbitrary circuit and let RDC = (Py, Py, ..., Pp) be an RDoC scheme
for the function F computed by I' satisfying strong soundness. Then the compiler Prpc is a
correct, (0,m — 1)-secure (o(1), m)-outsourcing circuit compiler.

Proof. The correctness property of ®rpc follows directly from the correctness of the RDC
protocol. The proof of non-triviality uses the outsourceability property of the RDoC scheme;
since the argument is very similar to that used in the proof of Claim 1, we omit it here.

Now we proceed to prove that ®grpe is a (0,m — 1)-secure circuit compiler. We need to
show that for all C C [m] of size at most m — 1, all PPT adversaries A, all circuits I', and
for all initial values of the memory M; € {0,1}*, there exists a simulator S with running
time poly(|A[, [T'[Mi]]) such that {Realsocr i (N)}yeny ~c {Ideals 400 ,0(A) oy, for
all sufficiently large values of A. A description of the simulator § follows.

e Run the compiler ®grpc(I") supplying (a description of) the original circuit I'; the out-
put is (a description of) the compiled circuit I, and the auxiliary information aux :=

((Fl, e 7Fm7FEnC7FDeC7 F$)\, M, ({1}, ey {m}))

e Forward the components {I';};cc to adversary A, together with the descriptions of I' and
T.

e Adversary A produces the components {fj }jec (that may be malicious) and sends it to
the simulator; at this point, the circuit I’ could be assembled via the mapping function
M, but this step is not necessary in this proof.

e Upon input X; from A, query X; to oracle I'[M;](-) and forward the output to .A.

Let us write R and S for the distribution of the random variables in experiment Real and
Ideal of Definition 4. The claim below shows that experiment R and S are computationally
indistinguishable, and thus concludes the proof of the theorem.

Claim 7. For all PPT adversaries A, and for all PPT distinguishers D, there exists a negligible
function v : N — [0,1] such that AP(R;S) < v()\).

Proof. Let q € poly(A) be the number of input queries asked by A to its oracle, and let us define
an event W that becomes true whenever there is some index i* € [g] such that the value Y;«
output in experiment R is different from the value F(M;+, X;=; R;+). Then, by Lemma 1, we
have that AP(R;S) < A(R;S|-W) + P[W]. Note that the distributions R and S are identical

24

conditioned on event W not happening; this is because the simulator always forwards the inputs
from the adversary to its target oracle which evaluates the original circuit (with initial private
memory Mj). Hence, it suffices to show that the probability of event W is negligible.

Let us assume that there exists some circuit I', some initial memory M, some subset C C [m]
(for the corrupted players), and a PPT adversary A provoking event W with non-negligible
probability. We build a PPT adversary A’ that uses A in order to break the strong soundness
property of the RDoC scheme.

Adversary A (My,i*,C, F,T', ®rpe):

1. Run the compiler ®zpe(T) supplying (a description of) the original circuit
I'; the output is (a description of) the compiled circuit f, and the auxiliary
information aux := ((I'1, . .., T, Denc, Tpec, T's), M, ({1}, ..., {m})).

2. Forward the components {fj }jec to adversary A, together with the descriptions
of T and T Adversary A produces the components {f; }jec and sends them to

A’; the circuit I is assembled via the mapping function M.
3. Upon input each query X; from A, proceed as follows:

o If i < i*, compute (Y;, M;11) < f’[Mi](Xi; R;) and reply with Y;.

e Ifi = i*, forward to the client P in the RDoC game the values (Y'!,...,Y™),
where Y7 is equal to the first message output by the component f; [M](X+,
R;) for all j € C, whereas Y7 is equal to the first message output by
F(Mjx, Xi=; Ri«) for all j € [m] \ C. During the referee phase done by Py,
answer each query by either running the components f; (for all j € C), or
T; (for all j € [m]\C).

e Stop processing further queries from A and terminate.

For the analysis, we note that the above simulation is perfect. In particular the outputs
seen by A retain exactly the same distribution as in experiment R. Also, the messages sent
by A’ have the same distribution as in an execution of the RDoC strong soundness game with
input (M=, X;+, R;+); this follows by the fact that the components {f; }jec and {fj }iepm)\c TN,
respectively, the code of the corrupted servers and the honest servers of the underlying RDoC
scheme. Now A provokes event W with non-negligible probability, so that the client Py in the
RDoC game will output a value different from F(M;=, X;=; R;«) with non-negligible probability.
This contradicts strong soundness of the RDoC scheme, and thus concludes the proof of the
claim. O

O]

5.1.2 Input-Private Multi-Server VC

RDoC schemes satisfy a very strong form of soundness, namely the honest client always outputs
the correct value F(X); in particular, the corrupted servers cannot cause the client to receive
an invalid output. A natural relaxation of security is to require that the honest client either
outputs F(X), or it outputs L; however, as we show in Appendix 4.3, when using a non-input-
private VC scheme in an outsourcing compiler, invalid outputs can leak a lot of information
about the circuit private memory (in an undetectable manner).’

