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Abstract

We describe a general technique to protect randomized algorithms against kleptographic
attacks. We then apply the technique to construct the first IND-CPA secure public-key encryp-
tion scheme in the kleptographic setting. Our scheme preserves IND-CPA security, even when
all relevant cryptographic algorithms—including key generation—are subject to adversarial
subversion. The scheme requires no trusted parties or re-randomization reverse firewalls. The
technique also gives a secure symmetric key encryption scheme that advances the state-of-the-
art by permitting adversarial subversion of key generation and, furthermore, requiring no a
priori decryptability assumptions.

Designing cryptographic primitives immune to kleptographic subversion is an active area
which has led to remarkable new models and techniques; many of these are realizable by systems
and can reduce the threat of such strong attacks. The feasibility of public-key encryption that is
kleptographically secure in the CPA sense has been open till now.

1 Introduction

Modern cryptography has been spectacularly successful, leading to cryptographic tools with re-
markable functionalities and security guarantees. Despite these advances, applying cryptographic
tools to provide robust security in practice is a notorious challenge. In particular, practical settings
often introduce threats that are not adequately reflected by conventional cryptographic security
modeling. In this article, we focus on one such disparity between conventional modeling and
practical application: the possibility of adversarial instantiation, subversion, or substitution of the
cryptographic algorithms themselves.

One implicit assumption in typical cryptographic security modeling is that the deployed imple-
mentations of cryptographic algorithms actually realize their “official specifications.” In practice,
cryptographic implementations may diverge from their specifications for a variety of reasons,
including unintentional programming bugs or malicious tampering; in the kleptographic setting,
one considers the pathological possibility of fully adversarial implementations of cryptographic algo-
rithms. The goal of such an adversary is to produce implementations of cryptographic algorithms
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which compromise security while appearing to be correct even in the face of fairly intensive testing.
(Formal models are discussed below.) We remark that the possibility of such kleptographic attacks
arise whenever a “third-party” software library or hardware device is relied upon for cryptographic
purposes.

The consequences of such attacks are rather surprising: It turns out that—in wide generality—
adversarial implementations of randomized algorithms may leak private information while producing
output that is indistinguishable from the specification. The possibility of such threats was showcased
over two decades ago by Young and Yung [YY96, YY97]. Recently, starting with Bellare, Paterson,
and Rogaway [BPR14], the topic has received renewed formal attention [DGG+15, BH15, MS15,
DFP15, BJK15, AMV15, RTYZ15, DMSD15] motivated by startling evidence from the Snowden
revelations of past deployment of kleptographic attacks. The topic was also notably highlighted
by Rogaway’s 2015 IACR Distinguished Lecture [Rog15] calling for community-wide efforts to
explore defending mechanisms. One of the most striking recent discoveries [BPR14, BJK15]
establishes that a steganographic channel can be embedded in the output of a subverted randomized
(encryption) algorithm so that secret information can be exclusively leaked to the adversary.
Such steganographic attacks can even be applied in settings where the subverted algorithms are
stateless [BJK15, RTYZ15].

As mentioned above, the kleptographic setting features an adversary who may substitute
malicious algorithms in place of intended cryptographic algorithms. The adversary’s attack,
however, is constrained by introducing a trusted party (we call it the “watchdog”) who may test
the (adversarially-provided) implementations against the specification—this testing can provide
a measure of safety to the final users of the implementation. The major question is whether a
combination of careful specification and testing can preserve security despite such a powerful
adversary. The broad challenge is to rework the classical framework of cryptographic primitives
and constructions so that they provide security in this new environment. Recent efforts have
partially explored the landscape and clearly identified the critical role played by randomized
algorithms in the kleptographic setting. Indeed, existing defending strategies roughly fall into two
categories:

• “Abandon” randomized algorithms and turn to deterministic counterparts, e.g., use deter-
ministic encryption with a unique ciphertext property as suggested in [BPR14, BH15, DFP15,
BJK15] for encryption schemes. Of course, key generation is a sticking point in this approach,
as it must be randomized; this has been handled by simply placing key generation outside
the subversion model (i.e., assuming honest key generation).

• Use a trusted reverse firewall to re-randomize all incoming/outgoing communication gener-
ated by the randomized algorithms [MS15, DMSD15].

While insisting on deterministic algorithms has favorable properties, it necessarily places
many central notions of security entirely out of reach: in particular, IND- security for public-key
encryptions is unattainable. Furthermore, as mentioned above, the process of key generation
is inherently stochastic; this difficulty has been avoided by placing key generation outside the
subversion model (or, equivalently, assuming it to be trusted). On the other hand, the firewall
model can provide general feasibility results but requires the assumption of an active trusted party
(in particular, it requires a source of trusted randomness). As the large-scale goal of the study
of kleptography is to reduce the need for trust in the underlying components, it is attractive to
understand to what extent we can eliminate such trusted randomness, algorithmic elements, etc.
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In this paper, we address the following central questions:

1. Is it possible to generically annihilate subliminal channels in subverted randomized algorithms
without a trusted party?

2. Is it possible to achieve IND-CPA secure public-key encryption without trust in any of the component
algorithms.

We provide affirmative answers to both questions.
Our principal technique (completely realizable in systems) involves a certain decomposition

of algorithms into a few functional “components,” which are tested by the watchdog and may be
independently run and “re-assembled” by the user.
The kleptographic model, in brief. The kleptographic model is meant to capture a situation where
an adversary (or “big brother” as we shall occasionally say) has the opportunity to implement
(and, indeed, “mis-implement” or subvert) our basic cryptographic tools. On the other hand, the
model also introduces a “watchdog” who will attempt to check, via black-box testing, that the
cryptographic tools have been faithfully implemented by the adversary. We imagine the adversary
to be “proud but malicious”: the adversary wishes to interfere with security, but does not wish to
be exposed as a fraud by the watchdog. The model, in brief:

1. Specification (see also ? below.) The cryptographic primitive is specified as a tuple Π
spec

=
(F1

spec
, . . . ,Fk

spec
) of “functionalities.” Each Fi

spec
is either a function F : {0,1}∗→ {0,1}∗ (which

specifies a deterministic algorithm) or a family of probability distributions, so that F(x) is a
probability distribution over {0,1}∗ for each x (which specifies a randomized algorithm).

2. Subversion. The adversary provides us with all algorithmic and cryptographic building
blocks; that is, the adversary provides us with an “implementation” (F1

impl
, . . . ,Fk

impl
) for each

of the functionalities Fi
impl

. Observe that the adversary may provide even the algorithms
that generate randomness and random objects such as keys. Of course, in general the
implementations may disagree with the specification, which can provide the adversary a
novel avenue to attack the primitive.

3. Testing; the watchdog. The algorithmic and cryptographic building blocks are then sent to
trusted testing facility, the watchdog. The watchdog is aware of the official specification, and
may query the adversary’s implementations (treating them as block-boxes) in an attempt to
detect disagreements between the implementations and the specifications.

4. The security game. Assuming that the watchdog is satisfied, the implementations are pressed
into service, at which point their security is modeled by a conventional security game.

? Remark: Decomposition and Amalgamation. We permit the designer of the cryptographic
primitive (who determines its specification) an extra dimension of freedom which can assist
the watchdog in his verification task: We permit the designer to functionally decompose the
primitives into a fixed number of “pieces.” For example, rather than specifying a function
of interest f : X → Y , the designer may instead specify two functions h : X → W and
g :W → Y with the property that f = g ◦ h. (Thus h and g together implicitly specify f .) An
important example in our setting is specifying a randomized algorithm G(x) as a composition
dG(x,RG(1k)), where dG is a deterministic algorithm and RG is an algorithm which, given the
input 1k , produces k uniformly random bits as output. In general, the decomposition may be
arbitrary, but may only involve O(1) pieces and cannot depend on input length.
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Our contributions. In this paper, we develop general techniques that eliminate subliminal chan-
nels introduced by adversarial implementations. We apply this general technique to construct
symmetric-key and public-key encryption schemes preserving the IND-CPA security when all the
algorithms are subject to adversarial subversion. In particular,

1. We first define a property of “stego-freeness” by adjusting the previous models of [BPR14,
RTYZ15] to characterize whether an implementation of an algorithm can be considered to
be following its specification in the kleptographic setting (where there is a watchdog). The
model includes several variants depending on the algorithm inputs and choices about the
decomposition. We also define a notion of “subversion resistance” for encryption schemes by
considering the kleptographic IND-CPA security game where the challengers use adversarial
implementations and the implementations are interrogated by an “offline” watchdog. (See
below for formal definitions.)

2. We then consider how to defend against steganographic channel attacks by the simple
non-black-box technique of decomposition-and-amalgamation. We first extend the attacks
of [BPR14, BJK15, DGG+15] to the setting where a public-key encryption algorithm is split
into two components: randomness generation (even when the immunization function is
modeled as a random oracle) and a deterministic component. We then demonstrate a “double-
splitting” strategy in which randomness generation is carried out by two independent com-
ponents RG0,RG1. We prove that when r0, r1 are sampled independently from RG0 and RG1,
mixing them with an immunization function Φ can indeed destroy subliminal channels in the
implementation of a wide class of randomized algorithms in the random oracle model.1 We
also consider how to achieve such results in the standard model (without a random oracle);
see Sec. D in the appendix.

3. We further apply this general technique to immunize each algorithm of a symmetric-key
(single-bit) encryption scheme, including key generation and encryption. Our construction
preserves IND-CPA security of the underlying primitive. We then focus on constructing
symmetric-key encryption schemes for large message spaces. To defend against input-trigger-
style attacks [DFP15], we allow the user to carry out one single trusted addition. We also
consider correctness in the kleptographic setting and draw connections to the theory of
self-correcting programs. These techniques can be applied directly to immunize public-key
encryption, and our construction gives the first IND-CPA secure scheme in the kleptographic
setting without relying on a trusted party. Finally, we discuss some further applications, which
include bypassing the impossibility results for publicly immunized outputs of a backdoored
PRG; see Sec. E in the appendix.

Related works. Kleptography, as noted, was introduced by Young and Yung [YY96, YY97]; they
primarily highlighted the possibility of subverting key generation, and left open the problem
of defending against such subversion. Recent work [RTYZ15] has made initial progress on the
problem of protecting key generation for specific cryptographic algorithms (trapdoor one-way
permutations, pseudorandom generators, and digital signature scheme). However, these techniques
are highly tuned to specific algorithms and do not remove arbitrary steganographic channels, which
is one of our main goals.

1Same as [RTYZ15], we only assume the specification RGspec to be an random oracle, while the implementation
RGimpl can be arbitrarily subverted.
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Several research threads have studied the kleptographic setting, developing both new attacks
and defending mechanisms. In particular, Bellare, Paterson, and Rogaway [BPR14] studied sub-
verted randomized encryption algorithms, building a steganographic channel that leaks secrets bit
by bit; they also developed defending mechanisms in the setting where key generation is honest.
Such subliminal channel attacks turn out to be the major obstacle in this area, and have been further
explored by Ateniese et al. [AMV15], Bellare et al. [BH15, BJK15], Degabriele et al. [DFP15], and
Dodis et al. [DGG+15]. A common feature of these works [BPR14, BH15, BJK15, DFP15] is to adopt
deterministic algorithms and to assume honest key generation. Additionally, these works do not
rely merely on testing: Most, in fact, require an a priori “decryptability” condition which demands
that every message encrypted using the implementation should be decrypted correctly using the
specification. A notable exception is [DFP15]; however, they rely on a watchdog that possesses
access to the actual challenger–adversary communication transcript (including the internal state of
the challenger).

