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Abstract. Lattice reduction is fundamental in computational number
theory and in computer science, especially in cryptography. The celebrated
Lenstra–Lenstra–Lovász reduction algorithm (called LLL or L3) has been
improved in many ways through the past decades and remains one of
the central tool for reducing lattice basis. In particular, its floating-point
variants — where the long-integer arithmetic required by Gram–Schmidt
orthogonalization is replaced by floating-point arithmetic — are now the
fastest known. Yet, the running time of these floating-point versions is
mostly determined by the precision needed to perform sound computa-
tions: theoretical lower bounds are large whereas the precision actually
needed on average is much lower. In this article4, we present an adaptive
precision version of LLL and one of its variant Potential-LLL. In these
algorithms, floating-point arithmetic is replaced by Interval Arithmetic.
The certification property of interval arithmetic enables runtime detection
of precision defects in numerical computations and accordingly, makes it
possible to run the reduction algorithms with guaranteed nearly optimal
precision. As such, these adaptive reduction algorithms run faster than
the state-of-the-art implementations, while still being provable.

1 Introduction

Lattices are defined as additive discrete subgroups of Rn, i.e. the integer span
L(b1, . . . , bd) =

⊕d
i=1 Zbi of a linearly independent family of vectors b1, . . . , bd

in Rn. Such a family is called a basis of the lattice, and is not unique. Nevertheless,
all the bases of a given lattice have the same number of elements, d, which is
called the dimension of the lattice. Among the infinite number of different bases
of a n-dimensional lattice with n ≥ 2, some have interesting properties, such
as having reasonably small vectors and low orthogonality defect. Finding such
reduced bases is the goal of lattice reduction theory and has been crucial in
several fields of computer science and mathematics, especially in cryptology. For
instance, lattices have been used to break many public-key cryptosystems in the

4 This work has been supported in part by the European Union’s H2020 Programme
under grant agreement number ERC-669891.



last decades, including knapsack cryptosystems [11] or RSA in specific settings
thanks to Coppersmith’s method [3].

The problem of finding good bases goes back to the early works of Lagrange
and Gauss, for dimension two lattices, and the introduction of the Gauss — even
though first introduced by Lagrange — algorithm. This procedure can be seen
as a 2-dimensional extension of the well-known Euclid algorithm for computing
the greatest common divisor of two integers. In 1850, Hermite published the
first reduction algorithm for arbitrary dimension5. A century later, in 1982,
Lenstra, Lenstra and Lovász designed the LLL algorithm [12], with the polynomial
factorization problem as an application, after the celebrated work of Lenstra
on integer programming [13]. This algorithm is a milestone in the history of
lattice reduction algorithms, being the first algorithm whose running-time is
polynomial for arbitrary dimension. This work has been improved in multiple
ways by Kaltofen [9], Schnorr [20], and Gama and Nguyen [5] among others,
decreasing the time complexity or improving the quality of the reduction.

Interval arithmetic is a representation of reals by intervals — whose endpoints
are floating-point numbers — that contain them. Arithmetic operations, in
particular the basic operations +,−,×,÷ can be redefined in this context. The
main interest of this representation lies in its certification property: if real
numbers are represented by intervals, the interval resulting from the evaluation
of an algebraic expression contains the exact value of the evaluated expression.

If the birth of Lattice Reduction is well-dated, it is not the case of Interval
Arithmetic. For some authors, it has been introduced by R. Moore in 1962 in
his PhD thesis [14]. For others it can be dated back to 1958 in an article of T.
Sunaga [25] which describes an algebraic interpretation of the lattice of real inter-
vals, or even sooner in 1931 as a proposal in the PhD thesis [27] of R.C. Young at
Cambridge. Nonetheless its development and industrial applications have to wait
for 1980, and the momentum of U. Kulisch in Karlsruhe, leading IBM to develop
a specific instruction set and a compiler natively integrating Interval Arithmetic.
Its main asset — calculating directly on sets — is nowadays used to deterministi-
cally determine the global extrema of a continuous function [19] or determining
the zeroes of a function and proving their existence [8]. Another application
of Interval Arithmetic is to be able to detect lack of precision at run-time of
numerical algorithms, thanks to the guarantees it provides on computations.

This last application can lead to the design of adaptive precision numerical
algorithms. In the present paper, we propose to transform the celebrated LLL
algorithm into an adaptive precision version, leading to design a provable reduction
algorithm which runs faster than the state-of-the-art standard FpLLL of D.
Sthele et al. [23]. We also apply this technique to a stronger variant of LLL,
called Potential-LLL, first introduced by Fontain et al. in [4], with similar results.

5 Stricto sensu, he presented two algorithms, one for proving the existence of the
so-called Hermite constant which bounds the length of the shortest vector of a lattice,
and the other which allows to find basis with low orthogonality defect.
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Organization of the paper. After reminders on lattices and on the LLL algo-
rithm and its variant Potential-LLL in Section 2, we present Interval Arithmetic
and the adaptive LLL variant in Section 4. Finally we discuss experimental results
and running times in Section 5.

2 Preliminaries

In the sequel, we consider a lattice L of basis B = (b1, . . . , bd) embedded in the
canonical Euclidean vector space Rn.

2.1 Lattices and reductions notions

We first define the Gram matrix, or Gramian, G(b1, . . . , bd) of the vectors
b1, . . . , bd as the matrix of their inner products (〈bi, bj〉)1≤i,j≤d.

Any two bases of a non-trivial lattice are related to each other by an unimod-
ular matrix6. Consequently, the determinant of the Gram matrix is independent
of the choice of the basis. The square root of this constant is called the volume
of the lattice.

