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Abstract

We revisit the question of constructing public-key encryption and signature schemes with
security in the presence of bounded leakage and tampering memory attacks. For signatures
we obtain the first construction in the standard model; for public-key encryption we obtain
the first construction free of pairing (avoiding non-interactive zero-knowledge proofs). Our
constructions are based on generic building blocks, and, as we show, also admit efficient
instantiations under fairly standard number-theoretic assumptions.

The model of bounded tamper resistance was recently put forward by Damgård et al.
(Asiacrypt 2013) as an attractive path to achieve security against arbitrary memory tam-
pering attacks without making hardware assumptions (such as the existence of a protected
self-destruct or key-update mechanism), the only restriction being on the number of allowed
tampering attempts (which is a parameter of the scheme). This allows to circumvent known
impossibility results for unrestricted tampering (Gennaro et al., TCC 2010), while still being
able to capture realistic tampering attacks.
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1 Introduction

Motivated by the proliferation of memory tampering attacks and fault injection [14, 17, 49], a
recent line of research—starting with the seminal work of Bellare and Kohno [10] on the related-
key attack (RKA) security of blockciphers—aims at designing cryptographic primitives that
provably resist such attacks. Briefly, memory tampering attacks allow an adversary to modify
the secret key of a targeted cryptographic scheme, and later violate its security by observing the
effect of such changes at the output. In practice such attacks can be implemented by several
means, both in hardware and software.

This paper is focused on designing public-key primitives—in particular, public-key encryption
(PKE) and signature schemes—with provable security guarantees against memory tampering at-
tacks. In this setting, the modified secret key might be the signing key of a certification authority
or of an SSL server, or the decryption key of a user. Informally, security of a signature scheme
under tampering attacks can be cast as follows. The adversary is given a target verification
key vk and can observe signatures of adaptively chosen messages both under the original secret
key sk and under related keys sk ′ = T (sk), derived from sk by applying efficient tampering
functions T chosen by the adversary; the goal of the adversary is to forge a signature on a
“fresh message” (i.e., a message not asked to the signing oracle) under the original verification
key. Tamper resistance of PKE schemes under chosen-ciphertext attacks (CCA) can be defined
similarly, the difference being that the adversary is allowed to observe decryption of adaptively
chosen ciphertexts under related secret keys sk ′, and its goal is now to violate semantic security.

Unrestricted tampering. The best we could hope for would be, of course, to allow the ad-
versary to make any polynomial number of arbitrary, efficiently computable, tampering queries.
Unfortunately, this type of “unrestricted tampering” is easily seen to be impossible without mak-
ing further assumptions, as observed for the first time by Gennaro et al. [32]. The attack of [32]
is simple enough to recall it here. The first tampering attempt defines sk ′1 to be equal to sk
with the first bit set to zero, so that verifying a signature under sk ′1 essentially allows to learn
the first bit b1 of the secret key with overwhelming probability. The second tampering attempt
defines sk ′2 to be equal to sk with the second bit set to zero, and with the first bit equal to b1,
and so on. This way each tampering attempt can be exploited to reveal one bit of the secret
key, yielding a total security breach after s(κ) queries, where s(κ) is the bit-length of the secret
key as a function of the security parameter.1

A possible way out to circumvent such an attack is to rely on the so-called self-destruct
feature: Find a way how to detect tampering with high probability, and completely erase the
memory or “blow-up the device” whenever tampering is detected. While this is indeed a viable
approach, it has some shortcomings (at it can, e.g., be exploited for carrying out denial-of-
service attacks), and so finding alternatives is an important research question. One natural such
alternative is to simply restrict the power of the tampering functions T , in such a way that
carrying out the above attack simply becomes impossible. This approach led to the design of
several public-key primitives resisting an arbitrary polynomial number of restricted tampering
attempts. All these schemes share the feature that the secret key belongs to some finite field,
and the set of allowed modifications consist of all linear or affine functions, or all polynomials
of bounded degree, applied to the key [8, 57, 12].

Bounded tampering. Unfortunately, the approach of restricting the tampering class only
offers a partial solution to the problem; the main reason for this is that it is not a priori clear

1A similar attack works for PKE schemes, and more generally for a large class of cryptographic primitives
that can be tested for malfunctioning [32]; one can also make the above attack completely stateless.
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how the above mentioned algebraic relations capture realistic tampering attacks (where, e.g., a
chip is shot with a laser). Motivated by this shortcoming, in a recent work, Damgård et al. [22]
suggested the model of bounded tampering, where one assumes an upper-bound τ ∈ N on the
total number of tampering attempts the adversary is allowed to ever make; apart from this,
and from the fact that the tampering functions T should be efficiently computable, there is no
further restriction on the adversarial tampering. Arguably, such form of tamper-proof security is
sufficient to capture realistic attacks in which tampering might anyway destroy the device under
attack or it could be detected by auxiliary hardware countermeasures; moreover, this model
allows to analyze the security of cryptographic primitives already “in the wild,” without the need
to modify the implementation to include, e.g., a self-destruct feature.

An important parameter in the model of bounded tampering is the so-called tampering rate
ρ(κ) := τ(κ)/s(κ) defined to be the ratio between the number of allowed tampering attempts
and the size s(κ) of the secret key in bits. The attack of Gennaro et al. [32] shows that necessarily
ρ(κ) ≤ 1− 1/p(κ) for some polynomial p(·). The original work of [22] shows how to obtain sig-
nature schemes and PKE schemes tolerating linear tampering rate ρ(κ) = O(1/κ). However, the
signature construction relies on the so-called Fiat–Shamir heuristic [31], whose security can only
be proven in the random oracle model of Bellare and Rogaway [13]; the PKE construction can
be instantiated in the standard model, but requires an untamperable common reference string
(CRS), being based on (true simulation-extractable) non-interactive zero-knowledge (NIZK) [24].

In a follow-up work [23], the same authors show that resilience against bounded tamper-
ing can be obtained via a generic transformation yielding tampering rate ρ(κ) = O(1/

3
√
κ2);

however, the transformation only gives a weaker form of security against non-adaptive (or semi-
adaptive [23]) tampering attacks.

1.1 Our Contribution

In this work we improve the current state of the art on signature schemes and PKE schemes
provably resisting bounded memory tampering. In the case of signatures, we obtain the first
constructions in the standard model based on generic building blocks; as we argue, this yields
concrete signature schemes tolerating tampering rate ρ(κ) = O(1/κ) under standard complexity
assumptions such as the Symmetric External Diffie-Hellman (SXDH) [55, 16] and the Deci-
sional Linear (DLIN) [56, 38] assumptions. In the case of PKE, we obtain a direct, pairing-free,
construction based on certain hash-proof systems [21], yielding concrete PKE schemes tolerat-
ing tampering rate ρ(κ) = O(1/κ) under a particular instantiation of the Refined Subgroup
Indistinguishability (RSI) assumption [48].

More precisely, we show that already existing schemes can be proved secure against bounded
tampering. We do not view this as a limitation of our result, as it confirms the perspective that
the model of bounded tamper resilience allows to make statements about cryptographic prim-
itives already used “in the wild” (that might have already been implemented and adopted in
applications). Additionally, our security arguments are non-trivial, requiring significant modifi-
cations to the original proofs (more on this below). In what follows we explain our contributions
and techniques more in details. We refer the reader to Table 1 for a summary of our results and
a comparison with previous work.

Signatures. We prove that the leakage-resilient signature scheme by Dodis et al. [24] is secure
against bounded tampering attacks. The scheme of [24] satisfies the property that it remains
unforgeable even given bounded leakage on the signing key. The main idea for showing security
against bounded tampering, is to reduce tampering to leakage. Notice that this is non-trivial,
because in the tampering setting the adversary is allowed to see polynomially many signatures
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Reference Type Attack Class Model Tampering Rate Assumption
BCM11 [8] Sig./PKE Linear Standard ∞ DDHI [1]
Wee12 [57] PKE Linear Standard ∞ BDDH/LWE

BPT12 [12] Sig./PKE Affine Random Oracle ∞ BDH
Polynomial Standard ∞ EDBDH

DFMV13 [22] Sig. Any Random Oracle O(1/κ) DLOG/Factoring
PKE Any Standard O(1/κ) SXDH/DLIN

BMT14 [11]
Affine Standard ∞ DLOG

Sig. Exponentiation Standard ∞ RSA
Addition Standard ∞ LWE

DFMV15 [23] Sig./PKE Any Standard† O(1/
3
√
κ2) OWF/TDP

JW15 [40] Sig./PKE Poly-size Circuits Standard ∞ OWF/TDP
QLY+15 [54] Sig./PKE Polynomial Standard ∞ DDH/DCR

Ours § 3 Sig. Any Standard O(1/κ) SXDH/DLIN
Ours § 4 PKE Any Standard O(1/κ) RSI

Table 1: Comparing known constructions of public-key primitives with security against related-key
attacks (without self-destruct and key updating mechanisms). The value “∞” under the column “tamper-
ing rate” means that the scheme supports an arbitrary polynomial number of tampering queries. † Only
achieves security against non-adaptive tampering.

corresponding to each of the tampered secret keys (which are at most τ), and this yields a total
amount of key-dependent information which is much larger than the tolerated leakage.

We now explain how to overcome this obstacle. The scheme exploits a so-called leakage-
resilient hard relation R; such a relation satisfies the property that, given a statement y generated
together with a witness x, it is unfeasible to compute a witness x∗ for (x∗, y) ∈ R; moreover
the latter holds even given bounded leakage on x. The verification key of the signature scheme
consists of a random y, while the secret key is equal to x, where (x, y) is a randomly generated
pair belonging to the relation R. In order to sign a message m, one simply outputs a non-
interactive zero-knowledge proof of knowledge π of x, where the message m is used as a label in
the proof. Verification of a signature can be done by verifying the accompanying proof.

In the security proof, by the zero-knowledge property, we can replace real proofs with sim-
ulated proofs. Moreover, by the proof of knowledge property, we can actually extract a valid
witness x∗ for (x∗, y) from the adversarial forgery π∗; note that, since the forger gets to see
simulated proofs, the extractability requirement must hold even after seeing proofs generated
via the zero-knowledge simulator. Finally, we can transform a successful forger for the signa-
ture scheme into an adversary breaking the underlying leakage-resilient relation; the trick is
that the reduction can leak the statement y′ corresponding to any tampered witness x′ = T (x),
which allows to simulate an arbitrary polynomial number of signature queries corresponding to
x′ by running several independent copies of the zero-knowledge simulator upon input y′. Thus
bounded tamper resilience follows by bounded leakage resilience.

A subtle technicality in the above argument is that the statement y′ must be efficiently
computable as a function of x′. We call a relation R satisfying this property a complete relation.
As we define it, completeness additionally requires that any derived witness x′ = T (x) is a
witness for a valid statement y′ (i.e., (x′, y′) ∈ R); importantly this allows us to argue that
simulated proofs are always for true statements, which leads to practical instantiations of the
scheme. When we instantiate the signature scheme, of course, we need to make sure that the
underlying relation meets our completeness requirement. Unfortunately, this is not directly the
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case for the constructions given in [24], but, as we show, such a difficulty can be overcome by
carefully twisting the instantiation of the underlying relations.