Other works [MS15, DMSD15] considered defending mechanisms with a “reverse firewall”
that is trusted to generate good randomness and can “re-randomize” incoming and outgoing
communication. This model is attractive as it may permit quite general feasibility results; on the
other hand, it introduces another trusted party (and source of trusted randomness).

In contrast to previous work, our goal is to develop CPA-secure encryption in a much stricter
model that does not require strong watchdogs, clean keys, trusted randomness, or decryptability
assumptions.

2 Definitions and Models

The adversary in kleptographic settings is “proud-but-malicious”: The adversary prefers subversion
to be “under the radar” of any possible detection; on the other hand, she still wishes exploit her
power of subversion to violate security. As explained in the introduction, our central focus will
be the challenge of generically destroying subliminal channels which may have been adversarially
embedded in a subverted algorithm. We briefly recall the notion of a subliminal channel to set the
stage for the basic definitions below.

Consider an (honest) randomized algorithm A which takes an input x and has additional access
to a “secret” bit s ∈ {0,1}. The algorithm produces a random output y, which we assume leaks no
information about s. A fundamental result in steganography [Sim83, Sim86, HLv02] asserts that
is is possible to construct a subverted algorithm Ãz, whose behavior is determined by a hidden
random string z, so that

• for all inputs x and s, the distribution produced by Ãz(x,s) (including the random selection
of z) is identical to the distribution produced by A(x,s), and hence leaks no information about
s; but,

• with knowledge of z, the output of Ãz is highly correlated with s. In particular, an adversary
with access to z can use the output of Ãz to infer s with high probability.

See Figs. 1a and 1b.
As mentioned above, subliminal channels are a major security obstacle in the kleptographic

setting and our main result is a method for destroying them. Intuitively, to achieve this goal, we
demand that the adversary cannot learn any extra information from the output of a subverted
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(a) A randomized algorithm which leaks no
information about s.

Ãz
s

x
y
s

(b) A subverted algorithm depending on
a hidden random string z. Its output y is
indistinguishable from A, but with knowl-
edge of z it leaks s.

Figure 1: Embedding a subliminal channel in a randomized algorithm A.

implementation of an algorithm so long as it has passed the checking of the watchdog. We adopt
the general kleptographic definitional framework of [RTYZ15], and generalize the notion defined
by the surveillance game in [BPR14] to formulate our definition of “destroying a steganographic
channel”—this defines a new notion that we call “stego-freeness.” Stego-free specifications for
algorithms will be the stepping stones to our final construction of cryptographic primitives (e.g.,
public-key encryption) with subversion resistance.

In the definitional framework of [RTYZ15], the adversary A provides subverted implementa-
tions of the cryptographic algorithms for a particular primitive; the challenger C must then play the
(standard) cryptographic security game for the primitive with A. Of course, the challenger uses the
subverted implementations during the security game. However, to protect the challenger, there is a
watchdogW who tests the subverted implementations, by comparing them with the specification of
the algorithms. The adversary “wins” if she can manufacture implementations so that she can win
the security game and—at the same time—evade the detection ofW . One can arrive at a variety of
different definitions based on the order of quantification forW and A, how exactlyW is permitted
to test the implementations, and whetherW is given any further information (such as a transcript
of the security game). We refer to [RTYZ15] for detailed discussion.

In this paper we will adopt the strongest of the definitions of [RTYZ15] (which gives the
watchdog the least power): in their terminology, we will consider a universal and offline watchdog.
In such a definition, the watchdog only tests the implementation once with only oracle access. In
particular,W has no access to the actual communications during the security game. Moreover, the
description of the watchdog is quantified before the adversary.2 (Thus, security for a particular
primitive requires that there is a single watchdog that can protect against all possible adversaries.)

To formalize the notion that the adversary cannot learn unintended information from an
implementation, we adapt the surveillance game from [BPR14] (which was defined for symmetric
key encryption): specifically, we compare the information leaked by the implementation with that
leaked by the specification (or, equivalently, an honest implementation).

Defining stego-freeness. We now formally define stego-freeness for any (randomized) algorithm
G under subversion. Following the basic kleptographic models described above, the adversary A
prepares a (potentially subverted) implementation G

impl
of the algorithm G; we let G

spec
denote the

specification of the algorithm. The goal of the adversary is to utilize G
impl

to leak secret information
exclusively to her via the outputs that G

impl
produces (as in the discussion above). Stego-freeness

means either the adversary A cannot learn any extra information from the outputs of G
impl

(in
comparison with that of G

spec
), or the subversion can be detected by the watchdogW (using oracle

2This is stronger than most of the definitions in the literature. The closest one is [DFP15]; however, their watchdog
has to take the transcript between C and A as inputs which implicitly implies the dependence of the running time on A.
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access to G
impl

)—this is characterized by the detection advantage DetW ,A below. Depending on
how communication is generated and whether the randomized algorithm can takes rich inputs,
we have a variety of definitions; we begin with the following elementary version for randomized
algorithms—such as key generation—that rely only on a length parameter rather than inputs
drawn from a large space.

Definition 2.1 (stego-free, basic form). Consider a (randomized) algorithm G with specification G
spec

.
We say such G

spec
is stego-free in the offline watchdog model if there exists a ppt watchdogW so that

for any ppt adversary A playing the following game (see Fig. 2), it satisfies that either

AdvA is negligible, or DetW ,A is non-negligible

where

AdvA(1λ) = |Pr[bC = 1]− 1/2| and DetW ,A(1λ) =
∣∣∣Pr[WG

impl(1λ) = 1]−Pr[Pr[WG
spec(1λ) = 1]

∣∣∣ .
test phase

W (1λ) A(1λ)

bW ←WG
impl(1λ) �

G
impl

execute phase

C(1λ) A(1λ)
β← {impl,spec}
for i = 1 to q � 1q( yi
Gβ (1λ)

) y1, . . . , yq
-

bC := 1 if β = β′ �
β′

bC := 0 otherwise

Figure 2: A game for stego-freeness.

Note that the definition requires only non-negligible detection probability on the part of the
watchdog. Note that detection probabilities can be directly amplified by repetition.3

We remark that an offline watchdog can ensure that the implementation of a deterministic
algorithm disagrees with its specification with negligible probability when inputs are drawn from
a public input distribution. Throughout, we use the term “public” distribution to refer to any
efficiently sampleable source that the watchdog can construct, perhaps using Fi

spec
and Fi

impl
.

Lemma 2.2 ([RTYZ15]). Consider an adversarial implementation Π
impl

:= (F1
impl

, . . . ,Fk
impl

) of a specifi-
cation Π

spec
= (F1

spec
, . . . ,Fk

spec
), where F1, . . . ,Fk are deterministic algorithms. Additionally, for each secu-

rity parameter λ, public input distributionsX1
λ, . . . ,X

k
λ are defined respectively. If

(∃j∈[k],Pr[Fjimpl(x),Fjspec(x):x

X
j
λ]

)
is non-negligible, this can be detected by a ppt offline watchdog with non-negligible probability.

3Trivial amplification transforms a gap of ε to 1− δ with k = ε−1 log(δ−1) repetitions. As the watchdog’s running time
is fixed independent of the adversary, however, amplification cannot be adapted to a particular non-negligible function.
If the watchdog is permitted a number of samples that depends on the adversary, then one can amplify non-negligible
detection probability to 1− o(1) for an infinite set of inputs.
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More general definitions of stego-freeness. In the above game, G only takes as input a fixed
security parameter (often ignored later in the paper); this definition can capture algorithms
like randomness generation and key generation when we instantiate G to be the corresponding
functionality. Besides the security parameter, we can consider algorithms which take richer inputs.
Such extensions will be important for our applications, and can significantly complicate the task of
destroying an embedded steganographic channel. One note is that for input taken from a small
domain, (for example, {0,1}), we simply allow the adversary to query the evaluation on all inputs.

Beyond the previous cases, we may consider algorithms taking inputs from a large domain. The
most straightforward adaptation permits the adversary to sample G

impl
(1λ,xi) at inputs xi of her

choice. However, this model suffers from a crippling “input trigger” attack [DFP15] (where the
adversary hides some secret information at a particular “trigger” location x which can be impossible
for an offline watchdog to detect); we discuss this in detail later. However, there is a compromise
setting that captures many cases of actual interest and permits strong feasibility results. In this
setting we permit the adversary to determine inputs to a randomized algorithm G by specifying a
randomized input generator IG: The input generator may be an arbitrary ppt algorithm with the
condition that given 1λ it produces (typically random) outputs of length exactly λ. This implicitly
defines the randomized algorithm G(1λ, IG(1λ)). In our setting, the watchdog is provided (oracle
access) to IG, which it may use during its testing of G. Note that IG is not part of the specification of
G, but rather chosen by the adversary during the security game; thus there is no reason to consider
subversion of IG. Revisiting the security game in this new setting, challenges {yi} are generated by
first sampling

( mi

IG(1λ)
)
, and then obtaining

( yi
Gβ(1λ,mi )

)
by calling Gβ using inputs 1λ and mi . Note that

the adversary could use IG to produce some specific input “triggers” where G
impl

deviates from
G
spec

. This more general notion of stego-freeness (with a “public” input distribution) captures
algorithms that take the output of other algorithms as input, which will be critical when we reason
about amalgamation of algorithms. See Figure 3 below for a unified game, where the algorithm
may take both types of inputs.

Definition 2.3 (stego-free, general form). We say that a randomized algorithm G is stego-free if it
satisfies Definition 2.1 with the security game of Figure 3. Note that the ppt input generator IG may be
determined by the adversary during the game.

Which of the definitions (2.1 or 2.3) is appropriate for a given randomized algorithm can be
determined from context, depending on whether an input generator is specified.

As mentioned above, an even stronger definition is obtained by permitting the adversary to
simply choose the input mi for each yi directly. This notion reflects stego-freeness for algorithms
with adversarially chosen inputs. Such a subverted implementation may have a hidden “trigger”
that was randomly drawn during the (adversarial) manufacturing process and can permit the
adversary to easily win the stego-freeness distinguishing game. In fact, such a trigger attack
does not even require that G be randomized: for example, consider the algorithm G

spec
(1λ,x) := x,

defined for x ∈ {0,1}λ. The adversary then uniformly draws z← {0,1}λ and defines

G
impl

(1λ,x) =

0λ if x = z,

x otherwise.