SFor standard VC schemes with only one server, this attack can be avoided by relying on the self-destruct
capability. We do not consider this option here, as it is trivial to obtain a secure outsourcing compiler in the case
of multiple manufacturers if one relies on self-destruct.

25

A similar problem appears in the case of multiple servers, and thus a possible solution
is to rely on a multi-server VC scheme satisfying correctness, soundness, and input-privacy.
Assuming such a VC scheme, one obtains a secure outsourcing compiler for the case of multiple
manufacturers (without self-destruct); we omit the formal details, as the construction and its
analysis are very similar to that of our compiler from Section 4.2.

Input-private multi-server VC schemes were constructed in [1]. The communication pattern
is circular, meaning that Py sends a message to P;, which then sends a message to P,, and
so on, until P, sends a last message back to the client Py. Interestingly, for the case of
multiple servers, input privacy can be obtained without relying on expensive tools such as fully-
homomorphic encryption. We refer the reader to Section 6 for a more in-depth discussion about
efficiency /security related to these instantiations.

5.2 Compiler based on MPC

Before presenting the compiler, we first revisit the core ideas of MPC, and then we give a generic
definition for MPC protocols in the client-server model, along the lines of [8].

MPC in the Client-Server Model. In MPC we consider p parties, where each party
P, for 1 < i < p, possesses an input X; and they all wish to jointly compute the tuple
(Y1,...,Y,) = F(X1,...,X,), where P; receives Y;. In the client-server model, the parties are
divided into two categories: the parties that provide inputs and wish to receive the output of
the computation (clients), and those performing the computation (servers). A t-private MPC
protocol ensures that any adversary who controls up to ¢ servers cannot leak any information
related to the private inputs of the clients, besides the information that can be inferred by
inspecting the output of the computation, and regardless of the number of corrupted clients. In
our compiler, the circuit corresponding to the code executed by the servers will be outsourced to
a number of possibly malicious manufacturers, that may apply arbitrary modifications against
the circuit components. Thus, we require MPC protocols that are secure against active (mali-
cious) attackers.

The general idea behind the compiler is the following. Let I' be a circuit implementing
some functionality F, and let IIr be a ¢-private MPC protocol realizing the function F. Then,
assuming the number of malicious manufacturers is at most ¢ < m, the circuit I' will implement
the code of IIr, and each fl will implement the code of the i-th server. Below, we define the
protocol framework that we are going to use for the rest of this section. The idea is to describe
any MPC protocol using its next message function, denoted as Next.

Definition 14 (r-round protocols). Let C, S be sets of probabilistic interactive Turing ma-
chines, with cardinalities p, m, respectively. An r-round protocol I1 for p clients and m servers
is a tuple (C, S,Enc, Dec, Next), where Next = (Nexty, ..., Nexty,), described as follows.

e Setup: Each client computes (X}, ..., X™) < Enc(X;), and sends Xz-j to the server indexed

by j. Letin’ := (X{, ..., X}), and 7 := 0 (we assume that the network is fully connected,
still the properties of the communication channel depend on the instantiation).
e Computation: For i € [r]:

— Ifi #r, for j € [m] execute (0{, ey Ol TJ’) — Nextj(inj,Tj), send oi, k #£ j, to the
}, e,0T), and T; = Tj/».
— Ifi=r, for j € [m] evecute o + Next;(in’,7;), and send o; to Dec.

server with index k. Set in? = (o

e Output: Ezecute (Y1,...,Y,) < Dec(o1,...,0m), and send Y; to the client with index j.

For any function F, the protocol computing F will be denoted by I1r.

26

Informally, in the first step of the protocol execution, the clients encode their inputs, as it
is prescribed by Enc, and then the main computation begins. The code executed by the servers
at each round is defined by the function Next (the next message function). Hence, in the i-th
round, server S; computes Next; upon the outputs and the state information 7 produced by
the other servers in round ¢ — 1. One can also consider deterministic next message functions,
assuming the randomness is given as input in each round. Below, we formally define correctness
and privacy for MPC protocols.

Definition 15 (Correctness). Let F be a p-party functionality. We say that 11 realizes F
with perfect (resp., statistical) correctness if for any input (X1,...,X,), the probability that the
output delivered to the i-th client during the protocol execution, is different from Y;, is 0 (resp.,
negligible in X), where (Y1,...,Y,) = F(X1,...,X,) forie [p].