Public-key encryption. Next, we prove that the PKE scheme by Qin and Liu [52] is secure
against bounded tampering. The scheme is based on a variant of the classical Cramer-Shoup
paradigm for constructing CCA-secure PKE [20, 21]. Specifically, the PKE scheme combines
a universal hash-proof system (HPS) together with a one-time lossy filter (OTLF) used to
authenticate the ciphertext; the output of a randomness extractor is then used in order to mask
the message in a one-time pad fashion. Since the OTLF is unkeyed, the secret key simply
consists of the private evaluation key of the HPS, which makes it easier to analyze the security
of the PKE scheme in the presence of memory tampering. The bulk of our proof is, indeed, to
show that HPS with certain parameters already satisfy bounded tamper resilience.

More in details, every HPS is associated to a set C of ciphertexts and a subset V ⊂ C of so-
called valid ciphertexts, together with (the description of) a keyed hash function with domain C.
The hash function can be both evaluated privately (using a secret evaluation key) and publicly
(on ciphertexts in V, and using a public evaluation key). The main security guarantee is that
for any C ∈ C \ V the output of the hash function upon input C is unpredictable even given
the public evaluation key. In the construction of [52] a ciphertext consists of an element C ∈ V,
from which we derive an hash value K which serves for two purposes: (i) To extract a random
pad via a seeded extractor, used to mask the plaintext; (ii) To authenticate the ciphertext by
producing an encoding Π of K via the OTLF. The decryption algorithm first derives the value K
using the secret evaluation key for the HPS, and then it uses this value to unmask the plaintext
provided that the value Π can be verified correctly (otherwise decryption results in ⊥).

In the reduction, the OTLF encoding will be programmed in such a way that, for all cipher-
texts asked to the decryption oracle, the encoding is an injective function. This implies that,
in order to create a ciphertext with a correct encoding Π, one has to know the underlying hash
value K. To prove (standard) CCA security, one argues that all decryption queries with values
C ∈ V do not reveal any additional information about the secret key, since the corresponding
value K could be computed via the public evaluation procedure; as for decryption queries with
values C ∈ C \ V, the corresponding value K is unpredictable, and therefore the decryption
oracle will output ⊥ with overwhelming probability which, again, does not reveal any additional
information about the secret key.

The scenario in the case of tampering is more complicated. Consider a decryption oracle
instantiated with a tampered secret key sk ′ = T (sk). A decryption query containing a value
C ∈ V might now reveal some information about the secret key; however, as we show, this
information can be simulated by leaking the public key pk ′ corresponding to sk ′. Decryption
queries containing values C ∈ C \ V are harder to simulate. This is because the soundness
property of the HPS only holds for a uniformly chosen evaluation key, while sk ′, clearly, is not
uniform. To overcome this obstacle we distinguish two cases:

• In case the value T (sk) has low entropy, such a value does not reveal too much information
on the secret key, and thus, at least intuitively, even if the decryption does not output ⊥
the resulting plaintext should not decrease the entropy of the secret key by too much;
• In case the value T (sk) has high entropy, we argue that it is safe to use this key within

the HPS, i.e. we show that the soundness of the HPS is preserved as long as the secret key
hash high entropy (even if it is not uniform).

With the above in mind, the security proof is similar to the ones in [47, 52].
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Trading tampering and leakage. Since our security arguments essentially reduce bounded
tampering to bounded leakage (by individuating a short secret-key-dependent hint that allows
to simulate polynomially many tampering queries for a given modified key), the theorems we
get show a natural tradeoff between the obtained bounds for leakage and tamper resistance.

In particular, our results nicely generalizes previous work, in that we obtain the same bounds
as in [24, 52] by plugging τ = 0 in our theorem statements.

1.2 Related Work

Bounded leakage. The signature scheme of Dodis et al. [24] generalizes and improves a
previous construction by Katz and Vaikuntanathan [42]. Similarly, the PKE construction by
Qin and Liu builds upon the seminal work of Naor and Segev [47]; the scheme was further
improved in [53].

Related-key security. Related-key security was first studied in the context of symmetric
encryption [10, 46, 33, 4, 3]. With time a number of cryptographic primitives with security
against related-key attacks have emerged, including pseudorandom functions [7, 43, 5, 1], hash
functions [34], identity-based encryption [8, 12], public-key encryption [8, 57, 12, 45], signa-
tures [8, 12, 11], and more [15, 54, 19].

All the above works achieve security against an unbounded number of restricted tampering
attacks (typically, algebraic relations). Kalai, Kanukurthi, and Sahai [41], instead, show how to
achieve security against unrestricted tampering without self-destruct, by assuming a protected
mechanism to update the secret key of certain public-key cryptosystems (without modifying the
corresponding public key).

Non-malleable codes. An alternative approach to achieve tamper-proof security of arbitrary
cryptographic primitives against memory tampering is to rely on so-called non-malleable codes.
While this solution yields security against an unbounded number of tampering queries, it relies
on self-destruct and moreover it requires to further assume that the tampering functions are
restricted in granularity (see, e.g., [26, 44, 28]) and/or computational complexity [29, 40, 6].

Tamper-proof computation. A related line of work (starting with [39, 30]), finally, aims at
constructing secure compilers protecting against tampering attacks targeting the computation
carried out by a cryptographic device (typically in the form of boolean and arithmetic circuits).

2 Preliminaries

2.1 Notation

Notation. For a, b ∈ R, we let [a, b] = {x ∈ R : a ≤ x ≤ b}; for a ∈ N we let [a] = {1, 2, . . . , a}.
If x is a string, we denote its length by |x|; if X is a set, |X | represents the number of elements
in X . When x is chosen randomly in X , we write x←$ X . When A is an algorithm, we write
y←$ A(x) to denote a run of A on input x and output y; if A is randomized, then y is a
random variable and A(x; r) denotes a run of A on input x and randomness r. An algorithm A
is probabilistic polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the
computation of A(x; r) terminates in at most poly(|x|) steps.

Throughout the paper we let κ ∈ N denote the security parameter. We say that a function
ν : N → R is negligible in the security parameter κ if ν(κ) = κ−ω(1). For two ensembles
X = {Xκ}κ∈N and Y = {Yκ}κ∈N, we write X ≡ Y if they are identically distributed, X ≈s Y to
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denote that the corresponding distributions are statistically close, and X ≈c Y to denote that
the two ensembles are computationally indistinguishable.

Languages and relations. A decision problem related to a language L ⊆ {0, 1}∗ requires to
determine if a given string y is in L or not. We can associate to any NP -language L a polynomial-
time recognizable relation R ⊆ {0, 1}∗×{0, 1}∗ defining L itself, i.e. L = {y : ∃x s.t. (x, y) ∈ R}
for |x| 6 poly(|y|). The string y is called theorem, and the string x is called a witness for
membership of y ∈ L.

Random variables. The min-entropy of a random variable X, defined over a set X , is
H∞(X) := − log maxx∈X P [X = x], and it measures how X can be predicted by the best (un-
bounded) predictor. The average conditional min-entropy of a random variableX given a random
variableY and conditioned on an eventE is defined as H̃∞(X|Y, E) := − log(Ey←$ Y

[
2−H∞(X|Y=y,E)

]
).

We rely on the following basic facts.

Lemma 1 ([25]). Let X,Y and Z be random variables. If Y has at most 2` possible values,
then H̃∞(X|Y,Z) > H̃∞(X,Y|Z)− ` > H̃∞(X|Z)− `.

Lemma 2. Let X,Y,Z be random variables such that Y = f(X,Z) for an efficiently computable
function f , and suppose that the event E defined as {∀z : H∞(Y|Z = z) 6 β} holds. Then:

H̃∞(X|Y,Z, E) > H̃∞(X|Z)− β.

Proof. Let A be the best predictor for X, given Y and Z and conditioned on the event E.
Consider the predictor A′ that upon input Z first samples an independent copy X′ of the random
variable X and then runs A upon input f(X′,Z). Note that the event E holds for the inputs
given to A′, therefore the probability that f(X′,Z) = f(X,Z) is bounded above by 2−β . This
implies the lemma.

2.2 Public-Key Encryption

A public-key encryption (PKE) scheme is a tuple of algorithms PKE = (Setup,Gen,Enc,Dec)
defined as follows. (1) Algorithm Setup takes as input the security parameter and outputs public
parameters pub ∈ {0, 1}∗; all algorithms are implicitly given pub as input. (2) Algorithm Gen
takes as input the security parameter and outputs a public/secret key pair (pk , sk); the set of
all secret keys is denoted by SK and the set of all public keys by PK. (3) The randomized
algorithm Enc takes as input the public key pk , a message m ∈ M, and randomness r ∈ R,
and outputs a ciphertext c = Enc(pk ,m; r); the set of all ciphertexts is denoted by C. (4) The
deterministic algorithm Dec takes as input the secret key sk and a ciphertext c ∈ C, and outputs
m = Dec(sk , c) which is either equal to some message m ∈M or to an error symbol ⊥.

Correctness. We say that PKE satisfies correctness if for all pub←$ Setup(1κ) and (pk ,
sk)←$ Gen(1κ) we have that P[Dec(sk ,Enc(pk ,m)) = m] = 1 (where the randomness is taken
over the internal coin tosses of algorithm Enc).

BLT Security. We now turn to defining indistinguishability under chosen-ciphertext attacks
(IND-CCA) in the bounded leakage and tampering (BLT) setting.
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Experiment Expblt−cca
PKE,A (κ, `, τ):

pub←$ Setup(1κ)
(pk , sk)←$ Gen(1κ)
b←$ {0, 1}; Q ← ∅; j ← 1
sk ′0 ← sk ; (∀i ∈ [τ ])sk ′i ← ⊥; c∗ ← ⊥
(m0,m1)← ADec∗(·,·),O`sk (·),Oτsk (·)(pk)
c∗←$ Enc(pk ,mb)

b′ ← ADec∗(0,·)(c∗)
Return

(b′ = b) ∧ (|m0| = |m1|) ∧ (c∗ 6∈ Q)

Oracle Dec∗(i, c):
If i 6∈ [0, τ ]

Return ⊥
Else if sk ′i = ⊥

Return ⊥
Else

If c∗ 6= ⊥
Q ← Q∪ {c}

Return Dec(sk ′i, c)

Oracle O`sk (L):
Return L(sk)

Oracle Oτsk (T ):
sk ′j = T (sk)

j ← j + 1

Figure 1: Experiment defining BLT-IND-CCA security of PKE .

Definition 1. For κ ∈ N, let ` = `(κ) and τ = τ(κ) be parameters. We say that PKE =
(Setup,Gen,Enc,Dec) is (τ, `)-BLT-IND-CCA if for all PPT adversaries A there exists a negligible
function ν : N→ [0, 1] such that∣∣∣∣P [Expblt-cca

PKE,A(κ, `, τ) = 1
]
− 1

2

∣∣∣∣ ≤ ν(κ),

where the experiment Expblt-cca
PKE,A(κ, `, τ) is defined in Figure 1.