As the placement of the trigger (z) is random, the watchdog cannot detect disagreement between
G
impl

and G
spec

, while the adversary can distinguish these algorithms easily by querying z. In a
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test phase

W (1λ) A

�
G
impl

, IG

bW ←WG
impl

,IG(1λ)

execute phase

C A(1λ)
β← {impl,spec}
for i = 1 to q � 1q( mi
IG(1λ)

)
yi = Gβ(1λ,mi)

{yi}i∈[q]
-

bC := 1 if β = β′ �
β′

bC := 0 otherwise

Figure 3: The stego-freeness game with input distribution {1λ} × IG.

practical setting, an algorithm with such an input trigger can leak arbitrary private data to an
adversary in a way undetectable to an offline watchdog. This was formally demonstrated in [DFP15]
and called an “input-triggered subversion attack.” Nevertheless, we will discuss in Section 4.1
a method for sidestepping this impossibility with only an offline watchdog by assuming some
minimum trusted operations, such as “one trusted addition.”4

These definitions of stego-freeness are sufficient for capturing most of the interesting use cases
we will require (e.g., reflecting key generation and encryption).

Remark 2.4. Following Lemma 2.2, observe that if G
spec

is deterministic, an offline watchdog can ensure
that inconsistencies (G

spec
(x) , G

impl
(x)) occur with only negligible probability when inputs are sampled

from the input distribution IG (by drawing and testing a sample). In particular, deterministic algorithms
with a public input distribution satisfy stego-freeness in a straightforward fashion.

Discussions about stego-freeness and steganography. We emphasize two properties of these defi-
nitions. First, if a proposed specification satisfies such definitions, direct use of the implementation—
rather than the specification—preserves the typical security guarantees originally possessed by the
specification. This enables us to provide fairly modular security proofs by designing specifications
for each algorithm with stego-freeness.

The second, and more critical, issue pertains to the feasibility of achieving these notions of stego-
freeness: in particular, at first glance they appear hopeless. It is known that general steganography
is always possible over a channel with sufficient entropy [Sim83, Sim86, HLv02]. This implies
that the subverted algorithm G

impl
can always produce a sequence of messages that enable the

adversary to retrieve secret data from the (public) outputs y1, . . . , yq. In particular, as shown by

4All previous works either simply assume it won’t happen (the decryptability assumption) or employ an omniscient
watchdog who has access to the transcript between the challenger C and the adversary A, (and the secret key of C).
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Bellare, Paterson, Rogaway in the seminal result [BPR14], a subverted randomized encryption
algorithm can generate ciphertexts so that the adversary can recover the secret key bit-by-bit from
the sequence of ciphertexts. Moreover, the distribution of these subverted ciphertexts is statistically
close to the natural, unsubverted ciphertext distribution. To make matters worse, such attacks can
be launched even if the subverted implementations are stateless [BJK15]. As a simple example
of such subversion in our setting, consider the algorithm G

spec
(1λ) which outputs a uniformly

random element of {0,1}λ. Consider then the subverted implementation Gz
impl

(1λ) whose behavior
is determined by a uniformly random string z← {0,1}λ chosen by the adversary: the algorithm
Gz
impl

(1λ) outputs a uniformly random element of the set

H = {w ∈ {0,1}λ | lsb(Fz(w)) = 0} ,

where lsb(x) denotes the least-significant bit of x and Fz(·) denotes a pseudorandom function (PRF)
with key z. (Note that elements of H can be drawn by rejection sampling.) Of course, it is easy
for the adversary to distinguish G

impl
from G

spec
(as G

impl
only outputs strings with a particular

property that is easily testable by the adversary who has z). On the other hand, no watchdog can
distinguish these algorithms without breaking the PRF. This suggests that if the user makes only
black-box use of the subverted implementation of randomized algorithms, it is hopeless to achieve
stego-freeness. This motivates the following non-black-box model.

The split-program methodology and trusted amalgamation. To overcome the steganographic
attacks discussed above, we propose a slightly modified model which permits the specification of
an algorithm to be split into several components. In this split-program model, each component of
the implementation is exposed to the watchdog to check, while the challenger will amalgamate
the components to yield the fully functional implementation. Of course, the implementation of
each component is still presented by the adversary. We permit decomposition into only a constant
number of components (independent of input length), with the demand that the desired algorithm
can furthermore be expressed as the composition of a constant number of the components. Note
that such a “split-program” presentation of an algorithm rules out any gate-by-gate treatment, as
the model permits only a constant number of compositions. Intuitively, this simple non-black-
box presentation of a randomized algorithm not only provides more opportunity to enforce the
malicious implementation to follow a certain pattern, but also enables the watchdog to do more
delicate checking on the inner structure.

One example of this framework is the simple split-program method proposed in [RTYZ15] to
study certain randomized algorithms: they begin by specifying a (general) randomized algorithm
G as a pair (RG,dG) where RG is the randomness generation algorithm, responsible for generating a
uniform random string of appropriate length, and dG is a deterministic algorithm that takes the
input to the original randomized algorithm G and the random coins produced by RG to produce
the final output. They then add to this specification a third deterministic algorithm Φ which acts
as a kind of “immunization function” for the random bits generated by RG. Specifically, given the
implementations (RG

impl
, dG

impl
, Φ

impl
), the challenger amalgamates them by first querying

( r0
RG

impl

)
,

“sanitizing” this randomness by passing it into Φ
impl

to receive
( r
Φ

impl
(r0)

)
and, finally, running( y

dG
impl

(r)
)
. They show that in several contexts such an “immunization” can preserve security even

under subversion. We remark that a simple decomposition and amalgamation of this form cannot
destroy steganography in general, and we show an explicit attack in this model; see Sec. 3.1.

To reflect such trusted amalgamation in our security model, we permit the challenger to carry
out (a constant number of) compositions without molestation; that is, the notion of “composition” is
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protected from adversarial subversion. This can be inferred from the definition of the specification,
and it is implicit in the security games defined, e.g., in Figure 11, and in Figure 12, in the appendix.

As mentioned above, the split-program method proposed in [RTYZ15] permitted them to
establish security (in the kleptographic model) for specific cryptographic primitives. In this paper,
we will show that this general methodology has remarkable power against subversion: by further
decomposition and amalgamation, we show it is possible to generically destroy steganographic
channels. This provides us a family of tools for developing kleptographically-secure cryptography
without abandoning randomized algorithms.

Stateful algorithms. As discussed above, steganographic attacks can be launched even if the
implementation is stateless. To simply our presentation, most of our discussion adopts this
stateless assumption. However, adaptations of our techniques can provide security even for stateful
implementations (in the sense that each functionality maintains internal state). These amplified
results require a slightly stronger watchdog (whose running time can depend on the adverary) and
more detailed control of the subverted algorithm to ensure that they receive inputs from public
distributions. See Remark 3.2 in Sec. 3.2 for more discussion.

3 Eliminating Subliminal Channels in Randomized Algorithms

In this section, we will present our main result: provable destruction of any subliminal channels in
subverted implementations of randomized algorithms.

First, we motivate our new constructions by showing that the steganographic attacks of [BPR14,
BJK15] can still be carried out in the simple split-program model introduced by [RTYZ15]. The
attack succeeds even if the associated “immunizing function” Φ is a trusted hash function modeled
as a random oracle. This indicates that some stronger form of immunization is necessary for
destroying steganography.

Next, we present our main result in Section 3.2: a generic transformation that destroys steganog-
raphy in randomized algorithms. The basic technique relies on “double-splitting” the randomness
generating procedure coupled with a public immunizing function: specifically, randomness gener-
ation is expressed as two algorithms RG0,RG1 in conjunction with a public immunizing function Φ .
We prove that with this “extra” split, when the outputs r0← RG0, r1← RG1 are independently sam-
pled from RGi and mixed with Φ , the new specification of the randomness generation algorithm is
indeed stego-free in the random oracle model. Note that all components, including the immunizing
function Φ , are subject to subversion. With randomness generation cleaned in this way, we can
further destroy the subliminal channel in a large class of randomized algorithms. These results
enable us to overcome the major obstacle in designing cryptographic specifications that satisfy
subversion resistance.

Transition to the standard model. Finally, we consider how to achieve stego-freeness without
a random oracle. The main observation is that the watchdog can guarantee that each copy of
a particular RGi

impl
provides at least logn bits of (min-)entropy. If we are willing to have more

components for randomness generation, we can accumulate entropy using a simple immunizing
function and stretch the result using a PRG. See Sec. D in the appendix.
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3.1 Impossibility of publicly immunizing a single random source

Previous works [BPR14, BJK15] demonstrated that if a (subverted) randomized algorithm is used in
a black-box fashion, a subliminal channel can always be embedded in its output distribution. Here
we point out that a similar attack exists even if we adopt the techniques described in [RTYZ15]
which (i.) split the algorithm G into RG (which generates randomness) and dG (which is determinis-
tic), (ii.) introduce Φ—an “immunizing” function—and, ultimately, (iii.) generate output via the
composition dG← Φ ← RG. Here Φ is responsible for “cleaning” the randomness produced by
the possibly subverted randomness generator RG. In fact, this approach can fail even in the most
generous setting when Φ is given by a random oracle and the adversary only subverts RG.

The attack is a straightforward adaptation of the techniques from [BPR14, BJK15]: the subverted
implementation RG

impl
can evaluate dG and appropriately query the random oracle Φ during the

procedure of rejection sampling. It is easy, then, to arrange for the the output of RG
impl

to be biased
in a way only detectable by the adversary. While a generic attack is possible, for concreteness
we present an attack on a subverted public-key cryptosystem which permits the adversary to
effortlessly determine the (plaintext) message bit. This indicates that more advanced non-black-box
techniques are necessary to remove steganographic channels in general.

A detailed description appears in Sec. B.

3.2 Purifying randomness via double splitting

The attacks described above (and by [BPR14, BJK15]) demonstrate a core obstacle to defending
randomized algorithms against subversion: the random coins drawn by the subverted implementa-
tion can be biased—for example, by rejection sampling—even if they are then “immunized” by
a random oracle. On the other hand, the split-program model intuitively offers the watchdog an
opportunity for fine-grained testing: Is the situation really no better than the purely black-box
model? Let us take a closer look from the security analysis point of view.

Intuitively, specifications of the form (RG
spec

,dG
spec

,Φ
spec

) can provide security in a klepto-
graphic setting if the immunization function Φ can suitably interfere with generation of biased
output by the implementation of RG

spec
. To simplify our presentation, we assume throughout that

RG
spec

produces at least λ bits of randomness; this does not affect the generality of the results.
(Our techniques can be adapted to a low-entropy setting with some changes to running time of the
watchdog.5) An important feature in this setting is that an offline watchdogW can at least guar-
antee that the output r0 of RG

impl
is unpredictable to the adversary A. Otherwise, the distribution

given by RG
impl

would have significant (non-negligible) collision probability,6 which can be easily
tested byW who simply draws two samples and rejects if it observes a collision. (As with the other
tests we discuss, the success of this test can be amplified by repetition.) On the other hand, the
collision probability of RG

spec
is negligible. This suggests the intuition that Φ

spec
(r0) appears to A

to be a randomly drawn value if Φ
spec

is a random oracle. Unfortunately, A also holds the backdoor
z which may contain information about the final output r = Φ(r0) generated by the sampling and

5Observe that if RGspec produces only O(logn) random coins then an offline watchdog, by a suitable regimen of
repeated sampling, can empirically approximate (with high probability) the distribution of RGimpl with high accuracy.
This can be directly compared with RGspec using distance in total variation. Note that such a watchdog requires a
number of samples polynomial in the resulting error.