Definition 16 ((¢, m)-privacy). Let A be the security parameter, p be the number of parties
(clients) and m be the number of servers, and let A be an adversary that may corrupt any set
of parties 1. C [p|, and servers Is C [m|, where |I5| <t. We say that the protocol I1 realizes F
with (t,m)-privacy if there exists a PPT algorithm S such that for all sufficiently large A € N,

Viewr, 1.(\, X1, ..., Xp) = SO, L, I, (X3, Yi)ier,)

where Viewr, 1.(\, X1,...,X,) denotes the joint view of the servers and clients in Is and I,
respectively, within an execution of the protocol upon inputs Xi,...,Xp, and (Y1,...,Y,) =
F(Xi,...,Xp).

The main idea behind the above definition is that the view of the attacker during the protocol
execution can be computed based on its own input and output only.

The compiler ®r,. Let I' be a circuit implementing the function F(Mi,-), where for any
X and i € N, we have (Y, M; 1) = F(M;, X). Let Illx = (C, S, Enc, Dec, Next) be an r-round
protocol realizing the function F, over a set of m servers with a single client. The compiler
produces (T, aux) « Oy, (I'), where

o T'is the circuit that implements I (depicted in Figure 6 for the case m =2 and p = 1),
having as a sub-circuit I'viemory, Which is a circuit consisting only of memory gates, as
needed by the original circuit I'. During initialization, I'iemory stores the initial private

memory value, M;.
e aux = ((I',...,Tpga), M, (I1,...,In)), where

— me = fEnc and me = fDeC, i.e., the circuits me and me implement the
encoder, Enc, and the decoder Dec, of Il , respectively.

— Fori € [m], T; is the circuit that implements the code of the i-th server, for the entire
execution of Iz (r-rounds). Those circuits can be implemented in a straightforward
way using the next message function Next; (cf. the sub-components fl and fg in
Figure 6) .

— The mapping function M describes the physical connections between the circuits
described above, and I}, for j € [m], specifies the components that will be outsourced
to the manufacturer with index j. In our case I; = {j}.

— In case the original circuit is randomized, in addition to the components described
above, ® also outputs a circuit f$ producing random coins R; (as needed in each
invocation of the circuit).

Our construction must be non-trivial (cf. Definition 4), thus the underlying protocol IT must
satisfy the following outsourceability property.

27

¥
A T
Next, Nextq Nextl‘
0 0

o o/
Nexto Nexto Nextg‘
G)

Figure 6: The MPC compiler for the case of m = 2 outsourcing facilities (from which one can
be malicious). The components I‘1 and Fg can be outsourced, while the connectivity between
them and the remaining components are built in-house. The dotted line depicts the circuit
boundaries.

Definition 17 (Outsourceability of procotols). A protocol I1 = (C, S, Enc, Dec, Next) that real-
izes the function F can be outsourced if it satisfies the following condition: The circuit computing
the encoding and decoding procedures (Enc, Dec) must be smaller than the circuit computing the
function F.

We prove the following result.

Theorem 5. Let F be any function, and let Ilx be a (t,m)-private MPC protocol for F,
satisfying the correctness and outsourceability properties. Then, the compiler ®11, is a correct,
(0,t)-secure, (o(1), m)-outsourcing circuit compiler.

Proof. The correctness property of ®r1, follows directly by the correctness property of 11x. By
the outsourceability property of the Iz, we have that |Enc|+ |Dec| = o(|T'|), which implies that

limy 00 % = 0. Having this in mind we can prove that the ratio p converges to 0, as A

goes to infinity, using the expression for p, and assuming f$ is of constant size:

. (Enc| + |Dec| + [Fy|)/IT|

A—00 1

=0.

Thus, for sufficiently large A the outsourcing ration p is smaller than 1.

Let F be any functionality and let T" be the circuit implementing F. Assuming that I is
a (t, m)-private MPC protocol for F, we will prove that ®r1,. is a (0,?)-secure, circuit compiler.
Concretely (cf. Definition 4), we need to prove that for all C C [m] of size at most ¢, all PPT
adversaries A, all circuits I', and for all initial values of the memory M; € {0, 1}*, there exists
a simulator S with running time poly(|.A|, |['[M1]|) such that

{Realgs.cr0 (M)} ey e {Ideals 4o.c.r 00,00}y en s (1)

for all sufficiently large values of A. Let A be an attacker ®r,.. The idea behind the proof
is to relate the interaction between A and the circuits produced by @17, with the interaction
between an attacker A’ corrupting up to ¢, with a protocol IIx. Then, we will use the simulator
S’ that is given by the (¢, m)-privacy of Iz to construct a simulator S, satisfying eq. (1). In
what follows, and for the sake of simplicity, we prove the needed assuming A is a single round

28

attacker, and then we discuss how the proof easily extends to the setting in which we have
multiple executions.