A few remarks on the definition are in order. In the specification of the BLT-IND-CCA
security experiment, oracle O`sk takes as input (arbitrary polynomial-time computable) functions
L : SK → {0, 1}∗, and returns L(sk) for a total of at most ` bits. In a similar fashion, oracle
Oτsk takes as input (arbitrary polynomial-time computable) functions T : SK → SK, and defines
the i-th tampered secret key as sk ′i = T (sk); the oracle accepts at most τ queries. Oracle Dec∗

can be used to decrypt arbitrary ciphertexts c under the i-th tampered secret key (or under the
original secret key), provided that c is different from the challenge ciphertext.2

Notice that A is not allowed to tamper with or leak from the secret key after seeing the
challenge ciphertext. As shown in [22] this restriction is necessary already for the case (τ, `) =
(1, 0). Finally, we observe that in case (τ, `) = (0, 0) we get, as a special case, the standard notion
of IND-CCA security. Similarly, for τ = 0 and ` > 0, we obtain as a special case the notion of
“semantic security against a-posteriori chosen-ciphertext `-key-leakage attacks” from [47].

2.3 Signatures

A signature scheme is a tuple of algorithms SIG = (Setup,Gen,Sign,Vrfy) specified as follows.
(1) Algorithm Setup takes as input the security parameter and outputs public parameters pub ∈
{0, 1}∗; all algorithms are implicitly given pub as input. (2) Algorithm Gen takes as input the
security parameter and outputs a public/secret key pair (vk , sk); the set of all signing keys is
denoted by SK. (3) The randomized algorithm Sign takes as input the signing key sk , a message
m ∈ M, and randomness r ∈ R, and outputs a signature σ := Sign(sk ,m; r) on m. (4) The
deterministic algorithm Vrfy takes as input the verification key vk and a pair (m,σ), and outputs
a decision bit (indicating whether (m,σ) is a valid signature with respect to vk).

2We note that, according to the the nomenclature of [9], our formulation is “penalty style” (in that the
adversary is punished if he “cheats”) and “second style” (in that we do not disallow the adversary to submit the
challenge ciphertext before its creation). As shown in [9] this is without loss of generality.
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Experiment Expblt-cma
SIG,A (κ, `, τ):

pub←$ Setup(1κ)
(vk , sk)←$ Gen(1κ)
Q ← ∅; j ← 1
sk ′0 ← sk ; (∀i ∈ [τ ])sk ′i ← ⊥
(m∗, σ∗)← ASign∗(·,·),O`sk (·),Oτsk (·)(vk)
Return

(Vrfy(vk ,m∗, σ∗) = 1) ∧ (m∗ 6∈ Q)

Oracle Sign∗(i,m):
If i 6∈ [0, τ ]

Return ⊥
Else if sk ′i = ⊥

Return ⊥
Else
Q ← Q∪ {m}
Return Sign(sk ′i,m)

Oracle O`sk (L):
Return L(sk)

Oracle Oτsk (T ):
sk ′j = T (sk)

j ← j + 1

Figure 2: Experiment defining BLT-EUF-CMA security of SIG.

Correctness. We say that SIG satisfies correctness if for all messages m ∈ M and for all
pub←$ Setup(1κ) and (vk , sk)← Gen(1κ), algorithm Vrfy(vk ,m,Sign(sk ,m)) outputs 1 with all
but negligible probability (over the coin tosses of the signing algorithm).

BLT Security. We now define what it means for a signature scheme to be existentially un-
forgeable against chosen-message attacks (EUF-CMA) in the bounded leakage and tampering
(BLT) setting.

Definition 2. For κ ∈ N, let ` = `(κ) and τ = τ(κ) be parameters. We say that SIG =
(Setup,Gen,Sign,Vrfy) is (τ, `)-BLT-EUF-CMA if for all PPT adversaries A there exists a neg-
ligible function ν : N→ [0, 1] such that

P
[
Expblt-cma

SIG,A (κ, `, τ) = 1
]
≤ ν(κ),

where the experiment Expblt-cma
SIG,A (κ, `, τ) is defined in Figure 2.

The syntax of oracles O`sk and Oτsk is the same as before. Oracle Sign∗ can be used to sign
arbitrary messages m under the i-th tampered signing key sk ′i = T (sk), or under the original
signing key sk ; the goal of the adversary is to forge a signature on a “fresh” message, i.e. a
message that was never queried to oracle Sign∗. Note that for (τ, `) = (0, 0) we obtain the
standard notion of existential unforgeability under chosen-message attacks. Similarly, for τ = 0
and ` > 0, we obtain the definition of leakage-resilient signatures [42].

3 Signatures

In this section we give a generic construction of signature schemes with BLT-EUF-CMA in the
standard model. In particular, we show that the construction by Dodis et al. [24] is already
resilient to bounded leakage and tampering attacks.

3.1 The Scheme of Dodis, Haralambiev, Lòpez-Alt, and Wichs

The signature scheme is based on the following ingredients.

• A leakage-resilient hard relation [24].

Definition 3. A relation R is an `-leakage-resilient hard relation, with witness space X
and theorem space Y, if the following requirements are met.
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Samplability: There exists a PPT algorithm SamR such that for all (x, y)←$ SamR(1κ)
we have (x, y) ∈ R, with x ∈ X and y ∈ Y.

Verifiability: There exists a PPT algorithm that decides if a given pair (x, y) satisfies
(x, y) ∈ R.

Completeness: There exists an efficient deterministic function ξ that given as input any
x ∈ X returns y = ξ(x) ∈ Y such that (x, y) ∈ R.

Hardness: For all PPT adversaries A there exists a negligible function ν : N→ [0, 1] such
that

P
[
(x∗, y) ∈ R : (x, y)←$ SamR(1κ);x∗←$ AO

`
x(·)(y)

]
≤ ν(κ),

where the probability is taken over the random coin tosses of SamR and A, and where
oracle O`x(·) takes as input efficiently computable functions L : X → {0, 1}∗ and
returns L(x) for a total of at most ` bits.

• A true-simulation extractable non-interactive zero-knowledge (tSE NIZK) argument sys-
tem NIZK = (I,P,V) for the relation R, supporting labels [24]. Recall that a NIZK argu-
ment system supporting labels has the following syntax: (i) Algorithm I takes as input the
security parameter κ ∈ N and generates a common reference string (CRS) crs ←$ I(1κ).
(ii) Algorithm P takes as input the CRS, a label λ ∈ {0, 1}∗, and some pair (x, y) ∈ R,
and returns a proof π←$ Pλ(crs, x, y). (iii) Algorithm V takes as input the CRS, a label
λ ∈ {0, 1}∗, and some pair (x, π), and returns a decision bit Vλ(crs, y, π). Moreover:

Definition 4. We say that NIZK = (I,P,V) is a tSE NIZK for the relation R, supporting
labels, if the following requirements are met.

Correctness: For all pairs (x, y) ∈ R and for all labels λ ∈ {0, 1}∗ we have that Vλ(crs, y,
Pλ(crs, x, y)) = 1 with overwhelming probability over the coin tosses of P, V, and
over the choice of crs ←$ I(1κ).

Unbounded zero-knowledge: There exists a PPT simulator S := (S1,S2) such that for
all PPT adversaries A the following quantity is negligible:3∣∣∣∣P [b = b′ :

b←$ {0, 1}; (x, y, λ)←$ A(crs, tk); (crs, tk)←$ S1(1κ)
b′←$ A(crs, tk , πb);π0←$ Pλ(crs, x, y);π1←$ Sλ2(tk , y)

]
− 1

2

∣∣∣∣ .
True-simulation extractability: There exists a PPT extractor K such that for all PPT

adversaries A the following quantity is negligible:

P

y∗ 6∈ Q ∧ Vλ
∗
(crs, y∗, π∗) = 1 ∧ (x∗, y∗) ∈ R :

x∗←$ Kλ
∗
(tk , y∗, π∗)

(y∗, π∗, λ∗)←$ AOS2,τ
(·,·)(crs)

(crs, tk)←$ S1(1κ)

,
where oracle OS2,τ takes as input pairs (xi, yi) and returns the same as Sλ2(tk , yi) as
long as (xi, yi) ∈ R (and ⊥ otherwise), and Q is the set of all values yi asked to oracle
OS2,τ .

The signature scheme. Consider now the following signature scheme SIG = (Setup,Gen, Sign,
Vrfy), based on a relation R, and on a non-interactive argument system NIZK = (I,P,V) for
R, supporting labels.

• Setup(1κ): Sample crs ←$ I(1κ) and return pub := (crs, R). (Recall that all algorithms
implicitly take pub as input.)

3Strictly speaking we should quantify the definition over all adversaries returning pairs (x, y) ∈ R; alternatively,
we can slightly abuse notation and assume that both P and S2 return ⊥ if that is not the case.
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Experiment Expblt-cma
SIG,A (κ):

crs ←$ I(1κ); (crs, tk)←$ S1(1κ)

(x, y)←$ SamR(1κ)
Q ← ∅; j ← 1;
x′0 ← x; (∀i ∈ [τ ])x′i ← ⊥
(m∗, π∗)←$ ASign∗(·,·),O`x(·),Oτx(·)(y)

x∗←$ Km
∗
(tk , y, π∗)

Return
(Vm

∗
(crs, y, π∗) = 1) ∧ (m∗ 6∈ Q)

∧((x∗, y) ∈ R)

Oracle Sign∗(i,m):
If i 6∈ [0, τ ]

Return ⊥
Else if x′i = ⊥

Return ⊥
Else
Q ← Q∪ {m}
y′i = ξ(x′i)

π←$ Pm(crs, x′i, y
′
i); π←$ Sm2 (crs, tk , y′i)

Return σ := π

Figure 3: Games G0, G1 , and G2 in the proof of Theorem 1. Game G0 does not execute
any of the colored actions, whereas each colored game executes all actions from the previous
game plus the ones of the corresponding color.

• Gen(1κ): Run (x, y)←$ SamR(1κ) and define vk := y and sk := x.
• Sign(sk ,m): Compute π←$ Pm(crs, x, ξ(x)) and return σ := π; note that the message m

is used as a label in the argument system, and that the value y = ξ(x) can be efficiently
computed as a function of x.
• Vrfy(vk ,m, σ): Parse (vk , σ) as vk := y and σ := π, and output the same as Vm(crs, y, π).

We show the following result. The proof follows along the lines of the one in [24], but had
to be carefully adapted to take care of tampering queries.

Theorem 1. For κ ∈ N, let ` := `(κ), `′ := `′(κ), τ := τ(κ), and n := n(κ) be parameters.
Assume that R is an `′-leakage-resilient hard relation with theorem space Y := {0, 1}n, and that
NIZK is a tSE NIZK for R. Then the signature scheme SIG described above is (`, τ)-BLT-
EUF-CMA with

`+ (τ + 1) · n ≤ `′.

3.2 Security Proof

We consider a sequence of mental experiments, starting with the initial game Expblt-cma
SIG,A (κ, `, τ)

which for simplicity we denote byG0. The games are described in details below, and are depicted
in Fig. 3.