For (b1, . . . , bd) a family of vectors in Rn we define by πk the orthogonal
projection onto the orthogonal complement of Span(b1, . . . , bk−1). In particular,
π0 is the identity function. These projection operators are convenient to define
reduction properties.

Gauss reduction. Before introducing more general notions of reduction, let us
start with lattices.in dimension 2. We consider a two dimensional lattice L, and
one of its basis (u,v). This basis is called Gauss-reduced if both of the following
conditions are fulfilled:

{
‖u‖ ≤ ‖v‖

|〈u,v〉| ≤ ‖u‖2/2

The Gauss algorithm takes an arbitrary basis of the lattice and reduces it
greedily in a manner similar to Euclid’s GCD algorithm. More precisely, this
process iteratively reduces the length of the longest vector of the basis, and
continues until the vector being reduced remains larger than the other one. The

6 A matrix M ∈Md(Z) is said to be unimodular if det(M) ∈ {−1, 1}.
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description is fully given in Algorithm 1. Its termination relies on the decrease of
the square of the norm of the shortest vector in the current pair (u,v).

Algorithm 1: Gauss reduction.
Input: Initial basis (u,v).
Result: A reduced basis of the lattice.

1 if ‖u‖ < ‖v‖ then
2 Swap u and v;
3 end
4 repeat
5 λ← b〈u,v〉/‖v‖2e;
6 u← u− λ · v;
7 Swap u and v;
8 until ‖u‖ ≤ ‖v‖;
9 Output (u,v);

It is easy to see that the first vector of the reduced basis is the shortest
non-zero lattice vector. Indeed, let take a non-zero vector x in the lattice, and
decompose it in the output basis (u,v):

x = a · u + b · v

for integers a, b 6= (0, 0). We then have by the Gauss reduction hypothesis that:

‖x‖2 = a2‖u‖2 + 2ab〈u,v〉+ b2‖v‖2

≥ (a2 − |ab|+ b2)︸ ︷︷ ︸
>0 since (a,b)∈N−{(0,0)}

‖u‖2

In addition, the second vector reaches the second-minimum of the lattice7. Before
getting deeper in the generalization of the Gauss reduction for higher dimension
lattices, we introduce the notion of Gram-Schmidt orthogonalization.

Gram-Schmidt orthogonalization. We recall that we are considering the
lattice spanned by the independent vectors B = (b1, . . . , bd) and B its associated
matrix. Their Gram-Schmidt orthogonalization B∗ = (b∗1, . . . , b

∗
d) is the family

of vectors defined inductively by :
b∗1 := b1

b∗i := bi −
i−1∑
j=0

Mi,jb
∗
j

where Mi,j =
〈bi,b

∗
j 〉

‖b∗j ‖2
. Since the Mi,j have no reason to be integers in general, the

vectors b∗j do not necessarily belong to the lattice L, but to the ambient space

7 The k-th minimum of the lattice is defined as the smallest positive real number λk

such that there exists at least one set of k linearly independent vectors which each
vector of norm at most λk.
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Rn. We emphasize the fact that for every 1 ≤ i ≤ d, we have Span(b1, · · · , bi) =
Span(b∗1, · · · , b∗i ) Moreover, one notices that, using the previously projections
operators πi, we have by definition:

πi(bi) = bi
∗

The whole construction is given in pseudo-code as Algorithm 2.

Algorithm 2: Gram-Schmidt orthogonalization.
Input: Initial basis (b1, . . . , bd).
Result: Basis B∗, transformation matrix M .

1 for i = 1 to d do
2 b∗i ← bi;
3 for j = 1 to i− 1 do
4 Mi,j ←

〈bi,b
∗
j 〉

‖b∗j ‖2
;

5 b∗i ← b∗i −Mi,jb
∗
j ;

6 end
7 end

Reduction in Higher dimension. Let us come back to lattice reduction.
A natural question is whether the simplicity of the Gauss reduction extends
naturally to higher dimensions. Unfortunately, this is not the case, and the various
generalizations of this notion do not coincide. For instance, trying to generalize
the fact that in dimension 2 a reduced basis reaches the first and second minima
is not possible. Nonetheless, in 1982, Lenstra, Lenstra and Lovász [12] proposed a
notion called LLL-reduction conjointly with a polynomial time algorithm. Their
reduction notion is defined as follows:

Definition 1 (LLL reduction). A basis B of a lattice is said to be δ-LLL-
reduced for a certain parameter 1/4 < δ ≤ 1, if the following conditions are
satisfied:

∀i < j, |〈bj , πi(bi)〉| ≤
‖πi(bi)‖2

2
(Size-Reduction condition) (1)

∀i, δ · ‖πi(bi)‖2 ≤ ‖πi(bi+1)‖2 (Lovász condition) (2)

Using the Gram-Schmidt orthogonalization, we can rewrite this definition in
a more algorithmic way, using the vectors b∗i .

Definition 2 (LLL reduction (algorithmic version)). A basis B of a lattice
is said to be δ-LLL-reduced for a certain parameter 1/4 < δ ≤ 1, if the following
conditions are satisfied:

∀i < j, |〈bj , bi∗〉| ≤
‖bi∗‖2

2
(Size-Reduction condition) (3)
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∀i, δ · ‖bi∗‖2 ≤
(
‖bi+1

∗‖2 +
〈bi+1, b

∗
i 〉

‖bi∗‖2

)
(Lovász condition) (4)

where the vectors b∗i result from the Gram-Schmidt orthogonalization of the
basis B.