6Observe that if D is a probability distribution on a set X, the optimal strategy for predicting the result of drawing
an element of X according to D is simply to guess maxxD(x). If this maximum probability is ε, then the collision
probability of D, equal to

∑
xD(x)2, is at least ε2.
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“cleaning” process. In particular, as shown in the attack, the subverted implementation has full
access to Φ

spec
and may thus bias the output r = Φ(r0) as a function of z, which can be noticed by A.

To circumvent the above obstacle, we introduce a new technique that further splits randomness
generation into two random algorithms, RG0

spec
and RG1

spec
, and combines their outputs using an

immunization function Φ
spec

; we shall see that this mechanism can destroy subliminal channels.
In general, in the trusted amalgamation model, (see Definition A.1 in appendix. A.1) the user runs
RG0

impl
and RG1

impl
independently and passes the joint outputs to Φ

impl
; the final output will have

the form r = Φ
impl

(r0 ◦ r1) (where ◦ denotes concatenation). The main idea behind this strategy is
that it frustrates attempts by RG0

impl
and RG1

impl
to launch sophisticated rejection-sampling because

the final output is not fully determined by either output. (In particular, neither can evaluate
Φ
impl

(r0 ◦ r1) during the generation of r0 or r1.) In this way, if Φ
spec

is modeled as a random oracle,
the final output Φ

spec
(r0 ◦ r1) will be uncorrelated with A’s state (which includes both A’s random

oracle queries and z). Now we can safely claim that r looks uniform even to A.7

We remark on a similarity between the setting above and the topic of randomness extrac-
tors [NZ96]. Recall that an extractor E is a deterministic function which takes as input a number
of imperfect random sources X1,X2, . . . ,Xk and produces a nearly uniform output E(X1, . . . ,Xk). It
is a fact that extraction is not possible when k = 1—no fixed deterministic function E can produce
clean randomness from a source with bounded min-entropy. On the other hand, it is possible when
k ≥ 2 [CG88, Bou05, CZ15].

With this approach, we demonstrate a qualitative advantage of the split-program methodology.
We first describe a stego-free specification of randomness generation in Fig. 4, and then proceed to
give an immunization strategy for arbitrary randomized algorithms so long as they have a public
input distribution (or a small input domain). We apply these tools in next section to construct an
IND-CPA public key encryption scheme that retains security under subversion; note that this is
impossible to achieve if randomness generation is used as a black-box (even if it is separated as an
individual component).

Φ
spec

RG0
spec

RG1
spec

r1

r0

r

Figure 4: A stego-free specification for randomness generation.

Theorem 3.1. Consider a randomness generation algorithm RG with specification (RG0
spec

,RG1
spec

,Φ
spec

)
as described in Fig. 4:

• RG0
spec

and RG1
spec

, given 1λ, output uniformly random strings of length λ;

• Φ
spec

is a hash function so that Φ
spec

(w) has length d|w|/2e; and

• the specification for RG(1λ) is the amalgamation Φ
spec

(RG0
spec

(1λ),RG1
spec

(1λ)).

7We remark that Φimpl can be subverted, but it is a deterministic function with a public input distribution, the
inconsistency can be ensured to be at only a negligible fraction of places due to the watchdog, see Lemma 2.2.
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Then RG
spec

is stego-free in the trusted amalgamation model (see Def. A.1 in Sec. A.1 in the appendix) if
Φ
spec

is modeled as a random oracle.

Proof. If the specification of Fig. 4 is not stego-free, then for any offline watchdogW there is an
adversary A that can prepare an implementation RG

impl
:= (RG0

impl
,RG1

impl
,Φ

impl
) satisfying the

following: (1.) W cannot distinguish RG
impl

from RG
spec

via oracle access; (2.) The adversary
A can distinguish output of RG

impl
from RG

spec
, i.e., she can win the game defined in Figure 11

in supporting material, Sec. A.1. We will then define an offline watchdog such that these two
conditions cannot hold simultaneously for any adversary.

An offline watchdog. The watchdogW ’s strategy is as follows: W first draws a constant number

of samples from RG0
impl

and RG1
impl

; ifW observes a collision in either distribution, it rejects the
implementation outright (as collisions are negligible in spec). Next, W draws pairs of samples
(again) from RG0

impl
and RG1

impl
and evaluates Φ

impl
on (the concatenation of) each pair to ensure

that the result is consistent with Φ
spec

. (As usual, this testing involves only O(1) samples and can
be trivially amplified by repetition.)

Next, we will show, for any ppt adversary A, if the detection probability DetW ,A is negligible,
then the advantage AdvA will also be negligible, thus the two conditions cannot hold simultane-
ously.

Game transitions. We will go through the security game part of Def. A.1 step by step. Without loss
of generality, we assume the challenge r contains only one element (i.e., q = 1 in Def. A.1).

In Game-0, the adversaryA prepares subverted implementations RG
impl

:= (RG0
impl

,RG1
impl

,Φ
impl

);
we let Q be the set of random oracle queries Amade during preparation of RG

impl
.

The challenger C samples from RG0
impl

and RG1
impl

respectively and receives r0 and r1; then C
evaluates Φ

impl
at r0 ◦ r1 and sends the output r as the challenge to A. Let Qb (for b = 0,1) be the set

of random oracle queries made by RGb
impl

before outputting rb. All random oracle queries will be
(consistently) answered with randomly chosen values.

Game-1 is identical to Game-0, except that Φ
impl

is replaced with Φ
spec

; Game-2 is identical to
Game-1, except that the challenger C simply chooses a uniform r and directly sends it to A as the
challenge; Game-3 is identical to Game-2, except that RG

impl
is completely replaced with RG

spec
;

Game-4 is identical to Game-3, except that r is generated as in Game-0, but the challenger uses
RG

spec
instead.

Probabilistic analysis. We will analyze the gaps of each game transition conditioned on the event
that DetW ,A is negligible, we denote this event as DW . All the probability gap would be under the
condition DW . For brevity, we assume the condition DW without mention for the analysis of each
probability gap.

First, since Φ
spec

is a deterministic function with a public input distribution (the output
distribution of RG0

impl
×RG1

impl
), following Lemma 2.2,

Pr
[
Φ
impl

(r0 ◦ r1) , Φ
spec

(r0 ◦ r1) : r0← RG0
impl

, r1← RG1
impl

]
≤ negl(λ) .

Otherwise, the gap is non-negligible and the watchdog W will notice the inconsistency (with
non-negligible probability). It follows that replacing Φ

impl
with Φ

spec
would incur only a negligible

difference (conditioned on DW ), thus:

|Pr[bC = 1 in Game-0]−Pr[bC = 1 in Game-1]| ≤ negl(λ).
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Second, we will argue that the probability that r0 ◦ r1 is ever queried (falling in Q ∪Q0 ∪Q1) is
negligible, and now we are in Game-1 using Φ

spec
which is a random oracle.

It is easy to see that Pr[r0 ◦ r1 ∈Q] ≤ negl(λ); otherwise, the watchdog will observe a collision
in RGi

impl
with non-negligible probability. To see this, let R0 = {r0 | ∃r1, r0 ◦ r1 ∈Q}, note that Q,R0

are only polynomially large. If the probability r0 ◦ r1 falls into Q (thus the probability that r0 falls
into R0) is non-negligible, say δ, that means r0 will be generated by RG0

impl
with probability at least

δ0 = δ/poly(λ). It follows that the collision probability that RG0
impl

produces the same output r0
would be δ2

0. While on the other hand, RG0
spec

produces uniform bits, the collision probability (that
RG0

impl
produces the same uniform output string r0) would be negligible. Thus the watchdog can

easily distinguish RG0
impl

from RG0
spec

when drawing, say 2 samples.
Similarly, we bound the probability for Q0,Q1. Let R0,1 = {r1 | ∃r0, r0 ◦ r1 ∈ Q0}. Since

RG0
impl

,RG1
impl

are independently run, the probability that r1 falls into the polynomially large
set R0,1 would be negligible; otherwise, RG1

impl
outputs r1 with a non-negiligble probability, thenW

can notice the difference between implementations and the specifications by identifying collisions.
Thus Pr[r0 ◦ r1 ∈Q0] ≤ Pr[r1 ∈ R0,1] ≤ negl(λ). The same holds for Q1.

The adversary A is holding the set of random oracle queries Q, and a backdoor z. The only
way r may correlate with z is that r0 ◦ r1 is queried during the execution of RG0

impl
, or RG1

impl
. If

r0◦r1 <Q∪Q0∪Q1, r0◦r1 will be independent withA’s view (Q,z), thus r = Φ
spec

(r0◦r1) = RO(r0◦r1)
looks uniform to A. We can claim that:

|Pr[bC = 1 in Game-1]−Pr[bC = 1 in Game-2]| ≤ negl(λ).

Next, it is easy to see that Pr[bC = 1 in Game-2] = Pr[bC = 1 in Game-3] since the adversary
receives the identical challenge. Also, Pr[bC = 1 in Game-3] = Pr[bC = 1 in Game-4] since querying
RG

spec
yields a uniform output RO(u0 ◦u1), where u0,u1 are uniformly chosen.

To conclude, conditioned on DW , we have:

|Pr[bC = 1 in Game-0]−Pr[bC = 1 in Game-4]| ≤ negl(λ) .

Observe that Game-0 corresponds to the case that challenger flips a coin to be 0, i.e., C uses
RG

impl
to generate the challenge messages, while Game-4 corresponds to the case that b = 1, when

C uses RG
spec

. It follows that:

AdvA = |Pr[bC = 1]− 1/2| ≤ negl(λ) .

Combine all above, we can conclude that the RG
spec

defined in Figure 4 is stego-free.

Implementation considerations. Practical deployment of such splitting and amalgamation—
especially as it requires independence and (for the watchdog) copying internal state—clearly
requires detailed consideration of the particular computational environment. In general, there
are two natural approaches to achieve independence: The most modular approach relies on
modern lightweight virtualization layers such as Docker [Doc] to insulate individual copies of the
adversary’s code; we remark that this also permits state duplication (which may be necessary for
the watchdog in the stateful case). More aggressive complete virtualization is also possible, but
more cumbersome. An alternate approach relies on constraining the source code (or the compiler)
to directly limit I/O and system calls; this has the advantage that the components can be run
efficiently in the native environment. Finally, there may also be settings where it is possible to
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isolate the program in the architectural/hardware layer or physically separate various components
(e.g., using Intel’s secure isolation gateway, or even move one RGi outside the user’s computer, use
a random beacon, etc.).

Remark 3.2 (Stateful algorithms). The previous construction gives a concrete analysis of how a simple
watchdog can secure a split specification. At the end of Section 2, we remarked that our results hold even
if the implementations are stateful, in the sense that they may maintain local state that persists between
executions.