Game G0. This is exactly the game of Definition 2, where the signature scheme SIG is the
scheme described in the previous section. In particular, upon input the i-th tampering
query Ti the modified secret key x′i = Ti(x) is computed. Hence, the answer to a query
(i,m) to oracle Sign∗ is computed by parsing pub = (crs, R), computing the statement
y′i = ξ(x′i) corresponding to x′i, and outputting σ := π where π←$ Pm(crs, x′i, y

′
i).

Game G1. We change the way algorithm Setup generates the CRS. Namely, instead of sampling
crs ←$ I(1κ) we now run (crs, tk)←$ S1(1κ) and additionally we replace the proofs output
by oracle Sign∗ by simulated proofs, i.e., π←$ S2(tk , y′i) where y′i = ξ(x′i).

Game G2. We change the winning condition of the previous game. Namely, the game now
outputs one if and only if π∗ is valid w.r.t. y (as before) and additionally (x∗, y) ∈ R where
the value x∗ is computed from the proof π∗ running the extractor K of the underlying
argument system.
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We now establish a series of lemmas, showing that the above games are computationally in-
distinguishable. The first lemma states that G0 and G1 are indistinguishable, down to the
unbounded zero-knowledge property of the argument system.

Lemma 3. For all PPT adversaries A there exists a negligible function ν0,1 : N → [0, 1] such
that |P [G0(κ) = 1]− P [G1(κ) = 1]| ≤ ν0,1(κ).

Proof. We prove a stronger statement, namely that G0(κ) ≈c G1(κ). By contradiction, assume
that there exists a PPT distinguisher D0,1 and a polynomial p0,1(·) such that, for infinitely many
values of κ ∈ N, we have that D0,1 distinguishes between game G0 and game G1 with probability
at least 1/p0,1(κ). Let q ∈ poly(κ) be the number of signature queries asked by D0,1. For an
index j ∈ [q + 1] consider the hybrid game Hj that answers the first j − 1 queries as in game
G0 and all subsequent queries as in game G1. Note that H1 ≡ G1 and Hq+1 ≡ G0.

By a standard hybrid argument, we have that there exists an index j∗ ∈ [q] such that D0,1 tells
apart Hj∗ and Hj∗+1 with non-negligible probability 1/q · 1/p0,1(κ). We build a PPT adversary
A0,1 that (using distinguisher D0,1 and knowledge of j∗ ∈ [q]) breaks the non-interactive zero-
knowledge property of the argument system. A formal description of A0,1 follows.

Adversary A0,1:

• Receive (crs, tk) from the challenger, where (crs, tk)←$ S1(1κ).
• Run (x, y)←$ SamR(1κ), set pub := (crs, R), vk := y, x′0 ← x, x′i ← ⊥ for all
i ∈ [τ ], and send (pub, vk) to D0,1.
• Upon input a leakage query L return L(x) to D0,1; upon input a tampering

query T , set x′i = T (x).
• Upon input the j-th signature query of type (i,m), if i 6∈ [0, τ ] or x′i = ⊥,

answer with ⊥. Otherwise, proceed as follows:
– If j ≤ j∗ − 1, return σ←$ Pm(crs, x′i, ξ(x

′
i)) to D0,1.

– Else, if j = j∗, forward (x′i, ξ(x
′
i),m) to the challenger, receiving back a

proof πb; return σ := πb to D0,1.
– Else, if j ≥ j∗ + 1, forward σ←$ Sm2 (tk , ξ(x′i)) to D0,1.

• Output whatever D outputs.

For the analysis, note that the only difference between game Hj∗ and game Hj∗+1 is on how
the j∗-th signature query is answered. In particular, in case the hidden bit b in the definition of
non-interactive zero-knowledge equals zero, A0,1’s simulation produces exactly the same distri-
bution as in Hj∗ , and otherwise A0,1’s simulation produces exactly the same distribution as in
Hj∗+1. Hence, A0,1 breaks the NIZK property with non-negligible advantage 1/q · 1/p0,1(κ), a
contradiction. This concludes the proof.

The second lemma states that G1 and G2 are indistinguishable, down to the true-simulation
extractability property of the argument system.

Lemma 4. For all PPT adversaries A there exists a negligible function ν1,2 : N → [0, 1] such
that |P [G1(κ) = 1]− P [G2(κ) = 1]| ≤ ν1,2(κ).

Proof. We prove a stronger statement, namely that G1(κ) ≈c G2(κ). Define the following “bad
event” Bad , in the probability space of game G1: The event becomes true if the adversarial
forgery (m∗, σ∗ := π∗) is valid (i.e., the proof π∗ is valid w.r.t. statement y and label m∗), but
running the extractor K(tk , ·, ·) on (y, π∗) yields a value x∗ such that (x∗, y) 6∈ R.

Notice that G1(κ) and G2(κ) are identically distributed conditioning on Bad not happening.
Hence, by a standard argument, it suffices to bound the probability of provoking event Bad by
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all PPT adversaries A. By contradiction, assume that there exists a PPT adversary A1,2 and
a polynomial p1,2(·) such that, for infinitely many values of κ ∈ N, we have that A1,2 provokes
event Bad with probability at least 1/p1,2(κ). We build an adversary A′ that (using A1,2) breaks
true-simulation extractability of the argument system. A formal description of A′ follows.

Adversary A′:

• Receive crs from the challenger, where (crs, tk)←$ S1(1κ).
• Sample (x, y)←$ SamR(1κ), set pub := (crs, R), vk := y, x′0 ← x, x′i ← ⊥ (for

all i ∈ [τ ]), and forward (pub, vk) to A1,2.
• Upon input a leakage query L return L(x) to A1,2; upon input a tampering

query T , set x′i = T (x).
• Upon input the j-th signature query of type (i,m), if i 6∈ [0, τ ] or x′i = ⊥,

answer with ⊥. Otherwise, forward (x′i, ξ(x
′
i),m) to the challenger obtaining a

proof π as a response, and return σ := π to A1,2.
• Whenever A1,2 returns a pair (m∗, σ∗), define π∗ := σ∗ and output (y, π∗,m∗).

For the analysis, we note that A′ perfectly simulates signature queries. In fact, by complete-
ness of the underlying relation, the pair (x′i, ξ(x

′
i)) is always in the relation R, and thus the proof

π obtained by the reduction is always for a true statement and has exactly the same distribution
as in game G1. As a consequence, A1,2 will provoke event Bad with probability 1/p1,2(κ), and
thus the pair (y, π∗) output by the reduction violates the tSE property of the non-interactive
argument with non-negligible probability 1/p1,2(κ). This finishes the proof.

Finally, we show that the advantage of any PPT adversary in game G2 must be negligible,
otherwise one could violate the hardness of the underlying leakage-resilient relation.

Lemma 5. For all PPT adversaries A there exists a negligible function ν2 : N→ [0, 1] such that
P [G2 = 1] ≤ ν2(κ).

Proof. By contradiction, assume there exists a PPT adversary A2 and a polynomial p2(·) such
that, for infinitely many values of κ ∈ N, adversary A2 makes game G2 output 1 with probability
at least 1/p2(κ). We construct a PPT adversary A′′ (using A2) breaking hardness of the leakage-
resilient relation R. A description of A′′ follows.

Adversary A′′:

• Receive y from the challenger, where (x, y)←$ SamR(1κ).
• Sample (crs, tk)←$ S1(1κ), set pub := (crs, R), y′i ← ⊥ (for all i ∈ [τ ]), vk := y,

and forward (pub, vk) to A2.
• Define the leakage function Lξ(x) := ξ(x) and forward Lξ to the target leakage

oracle O`x, obtaining a value y′0.
• Upon input a leakage query L, forward L to the target leakage oracle O`x and

return to A2 the answer received from the oracle.
• Upon input the i-th tampering query T , define the function LT,ξ(x) := ξ(T (x)),

and forward LT,ξ to the target leakage oracle O`x; set the value y′i equal to the
answer obtained from the oracle.
• Upon input the j-th signature query of type (i,m), if i 6∈ [0, τ ] or y′i = ⊥,

answer with ⊥. Otherwise, run π←$ Sm2 (tk , y′i) and return σ := π to A2.
• Whenever A1,2 returns a forgery (m∗, σ∗), define π∗ := σ∗ and output x∗ such

that x∗←$ Km
∗
(tk , y, π∗).
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For the analysis, note that A′′ perfectly simulates signature queries. In fact, for each tampering
query T the reduction obtains the statement y′i corresponding to x′i := T (x) via a leakage query;
given this value a signature for key x′i is computed by running the zero-knowledge simulator (as
defined in G2). Moreover, the total leakage asked by A′′ equals ` (as A2 leaks at most ` bits
from the secret key) plus n · τ (as for each tampering function T the reduction leaks n bits, and
A2 makes at most τ such queries), plus n bits (as the value y′0 = ξ(x) is needed for simulating
signature queries w.r.t. the original secret key), and by assumption `+ (τ + 1) · n ≤ `′. Hence,
A′′ breaks the hardness of the leakage-resilient relation with non-negligible probability 1/p2(κ).
This concludes the proof.

Putting it all together, there exists a negligible function ν : N→ [0, 1] such that

P [G0(κ) = 1] ≤
2∑
i=1

|P [Gi−1(κ) = 1]− P [Gi(κ) = 1]|+ P [G2(κ) = 1]

≤ ν0,1(κ) + ν1,2(κ) + ν2(κ)

≤ ν(κ).

This finishes the proof.

3.3 Concrete Instantiations

We now explain how to instantiate the signature scheme from the previous section using standard
complexity assumptions. We need two ingredients: (i) A leakage-resilient hard relation R; (ii)
A tSE NIZK for the same relation R, supporting labels. For the latter component, we rely
on the construction due to Dodis et al. [24] that allows to obtain a tSE NIZK for arbitrary
relations, based on a standard (non-extractable) NIZK for a related relation (see below) and an
IND-CCA-secure PKE scheme supporting labels.

Let PKE = (Setup,Gen,Enc,Dec) be an IND-CCA-secure PKE scheme supporting labels,
with message space X . Plugging in the construction from [24] a signature has the form σ :=
(c, π), where c←$ Encλ(pk , x) and π is a standard NIZK argument for the following derived
relation:

R∗ := {((y, c, pk ,m), (x, r)) : (x, y) ∈ R ∧ c = Encm(pk , x; r)} . (1)

3.3.1 Diffie-Hellman Assumptions

In what follows, let G be a group with prime order q and with generator g. Also, let G1, G2, GT

be groups of prime order q and e : G1 ×G2 → GT be a non-degenerate, efficiently computable,
bilinear map.

Discrete Logarithm. Let g←$ G and x←$ Zq. The Discrete Logarithm (DL) assumption
holds in G if it is computationally hard to find x ∈ Zq given y = gx ∈ G.

Decisional Diffie-Hellman. Let g1, g2←$ G and x1, x2, x←$ Zq. We say that the Decisional
Diffie-Hellman (DDH) assumption holds in G if the following distributions are computationally
indistinguishable: (G, g1, g2, g

x1
1 , gx22 ) and (G, g1, g2, g

x
1 , g

x
2 ).