We can now introduce two lattice reduction algorithms which both run in
polynomial time: the celebrated LLL algorithm and one of its variants, the
Potential-LLL [4].

3 LLL algorithm and its Potential-LLL variant

3.1 LLL reduction

The algorithm of Lenstra-Lenstra-Lovász [12], also denoted as LLL or L3 is a
combination of the Gauss reduction algorithm for 2-dimensional lattices and the
Gram-Schmidt orthogonalization process. In a nutshell, this algorithm applies one
iteration of the Gauss reduction to the lattice generated by πi(bi) and πi(bi+1).
All the operations in this projected lattice are actually lifted to the vectors bi
and bi+1 themselves in order to act directly on the basis manipulated by the
algorithm. Furthermore, integer linear combinations are performed between these
vectors and the b1, . . . , bi−1 in order to reduce the orthogonality defect of the
resulting basis.

More precisely, two kind of unimodular operations are performed on a vector
of the current basis: exchange steps and integer linear combinations with other
vectors of the basis, called translations. Before getting an in-depth view of the
details of these steps within the algorithm, we use the Gram-Schmidt orthogonal-
ization to provide a convenient matrix representation of the quantities used by
LLL.

Indeed, the Gram-Schmidt orthogonalization onB leads to theQR-decomposition
of B into B∗ ·M where B∗ is the matrix representing B∗, and M is the matrix of
coefficients Mi,j . Thus, by considering the Gram matrix associated to the basis8,
one gets:

G = MT ·B∗T ·B∗ ·M = MTDM

for a diagonal matrix D, since the rows B∗ are by construction orthogonals.
Denoting by R the matrix D ·M , we have:

G = RT ·M = MT ·R.

Translations and Size Reduction steps. The goal of the translation steps
is to make the off-diagonals coefficients of M lie in [− 1

2 ,
1
2 ]. To perform such a

reduction, one iteratively translates each bi along bj for each j < i, by substracting
dMi,jc times the vector bj to bi. Geometrically speaking, it ensures that each of

8 We recall that G = BTB by definition.
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the bi are not too far from the corresponding b∗i and has low orthogonality defect
with the predecessors: (b1, . . . , bi−1). This full procedure is called size-reduction
and is described in pseudo-code in Algorithm 3. Note that size-reduction leaves
the orthogonalized vectors b∗i unchanged.

Algorithm 3: The size reduction algorithm, Sred.
Input: Initial basis (b1, . . . , bd), index 1 ≤ k ≤ d
Result: Modified basis with bk size-reduced.

1 for i = k − 1 downto 1 do
2 bk ← bk − bMk,ie · bi;
3 Update matrices M and R accordingly.
4 end

Exchanges and Lovász condition. In order to act on the b∗i , exchange steps
are performed. Without loss of generality, assume that bi and bi+1 are exchanged.
We denote by M̂ the state of matrix M after this exchange and by b̂∗i the
updated GSO vectors. Setting the vectors u and v as the orthogonal projection
of respectively bi and bi+1 by πi. Before the exchange we have by definition of
an orthogonal projection:

b∗i = πi(bi) = u and b∗i+1 = v − 〈u,v〉
‖u‖2︸ ︷︷ ︸

=Mi+1,i

u.

And after the exchange:

b̂∗i = v and b̂∗i+1 = u− 〈v,u〉
‖v‖2︸ ︷︷ ︸

=M̂i+1,i

v.

By invariance of the determinant of the sublattice Span(πi(bi), πi(bi+1)), we
have:

‖b̂∗i ‖
2 = ‖b∗i+1‖

2 +M2
i+1,i‖b∗i ‖

2

‖b̂∗i+1‖
2 =
‖b∗i ‖2‖b∗i+1‖2

‖b̂∗i ‖2
.

Thus, in order to ensure getting a LLL-reduced basis, one performs the exchanges
whenever the Lovász condition is not fulfilled, that is if:

δ · ‖bi∗‖2 >
(
‖bi+1

∗‖2 +
〈bi+1, b

∗
i 〉

‖bi∗‖2

)
,
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which can be rewritten using the coefficients of the previously defined R:

δRi,i > Ri+1,i+1 +M2
i+1,iRi,i.

The whole LLL algorithm is given is Algorithm 4.

Algorithm 4: The LLL algorithm.
Input: Initial basis (b1, . . . , bd)
Input: Parameter δ ∈]1/4, 1[.
Result: A reduced basis.

1 Compute B∗ and M with the GSO Algorithm 2;
2 R← (G · (M)−1)T ;
3 k ← 2;
4 while k ≤ d do
5 Apply length reduction SRed(k);
6 if δRk−1,k−1 ≤ Rk,k +M2

k,k−1Rk−1,k−1 then
7 k ← k + 1;
8 else
9 Swap bk and bk−1;

10 Update M , B∗, R accordingly ;
11 k ← max(k − 1, 1);
12 end
13 end
14 Output (b1, · · · , bd)

A simple optimization can be made in the way we write the algorithm: one can
perform directly the insertion as far as possible, instead of letting the algorithm
performs successive exchanges in a row. This tweak is described in Algorithm 5.

Termination and decrease of the potential. The soundness the algorithm
is direct. Moreover, it terminates in polynomial time when δ < 1. A classical
argument relies on the study of the quantity

P(B) =

d∏
i=0

‖b∗i ‖
2(d−i+1),

called potential associated to the basis B. The potential P(B) can be seen as
the product of the volume of increasing sublattices; explicitly, given (b1, . . . , bd)
a basis of a lattice L, we consider the increasing chain of sublattices L1 ⊂ L2 ⊂
· · · ⊂ Ld = L where Li = Span(b1, . . . , bi). Since vol(Li) =

∏i
j=0 ‖b∗j‖2, we get:

P(B) =

d∏
i=0

vol(Li)︸ ︷︷ ︸
∈N∗

.
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Algorithm 5: The LLL algorithm, with insertion directly as deeply as
possible.