To see this in the example above, we need to ensure that the implementation RGb
impl

produces unpre-
dictable outputs (even to the adversary) for polynomially many invocations. Even if the implementation
keeps some internal state, we can recover the same result by adopting a slightly more advanced watchdog
which is permitted to have running time that depends on the adversary. In particular, if the adversary
is permitted to run the implementation k times, the watchdog may, for each 1 ≤ k′ ≤ k, (1.) run the
implementation k′ times to generate a particular internal state s, and then (2.) run the implementation
a constant number of times with state s to test for collisions. By this process, the watchdog can guar-
antee the entropy of a sample conditioned on previous samples. A straightforward analysis shows that
if there is a particular k′ for which the resulting distribution has non-negligible collision probability
(with non-negligible probability in the state produced by the first k′ − 1 invocations), the watchdog can
detect this (with non-negligible probability). This was also observed in [RTYZ15]. Note that the actual
procedure carried out by the watchdog is still universal, but the running time (and number of samples)
may be adapted to the adversary. Note also that no strictly universal watchdog (whose running time is
independent of the adversary) can possibly detect an algorithm that suddenly becomes deterministic after
some (polynomial) number of steps determined by the adversary.

We further remark that the above can be easily generalized to stateful algorithm having public input
distributions.

3.3 Stego-free specifications for randomized algorithms; a general transformation

Now we are ready to establish the general result which yields a stego-free specification for any
randomized algorithm in the trusted amalgamation model (see Definition A.2 in Sec. A.2 in the
appendix). We use a randomized algorithm with a public input distribution as a running example;
this can be generalized directly to the setting with an extra small input domain. As discussed
in Section 2, this already covers many of the interesting cases such as key generation and bit
encryption.

The transformation. Consider a randomized algorithm G which uses λ = λ(n) random bits for
inputs of length n. Let (dG,RG) denote the natural specification of G that isolates randomness
generation, so that RG(1λ) produces λ uniformly random bits and dG(r,x) is a deterministic
algorithm so that for every x, G(x) is equal to dG(RG(1λ(n),x) for n = |x|. (“Equal” here simply
means these have identical output distributions.) As described above, we consider the transformed
specification for G of the form (RG1,RG2,Φ ,dG) where dG is as above, both RG1(1λ) and RG2(1λ)
produce λ uniformly random bits, and Φ is a hash function that carries strings of length 2k to
strings of length k. (See Fig. 5 below, which shows the transformation applied to an algorithm
with a public input distribution generated by IG.) We will prove that when Φ is given by a random
oracle, this is a stego-free specification of G.
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RG0
spec

RG1
spec

r1

r0

RG
spec

r

x
IG

Φ
spec

dG
spec

y

Figure 5: A stego-free specification for randomized algorithm G, where x is obtained from IG.

Security analysis. The intuition is as follows: We know that a subverted implementation dG
impl

of a
deterministic algorithm will be consistent with its specification with an overwhelming probability
when the inputs are sampled from a public distribution (Lemma 2.2). In this case, it is generated
by IG×RG

impl
. Thus dG

impl
can be considered as good as dG

spec
when restricted to this public input

distribution. Furthermore, RG
spec

is stego-free, as discussed above. Thus all implementations can
be replaced with their specifications, and the security follows easily. We record this in the theorem
below, and we defer the detailed proof to Appendix C.

Theorem 3.3. For any randomized algorithm G, consider the specification G
spec

:= (RG
spec

,dG
spec

),
where RG

spec
generates λ = λ(n) bits of uniform randomness and dG

spec
is deterministic. Let (RG0

spec
,RG1

spec
,Φ

spec
)

be the double-split specification of RG
spec

as above. If (1) RG0
spec

(1λ) and RG1
spec

(1λ) output λ uniform
bits; (2) Φ

spec
takes r0 ◦ r1 as input, and outputs r (so it maps strings of length 2k to strings of length k)

(see Fig. 5), then G
spec

is stego-free with a trusted amalgamation (according to Def. A.2 in appendix. A.2).
Here Φ

spec
is modeled as a random oracle, and Φ0

impl
,Φ1

impl
are executed independently.

It is straightforward to generalize the result above to support algorithms with an extra small size
(polynomially large q) input as they essentially expand the input distribution to be q distributions,
which can all be checked by the watchdog.

Corollary 3.4. For any randomized algorithm G, consider a specification G
spec

:= (RG
spec

,dG
spec

), where
RG

spec
is defined as (RG0

spec
,RG1

spec
,Φ

spec
) (as in Fig. 4): If dG

spec
takes r, x and m as input, where x is

generated by a sampler IG, and m is taken from a polynomial size public domain D. Then the specification
G
spec

is stego-free with a trusted amalgamation (according to Def. A.2 in appendix Sec. A.2) if Φ
spec

is
modeled as a random oracle.

4 Subversion-Resistant Encryption

Encryption is a fundamental cryptographic tool, and is well-understood in conventional settings.
Unfortunately, encryption in the kleptographic setting has been a particular challenge; existing
solutions do not offer satisfactory CPA security or protection from subversion of key generation.
The main motivation for this paper is to develop subversion resistant encryption schemes (both
symmetric and asymmetric) that meet these elementary criteria.

To briefly survey the state-of-the-art: Previous results [BPR14, DFP15, BH15], in order to
protect against subliminal channel attacks, adopt a special kind of deterministic encryption scheme.
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Note, however, that IND-CPA security is impossible for deterministic public-key encryption (or
deterministic, stateless symmetric-key encryption). (An important exception is [DMSD15], which
assumes that a trusted, subversion-free, party re-randomizes all communication.) These results
permit only the encryption algorithm to be subverted: key generation and decryption are assumed
to be honest. A further “decryptability” assumption was adopted in [BPR14, BH15] to ensure
security; it assumes that every ciphertext generated by the subverted implementation can be
correctly decrypted using the specification. While this helps to achieve security, it seems difficult
to justify; see the criticism in [DFP15]. In general, then, correctness is not placed on the same
footing as security (which is established via the specification in tandem with watchdog testing),
but is rather provided by fiat.

In this section, we will address all these concerns.

4.1 Subversion-resistant symmetric encryption

We first construct subversion-resistant symmetric-key encryption in the case when all algorithms
are subject to subversion. We then discuss correctness and how to remove the “decryptability”
assumption.

Defining subversion resistance and correctness. We follow the definitional framework of [RTYZ15]
to define a subversion-resistant symmetric-key encryption scheme. The definition formalizes the
intuition that an encryption scheme is secure under subversion if IND-CPA security can be pre-
served in the “subverted security game” conditioned on the implementation evading detection.
Recall that in the “subverted security game” the challenger uses the subverted implementations of
all the algorithms. Initially, we focus on stateless encryption algorithms, and discuss how to relax
this assumption when we discuss large message spaces.

Definition 4.1. A (stateless) symmetric-key (bit) encryption scheme with specification E
spec

:= (KG
spec

,Enc
spec

,
Dec

spec
) is subversion-resistant in the offline watchdog model if there exists a ppt watchdogW so that,

for any ppt adversary A playing the game described in Figure 6, either

AdvA is negligible, or DetW ,A is non-negligible.

where AdvA(1λ) = |Pr[bC = 1]− 1/2| , and, DetW ,A(1λ) =
∣∣∣Pr[WE

impl(1λ) = 1]−Pr[Pr[WE
spec(1λ) = 1]

∣∣∣ .
Correctness under subversion is an overlooked, but fundamental property. For example, one

can imagine that the adversary “hates” a certain message m that is unknown to the watchdog (e.g.,
“your cryptosystem is subverted”). The subverted implementation can then check whether the
plaintext matches m and, if so, Dec

impl
outputs an arbitrary value other than m. This can be used

by the adversary to effectively implement censorship. We say a symmetric-key encryption scheme
is correct under subversion if the following holds:

∀M,Pr
[
Dec

impl
(C) ,M :

C← Enc
impl

(K,M),K ← KG
impl

(1λ)

]
≤ negl(λ),

where the probability is over the choice of K and the coins used in Enc
impl

.

Constructing subversion resistant symmetric-key bit encryption. We proceed to design a speci-
fication for any secure symmetric-key encryption scheme so that the subliminal channels in all
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test phase

W (1λ) A(1λ)

bW ←WE
impl(1λ) �

E
impl

execute phase

C(1λ) A(1λ)
K ← KG

impl
(1λ)

for i = 1 to q � 1q

ci,0 = Enc
impl

(K,0)
ci,1 = Enc

impl
(K,1) {ci,0, ci,1}i∈[q] -

b← {0,1}
c = Enc

impl
(K,b) c -

for i = 1 to q′

c′i,0 = Enc
impl

(K,0)
c′i,1 = Enc

impl
(K,1) {c′i,0, c

′
i,1}i∈[q′]-

bC := 1 if b = b′ � b′

bC := 0 otherwise

Figure 6: Subversion-resistant symmetric-key bit encryption. (The stateless case.)

of the algorithms can be destroyed. With the general tool we developed in Section 3.2, we will
“immunize” the algorithms one by one.

First, the (symmetric-key) key generation algorithm simply takes the security parameter as input
and produces a random element in the key space. Following Thm. 3.1 directly, the specification
KG

spec
:= (KG0

spec
,KG1

spec
,ΦKG

spec
) (see Fig. 7) is stego-free; here KG0

spec
,KG1

spec
both output random

elements in the key space K, and ΦKG
spec

:K×K→K, is modeled as a random oracle. As discussed
above, the random oracle assumption can be removed if we allow randomness generation to be
further subdivided; see appendix. D.

ΦKG
spec

KG0
spec

KG1
spec

K1

K0
K

Figure 7: Stego-free specification for key generation algorithm in a symmetric-key bit encryption
scheme.

Next, consider the encryption algorithm; we focus only on bit encryption. In this case, the
encryption algorithm takes three inputs: a security parameter, a small domain input (a bit),
and a pair given by the random coin and the key, which come from a public input distribution
RG

impl
×KG

impl
. From Corollary 3.4, the specification Enc

spec
:= (RG

spec
,dEnc

spec
) (as described in
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Fig. 8), where RG
spec

:= (RG0
spec

,RG1
spec

,ΦRG
spec

) defined as in Fig. 4, is stego-free if Φ
spec

is assumed to
be a random oracle.

ΦRG
spec

RG0
spec

RG1
spec

r1

r0

RG
spec

r

dEnc
spec C

m ∈ {0,1}

K
KG

impl

Figure 8: Stego-free specification for encryption algorithm in a symmetric-key bit encryption
scheme.

Finally, consider the decryption algorithm. This algorithm does not influence CPA security,
but directly influences correctness. Observe that the decryption algorithm is deterministic and
can be analyzed with a public input distribution as we focus on bit encryption. To see this, the
decryption algorithm will input a key K (generated by KG

impl
) and a ciphertext C (generated by

encrypting 0 or 1 using K). The watchdog can sample from the input distribution of Dec
impl

to
check the correctness, i.e., the consistency with Dec

spec
.

With all of the algorithms handled individually as above, we present the first general immuniz-
ing result for randomized encryption algorithms.

Theorem 4.2. Given any stateless IND-CPA secure symmetric bit encryption scheme, the specification
described above is subversion resistant and correct according to Def. 4.1.

(sketch). The specification is described above (with the randomized algorithm split into randomness
generation and a deterministic part, and the randomness generation split into two components
together with an immunizing function as in Figure 4.).