Symmetric External Diffie-Hellman. The Symmetric External Diffie-Hellman (SXDH) as-
sumption states that the DDH assumption holds in both G1 and G2. Such an assumption is not
satisfied in case G1 = G2, but it is believed to hold in case there is no efficiently computable
mapping between G1 and G2 [55, 16].
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D-Linear [56, 38]. Let D ≥ 1 be a constant, and let g1, . . . , gD+1←$ G and x1, . . . , xD←$ Zq.
We say that theD-linear assumption holds in G if the following distributions are computationally
indistinguishable: (G, gx11 , . . . , gxDD , g

xD+1

D+1 ) and (G, gx11 , . . . , gxDD , g
∑D
i=1 xi

D+1 ). Note that for D = 1
we obtain the DDH assumption, and for D = 2 we obtain the so-called Linear assumption [56].

Double Pairing. The Double Pairing assumption states that given two random elements
g1, g2 ∈ G1 it is hard to find a non-trivial pair (x1, x2) ∈ G2

2 such that e(g1, x1) · e(g2, x2) = 1.
Such an assumption is known to be implied by the SXDH assumption [2].

Simultaneous Triple Pairing. The Simultaneous Triple Pairing assumption states that given
6 random elements g1, g2, g3, g

′
1, g
′
2, g
′
3 ∈ G it is hard to find a non-trivial triple (x1, x2, x3) ∈ G3

such that e(g1, x1) ·e(g2, x2) ·e(g3, x3) = 1 and at the same time e(g′1, x1) ·e(g′2, x2) ·e(g′3, x3) = 1.
Such an assumption is known to be implied by the DLIN assumption [2].

3.3.2 Construction based on SXDH

The first instantiation is based on the SXDH assumption, working with asymmetric pairing
based groups (G1,G2,GT ). The construction below is similar to the one given in [24, Section
C.2.2], except that we had to modify the underlying hard relation, in that the one used by Dodis
et al. does not meet our completeness requirement.4

Hard relation: Let N ≥ 2, and g1, . . . , gN ←$ G1 be generators. The sampling algorithm
chooses a random x := (x1, . . . , xN )←$ GN

2 and defines y :=
∏N
i=1 e(gi, xi) ∈ GT . Notice

that the relation satisfies completeness, with mapping function ξ(·) defined by ξ(x) :=∏N
i=1 e(gi, xi). Below, we argue that this relation is leakage-resilient under the SXDH

assumption.

Lemma 6. Under the SXDH assumption in (G1,G2,GT ), the above defined relation is an
`-leakage-resilient hard relation for ` ≤ (N − 1) log q.

Proof. As shown in [24, Theorem 4.2] it suffices to prove that R satisfies second pre-image
resistance (SPR) and additionally it has H̃∞(X|Y) = (N − 1) log q. The second property
follows by the fact that for any y ∈ GT , the witness x is uniformly distributed over some
N − 1 dimensional subspace of GN

2 .
To prove the first property, we show that no PPT adversary A given a random (x, y) ∈ R
can output x′ such that x 6= x′ and (x, y), (x′, y) ∈ R with more than negligible probability.
In particular, we show that if such an efficient A exists we can construct an efficient
algorithm A′ solving the Double Pairing problem (whose hardness is implied by SXDH).
A description of A′ follows.
Given a target pair (g̃1, g̃2), adversary A′ picks random αi, βi←$ Zq and lets gi = g̃αi1 · g̃

βi
2

(for all i ∈ [N ]). Hence, it samples a random pair (x, y) ∈ R and runs A′ upon input
(g1, . . . , gN , x, y) obtaining a value x′ := (x′1, . . . , x

′
N ) such that the following holds:

N∏
i=1

e(gi, xi) =
N∏
i=1

e(gi, x
′
i).

4In particular, a pair (x, y) ∈ R is computed by sampling random exponents r1, . . . , rN ←$ Zq and outputting
xi := gri and y :=

∏N
i=1 g

ri
i , where g is a generator of G2 and g1, . . . , gN are generators of G1; thus, by the SXDH

assumption, it is hard to compute y given only x1, . . . , xN , without knowledge of the randomness r1, . . . , rN .
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Dividing the two sides of the equation, we obtain:

e

(
g̃1,

N∏
i=1

(xi/x
′
i)
αi

︸ ︷︷ ︸
x̃1

)
· e

(
g̃2,

N∏
i=1

(xi/x
′
i)
βi

︸ ︷︷ ︸
x̃2

)
= 1.

It remains to prove that (x̃1, x̃2) is non-trivial, i.e., (x̃1, x̃2) 6= (1, 1). For this it suffices to
note that, since x 6= x′, there exists a value j ∈ [N ] such that xj 6= x′j and moreover αj
is information theoretically hidden; thus x̃1 6= 1 with probability at least 1 − 1/q and A′

breaks the Double Pairing assumption with non-negligible probability. This concludes the
proof.

PKE: We use the Cramer-Shoup PKE scheme in G2 [20], optimized as described in [24]. The
public key consists of random generators (h1, h2, h3,1, . . . , h3,N , h4, h5) of G2, and in order
to encrypt x = (x1, . . . , xN ) ∈ GN

2 under label m ∈ {0, 1}∗ we return a ciphertext:

c := (c1, . . . , cN+3) = (hr1, h
r
2, h

r
3,1 · x1, . . . , h

r
3,N · xN , (h4 · ht5)r)

with r←$ Zq, and where t := H(c1|| · · · ||cN+2||m) is computed using a standard collision-
resistant hash function.

NIZK: We use the Groth-Sahai proof system [35]. In order to prove that a given pair x∗ := (x, r)
and y∗ := (y, c, pk ,m) belongs to the relation of Eq. (1), we first prove that (x, y) ∈ R.
This requires to show satisfiability of a one-sided pairing product equation, which can
be done with a proof consisting of 2N + 16 elements in G1 and 2 elements in Zq (under
the SXDH assumption). Next, we prove validity of a ciphertext which requires to show
satisfiability of a system of N + 3 one-sided multi-exponentiation equations; the latter can
be done with a proof consisting of (N + 3) + 2N = 3N + 3 group elements (under the
SXDH assumption).

Corollary 1. Let (G1,G2,GT ) be asymmetric pairing based groups with prime order q. Under
the SXDH assumption there exists a signature scheme satisfying BLT-EUFCMA with tampering
rate ρ(κ) = O(1/κ). For N ≥ 2, the public key consists of a single group element, the secret
key consists of N group elements, and a signature consists of 6N + 22 group elements and 2
elements in Zq.

3.3.3 Construction based on DLIN

The second instantiation is based on the DLIN assumption, working with symmetric pairing
based groups (G,GT ). The construction below is similar to one of the instantiations given
in [24, Section C.2.3], except that we had to modify the underlying hard relation, in that the
one used by Dodis et al. does not meet our completeness requirement.

Hard relation: Let N ≥ 3, and g1, . . . , gN , g
′
1, . . . , g

′
N ←$ G be generators. The sampling al-

gorithm chooses a random x := (x1, . . . , xN )←$ G and defines y1 :=
∏N
i=1 e(gi, xi) ∈ GT

and y2 :=
∏N
i=1 e(g

′
i, xi). Notice that the relation satisfies completeness, with mapping

function ξ(·) defined by ξ(x) := (
∏N
i=1 e(gi, xi),

∏N
i=1 e(g

′
i, xi)). Below, we argue that this

relation is leakage-resilient under the DLIN assumption.

Lemma 7. Under the DLIN assumption in (G,GT ), the above defined relation is an `-
leakage-resilient hard relation for ` ≤ (N − 2) log q.
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Proof. As in the proof of Lemma 6 it suffices to prove that R satisfies second pre-image
resistance (SPR) and additionally it has H̃∞(X|Y) = (N − 2) log q. The second property
follows by the fact that for any (y1, y2) ∈ G2

T , the witness x is uniformly distributed over
some N − 2 dimensional subspace of GN .
To prove the first property, we show that no PPT adversary A given a random (x, (y1, y2)) ∈
R can output x′ such that x 6= x′ and (x, (y1, y2)), (x′, (y1, y2)) ∈ R with more than
negligible probability. In particular, we show that if such an efficient A exists we can
construct an efficient algorithm A′ solving the Simultaneous Triple Pairing problem (whose
hardness is implied by DLIN). A description of A′ follows.
Given a target pair (g̃1, g̃2, g̃3, g̃

′
1, g̃
′
2, g̃
′
3), adversary A′ picks random αi, βi, γi←$ Zq and

lets gi = g̃αi1 · g̃
βi
2 · g̃

γi
3 and g′i = (g̃′1)αi · (g̃′)βi2 · (g̃′3)γi (for all i ∈ [N ]). Hence, it samples

a random pair (x, y) ∈ R and runs A′ upon input (g1, . . . , gN , g
′
1, . . . , g

′
N , x, y) obtaining a

value x′ := (x′1, . . . , x
′
N ) such that the following holds:

N∏
i=1

e(gi, xi) =
N∏
i=1

e(gi, x
′
i) and

N∏
i=1

e(g′i, xi) =
N∏
i=1

e(g′i, x
′
i).

Dividing the two sides of the equations, we obtain:

e

(
g̃1,

N∏
i=1

(xi/x
′
i)
αi

︸ ︷︷ ︸
x̃1

)
· e

(
g̃2,

N∏
i=1

(xi/x
′
i)
βi

︸ ︷︷ ︸
x̃2

)
· e

(
g̃3,

N∏
i=1

(xi/x
′
i)
γi

︸ ︷︷ ︸
x̃3

)
= 1

e
(
g̃′1, x̃1

)
· e
(
g̃′2, x̃2

)
· e
(
g̃′3, x̃3

)
= 1.

It remains to prove that (x̃1, x̃2, x̃3) is non-trivial, i.e., (x̃1, x̃2, x̃3) 6= (1, 1, 1). For this it
suffices to note that, since x 6= x′, there exists a value j ∈ [N ] such that xj 6= x′j and
moreover αj is information theoretically hidden; thus x̃1 6= 1 with probability at least
1 − 1/q and A′ breaks the Simultaneous Triple Pairing assumption with non-negligible
probability. This concludes the proof.

PKE: We use the Linear Cramer-Shoup PKE scheme in G [56], optimized as described in [24].
The public key consists of random generators (h0, h1, h2, h3,1, . . . , h3,N , h4,1, . . . , h4,N , h5,1, h5,2, h6,1, h6,2)
of G, and in order to encrypt x = (x1, . . . , xN ) ∈ GN under label m ∈ {0, 1}∗ we return a
ciphertext:

c := (c1, . . . , cN+4) = (hr1+r2
0 , hr11 , h

r2
2 , h

r1
3,1 · h

r2
4,1 · x1,

. . . , hr13,N · h
r2
4,N · xN , (h4,1 · ht5,1)r1 · (h4,2 · ht5,2)r2)

with r1, r2←$ Zq, and where t := H(c1|| · · · ||cN+3||m) is computed using a standard
collision-resistant hash function.