Input: Initial basis (b1, . . . , bd)
Input: Parameter δ ∈]1/4, 1[.
Result: A reduced basis.

1 Compute B∗ and M with the GSO Algorithm 2;
2 R← (G · (M)−1)T ;
3 k ← 2;
4 while k ≤ d do
5 Apply length reduction SRed(k);
6 k′ ← k;
7 while k ≥ 2 and δRk−1,k−1 > Rk′,k′ +

∑k′−1
i=k−1M

2
k′,iRi,i do

8 k ← k − 1;
9 end

10 if k 6= k′ then
11 Insert bk′ at pos k and update M,R,B∗ accordinglya;
12 end
13 k ← k + 1;
14 end
15 Output (b1, · · · , bd)

a By “Insert bi at pos j for j < i” we mean updating the basis
to(b1, . . . , bj−1, bi, bj , bj+1, . . . , bj−1, bi+1, . . . , bd).

Thus, P(B) is a non-zero integer. In addition this potential decreases by a factor
at least δ−1 at each exchange step and is left unchanged by other operations.
Indeed:

– Either a linear combination on bk of the previous vectors is performed and
the chain of sublattices (Lj) is not altered.

– Or an exchange is done and the situation gets slightly more complicated.
Assume without loss of generality that bk and bk−1 are exchanged. Then,
none of the k − 2 first sublattices (Lj)j<k−1 and none of the trailing ones
(Lj)j≥k are modified. However, the sublattice Lk−1 changes, and so does its
volume. Since by construction the exchange occurs if ‖b∗k−1‖ shrinks by a
factor at least δ−1, the volume of Lk−1 is also decreased by the same factor.

Thus the number of exchange steps — and consequently of iterations — is
bounded by O(log(‖B‖∞)d2) where B is the matrix of the initial basis9.

Running-time of LLL. As the cost of a loop iteration is of O(dn) arithmetic op-
erations on rational coefficients Mi,j and Ri,i, of length at most O(d log(‖B‖∞)),
the total cost in term of arithmetic operations is loosely bounded byO(nd5 log3(‖B‖∞)).
By being more precise in the majoration of the bit-length of the integers appearing
9 We recall that ‖B‖∞ = max1≤i≤j≤d |Bi,j |.
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in LLL, this analysis can be improved, such as in [10] where Kaltofen bound
the complexity by O(d

4n log2(‖B‖∞)
d+log(‖B‖∞) ·M(d + log(‖B‖∞))) where M(k) denotes

the complexity of the multiplication of two integers of bit-length at most k. We
emphasize once again on the fact that for now all computations are performed
in an exact manner, with rationals coefficients represented as a quotient of large
integers.

3.2 The Potential-LLL

Potential and potential reduction. In the analysis of the running-time of
LLL, we introduced the the quantity P(B) =

∏d
i=0 ‖‖b∗i ‖2(d−i+1), called the

potential associated to the basis B. In particular, we proved that each exchange
step of LLL leads to a decrease of the potential by a factor δ−1. A natural
generalization is then to design a reduction algorithm which directly aims at
decreasing the potential, by performing, like in the original LLL algorithm,
exchanges and translations. In this variation proposed in [4], the exchange
condition is slightly relaxed but still guaranties a decrease of the potential.

Before going further in the presentation of this algorithm, let us describe the
action of a sequence of insertions on the potential of a lattice.

Lemma 1. Let B = (b1, . . . , bd) a basis of a given lattice, and two integers i, j
such as 1 ≤ i < j ≤ d. Let B′ the basis obtained by inserting bj to the left of bi.
Then:

P(B′) = P(B) ·
j−1∏
k=i

‖πk(bj)‖2

‖πk(bk)‖2

Using directly conditions on the reduction of the potential instead of looking
at the classical Lovász condition leads to a very similar running-time analysis as
in LLL and therefore ensure a polynomial time reduction algorithm.

All these considerations lead to the Potential-LLL reduction.

Definition 3 (Potential reduction). A basis B of a lattice is said to be
δ-Potential-reduced for a certain parameter 1/4 < δ ≤ 1, if the following
conditions are satisfied:

∀i < j, |〈bj , bi∗〉| ≤
‖bi∗‖2

2
Size-reduction condition (5)

∀1 ≤ i < j ≤ d, δ · P(B) ≤ P(B′) Lovász-potential condition (6)

where B′ is the basis resulting by the insertion of bj to the left of bi.

Clearly, if a basis B is δ-Potential Reduced, then it is also δ-LLL reduced.
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The Potential-LLL algorithm. In [4], Fontein et al. introduced a polynomial-
time reduction algorithm based on the decrease of the potential. We describe
here a greedy variant10 of this algorithm.

During the execution of the algorithm, the first l − 1 vectors are always
potential-reduced. Then, a sequence of test is performed to detect if there exists a
position 1 ≤ i ≤ l−1 at which the insertion of the l-th vector creates a diminution
of the potential. If so, the vector bl is inserted right before the vector bi and
other vectors are let unchanged.