By the compiler definition, the protocol IIz that @1, is based on, consists of two clients,
C4, Cy, where C] is the corrupted client that provides the public input to the circuit, X, and Cy
supplies the circuit with private input, M;, and m servers. Let I' be the circuit implementing F.
Given the adversary A for @11, we define the adversary A" = (A[, A]) against IIx as follows:

e (server corruption) A): run (T, aux) + ®(T), where aux := ((I'y,...,T), M, (I1, ..., Ip)),
and sample ({f;}iej,T) — Ag(1*, {{T)}ier, (T),(T')). Then corrupt the server S;, for
1 € I, so that S; will execute the possibly modified circuit f;

e (protocol execution) A}: participate in the protocol IIx choosing the input for client
C4 (the corrupted client), according to the input value chosen by A;. Concretely, execute
the following steps: sample X < Al(l’\,T), define the input of client C to equal to X,
receive the output of Il for client Cq, Y, for inputs (X, M), and forward Y to A;.

We define the random variable Viewy, ;. , Iy = C, I. = {1}, to be the view of A while indirectly
interacting with ITx through A}. Clearly, by the definition of A’, the view of A while being
executed by A’, matches its view while executing the real world experiment of Definition 4, thus
we have

VieW[SJC()\, X, M) = RealA7q>7C’F7M1 ()\) (2)

Assuming Il x is (¢, m)-private against A, there exists exists a simulator §” that simulates the
view of A’ during the protocol execution. Let S’ be code of S§” that only outputs the view of
A. Then we have that for all sufficiently large A € N,

Viewr, 1, (A, X, M) =, S'(1*, I, I, (X, Y Jier,)- (3)

Now we define the simulator S for A against ®r.. S on input (1M, (T), @, A, C,0) executes the
following steps:

e cxecutes A; with oracle access to I'[M;](+), and constructs the pair (X,Y), i.e., it con-
structs the valid output of F on input X, chosen by A;.
e executes 0 < S'(\, I, I, (X,Y)ier,), where Iy = C and I. = {1}, and outputs o.

Clearly, from eq. (3) we have that S produces outputs which is computationally indistinghuish-
able from Viewy, 1 (A, X, M), and then using eq. (2) we receive,

Real g o001, (N) = Ideals 4.a.c,0 0, 0(N),

and this concludes the proof for attackers executing the protocol only once.

For multi-round attackers against the circuit compiler, we need to have multiple, sequen-
tial executions, of the same protocol, as a single execution computes a single circuit output.
Moreover, the attacker is non-adaptive, and corrupts the servers only before the first protocol
execution. By the composition theorem of [20], we have that any secure MPC protocol is also
secure against sequential composition, even for adaptive adversaries. Using a standard hybrid
argument, this gives rise to a simulator, §’, that simulates the view of the attacker for all proto-
col executions, and the proof idea is identical to one given above: we relate the attacker against
the compiler to an attacker against the protocol, and we use S’ to construct a simulator S for
the circuit compiler. O

The case of memory outsourcing is identical to that of the first compiler and we refer the
reader to Remark 1.

29

Compiler Reference t Sin Sout No Self-Destruct Leakage Assumption

§4.2 [39] = O(n +v) O(slog s) v 0 KoE + FHE
§4.3 [42, 67] - O(n+v) O(slog s) X O(logq) KoE

[21] m—1 O(nlogn) O(s+ Alogs) v 0 CRH
§5.1 [1] m—1 O(\n) O(\s) v 0 DDH

1] O(m) O(An) O(Xs) v 0 OWF
§5.2 [31] m—1 O(dm) O(sm +m?) v 0 SHE

[79] m—1 O(dm?) O(sm?-)\/logs) v 0 oT

Table 1: Comparing our compilers in terms of security, efficiency, and hardness assumptions. We write s,n,v
for the size, number of inputs and number of outputs of the original circuit I', respectively; as usual m denotes
the number of servers of which up to ¢ might be corrupted (note that ¢t = m corresponds to the case of a
single manufacturer), and ¢ is the number of oracle queries asked by the adversary in Definition 4. The values
sin and Sout denote, respectively, for the sizes of the components built in house and the size of the outsourced
components; d denotes the number of multiplications in I'. KoE stands for “Knowledge of Exponent” assumptions,
DDH for “Decisional Diffie-Hellman”, OWF for “One-Way Functions”, CRH for “Collision-Resistant Hashing”,
FHE for “Fully-Homomorphic Encryption”, OT for “Oblivious Transfer” and SHE for “Somewhat Homomorphic
Encryption”. The first two (colored) rows represent the compilers with a single outsourcing facility (m = 1),
while the remaining rows represent the compilers with multiple outsourcing facilities (m > 2).

6 Concrete Instantiations

In this section we propose several instantiations for the compilers analyzed in the previous sec-
tions, highlighting several possible tradeoffs between security, efficiency, and underlying hardness
assumptions.