NIZK: We use again the Groth-Sahai proof system. In order to prove that a given pair x∗ :=
(x, r) and y∗ := ((y1, y2), c, pk ,m) belongs to the relation of Eq. (1), we first prove that
(x, (y1, y2)) ∈ R. This requires to show satisfiability of two one-sided pairing product
equations, which can be done with a proof consisting of 3N + 42 elements in G and 6
elements in Zq (under the DLIN assumption). Next, we prove validity of a ciphertext
which requires to show satisfiability of a system of N + 4 one-sided multi-exponentiation
equations; the latter can be done with a proof consisting of 2(N +4)+3N = 5N +8 group
elements (under the DLIN assumption).
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Corollary 2. Let (G,GT ) be symmetric pairing based groups with prime order q. Under the
DLIN assumption there exists a signature scheme satisfying BLT-EUFCMA with tampering rate
ρ(κ) = O(1/κ). For N ≥ 3, the public key consists of two group elements, the secret key consists
of N group elements, and a signature consists of 9N + 54 group elements and 6 elements in Zq.

4 Public-Key Encryption

We give a construction of an efficient PKE scheme satisfying BLT-IND-CCA security in the
standard model. In particular, we prove that the PKE scheme of Qin and Liu [52] is already
resilient to bounded leakage and tampering attacks.

4.1 The Scheme of Qin and Liu

The encryption scheme is a twist of the well-known Cramer-Shoup paradigm for CCA secu-
rity [21], and is based on the following ingredients.

• An ε-universal hash-proof system (HPS) HPS = (Genhps,Pub,Priv). Recall that a HPS
has the following syntax: (i) Algorithm Genhps takes as input the security parameter,
and outputs public parameters pub := (aux , C,V,K,SK,PK,Λ(·) : C → K, µ : SK → PK)
where aux might contain additional structural parameters, and where Λsk is a hash function
and, for any sk ∈ SK, the function µ(sk) defines the action of Λsk over the subset V of
valid ciphertexts (i.e., Λsk is projective). Moreover the function Λsk is ε-almost universal:

Definition 5. A projective hash function Λ(·) is ε-almost universal, if for all pk , C ∈ C\V,
and all K ∈ K, it holds that P [ΛSK(C) = K|PK = pk , C] 6 ε, where SK is uniform over
SK conditioned on PK = µ(SK).

(ii) Algorithm Pub takes as input a public key pk = µ(sk), a valid ciphertext C ∈ V, and
a witness w for C ∈ V, and outputs the value Λsk (C). (iii) Algorithm Priv take as input
the secret key sk and a ciphertext C ∈ C, and outputs the value Λsk (C).

Definition 6. A hash-proof system HPS is ε-almost universal if the following holds:

1. For all sufficiently large κ ∈ N, and for all possible outcomes of Genhps(1
κ), the

underlying projective hash function is ε(κ)-almost universal.
2. The underlying set membership problem is hard. Specifically, for any PPT adversary

A the following quantity is negligible:

Advsmp
HPS,A := |P [A(C,V, C0) = 1| C0←$ V)]− P [A(C,V, C1) = 1| C1←$ C \ V)]| .

The lemma below directly follows from the definition of hash-proof system and the notion
of min-entropy.

Lemma 8. Let Λ(·) be ε-almost universal. Then for all pk and C ∈ C \ V it holds that
H∞(ΛSK(C)|PK = pk , C) > − log ε where SK is uniform over SK conditioned on PK =
µ(SK).

• AOne-Time Lossy Filter (OTLF) LF = (Genlf ,Eval, LTag) is a family of functions LFφ,t(X)
indexed by a public key φ and a tag t. Recall that a OTLF has the following syntax: (i)
Algorithm Genlf takes as input the security parameter, and outputs a public key φ and a
trapdoor key ψ. The public key φ defines a tag space T := {0, 1}∗ × Tc that contains two
disjoint subsets Tinj and Tloss and a domain space D. (ii) Algorithm Eval takes as input
φ, a tag t = (ta, tc) ∈ T (where we call ta the auxiliary tag and tc the core tag), and
X ∈ D, and outputs LFφ,t(X). (iii) Algorithm LTag takes as input ψ and an auxiliary tag
ta ∈ {0, 1}∗, and outputs a core tag tc such that t = (ta, tc) ∈ Tloss.
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Definition 7. We say that LF = (Genlf ,Eval, LTag) is an `lf -OTLF with domain D if the
following proprieties hold:

Lossiness: In case the tag t is injective (i.e., t ∈ Tinj), so is the function LFφ,t(·) :=
Eval(φ, t, ·). In case t is lossy (i.e., t ∈ Tloss), then LFφ,t(·) has image size at most 2`lf .

Indistinguishability: No PPT adversary A is able to distinguish lossy tags from random
tags, i.e. the following quantity is negligible:

Advind
LF ,A :=

∣∣P [A(φ, (ta, t
0
c)) = 1

]
− P

[
A(φ, (ta, t

1
c)) = 1

]∣∣
where (φ, ψ)←$ Genlf(1

κ), ta←$ A(φ), t0c ←$ Tc and t1c ←$ LTag(ψ, ta).
Evasiveness: No PPT adversary A is able to generate a non-injective tag even given a

lossy tag, i.e. the following quantity is negligible:

Advevasive
LF ,A := P

 (t′a, t
′
c) 6= (ta, tc)

(t′a, t
′
c) ∈ T \ Tinj

:
(φ, ψ)←$ Genlf(1

κ);
ta←$ A(φ); tc←$ LTag(ψ, ta);

(t′a, t
′
c)←$ A(φ, (ta, tc))

.
• An average-case strong randomness extractor.

Definition 8. An efficient function Ext : X × S → Y is an average-case (δ, ε)-strong
extractor if for all pair of random variables (X,Z), where X is defined over a set X and
H̃∞(X|Z) > δ, we have

(Z,S,Ext(X,S)) ≈ε (Z,S,U),

with S uniform over S and U uniform over Y.

The encryption scheme. Consider now the following PKE scheme PKE = (Setup,Gen,
Enc,Dec) with message space M := {0, 1}m, based on a HPS HPS = (Genhps,Pub,Priv), on
a OTLF LF = (Genlf ,Eval, LTag) with domain K, and on an average-case strong extractor
Ext : K × {0, 1}d → {0, 1}m.

• Setup(1κ): Sample pubhps := (aux , C,V,K,SK,PK,Λ(·), µ)←$ Genhps(1
κ) and compute

(φ, ψ)←$ Genlf(1
κ). Return pub := (pubhps, φ). (Recall that all algorithms implicitly take

pub as input.)
• Gen(1κ): Choose a random sk ←$ SK, define pk = µ(sk), and return (pk , sk).
• Enc(pk ,M): Sample C←$ V (with witness w), S←$ {0, 1}d, and a core tag tc←$ Tc.

Compute K := Pub(pk , C, w), Φ := Ext(K,S) ⊕M , and Π := Eval(φ, (ta, tc),K) where
ta := (C, S,Φ). Output Ĉ := (C, S,Φ,Π, tc).
• Dec(sk , Ĉ): Parse Ĉ := (C, S,Φ,Π, tc). Compute K̂ := Priv(sk , C) and check if Eval(φ, t,
K̂) = Π where t := ((C, S,Φ), tc). If the check fails, reject and output ⊥; else output
M := Φ⊕ Ext(K̂, S).

We show the following result.

Theorem 2. Let κ ∈ N be the security parameter. Assume that HPS is ε-almost universal, LF
is an `lf-OTLF with domain K, and Ext is an average-case (δ, ε′)-strong extractor for a negligible
function ε′. Let s = s(κ) and p = p(κ) be parameters such that s 6 log |SK| and p > log |PK|
for any SK,PK generated by Genhps(1

κ), and define α = − log ε and β = s− α.
For any δ 6 α− τ(p+ β + κ)− `lf − ` the PKE scheme PKE described above is (τ, `)-BLT-

IND-CCA with
`+ τ(p+ β + κ) 6 α− `lf .
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Experiment Expblt-cca
PKE,A(κ, `, τ):

pubhps←$ Genhps(1
κ)

(φ, ψ)←$ Genlf(1
κ)

sk ←$ SK; pk := µ(sk)

b←$ {0, 1}; Q ← ∅; j ← 1; Q′ := ∅
sk ′0 := sk ; (∀i ∈ [τ ])sk ′i ← ⊥; Ĉ∗ ← ⊥
(M0,M1)← ADec∗(·,·),O`sk (·),Oτsk (·)(pk)
S∗←$ {0, 1}d

(C∗, w)←$ V; C∗←$ C \ V
K∗ ← Pub(pk , C∗, w); K∗ ← Priv(sk , C∗)

Φ∗ := Ext(K∗, S∗)⊕Mb; Φ∗←$ {0, 1}m

t∗a := (C∗, S∗,Φ∗)

t∗c ←$ Tc; t∗c ←$ LTag(ψ, t∗a)

Π∗ := Eval(φ, (t∗a, t
∗
c),K

∗)

Ĉ∗ := (C∗, S∗,Φ∗,Π∗, t∗c)

b′ ← ADec∗(0,·)(Ĉ∗)
Return

(b′ = b) ∧ (|M0| = |M1|) ∧ (Ĉ∗ 6∈ Q)

Oracle Dec∗(i, Ĉ):
If i 6∈ [0, τ ]
Return ⊥
Else if sk ′i = ⊥
Return ⊥
Else:
If Ĉ∗ 6= ⊥
Q ← Q∪ {Ĉ}

Ĉ := (C, S,Φ,Π, tc); ta := (C, S,Φ)

If (ta, tc) = (t∗a, t
∗
c)

Return ⊥
K̂ := Priv(sk ′i, C)

If Π 6= Eval(φ, (ta, tc), K̂)
Return ⊥

If (C ∈ C \ V and i ≥ 1)

If γi(κ) ≤ β(κ) + log2 κ

Q′ ← Q′ ∪ {i}
Else, return ⊥

If (C ∈ C \ V and i = 0)
Return ⊥

Return M := Φ⊕ Ext(K̂, S)

Figure 4: Games G0, G1 , G2 , G3 , G4 , G5 , G6 , and G7 in the proof of Theorem 2. Game
G0 does not execute any of the colored actions, whereas each colored game executes all actions from the
previous game plus the ones of the corresponding color.

4.2 Security Proof

We consider a sequence of mental experiments, starting with the initial game Expblt-cca
PKE,A(κ, `, τ)

which for simplicity we denote byG0. The games are described in details below, and are depicted
in Fig. 4.

Game G0. This is exactly the game of Definition 1, where PKE is the PKE scheme described
above. In particular, upon input the i-th tampering query Ti the modified secret key
sk ′i = Ti(sk) is computed (where sk is the original secret key). Hence, the answer to
a query (i, Ĉ) to oracle Dec∗ is computed by parsing Ĉ := (C, S,Φ,Π, tc), computing
K̂ := Priv(sk ′i, C), and checking Π = Eval(φ, ((C, S,Φ), tc), K̂); if the check fails the answer
is ⊥ and otherwise the answer is M := Φ⊕ Ext(K̂, S).