The activation condition of these exchanges steps is then the comparison of
potentials — the current potential of the basis and the potential of the basis after
an exchange — and thanks to Lemma 1, we only need to compute the quotient
of the two involved potentials. This quotient can be computed efficiently. The
same analysis as in the description of LLL ensures that

πj(b`)

πj(bj)
=
‖b`∗‖2 +

∑`−1
i=j M

2
`,i · ‖b∗i ‖2

‖b∗j‖2
,

allowing an efficient inductive computation. The whole description of the proce-
dure is given in Algorithm 6.

Complexity analysis. Once again, the soundness is direct. Since the potential
appears in the analysis of LLL, we can also use it here. In the Potential-LLL algo-
rithm, the situation is even simpler, since an insertion is done if there is a decrease
of a factor at least δ−1. As such, the number of exchanges remains unchanged:
O(d log(‖B‖∞)); therefore the number of iterations is now: O(d2 log(‖B‖∞)).
The computational cost of one loop now splits in two parts: the update of
the GSO coefficients and the computations of the quotients of potentials, lead-
ing to O(nd + d2) operations. We then get a total complexity complexity in
O(nd6 log3(‖B‖∞)), using naive multiplication on O(log(‖B‖∞)d) bits integers.

3.3 From exact rational arithmetic to the L2 floating-point
algorithm

Since the behavior of both algorithms is the same with respect to floating-point
approximation techniques, we focus on the case of the original LLL.

Rational representation of GSO coefficients and Integral-LLL. The
total cost of the LLL algorithm is dominated by the computation of the GSO
coefficients, whose numerators and denominators are growing. A bottleneck when
performing computations with such representations of rational values is the
10 The main difference lies in the choice of the insertion to perform. In [4] the authors

choose the insertion realizing the maximal diminution of the potential, whereas ours
greedily inserts in the first position where a decrease occurs.
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Algorithm 6: The Potential-LLL algorithm.
Input: Initial basis (b1, . . . , bd)
Input: Parameter δ ∈]1/4, 1[.
Result: A reduced basis.

1 Compute B∗ and M with the GSO Algorithm 2;
2 R← (G · (M)−1)T ;
3 k ← 2;
4 while k ≤ d do
5 Apply length reduction SRed(k);
6 Q ← 1;
7 for ` = k − 1 downto 1 do

8 Q ← Q · ‖b
∗
k‖

2+
∑k−1

i=`
M2

k,i·‖b
∗
i ‖

2

‖b∗` ‖2
;

9 if δ > Q then
10 Insert bk at pos ` and update matrices M,R and B∗;
11 k ← `;
12 break;
13 end
14 end
15 end
16 Output (b1, · · · , bd)

necessity to perform repeated GCD procedures. A first idea to overcome this
problem is to avoid the use of denominators by multiplying all the quantities
involved by carefully chosen integers. This algorithm was introduced by De Weger
in [26]. While slightly more efficient in practice, the algorithm has the same
asymptotic behavior remains unchanged.

Using floating points approximations. However, it is remarkable that the
norm of these rational values remains small, and naturally leads to using ap-
proximations of the desired quantities, instead of computing with them in an
exact manner. Translating directly the LLL algorithm with floating point ap-
proximations leads to severe drawbacks: first, the whole algorithm might not
terminate, and even if it does, the output basis is not any longer guaranteed to
be LLL-reduced.

The seminal provable floating-point version of the algorithm is due to Schnorr
in [21], leading to a complexity of O(d3n log(‖B‖∞) ·M(d+ log(‖B‖∞))). Using
naive multiplication, this cost is however still cubic in log(‖B‖∞). Number theory
libraries and packages contain heuristic variants of the fp-version of Schnorr and
Euchner [22], like NTL [1].

Numerous variants are built on this first version of Schnorr and Euchner, to
eventually lead to the now widely used and fastest provable floating-point variant
of Nguyen-Stehlé L2 [17], implemented in the library FpLLL [23].
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3.4 The L2 algorithm

The L2 algorithm is a variant of Schnorr-Euchner version of LLL [22]. By
contrast with LLL, L2 computes the GSO coefficients on the fly as they are
needed instead of doing a full orthogonalization at the start. It also uses a lazy
size reduction inspired by the Cholesky factorization algorithm. More precisely,
the GSO coefficients are obtained by computing the Ri,j inductively with the
formula:

Ri,j = Gi,j −
j−1∑
k=1

Mj,k ·Ri,k.

Then Mi,j is obtained simply the quotient as Ri,j

Rj,j
. Furthermore, the actual

algorithm computes the quantities s(i)j = ‖bi‖2−
∑j−1
k=1Mj,k ·Ri,k. for all 1 ≤ j ≤ i,

leading to a simple reformulation of the Lovász condition:

δ ·Rk−1,k−1 ≤ s(k)k−1.

The Lazy Size-Reduction procedure is fully given in Algorithm 7 and the L2

algorithm in Algorithm 8.
These optimizations improve the running time of the lattice reduction to

O(d4n(d+ log(‖B‖∞)) log(‖B‖∞)), while still being provable. Similarly putting
together L2 and Potential-LLL yields an algorithm of complexity: O(d5n(d +
log(‖B‖∞)) log(‖B‖∞))

Algorithm 7: The lazy size reduction algorithm, LazyRed.
Input: Initial basis (b1, . . . , bd)
Result: Basis B∗, transformation matrices M , R, s.

1 for j = 1 to k − 1 do
2 Ri,j ← Gi,j ;
3 for i = 1 to j − 1 do
4 Mi,j ← Rk,j/Rj,j ;
5 end
6 end
7 s

(k)
1 ← ‖bk‖2;

8 for j = 2 to k do
9 s

(k)
j ← s

(k)
j−1 −Mk,j−1 ·Rk,j−1;

10 end
11 Ri,i ← s

(i)
i ;

Precision required. The precision required by Algorithm 8 is d · log2( (1+η)
2

(δ−η)2 +

ε) + o(d) bits for any ε > 0, i.e. almost linear in the dimension of the lattice.