Security. The watchdog is the combination of those described above: it guarantees that RG
spec

is
stego-free (making samples to observe collisions as in the proof of Theorem 3.1) and guarantees
that dEnc

impl
is consistent with the specification on inputs sampled from KG

impl
×RG

impl
(with 0

and 1); cf. Lemma 2.2. Here we only sketch the game changes and explain the negligible differences
arising during the game transitions conditioned the watchdog’s result.

Game-0 is the original game as described in Figure 6 with a trusted amalgamation; Game-1 is
the same as Game-0 except KG

impl
is replaced with KG

spec
; Game-2 is the same as Game-1 except

Enc
impl

is replaced with Enc
spec

.
The adversary’s advantage in Game-0 and Game-1 are negligibly close because of the stego-

freeness of KG
spec

. To see this, a simulator can simulate the rest of the games in Game-0 (or Game-1)
after receiving K sent by the challenger in the game defining stego-freeness for KG

spec
. If one

can distinguish Game-0 from Game-1, then the simulator can easily tell apart KG
impl

from KG
spec

(even if the challenger does the amalgamation). Similarly, we can argue Game-1 and Game-2 are
indistinguishable because Enc

spec
is stego-free. The fact that Enc

spec
is stego-free follows from

Corollary 3.4.
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Of course, in Game-2 every algorithm used in the game is faithfully implemented; thus the
IND-CPA security of the underlying encryption scheme would hold.

Regarding correctness. As described above, the decryption algorithm for a bit encryption scheme
has a public input distribution. The watchdog can sample random keys and check whether Dec

impl

works properly for bit encryption. Following Lemma 2.2, we conclude that: ∀b ∈ {0,1},

Pr[Dec
impl

(K,Enc
spec

(K,b)) , b : K ← KG
impl

] ≤ negl(λ),

while for the encryption algorithm, Enc
impl

can be used interchangeably with Enc
spec

assuming
trusted amalgamation. Thus, ∀b ∈ {0,1},

Pr[Dec
impl

(Enc
impl

(K,b)) , b : K ← KG
impl

] ≤ negl(λ) .

Combining these yields the statement of the theorem.

Subversion resistant symmetric encryption with large message spaces. (Also handling state).
For large message spaces, the security game must be adapted to allow the adversary to query; see
Figure 13 in appendix. A. As mentioned in Section 2, this immediately invites an input-trigger
attack. Specifically, for a particular query mi (chosen randomly by A during subversion), the
subverted encryption algorithm may directly output the secret key; the same threat exists for
stateful bit encryption, where a particular sequence of encryption bits may act as a trigger. Note
that this simply cannot be detected by a ppt watchdog (making polynomially many samples).
Furthermore, the same attack can be launched on Dec

impl
to ruin correctness (as Dec

impl
can output

a different value). This suggests the principle that a subverted implementation should never be
given a “naked” input generated by the adversary, e.g., the queried message. (Such an input can act
as a direct trigger when drawn from a large space, or can be remembered by stateful subversions to
effectively simulate a large space.)

However, observe that if the input message can be forced to come from a known distribution
U (e.g., the uniform distribution) the watchdog can check consistency between dEnc

impl
and

dEnc
spec

on U (we ignore the other inputs here for simplicity, since they are either fixed or from a
public input distribution). Indeed, the watchdog can guarantee that with overwhelming probability
dEnc

impl
is as good as dEnc

spec
when the input is sampled according toU . In this case, the watchdog

can in fact test the behavior of the algoriothm on a sequence of such inputs from U , which is how we
handle stateful subversion. Now, to defend against an input-trigger attack, we must ensure that the
probability that any particular m causes an inconsistency is negligible. This sort of “worst-case vs.
average-case” relationship arises in the theory of self-correcting programs [Rub91], where one wants
to transform a program with a negligible fraction of bad inputs into a negligible error probability
for every input. With these observations, we return to the large-message space challenge.

Constructions. First, we consider straightforward bit-wise encryption. When encrypting a message
m = m1 . . .m` for ` = |m|, the user generates the ciphertext by calling Enc

impl
` times, yielding

C := (c1, . . . , c`), where ci = Enc
impl

(K,mi). Since the bit encryption scheme we developed above
preserves IND-CPA security; IND-CPA security follows via a simple hybrid argument. (Note,
however, that in this case it is important that the encryption algorithm is stateless.)

To develop a more efficient scheme that can further handle long message (also stateful encryp-
tion) we augment the model by permitting the user (i.e., the challenger) to carry out one trusted
addition operation for each encryption/decryption, see Fig. 9. (We continue to assume trusted
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amalgamation, as before.) We augment the specification of the encryption algorithm with a random
message generator MG

spec
. Specifically, the specification of the encryption algorithm Enc

spec
has

the form (RG
spec

,dEnc
spec

,MG
spec

), where MG
spec

has the specification (MG0
spec

,MG1
spec

,ΦMG
spec

), and
RG

spec
is as before (as in Fig. 4). When encrypting a message m, the user first runs MG

impl
(the im-

plementation) to sample a random message u, and computes m′ =m⊕u. The user will call Enc
impl

to encrypt the new message m′ and obtains the ciphertext c′. This includes calls to KG
impl

,RG
impl

and passing the corresponding outputs K,r together with m′ to dEnc
impl

; see Figure 9. Observe
that m′ is a uniformly chosen message (as the watchdog can ensure that u is safely generated). The
new ciphertext C now includes u together with the ciphertext c′. For decryption, the user first runs
Dec

impl
on c′ and obtains m′; then the user computes m =m′ ⊕u.

ΦMG
spec

MG0
spec

MG1
spec

u1

u0

MG
spec

RG0
spec

RG1
spec

r1

r0

ΦRG
spec

RG
spec

r

dEnc
spec C

u

m

⊕m⊕u

K

Figure 9: Stego-free encryption specification supporting large messages, where K ← KG
impl

.

Security analysis. The intuition that this simple method works is as follows: First, we generalize
Theorem 4.2 that symmetric-key encryption for random messages are also subversion resistant. To
see this, we analyze the stego-freeness algorithm by algorithm. The key generation is the same as
the bit encryption. The encryption algorithm now takes input a uniform message, together with
the key and security parameter. It means that the encryption algorithm (the deterministic part
dEnc

spec
) now takes inputs from public input distributions, i.e., KG

impl
×RG

impl
×UM, where UM is

the uniform distribution over message spaceM. Following Theorem 3.3, such encryption algorithm
will be stego-free as long as the specification is designed as Figure 5. Now for the decryption
algorithm, since the encryption is for uniform messages, thus the decryption algorithm now also
takes a public input distribution. Next, we show the encryption specification defined in Figure 9
indeed takes uniform messages as input. (1.) Following Theorem 3.1, the uniform message sampler
MG

spec
is stego-free. (2.) With the trusted addition operation, when a that Enc

impl
takes as input

will be m′ =m⊕u, where u looks uniform even to the adversary, thus m′ would look uniform to
Enc

impl
(actually the deterministic part dEnc

impl
). Similar to the analysis of Theorem 4.2, we can

show a stronger result that handles the correctness and subversion resistance for symmetric-key
encryption supporting long messages. The full stateful case was handled in detail in remark 3.2.
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Theorem 4.3. For any IND-CPA secure symmetric-key encryption, the specification described as above is
subversion resistant and correct according to Def. A.3, assuming a trusted ⊕ operation and amalgamation.

4.2 Public key encryption preserving IND-CPA security under subversion

Now we turn to public-key encryption, which follows fairly directly from the previous construction.
The major difference arises with key generation, as asymmetric key generation has to be treated
with more care than simple randomness generation; see Figure 10, which indicates the construction.
Specifically, the basic techniques used for symmetric key encryption above can be adapted for
public key encryption. Key generation must be considered as a randomized algorithm producing
structured output (with only security parameter as input). With these tools at hand, we resolve the
major open problem to construct a IND-CPA secure PKE when facing subversions that we asked at
the beginning of the paper. We remark that the assumption of “trusted ⊕” in the theorem below
can be removed if the message space is small.

Φ
impl

RG0
impl

RG1
impl

r1

r0
r

dKG
impl

(pk,sk)

Figure 10: Stego-free asymmetric key generation.

Corollary 4.4. For any IND-CPA secure public key bit encryption, there exists a specification design
such that it is subversion resistant and correct with trust amalgamation. Furthermore, for any IND-CPA
public key encryption (supporting large input space), there exists a specification design such that it is
subversion resistant and correct according to Def. A.4, if the user can do a trusted ⊕ and amalgamation.
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A Omitted Definitions

A.1 Stego-free randomness generation.

One of the most fundamental components of a randomized algorithm is the randomness generation.
In particular, the devastating attacks using subliminal channels are exploring the subverted
randomness generation. Moreover, if we have clean randomness, many tasks (including the CPA-
secure public key encryption) which are previously considered impossible may become reachable.
Formally,

Definition A.1. For any randomness generation algorithm RG, consider a specification RG
spec

:=
(RG0

spec
,RG1

spec
,Φ

spec
). We say such specification RG

spec
is stego-free with a trusted amalgamation in

the offline watchdog model, if there exists an offline ppt watchdogW , for any ppt adversary A playing
the following game (see Figure 11) with challenger C, such that, at least one of the following conditions
hold:

DetW ,A is non-negligible, or, AdvA is negligible,

where AdvA(1λ) =
∣∣∣Pr[bC = 1]− 1

2

∣∣∣, and DetW ,A(1λ) =
∣∣∣Pr[WRG

impl(1λ) = 1]−Pr[WRG
spec(1λ) = 1]

∣∣∣ ,
test phase

W A
�

RG
impl

bW ←WRG
impl(1λ)

execute phase

C A
β← {impl,spec}
for i = 1 to q � 1q( ri
RGβ(1λ)

)
r1, . . . , rq

-

�
β′

bC := 1 if β = β′

bC := 0 otherwise

Figure 11: Game for stego-free randomness generation with trusted amalgamation.
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A.2 Stego-free randomized algorithms with public input distributions

Definition A.2. For a randomize algorithm G, consider a specification G
spec

:= (RG
spec

,dG
spec

), where
RG

spec
:= (RG0

spec
,RG1

spec
,Φ

spec
), and dG

spec
is deterministic. We say such specification G

spec
is stego-

free with a trusted amalgamation in the offline watchdog model, if there exists an offline ppt watchdog
W , for any ppt adversary A playing the following game (see Figure 12) with challenger C, such that,
either,

AdvA is negligible, or, DetW ,A is non-negligible.

where AdvA(1λ) =
∣∣∣Pr[bC = 1]− 1

2

∣∣∣, and, DetW ,A(1λ) =
∣∣∣Pr[WG

impl(1λ) = 1]−Pr[WG
spec(1λ) = 1]

∣∣∣ ,
test phase

W A
�

G
impl

, IG

bW ←WG
impl

,IG(1λ)

execute phase

C A
β← {impl,spec}
D = {x1, . . . ,xt}
for i = 1 to q � 1q( mi

IG(1λ)
)

for j = 1 to t( ri,j
RGβ(1λ)

)
yi,j = dG

impl
(ri,j ,xj ,mi)

{yi,j}i∈[q],j∈[t]
-

�
β′

bC := 1 if β = β′

bC := 0 otherwise

Figure 12: Game for stego-free randomized algorithm with trusted amalgamation. IG is the
instance generator, and D is a poly-size input domain.
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A.3 Subversion resistant symmetric-key encryption with long messages