6.1 Case Study 1

The area of verifiable computation has a long history in the cryptographic literature [4, 63, 45,
41]. We refer the reader to the excellent survey by Walfish and Blumberg [78] for a thorough
introduction. By now, several schemes and models for the problem of outsourcing computation
are known (see, among others, [2, 10, 16, 13, 53, 1]) Below, we focus only on single server VC
schemes suitable for the compilers described in Section 4 .

Input privacy. For the compiler of Section 4.2, we need a VC scheme satisfying both sound-
ness and input-privacy (in the presence of verification queries). The only known schemes meet-
ing these requirements are the ones constructed by Fiore, Gennaro, and Pastro [39](relying on
fully homomorphic encryption [43]). The asymptotic complexity stays the same as the one for
non-input-private VC, but with much bigger constants hidden inside the big-oh notation.

No input privacy. For the compiler of Section 4.3, we need a VC scheme satisfying soundness
(in the presence of verification queries), but no input-privacy is required. Therefore, we can
instantiate this compiler using very efficient schemes based on SNARKSs [63, 46, 16, 29, 18, 17,
13, 42, 67, 14, 26, 48]. If s is the size of the original circuit, the complexity of the outsourced
components is in O(slog s), while the size of the components built in-house is in O(n+wv), where
n, v denote, respectively, the input and output size of the original circuit.

6.2 Case Study 11

We describe below a few possible instantiations for the multiple manufacturers compilers of
Section 5.

30

in in
! | Memory; |<—>| Prover; I l : : ! | Memory, |<—>| Prover; I l

Figure 7: The Refereed Delegation of Computation compiler using the protocol of [21] for the
case of m = 2 outsourcing facilities (out of which at most one is malicious). The components
r 1 and Fg are outsourced, while the connectivity between them and the remaining components
are built in-house. On the left side both components F1 and Fg are enabled, while on the right
side the component FQ was caught trying to cheat and was therefore disabled by FDec. To keep
trac} of the disabled components, I'gpnc is required to store one bit of state that can be written
by I'Dec-

RDoC. The work of [21] gives a very efficient construction of an RDoC scheme for arbitrary
polynomial-time computable functions, with computational security based on any collision-
resistant hash functions family. The idea is to simply have each server compute the original
function. Then, in case the outputs of the servers are not all equal, the client starts a binary
search phase to check the computation performed by each of the servers. Such an interrogation
phase essentially consists of checking the correctness of intermediate steps of the computation. 7

The size of the outsourced components Fl, . I‘m is dominated by the complexity of function
F, plus the overhead relative to the binary search phase; this yields a complexity of roughly
O(s + Alogs). The component fEnc that is built in-house consists of just a few gates since
it simply forwards the current input to the m sub-components. The component fDec, that is
also built in-house, implements the code of the client in the RDoC scheme, and by definition
its size is quasi- hnear in the size of the input. Furthermore as long as the output of all
components r Ty--- Fm agrees, the running time of T is roughly the same as I' (assuming all
the m components are able to run in parallel); when the output of the components differ, the
RDoC protocol is executed, resulting in some overhead.

A nice feature of this construction is that as soon as the components disagree on an output,
the malicious components can be identified and switched-off; in the long run, this makes all the
subsequent executions of [almost as efficient as that of T'. Fig. 7 exemplifies this feature for
the case m = 2; notice that disabling the malicious component requires one bit of state that
needs to be shared between the encoder and the decoder.

Input-private multi-server VC. Multi-server VC schemes satisfying input privacy were
constructed in [1]; interestingly, in the multi-server case we can obtain input privacy without
relying on FHE. An additional feature of these protocols is that the pre-processing stage is
independent of the input and of the function to be computed.

Based on [1], we obtain the following instantiations: (i) An outsourcing compiler for the
special case m = 2, with computational security based on the sole assumption that OWF exist;
the complexity of the client is in O(A-n+ A-v), while each server needs to generate and evaluate
a garbled circuit. (ii) An outsourcing compiler tolerating up to ¢ < m — 1 corrupted facilities,

"The original protocol in [21] is for Turing machines, but we can always transform a Turing machine in an
equivalent circuit of related complexity [80, Theorem 2.3].

31

with computational security based on the DDH assumption; the complexity of the client is in
O(X - n), while the servers rely on re-randomizable garbled circuits, NIZK proofs and a DDH-
based proxy re-encryption scheme. (iii) An outsourcing compiler tolerating a constant fraction
of corrupted facilities, with computational security based on the sole assumption that OWF
exist,.

Client-server MPC. Many MPC protocols satisfy the outsourceability property, as the val-
ues that feed the main computation, i.e., the output of the encoder, are independent of the
function that is being evaluated, and mostly depend on the number of parties, as in the case
of [44] (where the same holds for decoding). An explicit (¢, m)-private protocol is given in [30],
for t < m/2, in which there is a pre-processing phase that can be implemented by the encoder,
with running time independent of the function that is being evaluated. The construction uses
secure point-to-point and broadcast channels, that can be implemented directly between the
components, and besides privacy it also guarantees output delivery.