13



Algorithm 8: The L2 Algorithm.
Input: Initial basis (b1, . . . , bd)
Input: Parameter δ ∈]1/4, 1[.
Result: A reduced basis.

1 Compute G = G(b1, · · · , bd) in exact integer arithmetic;
2 R1,1 ← G1,1;
3 k ← 2; ;
4 while k ≤ d do
5 Apply length reduction LazyRed(k);
6 k′ ← k;
7 while k ≥ 2 and δRk−1,k−1 > sk

′
k−1 do

8 k ← k − 1;
9 end

10 Rk,k ← sk
′

k ;
11 if k 6= k′ then
12 for i = 1 to k − 1 do
13 Mk,i ←Mk′,i;
14 Rk,i ← Rk′,i;
15 end
16 Insert bk′ at pos k − 1 and update matrices M,R;
17 end
18 k ← k + 1;
19 end
20 Output (b1, · · · , bd)

14



However, as presented in [16], it appears experimentally that, even though this
bound is sharp, the number of bits required on average is much lower.

Hence, the challenge would be, to manage to detect at run-time whether
the precision is sufficient or not to soundly perform the computation. Then it
would be possible to dynamically adapt the precision of the current computation
and only work with a quasi-optimal precision. All of this can be achieved using
Interval Arithmetic.

4 Adaptive precision reduction algorithms with interval
arithmetic

4.1 A primer on Interval Arithmetic

In this section, we present briefly Interval Arithmetic and focus on its interaction
with floating point approximation of reals. For more details on Interval Arithmetic,
the interested reader can consult a more extensive reference, such as [15].

Bird’s eye view on Interval Arithmetic. Interval arithmetic is a representa-
tion of reals by intervals that contain them. For instance, one can specify that a
value x is given with an error ε by considering the interval [x− ε, x+ ε], or even
manipulating the transcendent constant π as the interval [3.14, 3.15]. Interval
arithmetic is crucial the context of numerical computations, where reals can only
be represented at finite precision.

Indeed, trade-offs must be found between the precision and range of the reals
representable, such as in floating-point representation. As in the previous examples,
Interval Arithmetic can be used to handle exact reals, now by manipulating
intervals of length 2−n where n is the number of bits of precision and bounds
represented by floating-point numbers at precision n. More precisely, if we
denote by bxcn and dxen respectively the largest floating-point number below x
and the lowest floating-point number above x written with n bits, the tightest
representation of x is the interval In(x) = [bxcn, dxen].

Towards an algebra of Intervals. In the following, we denote by x an interval,
by x− — resp. x+ — its lower value — resp. its greatest value —, that is to say:
x = [x−, x+]. We can now define abstractly the arithmetic on intervals:

Definition 4. Let ./ be a binary operation — resp. f be a function —, then
the result x ./ y of the operation between the intervals x and y — resp f(x),
result of the application of f — is the smallest interval, in the sense of inclusion,
containing

{x ./ y|(x, y) ∈ x× y} — resp. {f(x)|x ∈ x}—.
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In the context of actual computations, requiring the equality in the above
definition is in most case illusory, since reals can not be represented exactly. Yet,
only the inclusion of the resulting interval in the last defined set is required to
ensure the most desired property of interval arithmetic: the most certification of
computations.

Interval Arithmetic and Floating-point approximations. Explicitly, when
approximating reals with floating point representations, basic arithmetic opera-
tions transpose directly into the formulae of the Figure 1.

[
x−, x+

]
+
[
y−, y+

]
=
[
x− +− y−, x+ ++ y+

][
x−, x+

]
−
[
y−, y+

]
=
[
x− −− y−, x+ −+ y+

][
x−, x+

]
×
[
y−, y+

]
=
[
min−(ρ),max+(ρ)

]
where ρ = x−y−, x+y−, x−y+, x+y+[

x−, x+
]−1

=

[
min−(

1

x+
,
1

x−
),max+(

1

x+
,
1

x−
)

]
++, +− are here respectively the + operator with higher approximation and with lower
approximation. Same goes for the −+,−−,min−,max+ operators.

Fig. 1: Basic arithmetic operators in Interval Arithmetic

As a result, if numbers are represented by intervals, the interval resulting
from the evaluation of an algebraic expression contains the exact value of
the evaluated expression. More precisely for any family (xi)1≤i≤n of reals, and
(xi)1≤i≤n intervals such as for each i, xi ∈ xi, then

f(x1, . . . , xn) ∈ f(x1, . . . , xN ),

for any algebraic expression f . Therefore the results given in Interval Arithmetic
are certified. For instance, one can certify whether a scalar x, represented by x is
greater or equal than a value δ by ensuring that x− ≥ dδen. If this test fails, one
is only informed that the interval is too large to certify the desired property. If
Interval Arithmetic is set with floating-point number with given precision, the
failure of such a test allows to conclude that the precision chosen is not sufficient
to assert the inequality. More precisely, in order to track down these precision
defects in a comparison between x and δ, where x is represented by the interval
x three cases must be handled:

– Either x+ ≤ bδcn, which certifies that x ≤ δ.
– Either x− ≥ dδen, which certifies that x ≥ δ.
– Or δ ∈ x, and then the precision chosen is not sufficient to conclude.