Game G1. We change the way the tag t∗c corresponding to the challenge ciphertext is computed,
namely we now let t∗c ← LTag(ψ, t∗a) (i.e., the tag t∗ = (t∗a, t

∗
c) ∈ Tloss is now lossy).

Game G2. We add an extra check to the decryption oracle. Namely, upon input a decryption
query (i, (C, S,Φ,Π, tc)) we check whether ta := (C, S,Φ) and tc satisfy (ta, tc) = (t∗a, t

∗
c)

(where t∗a and t∗c are the auxiliary and core tag corresponding to the challenge ciphertext).
If the check succeeds, the oracle returns ⊥. Notice that t∗a and t∗c are initially set to ⊥,
and remain equal to ⊥ until the challenge ciphertext is generated.

Game G3. We change the way the challenge ciphertext is computed. Namely, we now compute
the value K∗ as K∗ := Priv(sk, C∗).
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Game G4. We change the way the challenge ciphertext is computed. Namely, we now sample
C∗ as C∗←$ C \ V.

Game G5. We add an extra check to the decryption oracle; the check is performed only for
decryption queries corresponding to tampered secret keys (i.e., i ≥ 1). At setup, the ex-
periment initializes an additional set Q′ ← ∅. Denote by V the random variable containing
all the answers from the decryption and leakage oracles, and define the quantity

γi(κ) := H∞(SK′i|V = v, {SK′j = sk ′j}j∈Q′ , {PK′j = pk ′j}j∈[τ ]∪{0})

where we write SK′i for the random variable of the i-th tampered secret key and PK′i for
the random variable of the corresponding public key (by default pk ′i = ⊥ if sk ′i is undefined
and pk ′0 = pk).
Upon input a decryption query (i, (C, S,Φ,Π, tc)) such that i ≥ 1 we proceed exactly as
in G4 but, for all ciphertexts such that C ∈ C \ V, in case the decryption oracle did not
already return ⊥, we additionally check whether γi(κ) ≤ β(κ) + log2 κ; if that happens,
we add the index i to the set Q′ and otherwise we do not modify Q′ and we additionally
answer the decryption query with ⊥.

Game G6. We change the way decryption queries corresponding to the original secret key are
answered. Namely, upon input a decryption query (0, (C, S,Φ,Π, tc)) we proceed as in G5

but, in case C ∈ C \ V, we answer the query with ⊥.
Game G7. We change the way the challenge ciphertext is computed. Namely, we now sample

Φ∗←$ {0, 1}m. Notice that the challenge ciphertext is now independent of the message
being encrypted.

Next, we turn to showing that the above defined games are indistinguishable. In what follows,
given a ciphertext Ĉ = (C, S,Φ,Π, tc), we say that Ĉ is valid if C ∈ V (i.e., if C is a valid
ciphertext for the underlying HPS).

Lemma 9. For all PPT adversaries A there exists a negligible function ν0,1 : N → [0, 1] such
that |P [G0(κ) = 1]− P [G1(κ) = 1]| ≤ ν0,1(κ).

Proof. We prove a stronger statement, namely that G0(κ) ≈c G1(κ). By contradiction, assume
there exists a PPT distinguisher D0,1 and a polynomial p0,1(·) such that, for infinitely many
values of κ ∈ N, we have that D0,1 distinguishes between G0 and G1 with probability at least
≥ 1/p0,1(κ). We construct an adversary A0,1 breaking the indistinguishability property of the
underlying OTLF LF . At the beginning, adversary A0,1 receives the evaluation key φ from
its own challenger, and simulates the entire experiment G0 with D0,1 by sampling all other
parameters by itself; notice that this can be done because G0 does not depend on the secret
trapdoor ψ. Whenever D0,1 outputs (M0,M1), adversary A0,1 samples t∗a as defined in G0 and
returns t∗a to its own challenger. Upon receiving a value t∗c from the challenger, A0,1 embeds t∗c
in the challenge ciphertext, and keeps simulating all queries done by D0,1 as before. Finally, A0,1

outputs the same as D0,1.
We observe that A0,1 perfectly simulates the decryption oracle (which is identical in both G0

and G1). Moreover, depending on the challenge tag t∗c being random or lossy, the distribution
of the challenge ciphertext produced by A0,1 is identical to that of either G0 or G1. Thus, A0,1

retains the same advantage as that of D0,1. This concludes the proof.

Lemma 10. G1 ≡ G2.

Proof. Notice that G1 and G2 only differ in how decryption queries such that (ta, tc) = (t∗a, t
∗
c)

are answered. Clearly, such queries are answered identically in the two games for all decryption
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queries before the generation of the challenge ciphertext. As for decryption queries after the
challenge ciphertext has been computed, we distinguish two cases: (i) Π = Π∗, and (ii) Π 6= Π∗.
In case (i) we get that Ĉ = Ĉ∗, and thus both games return ⊥. In case (ii), note that G1

checks whether Π = Eval(φ, (t∗a, t
∗
c),Priv(sk ′i, C

∗)) and thus it returns ⊥ whenever Π 6= Π∗. We
conclude that the two games are identically distributed.

Lemma 11. G2 ≡ G3.

Proof. The difference between G2 and G3 is only syntactical, as Priv(sk , C∗) = K∗ = Pub(pk ,
C∗, w) by correctness of the underlying HPS.

Lemma 12. For all PPT adversaries A, there exists a negligible function ν3,4 : N→ [0, 1] such
that |P [G3(κ) = 1]− P [G4(κ) = 1]| ≤ ν3,4(κ).

Proof. We prove a stronger statement, namely that G3(κ) ≈c G4(κ). By contradiction, assume
there exists a PPT distinguisher D3,4 and a polynomial p3,4(·) such that, for infinitely many
values of κ ∈ N, we have that D3,4 distinguishes between G3 and G4 with probability at least
≥ 1/p3,4(κ) . We construct a PPT adversary A3,4 solving the set membership problem of the
underlying HPS. A3,4 receives as input pubhps and a challenge C∗ such that either C∗←$ V or
C∗←$ C \ V. Hence, A3,4 perfectly simulates the challenger for D3,4, by sampling all required
parameters by itself, and embeds the value C∗ in the challenge ciphertext. In case C∗←$ V we
get exactly the same distribution as in G3, and in case C∗←$ C \ V we get exactly the same
distribution as in G4. Hence, A3,4 retains the same advantage as that of D3,4. This finishes the
proof.

For the j-th query (i, Ĉ) to the decryption oracle, such that Ĉ = (C, S,Φ,Π, tc), we let Inj j
be the event that the corresponding core tag tc is injective. We also define Inj :=

∧
j∈[q] Inj j

where q ∈ poly(κ) is the total number of decryption queries asked by the adversary.

Lemma 13. For all PPT adversaries A there exists a negligible function ν4 : N → [0, 1] such
that: |P [G4(κ) = 1]− P [G4(κ) = 1|Inj ]| ≤ ν4(κ).

Proof. The lemma follows by a simple reduction to the evasiveness property of the OTLF LF .
By contradiction, assume there exists a PPT adversary A4 and a polynomial p4(·) such that
|P [G4(κ) = 1]− P [G4(κ) = 1|Inj ]| ≥ 1/p4(κ) for infinitely many values of κ ∈ N. This implies:

1/p4(κ) ≤ |P [G4(κ) = 1]− P [G4(κ) = 1|Inj ]| ≤ P [Inj ].

We build a PPT adversary B4 with non-negligible advantage in the evasiveness game. The
adversary B4 receives as input a public key φ for the OTLF and perfectly simulates a run of
game G4 for A4 by sampling all parameters by itself. After A4 returns (M0,M1), adversary B4

samples t∗a as defined in G4, and forwards t∗a to its own challenger. Upon receiving t∗c from the
challenger, B4 embeds t∗c in the challenge ciphertext for A4.

Let Q be the list of decryption queries made by A4. At the end of the simulation, adversary
B4 picks uniformly at random a ciphertext Ĉ = (C, S,Φ, tc) from the list Q and outputs the
tuple (ta := (C, S,Φ), tc). Clearly, the advantage of B4 in the evasiveness game is equal to
the probability of event Inj happening times the probability of guessing one of the ciphertexts
containing a non-injective tag. Let q(κ) ∈ poly(κ) be the total number of decryption queries
made by A4. We have obtained,

Advevasive
LF ,B4

(κ) ≥ P [Inj ]/q(κ) ≥ 1/q(κ) · 1/p4(κ),

which is a non-negligible quantity. This concludes the proof.
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From now on, all of our arguments will be solely information-theoretic, and hence we do not
mind if the remaining experiments will no longer be efficient.

Lemma 14. For all (possibly unbounded) adversaries A making polynomially many decryp-
tion queries, there exists a negligible function ν4,5 : N → [0, 1] such that |P [G4(κ) = 1|Inj ] −
P [G5(κ) = 1|Inj ]| ≤ ν4,5(κ).

Proof. Recall that G4 and G5 differ only in the way decryption queries are handled. In par-
ticular, upon input a query (i, (C, S,Φ,Π, tc)) such that i ≥ 1 and C ∈ C \ V, the decryption
oracle in G5 checks whether γi(κ) 6 β(κ)+log2 κ. In case that happens, G5 proceeds identically
to G4 and additionally updates the set Q′ by including the index i; otherwise G5 answers the
query with ⊥. Intuitively, the set Q′ keeps track of the tampered secret keys that did not return
⊥ upon input an invalid ciphertext; the variable γi(κ), instead, measures the conditional min-
entropy of the i-th tampered secret key conditioned on all values returned by the decryption and
leakage oracles, all tampered secret keys within the set Q′, and all public keys corresponding to
the tampered secret keys generated so far.

It follows that the distribution of the two games differ only in case the adversary makes a
decryption query (i, (C, S,Φ,Π, tc)) such that: (i) γi(κ) > β(κ) + log2 κ; (ii) C ∈ C \ V; (iii)
Π = Eval(φ, (ta, tc),Priv(sk ′i, C)). Let Bad be the event that any (possibly unbounded) adversary
makes a decryption query as above. Clearly,

|P [G4(κ) = 1|Inj ]− P [G5(κ) = 1|Inj ]| ≤ P [Bad |Inj ].

For all j ∈ [q], let Bad j be the event that Bad happens for the j-th decryption query, which
as usual we denote by (i, (C, S,Φ,Π, tc))). Since we are conditioning on Inj , we have that there
exists a unique value K that is the pre-image of Π under function Eval(φ, (ta, tc), ·). Thus, by
averaging over all the possible views for the adversary, we obtain:

P [Bad j |Inj ] = P
[
Priv(SK′i, C)) = K

]
=
∑
v,pk

P [V = v,PK = pk ] · P
[
Priv(SK′i, C)) = K|V = v,PK = pk

]
6
∑
v,pk

P [V = v,PK = pk ] · 2−H∞(Priv(SK′i,C)|V=v,PK=pk).