Definition A.3. For any randomized symmetric-key encryption scheme, consider a specification E
spec

:=
(KG

spec
,Enc

spec
, Dec

spec
). We say specification E

spec
is subversion resistant with a trusted addition

and amalgamation in the offline watchdog model, if there exists an offline ppt watchdogW , for any
ppt adversary A, playing the game defined in Figure 13, either,

AdvA is negligible, or, DetW ,A is non-negligible.

where AdvA(1λ) = |Pr[bC = 1]− 1
2 |, and DetW ,A(1λ) = |Pr[WE

impl(1λ) = 1]−Pr[WE
spec(1λ) = 1]|,

test phase

W A
�

E
impl

bW ←WE
impl(1λ)

execute phase

C A( K
KG

impl
(1λ)

)
�
m′1, . . . ,m

′
q′

for i = 1 to q′

c′i = Enc
impl

(K,m′i)
c′1, . . . , c

′
q′
-

�
m0,m1( b

{0,1}
)

c = Enc
impl

(K,mb) c -

�
m′′1 , . . . ,m

′′
q′′

for i = 1 to q′′

c′′i = Enc
impl

(K,m′′i )
c′′1 , . . . , c

′′
q′′
-

� b′

bC := 1 if b = b′

bC := 0 otherwise

Figure 13: Subversion-resistant symmetric-key encryption with trusted addition.
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A.4 Subversion resistant public key encryption with long messages

Definition A.4. For any public key encryption scheme, consider a specification E
spec

:= (KG
spec

,
Enc

spec
,Dec

spec
). We say specification E

spec
is subversion resistant with a trusted addition and

amalgamation in the offline watchdog model, if there exists an offline ppt watchdogW , for any ppt

adversary A, such that, at least one of the following conditions hold in the game defined in Figure 14:

DetW ,A is non-negligible, or, AdvA is negligible,

where AdvA(1λ) = |Pr[bC = 1]− 1
2 |, and DetW ,A(1λ) = |Pr[WE

impl(1λ) = 1]−Pr[WE
spec(1λ) = 1]|.

test phase

W A
�

E
impl

bW ←WE
impl(1λ)

execute phase

C A
(pk,sk)← KG

impl
(1λ) pk

-

�
m′1, . . . ,m

′
q′

for i = 1 to q′( c′i
Enc

impl
(pk,m′i )

) c′1, . . . , c
′
q′
-

�
m0,m1( b

{0,1}
)

c = Enc
impl

(pk,mb) c -

�
m′′1 , . . . ,m

′′
q′′

for i = 1 to q′′( c′′i
Enc

impl
(pk,m′′i )

) c′′1 , . . . , c
′′
q′′
-

� b′

bC := 1 if b = b′

bC := 0 otherwise

Figure 14: Subversion-resistant public key encryption supporting large messages.
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B An attack on single-source randomness primitives

Subverted randomness generation attack: In the following attack on pubic key encryption, the
adversary honestly implements the key generation and decryption, and only subverts the encryp-
tion algorithm. Suppose the specification of the (public-key) encryption algorithm is defined as
Enc

spec
:= (RG

spec
,dEnc

spec
,Φ

spec
). The meaning of each component is self-evident: RG

spec
generates

uniformly random bits r0, the function Φ
spec

“cleans” r0 to produces the final random bits r, and,
finally, dEnc

spec
takes the random bits r, the encryption key pk, and the message bit as inputs and

produces a ciphertext C.

The attack: The adversary A first randomly chooses a backdoor z, and prepares the subverted
implementation Encz

impl
:= (RG

impl
,dEnc

impl
,Φ

impl
) with the backdoor embedded. In particular,

RG
impl

:= RGz
impl

carries out rejection sampling to ensure that the ciphertext encrypting 0 and
the ciphertext encrypting 1 can be distinguished by applying a PRF (using z as the key); the
algorithms dEnc

impl
and Φ

impl
are honestly implemented (that is, identical to the specifications).

Later the adversaryA can easily learn secret information (indeed, the plaintext) from the ciphertext
generated by the subverted algorithms by applying the PRF (using her backdoor z as the key). See
Figure 15 for detailed description.

RGz
impl

(pk):

Repeat:
r0← RG

spec

c0 = dEnc
spec

(pk,0;Φ
spec

(r0))
c1 = dEnc

spec
(pk,1;Φ

spec
(r0))

Until: PRF(z,c0) = 0∧ PRF(z,c1) = 1
Return r0

A(z,C):

b = PRF(z,C)
Return b

Figure 15: Subverted randomness generation and the message recovery algorithms

Security analysis. Due to the rejection sampling condition, it is easy to see that the adversary
defined in Figure 15 can determine the plaintext bit perfectly from the ciphertext. As for the
detection probability, the randomness output by RG

spec
is a uniform λ-bit string; in contrast, the

randomness output by RG
impl

is a string selected uniformly from a (random) subset S of {0,1}λ
(determined by the PRF). The subset S consists of all strings that carry 0 and 1 to ciphertexts
satisfying a criterion given by the PRF. Let us think of the PRF as a random function, that means the
rejection sampling condition will be satisfied with probability 1/4 for each r0 uniformly sampled.
Essentially, we can consider S as a random subset of {0,1}λ with (expected) size 2`−2. If there is
no collision whenW asks q queries, then the q different bit strings observed byW can come from
either of the whole space {0,1}λ or a subset S (with size larger than q). This means conditioned on
no collision, no watchdog can tell apart RG

impl
from RG

spec
. Using the total probability theorem,

we can bound the distinguishing advantage by the probability that a collision appears in q queries
when sample from S. We leave the full proof to Sec. C in the appendix.
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Proposition B.1. For any CPA-secure (public-key) encryption scheme, for any public function Φ ,
the adversary A shown in Figure 15 can learn the plaintext with probability 1 given the ciphertext
generated by Encz

impl
even if the randomness generation is separated and immunized by a random

oracle. Furthermore, suppose RG
impl

outputs ` bits of randomness; then the detection advantage is
q2/2`−4 + negl(λ) for all ppt watchdogs making q queries during the interrogation, assuming PRF is a
secure pseudorandom function.

Proof. The effectiveness of A is straightforward, since the randomness generated by RG
impl

makes
the ciphertext to be distinguishable using the PRF, thus the adversary A who knows the backdoor
recovers the message bit perfectly.

Next, we will argue that no offline watchdog can notice the subversion, particularly RG
impl

. (All
other components are honestly implemented). We define the game sequence as follows:

Game-0 is the game thatW is interacting with RG
impl

.
Game-1 is the same as Game-0 except that the PRF used in RG

impl
is replaced with a random

function R.
Game-2 is the same as Game-1 except that RG

impl
resamples, if W notices a collision in the

responses to the q queries.
Game-3 is the same as Game-2 except that RG

impl
is replaced with RG

spec
.

Game-4 is the same as Game-3 except removing the resampling condition.
Analyzing the gaps, we see: Game-0 and Game-1 are indistinguishable because of the PRF

security; Game-1 and Game-2 are identical, if there is no collision among the q queries in Game-2.
In Game 2, for any r0, the probability that R(c0) = 0∧R(c1) = 1 is 1/4, where c0, c1 are ciphertexts
encrypting 0,1 respectively using Φ(r0) as the coin. Suppose S is the set that contains all the values
that satisfies R(c0) = 0∧R(c1) = 1, then the expected size of S, E[|S |] = 2`/4 = 2`−2. It follows that
with negligible probability, |S | ≤ E[|S |]

2 = 2`−3. Then the probability that there exists a collision
among q samples from S would be bounded by q2/ |S | ≤ q2/2`−3. Game-2 and Game-3 is identical,
since the responses can either appear in a random subset or the whole space. Game-3 and Game-4
are identical except there is collision when sampling q uniform points. The probability of such
collision exist is q2/2`. Combining them above, we have the proposition.

Theorem 3.3. For any randomized algorithm G, consider the specification G
spec

:= (RG
spec

,dG
spec

),
where RG

spec
generates λ = λ(n) bits of uniform randomness and dG

spec
is deterministic. Let (RG0

spec
,RG1

spec
,Φ

spec
)

be the double-split specification of RG
spec

as above. If (1) RG0
spec

(1λ) and RG1
spec

(1λ) output λ uniform
bits; (2) Φ

spec
takes r0 ◦ r1 as input, and outputs r (so it maps strings of length 2k to strings of length k)

(see Fig. 5), then G
spec

is stego-free with a trusted amalgamation (according to Def. A.2 in appendix. A.2).
Here Φ

spec
is modeled as a random oracle, and Φ0

impl
,Φ1

impl
are executed independently.

Proof. The watchdogs will be a combination of the ones in Theorem 3.1 and Lemma 2.2 to guarantee
unpredictability of RGb

impl
and the overwhelming consistency for deterministic algorithms with a

public input distribution. Here dG
spec

is a deterministic algorithm and the output of RG
spec
× IG

would be the input distribution to dG
spec

.
We here only describe briefly about the game changes.
Game-0 is the same as Figure 12, the adversary A prepares every piece of the implementation,

and the challenger simply calls them and passes the inputs to the next implementation as defined
(doing the basic amalgamation).

Game-1 is the same as Game-0 except that the randomness r is uniformly sampled by C.
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Game-2 is the same as Game-1 except that dG
impl

is replaced with dG
spec

.
Note that in Game-0, it corresponds to b = 0, while in Game-2, every implementation of the

algorithm (except input generation) is now the specification, it corresponds to b = 1.
From Theorem 3.1, with a trusted amalgamation, the output from the implementation RG

impl
:=

(RG0
impl

,RG1
impl

,Φ
impl

) is pseudorandom to the adversary A who made RG
impl

. Thus in the security
game defined in Figure 12, we can let the challenger simply generate r uniformly to reach Game-1.

From Lemma 2.2, dG
spec

will be a deterministic algorithm with a public input distribution,
thus dG

impl
would be consistent with dG

spec
with an overwhelming probability when inputs are

sampled according to RG
spec
× IG, thus Game-2 can be reached with only a negligible gap.

Once in Game-2, all components are specification.

Remark B.1. We remark that for this particular attack we assume that the implementation has access
to a public key—this yields an intuitively natural attack against a encryption scheme which permits
full recovery of the message. However, the basic structure of the attack can be adapted to randomized
algorithms in generality.
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C Omitted Proofs

Theorem 3.3. For any randomized algorithm G, consider the specification G
spec

:= (RG
spec

,dG
spec

),
where RG

spec
generates λ = λ(n) bits of uniform randomness and dG

spec
is deterministic. Let (RG0

spec
,RG1

spec
,Φ

spec
)

be the double-split specification of RG
spec

as above. If (1) RG0
spec

(1λ) and RG1
spec

(1λ) output λ uniform
bits; (2) Φ

spec
takes r0 ◦ r1 as input, and outputs r (so it maps strings of length 2k to strings of length k)

(see Fig. 5), then G
spec

is stego-free with a trusted amalgamation (according to Def. A.2 in appendix. A.2).
Here Φ

spec
is modeled as a random oracle, and Φ0

impl
,Φ1

impl
are executed independently.