In short, Interval Arithmetic used in such a way allows to detect a lack of precision
at runtime of a numerical algorithm.
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4.2 Interval arithmetic L2 algorithm

This described certification property of Interval Arithmetic allows to run the
LLL — more precisely its L2 variant — algorithm at a chosen precision and thus
to detect whether this choice is sufficient to achieve a provable reduction. As a
result it is possible to iteratively increase the precision until the computation
succeeds, and ensure to use an optimal — or at least quasi-optimal — number of
bits.

Description of Adaptive-LLL. Starting with an initial precision p0, the
reduction procedure is launched with intervals of the form Ip0 to represent
approximation of the Gram-Schmidt coefficients; instead of regular floating-point
approximations. If a precision defect is detected by the technique of Section 4.1,
then, the computation is directly aborted. In that case, the precision is increased
and a whole new reduction procedure is called on the current basis; we can
indeed start from the pre-reduced basis obtained just before aborting, which is
at least closer to a LLL-reduced basis than the initial one. If no precision defect
is detected, then the certification property and the provability of the reduction
used ensures that the final basis is LLL-reduced.

The modifications made to the base algorithm, in our case L2, are thus
using interval representation for floating-point variables and transforming the
conditional statements with inequalities between floating point values by the
tests described in Section 4.1. In the case where the test returns a detection of a
precision defect, the reduction stops and return an error. As such, we change the
code from line 7 to 9 in Algorithm 8 into:

continue← True;
while k ≤ 2 do

ret← (δ · Rk−1 ,k−1 > sk ′
k−1 )

if ret = True then
k← k-1;

elif ret = False then
break;

else
return ErrorPrecision;

end;
end;

where a test between two intervals a and b
(a > b)

returns either a boolean value if the result can be certified thanks to interval
Arithmetic, or ⊥ if not. We call this modified version with return code, L̃2.

The whole strategy is fully described in Algorithm 9. Thanks to the great
similarities between the LLL algorithm and its Potential-LLL variant, the same
techniques can be straightly used to design an adaptive Potential-LLL.

Remarks on time complexity of Adaptive-LLL. Once again, thanks to the
similarities of analysis between LLL and Potential-LLL, we only continue the
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Algorithm 9: The Adaptive-LLL algorithm.
Input: Initial basis (b1, . . . , bd)
Input: Parameter δ ∈]1/4, 1[.
Result: A reduced basis.

1 prec ← 64; succeed ← 0;
2 repeat
3 precr ← prec×2;
4 if L̃2(B) 6= ErrorPrecision then
5 succeed ← True;
6 end
7 until succeed = False;
8 Output (b1, · · · , bd)

study in the case of LLL. Depending on the library used, the cost of Interval
Arithmetic with floating-point representation of bounds of intervals is up to fourth
time the cost of classical floating-point arithmetic. Therefore the complexity of
the inner loop remains unchanged with regards to the L2 complexity. However,
since the complexity of fp-multiplication is surlinear and the precision growth is
geometric, the total cost of the adaptive-LLL is asymptotically dominated by the
last iteration of the loop. This ensures that the total complexity of adaptive-LLL
is the complexity of the L2 algorithm using a approximation by a factor less than
2 of the optimal precision needed for the computation. In practice, for average
dimensions it appears that the computational cost of the first iterations lies
between 20% and 40% of the total cost.

Since the minimal precision required by the L2 algorithm can be expressed as
d · log2( (1+η)

2

(δ−η)2 + ε) +o(d). For usual choices of parameters, δ close to 1 and η close
to 1/2, it reduces roughly to 1.6 · d+ o(d). This last bound is tight in the sense
that some lattices require such a complexity to be reduced by the L2 algorithm.
However, in [16], Nguyen and Stehlé presented an experimental heuristic on the
precision required by L2 to safely perform its computation:

Heuristic 41. Let δ be close to 1 and η be close to 1/2. For almost every lattice,
with a precision of 0.25∆d+ o(d) bits for the fp-calculations, the L2 algorithm
performs correctly when given almost any input basis.

Under this heuristic, the adaptive-LLL algorithm gains a constant factor on
the proved version of L2, corresponding to the gap between mandatory precision
on the average and on the worst-case, while still being a provable reduction
algorithm. This is also the case for the Adaptive version of Potential-LLL.
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5 Experimental analysis of Adaptive-LLL and
Adaptive-Potential-LLL

5.1 Random lattices, random basis

In order to get information on the average properties of the adaptive version of
the reduction algorithms, it is natural to work with randomly drawn lattices.

Random lattices, from Siegel to Goldstein and Mayer. The natural
notion of random lattice was introduced by Siegel [24]. The Siegel measure is
defined as the — finite — projected measure on G = SLn(R)/SLn(Z) of the Haar
measure11of SLn(R). Since G identifies with the real lattices modulo scaling, the
Siegel measure gives a natural probability measure on lattices, after rescaling.

A practical method to construct lattices from a distribution that converges to
the uniform distribution was introduced by Goldstein and Mayer in [7]. This pro-
cedure consists in fixing a large prime p, then sampling d− 1 integers (x2, . . . , xd)
independently uniformly at random, in the underlying set of the finite field Z/pZ
and finally consider the lattice spanned by the rows of:

p 0 0 · · · 0
x2 1 0 · · · 0
...

...
...
. . .