Define the set SK∗K,C := {sk : Priv(sk , C) = K ∧ pk = µ(sk)}. We can write:

2−H∞(Priv(SK′i,C)|V=v,PK=pk)

= max
K

P
[
Priv(SK′i, C) = K|V = v,PK = pk

]
= max

K
P
[
SK′i ∈ SK∗K,C |V = v,PK = pk

]
6 max

K,sk ′i

|SK∗K,C | · P
[
SK′i = sk ′i|V = v,PK = pk

]
= max

K
|SK∗K,C | · 2−H∞(SK′i|V=v,PK=pk)

= max
K

|SK∗K,C |
|SK|

· |SK| · 2−H∞(SK′i|V=v,PK=pk)

6 ε · |SK| · 2−H∞(SK′i|V=v,PK=pk) 6 ε · |SK| · 2−β(κ)−log2 κ = 2− log2 κ,

where in the last line we used the ε-almost universality of the underlying HPS, together with the
fact that γi(κ) > β(κ) + log2 κ. Finally, by a union bound over all decryption queries, we obtain
that there exists a negligible function ν4,5 : N → [0, 1] such that P [Bad |Inj ] 6 q · 2− log2 κ ≤
ν4,5(κ), which concludes the proof of the lemma.
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Lemma 15. For all (possibly unbounded) adversaries A, there exists a negligible function ν5,6 :
N→ [0, 1] such that |P [G5(κ) = 1|Inj ]− P [G6(κ) = 1|Inj ]| ≤ ν5,6(κ).

Proof. Let Bad be the event that the adversary submits a decryption query (0, (C, S,Φ,Π, tc))
such that: (i) C ∈ C \ V; (ii) Π = Eval(φ, (ta, tc),Priv(sk , C)). Similarly to the proof of the
previous lemma, it suffices to bound the probability of the event Bad conditioned on Inj . Denote
by (0, (C, S,Φ,Π, tc)) the first decryption query (w.r.t. the original secret key) that triggers event
Bad . Recall that the view of adversary A in a run of game G5 consists of its own coin tosses, the
public key pk , the answers to all queries to the decryption and leakage oracles, and the challenge
ciphertext Ĉ∗. In what follows, we write L for the random variable corresponding to the leakage
queries; furthermore, for an index i ∈ [τ ], we denote with Di the random variable corresponding
to all decryption queries relative to the i-th tampered secret key. Note that we can partition Di

in two parts: D−i for all decryption queries (w.r.t. the i-th tampered secret key) with an invalid
ciphertext, and D+

i for all decryption queries (w.r.t. the i-th tampered secret key) with a valid
ciphertext. We also write W for the random variable corresponding to the overall view in game
G5.

As in the previous lemma, since we are conditioning on event Inj , it suffices to analyze the
conditional average min-entropy of Priv(SK, C) conditioned on the adversarial view.

H̃∞(Priv(SK, C)|W) > H̃∞(Priv(SK, C)|PK, {Di}i∈[τ ],L, Ĉ
∗) (2)

> H̃∞(Priv(SK, C)|PK, {Di}i∈[τ ])− `lf − ` (3)

= H̃∞(Priv(SK, C)|PK, {D+
i }i∈[τ ], {D−i }i∈Q′ ,Q

′)− `lf − ` (4)

> H̃∞(Priv(SK, C)|PK, {D+
i }i∈[τ ], {SK′i}i∈Q′ ,Q′)− `lf − `. (5)

Here, Eq. (2) uses the fact that the coin tosses of the adversary are independent of SK, Eq. (3)
follows by the chain rule for conditional average min-entropy (cf. Lemma 1), Eq. (4) uses the
fact that, by definition of G5, all decryption queries for keys outside Q′ and with an invalid
ciphertext are answered with ⊥, and Eq. (5) follows by the fact that D−i is a deterministic
function of SK′i.

Let Q′ = {i1, . . . , iq′}, as defined in game G5. Since the fact that sk iq′ ∈ Q
′ implies that

H∞(SK′iq′ |W) 6 β(κ) + log2 κ, we can first apply Lemma 2 and then Lemma 1 to obtain

H̃∞(Priv(SK, C)|PK, {D+
i }i∈[τ ], {SK′i}i∈Q′ ,Q′)

> H̃∞(Priv(SK, C)|PK, {D+
i }i∈[τ ], {SK′i}i∈Q′′ ,Q′′)− β(κ)− log2 κ− log |Q′|,

where Q′′ := Q′ \ {iq′}. Notice to apply Lemma 2 we need to condition on sk iq′ ∈ Q
′, however,

such condition holds with probability 1 and by conditioning on a sure event the min-entropy
does not change. By iterating the above argument for each key in Q′:

H̃∞(Priv(SK, C)|PK, {D+
i }i∈[τ ], {SK′i}i∈Q′ ,Q′) (6)

> H̃∞(Priv(SK, C)|PK, {D+
i }i∈[τ ])− τ · (β + log2 κ+ log τ),

and relying on the fact that the answer to decryption queries for a valid ciphertext and w.r.t.
index j ∈ [τ ] can be computed using the “tampered” projection key pk ′i = µ(sk ′i), we obtain

H̃∞(Priv(SK, C)|PK, {D+
i }i∈[τ ]) > H̃∞(Priv(SK, C)|PK, {PK′i}i∈[τ ]) (7)

> α− τ · p,
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where Eq. (7) follows by Lemma 1 and Lemma 8. Combining together Eq. (5), Eq. (6), and
Eq. (7), yields:

H̃∞(Priv(SK, C)|W) > α− τ · (p+ β + log2 κ+ log τ)− `lf − `.

It follows that the decryption oracle in game G5 does not reject the first invalid ciphertext with
probability at most ε · 2τ(p+β+log2 κ+log τ)+`lf+`. A generalization of this argument implies that,
for all j ∈ [q], the probability that the decryption oracle does not reject the j-th decryption query
of type (0, ·) containing an invalid ciphertext is at most 2τ(p+β+log2 κ+log τ)+`lf+`/(1/ε − q(κ)).
Finally, by a union bound over the total number of decryption queries, there exists a negligible
function ν5,6 : N→ [0, 1] such that:

P [Bad |Inj ] ≤ q · 2τ(p+β+log2 κ+log τ)+`lf+`

1/ε− q
≤ ε · e−qε · 2τ(p+β+log2 κ+log τ)+`lf+`+log q

6 2−(α−qε(κ)−τ(p+β+log2 κ log τ)−`lf−`−log q)

≤ ν5,6(κ).

where the last inequality follows by the fact that α > ` + `lf + τ(p + β + κ) and additionally
κ− log2 κ− log τ − log q/τ − qε/τ ∈ ω(log κ).

Lemma 16. For all (possibly unbounded) adversaries A, there exists a negligible function ν6,7 :
N→ [0, 1] such that |P [G6(κ) = 1|Inj ]− P [G7(κ) = 1|Inj ]| ≤ ν6,7(κ).

Proof. We analyze the conditional average min-entropy of Priv(SK, C∗) conditioned on the view
of the adversary. By a previous argument, we can write:

H̃∞(Priv(SK, C∗)|W) > α− τ · (p+ β + log2 κ+ log τ)− `lf − `,

and thus the statement follows by our choice of parameters for the strong average-case extractor.

The statement of the theorem now follows by combining the above lemmas together with
the fact that in G7 the challenge ciphertext is independent of the hidden bit b, and thus
P [G7(κ)|Inj ] = 1/2 for all (even unbounded) adversaries. This finishes the proof.

4.3 Concrete Instantiations

The ratio α−`−`lf
p+β plays an important role to understand the tampering rate tolerated by a given

instantiation. Ideally, we would like to have an HPS where α is as big as possible while p and
β = α − s are as small as possible. Below, we present an instantiation based on the Refined
Subgroup Indistinguishability (RSI) assumption.

Instantiation based on RSI. Let ξ ∈ N be a parameter. For security parameter κ ∈ N, let
p and q be primes of size respectively κ bits and ξ ·κ bits and define p̄ = 2pq+ 1. For this choice
of parameters, we have that Z∗p̄ has a unique subgroup of order N = pq. Denote by QRp̄ the
set of quadratic residues modulo p̄; the group QRp̄ can be decomposed as a direct product of
Gp ×Gq where Gp and Gq are cyclic groups of prime order p and q (respectively).

For random x, y←$ Z∗p̄, one can show that, with overwhelming probability, g = xq mod p̄ and
h = yp mod p̄ are generators of Gp and Gq (respectively). Let pubrsi := (QRp̄, p̄, g, h). The RSI
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assumption over QRp̄ states that for all PPT adversary A the following quantity is negligible in
the security parameter:∣∣P [A(pubrsi, g

x mod p̄) : x←$ Zp̄]− P
[
A(pubrsi, y) : y←$ QRp̄

]∣∣ .
The RSI assumption over QRp̄ is conjectured to hold if factoring N = pq is hard [48]. We can
derive a HPS as follow. We set C := QRp̄, V := Gp, SK := Zp̄, and PK := Gp. Given a random
secret key sk ←$ SK, the corresponding public key pk is computed as µ(sk) := gsk mod p̄.
Algorithm Pub, upon input C := gw (where w is the witness for C ∈ V) and pk outputs
pkw mod p̄. Algorithm Priv, upon input C and sk , outputs Λsk (C) := Csk mod p̄. It was
shown in [53] that the above construction defines a 1/q-almost universal HPS based on the
RSI assumption. The work of [53] additionally presents a construction of a OTLF achieving
`lf := log p based on the RSI assumption.

Finally, by instantiating the average-case strong extractor using universal hash functions
as required by the left-over hash lemma [37] we note that the PKE scheme allows to encrypt
messages with bit-length m = O(ξκ− τκ− `− κ). We obtain the following result:

Corollary 3. Let p̄ be as above. Under the RSI assumption over QRp̄, for any ξ(κ) = ω(1), there
exists a PKE scheme satisfying (τ, `)-BTL-IND-CCA with tampering rate ρ(κ) = O(1/κ− `

ξ2κ
).

The size of the secret key is Ω(ξκ), and the PKE scheme allows to encrypt messages with bit-
length m = O(ξκ− τκ− `− κ).

5 Conclusions and Open Problems

We have shown new constructions of public-key cryptosystems with provable security guarantees
against bounded leakage and tampering attacks. The proposed schemes are in the standard
model, and can be instantiated efficiently under standard complexity assumptions.

There are several interesting problems left open by our work. First, our constructions only
achieve sub-optimal tampering rate ρ(κ) = O(1/κ), so it would be interesting to find alternative
constructions achieving optimal rate in the standard model. Second, it would be interesting
to combine related-key attacks with related-randomness attacks [50, 51], where the adversary
might force a cryptographic scheme to re-use (functions of) its own random coins; a promising
idea in this direction is to combine our leakage-to-tamper reduction to so called fully leakage-
resilient signatures [18, 27], where the adversary can additionally leak on the random coins of
the signature algorithm. Third, it remains open how to obtain CCA security for PKE against
“after-the-fact” tampering and leakage, where both tampering and leakage can still occur after
the challenge ciphertext is generated (in the spirit of [36]). Finally, one could try to come-up
with new hash-proof systems meeting the requirements needed for our PKE instantiation under
alternative hardness assumptions.
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