We can also easily adapt the SPDZ protocol [31] to the client-server setting. The SPDZ
protocol requires a pre-processing phase that is performed by the parties, and that will feed the
encoder circuit who will perform the actual encoding (which is only a linear operation). The
complete protocol requires a linear number of public-key operations in the circuit size s, with
the encoder requiring only a linear number of operations in m and the number of multiplications
of the original circuit. The efficiency of the pre-processing stage can be further improved [6].
This construction does not guarantee output delivery, but it is secure against adversaries that
corrupt up to m — 1 sub-components. Finally, the construction of [51] can also be adapted to
the client-server scenario, and additionally provides security with identifiable aborts, meaning
that whenever the protocol terminates due to an abort message, it is guaranteed that at least
one malicious party will be caught. As explained above, such a feature might be useful for
deactivating adversarial circuit components, improving efficiency and energy consumption even
further.

7 Conclusion and Open Problems

We put forward a simulation-based security definition for assessing security of ICs whose fabri-
cation has (partially) been outsourced to an untrusted off-shore manufacturer. Importantly, the
size of the components built in-house must be much smaller than the size of the original IC. Our
definition implies a strong guarantee, essentially saying that no matter how the manufacturer
modified the outsourced 1C sub-components, using the re-assembled IC in the wild cannot leak
sensitive information about the private memory.

With such a framework in hand, we proposed several compilers that meet our security defi-
nition and work for any circuit, both for the case where there is a single outsourcing facility and
the case of multiple outsourcing facilities. Our constructions generically leverage VC schemes
or MPC protocols for the function underlying the produced IC, with certain properties.

There are several interesting open questions related to our work. First, it might be interesting
to explore variations of our model, for example by considering the case where there are several
(non-colluding) manufacturers involved in the fabrication process. In such a case, it might be
possible to obtain significant efficiency improvements. Second, one could try to instantiate our
compilers with specialized VC schemes that are tailored for specific functionalities. Although
there are already some schemes with this feature—e.g., [39] constructs VC schemes tailored
for (multi-variate) polynomials and linear combinations—to the best of our knowledge, there is
no concrete VC scheme for verifying the computation of a specific cryptographic functionality
(such as AES). Third, it would be interesting to explore different approaches in order to build

32

compilers meeting our security definition without relying on verifiable computing or multiparty
computation.

References

1]

[10]

[11]

Prabhanjan Ananth, Nishanth Chandran, Vipul Goyal, Bhavana Kanukurthi, and Rafail
Ostrovsky. Achieving privacy in verifiable computation with multiple servers - without
FHE and without pre-processing. In PKC, pages 149-166, 2014.

Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Efficient
verification via secure computation. In ICALP, pages 152-163, 2010.

Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. Subversion-resilient signature
schemes. In ACM CCS, pages 364-375, 2015.

Léaszl6 Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations
in polylogarithmic time. In ACM STOC, pages 21-31, 1991.

James Ball, Julian Borger, and Glenn Greenwald. Revealed: how US and UK spy agencies
defeat internet privacy and security. Guardian Weekly, September 2013.

Carsten Baum, Ivan Damgard, Tomas Toft, and Rasmus Winther Zakarias. Better prepro-
cessing for secure multiparty computation. In ACNS, pages 327-345, 2016.

Mark Beaumont, Bradley Hopkins, and Tristan Newby. Hardware trojans — prevention,
detection, countermeasures (a literature review). Technical report, Australian Government
Department of Defence, 07 2011.

Donald Beaver. Commodity-based cryptography (extended abstract). In ACM STOC,
pages 446455, 1997.

Georg T. Becker, Francesco Regazzoni, Christof Paar, and Wayne P. Burleson. Stealthy
dopant-level hardware trojans: extended version. J. Cryptographic Engineering, 4(1):19-31,
2014.

Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling with
applications to one-time programs and secure outsourcing. In ASIACRYPT, pages 134-153,
2012.

Mihir Bellare, Joseph Jaeger, and Daniel Kane. Mass-surveillance without the state:
Strongly undetectable algorithm-substitution attacks. In ACM CCS, pages 1431-1440,
2015.

Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of symmetric encryp-
tion against mass surveillance. In CRYPTO, pages 1-19, 2014.

Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
SNARKSs for C: verifying program executions succinctly and in zero knowledge. In
CRYPTO, pages 90-108, 2013.

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-
interactive zero knowledge for a von neumann architecture. In USENIX Security Sym-
posium, pages 781-796, 2014.

33

[15]

[16]

[19]

[20]

[21]

[22]

Shivam Bhasin and Francesco Regazzoni. A survey on hardware trojan detection tech-
niques. In IEEE ISCAS, pages 2021-2024, 2015.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In ICS,
pages 326-349, 2012.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition
and bootstrapping for SNARKS and proof-carrying data. In ACM STOC, pages 111-120,
2013.

Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct
non-interactive arguments via linear interactive proofs. In TCC, pages 315-333, 2013.

Elette Boyle, Gil Segev, and Daniel Wichs. Fully leakage-resilient signatures. J. Cryptology,
26(3):513-558, 2013.

Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of
Cryptology, 2000.

Ran Canetti, Ben Riva, and Guy N. Rothblum. Practical delegation of computation using
multiple servers. In ACM CCS, pages 445-454, 2011.

Ran Canetti, Ben Riva, and Guy N. Rothblum. Two protocols for delegation of computa-
tion. In ICITS, pages 37-61, 2012.

Ran Canetti, Ben Riva, and Guy N. Rothblum. Refereed delegation of computation. Inf.
Comput., 226:16-36, 2013.

Rajat Subhra Chakraborty, Seetharam Narasimhan, and Swarup Bhunia. Hardware trojan:
Threats and emerging solutions. In IEEE HLDV'T, pages 166—-171, 2009.

Nishanth Chandran, Wutichai Chongchitmate, Rafail Ostrovsky, and Ivan Visconti. Univer-
sally composable secure two and multi-party computation in the corruptible tamper-proof
hardware token model. TACR Cryptology ePrint Archive, 2017:1092, 2017.

Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael
Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable computation. In
IEEE Symposium on Security and Privacy, pages 253-270, 2015.

Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits against constant-rate
tampering. In CRYPTO, pages 533-551, 2012.

Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits and protocols against
1/poly(k) tampering rate. In TCC, pages 540-565, 2014.

Ivan Damgard, Sebastian Faust, and Carmit Hazay. Secure two-party computation with
low communication. In TCC, pages 54-74, 2012.

Ivan Damgard and Yuval Ishai. Constant-round multiparty computation using a black-box
pseudorandom generator. In CRYPTO, pages 378-394, 2005.

Ivan Damgard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In CRYPTO, pages 643-662, 2012.

34

32]

[33]

[36]

[37]

[38]

[39]

Jean Paul Degabriele, Pooya Farshim, and Bertram Poettering. A more cautious approach
to security against mass surveillance. In FSE, pages 579-598, 2015.

Yevgeniy Dodis, Chaya Ganesh, Alexander Golovnev, Ari Juels, and Thomas Ristenpart.
A formal treatment of backdoored pseudorandom generators. In EUROCRYPT, pages
101-126, 2015.

Yevgeniy Dodis, Kristiyan Haralambiev, Adriana Lépez-Alt, and Daniel Wichs. Efficient
public-key cryptography in the presence of key leakage. In ASIACRYPT, pages 613-631,
2010.

Stefan Dziembowski, Sebastian Faust, and Francois-Xavier Standaert. Private circuits I1I:
hardware trojan-resilience via testing amplification. In ACM CCS, pages 142-153, 2016.

Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In FOCS,
pages 293-302, 2008.

Antonio Faonio, Jesper Buus Nielsen, and Daniele Venturi. Mind your coins: Fully leakage-
resilient signatures with graceful degradation. In ICALP, pages 456-468, 2015.

Sebastian Faust, Krzysztof Pietrzak, and Daniele Venturi. Tamper-proof circuits: How to
trade leakage for tamper-resilience. In ICALP, pages 391-402, 2011.

Dario Fiore, Rosario Gennaro, and Valerio Pastro. Efficiently verifiable computation on
encrypted data. In ACM CCS, pages 844-855, 2014.

Marc Fischlin, Benny Pinkas, Ahmad-Reza Sadeghi, Thomas Schneider, and Ivan Visconti.
Secure set intersection with untrusted hardware tokens. In CT-RSA, pages 1-16, 2011.

Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing:
Outsourcing computation to untrusted workers. In CRYPTO, pages 465-482, 2010.

Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct NIZKs without PCPs. In FEUROCRYPT, pages 626-645, 2013.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169-178,
2009.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In ACM STOC, pages 218229,
1987.

Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In ACM STOC, pages 113-122, 2008.

Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation without
rejection problem from designated verifier cs-proofs. IACR Cryptology ePrint Archive,
2011:456, 2011.

Glenn Greenwald. No place to hide: Edward Snowden, the NSA, and the U.S. surveillance
state. Metropolitan Books, May 2014.

Jens Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT,
pages 305-326, 2016.

35

[49]

[50]

[51]

[52]

[53]

[54]

Mike Hamburg, Paul Kocher, and Mark Marson. Analysis of Intel’s Ivy Bridge digital
random number generator. Technical report, Cryptography Research, Inc., 03 2012.

Frank Imeson, Ariq Emtenan, Siddharth Garg, and Mahesh V. Tripunitara. Securing
computer hardware using 3d integrated circuit (IC) technology and split manufacturing for
obfuscation. In USENIX Security Symposium, pages 495-510, 2013.

Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computation with
identifiable abort. In CRYPTO, pages 369-386, 2014.

Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private circuits II:
keeping secrets in tamperable circuits. In FUROCRYPT, pages 308-327, 2006.

Thomas P. Jakobsen, Jesper Buus Nielsen, and Claudio Orlandi. A framework for out-
sourcing of secure computation. In CCSW, pages 81-92, 2014.

Benjamin Jun and Paul Kocher. The Intel random number generator. Technical report,
Cryptography Research, Inc., 04 1999.

Jonathan Katz. Universally composable multi-party computation using tamper-proof hard-
ware. In FUROCRYPT, pages 115-128, 2007.

Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded leakage re-
silience. In ASIACRYPT, pages 703-720, 2009.

Aggelos Kiayias and Yiannis Tselekounis. Tamper resilient circuits: The adversary at the
gates. In ASTACRYPT, pages 161-180, 2013.

Lang Lin, Markus Kasper, Tim Gilineysu, Christof Paar, and Wayne Burleson. Trojan
side-channels: Lightweight hardware trojans through side-channel engineering. In CHES,
pages 382-395, 2009.

Eric Love, Yier Jin, and Yiorgos Makris. Enhancing security via provably trustworthy
hardware intellectual property. In IEEE HOST, pages 12-17, 2011.

Marie A. Mak. Trusted Defense Microelectronics: Future Access and Capabilities Are
Uncertain. Technical report, United States Government Accountability Office, 10 2015.

Vasilios Mavroudis, Andrea Cerulli, Petr Svenda, Dan Cvrcek, Dusan Klinec, and George
Danezis. A touch of evil: High-assurance cryptographic hardware from untrusted compo-
nents. In ACM CCS, pages 1583-1600, 2017.

David R. Mclntyre, Francis G. Wolff, Christos A. Papachristou, and Swarup Bhunia. Dy-
namic evaluation of hardware trust. In IEEE HOS'T, pages 108-111, 2009.

Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253-1298, 2000.

Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. SIAM J.
Comput., 41(4):772-814, 2012.

Jesper Buus Nielsen, Daniele Venturi, and Angela Zottarel. Leakage-resilient signatures
with graceful degradation. In PKC| pages 362-379, 2014.

Martin Otto. Fault Attacks and Countermeasures. PhD thesis, University of Paderborn,
Germany, 2006.

36

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]
[76]

Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In IEEE Symposium on Security and Privacy, pages 238-252, 2013.

Nicole Perlroth, Jeff Larson, and Scott Shane. N.S.A. able to foil basic safeguards of privacy
on web. The New York Times, September 2013.

Krzysztof Pietrzak. A leakage-resilient mode of operation. In FUROCRYPT, pages 462—
482, 20009.

Miodrag Potkonjak. Synthesis of trustable ics using untrusted CAD tools. In DAC, pages
633-634, 2010.

Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Cliptography: Clipping
the power of kleptographic attacks. In ASTACRYPT, pages 3464, 2016.

Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Generic semantic
security against a kleptographic adversary. In ACM CCS, pages 907-922, 2017.

Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Correcting subverted
random oracles. In CRYPTO, pages 241-271, 2018.

Jean-Pierre Seifert and Christoph Bayer. Trojan-resilient circuits. In Al-Sakib Khan
Pathan, editor, Securing Cyber-Physical Systems, chapter 14, pages 349-370. CRC Press,
Boca Raton, London, New York, 2015.

Brian Sharkey. Trust in Integrated Circuits Program. Technical report, DARPA, 03 2007.

Riad S. Wahby, Max Howald, Siddharth J. Garg, Abhi Shelat, and Michael Walfish. Veri-
fiable asics. In IEEE S&P, pages 759-778, 2016.

Adam Waksman and Simha Sethumadhavan. Silencing hardware backdoors. In IEEFE
Symposium on Security and Privacy, pages 49-63, 2011.

Michael Walfish and Andrew J. Blumberg. Verifying computations without reexecuting
them. Commun. ACM, 58(2):74-84, 2015.

Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty com-
putation. In ACM CCS, 2017.

Ingo Wegener. The complexity of Boolean functions. Wiley-Teubner series in computer
science. B. G. Teubner, 1987.

37

	Introduction
	Background
	Previous Work
	Our Contributions
	Related Work

	Preliminaries
	Notation
	Circuits

	Secure Circuit Fabrication
	Security
	Undetectability

	Case Study I: Single Manufacturer
	Prelude: Verifiable Computation
	Compiler based on Input-Private VC
	Compiler based on VC without Input Privacy

	Case Study II: Multiple Manufacturers
	Compilers based on VC with Multiple Servers
	Compiler based on MPC

	Concrete Instantiations
	Case Study I
	Case Study II

	Conclusion and Open Problems