...
xd 0 0 · · · 1



From Random lattices, to random basis. Once a particular lattice is sam-
pled in that way, we then need to select uniformly at random a basis of this
lattice. Yet, there are infinitely many of them and even though all of them are
related by an unimodular transformation, any non-trivial finite measure exists on
the set of bases, since there do not exist non-trivial finite measures on unimodular
matrices. In [16], Nguyen and Stehlé introduced an heuristic method to sample
a randomized basis. Starting from a given lattice L, their method consists in
sampling N vectors in L ∩ [−B;B]d, for a given B � det(L)1/n. Even if this
family is with high probability linearly independent, its integer span is likely to
be only a sublattice of L. Nonetheless, it is possible to lift this family to a basis
of L, using Babai’s nearest plane algorithm [2], transforming vectors of norm
lower than B into vectors of norm lower than

√
nB
2 . Plugging this method after

the sampling of Goldstein and Mayer allows then to generate vectors of infinite
norm dominated by

√
dp
2 .

11 This is the unique — up to scale — bi-invariant Haar measure, which can be seen of
as the measure it inherits as a hypersurface embedded in Rn2

.
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On basis from Ideal lattices. Ideal lattices were first introduced to improve
space and time complexity of cryptosystems, but they actually have a much wider
range of use. For instance, ideal lattices appear in the design of the first fully
homomorphic encryption scheme by Gentry in 2009 [6]. The growing development
of this class of lattices justifies its use as standalone benchmarks to compare
lattice reduction algorithms. Before presenting the generation algorithm, we start
by some reminders on elementary algebraic number theory.

Let ζ be an algebraic number over the rationals, and denote by Π ∈ Q[X] its
minimal polynomial. We denote by K its splitting field Q[X]/(Π). One can define
the integers OK of this number field as the elements whose minimal polynomial
is monic with integers coefficients. Obviously Z[X]/(Π) ⊂ OK but in general,
the equality does not hold. Yet, as a finite-rank sub-module of the number field,
there exists a finite family (ζi)i∈I such that OK ∼=

⊕
i∈I Z · ζi.

An integer ideal of K is an ideal of OK, that is, an additive subgroup of
OK which is stable by multiplication by any integer element. Integers ideals
can be embedded in the canonical Hermitian space Cn in order to induce a
natural geometry on it. The embedding is a multi-evaluation of the polynomial
representing an element g ∈ Q[X]/(Π) ∼= K on the basis of K. More precisely,
the embedding family σ = (σ1, · · · , σn) is defined as the Q-automorphisms such
that:

σi : Q[X]/(Π)→ C
g 7→ g(ζi).

The embedding σ(I) of an integer ideal I is then an Euclidean lattice.

Since number theoretical algorithms are more efficient for cyclotomic rings,
we focus on that specific algebraic class (cyclotomic polynomials, cyclotomic
fields and the ideals of cyclotomic integers rings).

We denote by Φm the m-th cyclotomic polynomial, that is the unique irre-
ducible polynomial dividing Xm − 1 which is not dividing any of the Xk − 1 for
k < m. Its roots are the n-th primitive roots of the unity. Cyclotomic polynomials
can be written in closed form as:

Φn(x) =
∏

1≤k≤n∧gcd(k,n)=1

(
x− e2iπ k

n

)
The n-th cyclotomic field Q(ζn) is obtained by adjoining a primitive n-th root

of unity ζn to the rational numbers. As such, Q(ζn) is isomorphic to the splitting
field Q[X]/(Φm) and in this specific case, its integer ring is precisely Z[X]/(Φm).

The generation algorithm used is similar to the one of [18], which introduces
the Ideal Lattice Challenge. We present the complete algorithm in Figure 10,
which generates ideal lattices as embedding of ideals of cyclotomic integers rings.
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Algorithm 10: Ideal Lattice generation.
Result: Basis B of an ideal lattice of dim d

1 Φn(x)← n-th cyclotomic polynomial.;
2 d← deg(Φn);det← rands(2

10d);
3 det← det− (det− 1mod n);
4 repeat
5 det← det+ n;
6 until det is prime;
7 g ← 1;
8 repeat
9 g ← g + 1; α← g(det−1)/n;

10 until α is a root of unity in Φn(x);

11 B =


det 0 · · · 0

−α 1
...

...
. . .

...
−αd 1



Maximum gain Average Gain Minimum Gain

Random Lattices A-LLL 49% 35% 13%
A-Pot-LLL 52% 37% 15%

Ideal Lattices A-LLL 39% 25% 9%
A-Pot-LLL 48% 29% 12%

Table 1: Comparison of the gain of running time between adaptive and non-
adaptive reduction algorithms.

5.2 Experimental results

We now examine how the adaptive versions of LLL and of Potential-LLL compare
to their original versions from the state-of-the-art implementations in FpLLL [23].
Two series of extensive experiments have been realized: on random lattices from
the Goldstein and Meyer class and on ideal lattices drawn with the Algorithm 10.
Comparison between Adaptive-LLL — resp. Adaptive-Potential-LLL — and L2

— resp. Potential-LLL — is given in Figure 2 — resp. Figure 3 — for Goldstein-
Meyer lattices and in Figure 4 for ideal lattices — resp. Figure 5 —. We emphasize
on the fact that the times are given in logarithmic scale to avoid a flattening of
the lowest values in small dimensions.

As predicted, the running time of the adaptive reductions is lower than the
running time of floating-point versions, of a constant factor which on average lies
between 25% and 40%. A comparison of the gain between the different algorithms
is given in Table 1. In medium dimension (d > 150), the gain on random lattices
is almost 50%.
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Fig. 2: Time benchmark for LLL/Adaptive-LLL on random lattices.
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Fig. 3: Time benchmark for Potential-LLL/Adaptive-Potential-LLL on random
lattices.
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Fig. 4: Time benchmark for LLL/Adaptive-LLL on ideal lattices.
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Fig. 5: Time benchmark for Potential-LLL/Adaptive-Potential-LLL on ideal
lattices.
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