Proof. The watchdogs will be a combination of the ones in Theorem 3.1 and Lemma 2.2 to guarantee
unpredictability of RGb

impl
and the overwhelming consistency for deterministic algorithms with a

public input distribution. Here dG
spec

is a deterministic algorithm and the output of RG
spec
× IG

would be the input distribution to dG
spec

.
We here only describe briefly about the game changes.
Game-0 is the same as Figure 12, the adversary A prepares every piece of the implementation,

and the challenger simply calls them and passes the inputs to the next implementation as defined
(doing the basic amalgamation).

Game-1 is the same as Game-0 except that the randomness r is uniformly sampled by C.
Game-2 is the same as Game-1 except that dG

impl
is replaced with dG

spec
.

Note that in Game-0, it corresponds to b = 0, while in Game-2, every implementation of the
algorithm (except input generation) is now the specification, it corresponds to b = 1.

From Theorem 3.1, with a trusted amalgamation, the output from the implementation RG
impl

:=
(RG0

impl
,RG1

impl
,Φ

impl
) is pseudorandom to the adversary A who made RG

impl
. Thus in the security

game defined in Figure 12, we can let the challenger simply generate r uniformly to reach Game-1.
From Lemma 2.2, dG

spec
will be a deterministic algorithm with a public input distribution,

thus dG
impl

would be consistent with dG
spec

with an overwhelming probability when inputs are
sampled according to RG

spec
× IG, thus Game-2 can be reached with only a negligible gap.

Once in Game-2, all components are specification.

D Purifying randomness in the standard model

The split-and-amalgamate paradigm proposed in Section 3.2 assumes the specification of the
immunization function Φ

spec
to be modeled as a random oracle. Intuitively, it seems hard to

remove this assumption when the randomness generation is split into only two segments, since
a ppt offline watchdog can guarantee at most a ω(logλ) entropy in the output of each RGb

impl
for

b = 0,1, (and the concrete lower bound of entropy is not even clear). Nevertheless, it is interesting
to consider immunization in the standard model if we are willing to have more than constant
number of components.

A simple approach via multi-splitting. Observe that suppose the randomness generation imple-
mented by the adversary only outputs one bit, the watchdog (who checks whether there is a bit
appears significantly more frequently than the other after drawing certain amount of samples) can
guarantee that the bit only has a negligible bias. If not, suppose the bias for outputting bit value
1 is 1/2 + δ for a noticeable δ, then according to the Chernoff bound, after the watchdog draws
enough samples, he will notice that there are significantly more 1s appear which is abnormal if the
specification is used which outputs a uniform bit.
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With the above observation, we can simply extract one bit from a RG1
impl

from each draw. If we
now split the randomness generation into n copies RG1

impl
, . . . ,RGn

impl
, we can collect n-bits if we

independently draw one bit from each of them.

Security analysis. We now analyze how these n-bits are distributed. Suppose the output distribution

of RGi
impl

is denoted by Di , the user first samples
(di
Di

)
, and outputs only the first bit of di ; each

such bit has bias at most 1/2 + ε, for a negligible function ε. We denote each bit using the random
variable X1, . . . ,Xn. It follows that for any particular value b1, . . . , bn ∈ {0,1}n, as 1 + x

n )n ≤ ex we have

Pr[(X1, . . . ,Xn) = (b1, . . . , bn)] ≤ (1/2 + ε)n ≤ 1
2n
e2nε,

Let Un be the uniform distribution over {0,1}n, and Yn be the distribution of X1 . . .Xn. Recall
that if Yn(x̄) ≤Un(x̄)(1 + t) for all x̄ ∈ {0,1}n, the statistical distance satisfies:

‖Yn −Un‖ =
1
2

∑
x̄

|Yn(x̄)−Un(x̄)| ≤ 1
2

∑
x̄

Un(x̄) · t =
t
2
.

Putting back the value t = e2nε−1, we conclude that the statistical distance between the distribution
of X1 . . .Xn and the uniform distribution over n-bit strings, is no more than 2nε ≤ negl(λ), the
inequality holds because ex − 1 ≤ 2x for x < 1/2. Summarizing above, we have:

Proposition D.1. Suppose the randomness generation specification RG
spec

is defined as (RG1
spec

, . . . ,RGn
spec

),
where each RGi

spec
is supposed to output uniform n bits, and Φ

spec
: {0,1}n2 → {0,1}n simply outputs the

first bit of each n-bit block. Such RG
spec

is stego-free with a trusted amalgamation.

Remark D.1. We keep the immunization function for consistency with the general model. In this simple
multi-splitting, we may not even need Φ

spec
; we can define each RGi

spec
to output only 1 random bit.

A more efficient construction. The above construction is extremely simple, but with a price that
the randomness generation has to be split into n pieces if the output is n-bit long. Note that there
are at least c logn bits entropy (for any constant c ≥ 2) in the output of each RGi

impl
. This comes

from the guarantee of a watchdog that makes O(n2c) queries during the interrogation. Moreover,
the bitstring can be stretched (if it is close to uniform) to a polynomially longer output using a
PRG. 8

We may use more powerful machineries of a strong randomness extractor together with a
pseudorandom generator. The intuition is to first get a short seed and then use the power of
the extractor to bootstrap the randomness generation by a factor of logn since we can get at
least this many uniform bits from the output of each RGi

impl
. After collecting O(nε) bits (for

some small ε), we can apply the PRG to stretch it to O(n) bits. Suppose RG
spec

now is defined as
(RG1

spec
, . . . ,RG`

spec
,Φ

spec
), where ` = nε/ logn+logn for some small ε. We describe the immunization

function Φ
spec

: {0,1}n·`→ {0,1}n below, when inputing r1, . . . , r` (generated by RGi
impl

respectively).

• First, Φ
spec

takes r1, . . . , rlogn and returns the first bit of each ri and obtains a logn-bit uniform
string denoted by s0.

8We remark that here the PRG is just one deterministic algorithm, and it is associated with a public input distribution.
Such PRG can be based on e.g., some fixed hard function. This is in contrast with the (backdoored) PRG that requires
some randomly generated public parameters P P , and has the danger of containing backdoors in P P [DGG+15, RTYZ15].
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• Then, Φ
spec

applies a seeded strong extractor Ext to
rlogn+1, . . . , r` respectively using s0 as a seed. It obtains ` logn = nε uniform bits, (logn bits
from each of them), which are denoted by s1.

• Last, we apply a pseudorandom generator PRG on s1 to stretch it to n bits, and output those
as the final random coin.

Security analysis. Let us first assume Φ
spec

is not subverted. In the first step, s0 would be close to
uniform due to Proposition D.1. In the second step, since Ext is a strong extractor, the output of
Ext(s0, ri) is close to uniform and independent of s0, via the simple union bound, s1 is also negligibly
close to uniform. Last step follows easily because of the PRG property.

Next, observe that although Φ
spec

here is a complex function, it is still a deterministic algorithm,
and it is with a public input distribution. Following Lemma 2.2, the watchdog can guarantee that
the subverted implementation Φ

impl
will be consistent with the specification with an overwhelming

probability when the input is sampled from RG1
impl
× . . .×RG`

impl
.

Proposition D.2. There exists a specification for the randomness generation that outputs n bits is
stego-free with the trusted amalgamation and O(nε/ logn) segments for any constant ε.

E Further Applications

We show above how we can salvage randomized algorithms, in particular randomized encryption
schemes, when they are under subversion. While the technique we develop is used to generically
eliminate subliminal channels which has its own interest. In this section, we give two more
examples to illustrate how the techniques can be applied to broader settings. We first show how to
circumvent the impossibility result of [DGG+15] for publicly immunizing the output of a potentially
subverted PRG (called backdoored PRG). Then we show how our decomposition-then-amalgamate
paradigm can be used to simulate an intuitively more powerful semi-private model proposed in
[DGG+15]. In such a model, there is a uniformly random string r generated by a trusted party and r
is made public only after the adversary provides the implementations. This will motivate follow-up
works to consider the power of the semi-private model, then realize it using our paradigm.

Public immunization of output of a backdoored PRG. In a backdoored PRG, the stretch algorithm
takes a random seed and also a public key (generated by the adversary) as inputs. The goal of
the adversary is to ensure that the output of the PRG looks uniform to everyone except herself by
providing a malicious public key. In particular, it captured the notorious subversion attack on
the Dual_EC PRG. Unfortunately, as shown in [DGG+15], publicly immunizing the outputs of the
backdoored PRG using a random oracle is impossible, i.e., the adversary can still distinguish the
immunized string from a random string. The reason is similar to the attack shown in Section 3.1
since the subverted stretch algorithm can make random oracle queries during the execution. Russell
et al. proposed a way to sidestep this impossibility by randomizing the public key [RTYZ15] with
the caveat that the specification of the key generation should output uniform group elements. As
pointed out by [DGG+15], immunizing the output of the PRG is preferable as one does not have to
pay particular attention to the key/parameter generation.

It is not hard to see our split-and-amalgamate paradigm can be applied here to immunize the
output of a backdoored PRG. We present a simplified version that the PRG is stateless, it is not hard
generalize it to allow iterations to capture the Dual_EC PRG, and we defer that to the full version.
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Moreover, if we allow to split into more pieces, we can immunize the output in the standard model.
Even in the semi-private model with a trusted randomness, the known result uses either random
oracle or UCE, neither of which can be explicitly instantiated so far.

Φ
spec

r
G0
spec

G1
spec

pk
s1

pk
s0

r1

r0

Figure 16: Immunizing backdoored PRG.

Security analysis. It is almost the same as the analysis of Theorem 3.1, if we can show (i) For each

sb, it is unpredictable to G1−b
impl

; (ii) G
impl

(s0)||G
impl

(s1) is unpredictable to the adversary who makes
the implementations. This is easy to see since the watchdog can check the entropy contained in the
output r0, r1 respectively by feeding PRG with random seed and pk. We defer the proof to the full
version.

Simulating the semi-private model. Semi-private model was introduced in [DGG+15], where a
uniformly random string r is generated by a trusted party and r is made public only after the big
brother provides the implementations. It was shown in [DGG+15] that in such a model, one can
bypass the impossibility of public immunization of backdoored PRG output. We may expect more
interesting results in this model due to the power of this extra trusted randomness.

Using our technique, we could ask the adversary to provide a stego-free specification of
randomness generation, for example, we may ask the adversary to implement RG0

impl
,RG1

impl
,Φ

impl
,

and the user can use them to generate bits that look uniform even to the adversary. In this way, we
can simulate the semi-private model.

36


	Introduction
	Definitions and Models
	Eliminating Subliminal Channels in Randomized Algorithms
	Impossibility of publicly immunizing a single random source
	Purifying randomness via double splitting
	Stego-free specifications for randomized algorithms; a general transformation

	Subversion-Resistant Encryption
	Subversion-resistant symmetric encryption
	Public key encryption preserving IND-CPA security under subversion

	Omitted Definitions
	Stego-free randomness generation.
	Stego-free randomized algorithms with public input distributions
	Subversion resistant symmetric-key encryption with long messages
	Subversion resistant public key encryption with long messages

	An attack on single-source randomness primitives
	Omitted Proofs
	Purifying randomness in the standard model
	Further Applications

