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Abstract. GOST 28147 is a 256-bit key 64-bit block cipher developed
by the USSR, later adopted by the Russian government as a national
standard. In 2010, GOST was suggested to be included in ISO-18033,
but was rejected due to weaknesses found in its key schedule.
In 2015, a new version of GOST was suggested with the purpose of
mitigating such attacks. In this paper, we show that similar weaknesses
exist in the new version as well. More specifically, we present a fixed-point
attack on the full cipher with time complexity of 2237 encryptions. We
also present reflection which improves on exhaustive search by a factor
of 2e attack with time complexity of 2192 for a key that is chosen from
a class of 2224 weak keys. Finally, we discuss an impossible reflection
attack and several possible related-key attacks.
Keywords: Block ciphers, cryptanalysis, GOST, GOST2, reflection at-
tack, fixed-point attack, related-key attack, impossible reflection attack

1 Introduction

GOST [17] is a block cipher designed during the 1970’s by the soviet union as an
alternative to the American DES [20]. Similarly to DES it has a 64-bit Feistel
structure, employing 8 S-boxes and is intended for civilian use. Unlike DES,
it has a significantly larger key (256 bits instead of just 56), more rounds (32
compared with DES’ 16), and it uses different sets of S-boxes. What is unique
about GOST is that the S-boxes are not an integral part of the standard, and in
fact, they were kept secret, which allowed the government to give different sets
of S-boxes to different users.

After the USSR had been dissolved, GOST was accepted as a Russian stan-
dard in [17], and was proposed to be included in ISO-18033. At the time, GOST
seemed like a natural candidate to be included in ISO-18033. As was shown
in [16], it can be implemented with only 651–1017 GE, depending on the choice
of S-boxes when the key is fixed. From a security point of view, although there
have been several attacks such as [13] in the related-key model, the only attack
on the full GOST in the single key model was published in 2008 in [12], and was
limited to a weak-key class.

However, as a result of the renewed interest, Isobe presented in [11] an im-
provement to [12] that eliminates the weak-key assumption resulting in an attack
with time complexity of 2224. A year later, as the attack was improved by Dinur,
Dunkelman, and Shamir in [8], and as new attacks were presented by Courtois
in [3], the idea to standardize GOST was rejected.



In 2015, the Technical Committee for Standardization (TC 26) added a new
block cipher with a 128-bit block and a 256-bit key to the standard under the
name Kuznyechik (Russian for Grasshopper) [10]. This cipher was later published
in RFC-7801, and was recently suggested to be included in ISO/IEC 18033-3.

The new 128-bit cipher does not obsolete the old 64-bit cipher,1 and in fact,
authors from TC 26 also published in 2015 a modified version of the 64-bit cipher
that supposedly resists previous attacks [9]. The modified version differs from
the original GOST in two aspects: (i) it has a different key schedule, designed
to avoid previous attacks and, (ii) it makes an explicit choice for the S-boxes.

In this paper we show that the modified version is vulnerable to the same
kind of attacks as the original one. We adapt attacks from the original GOST
to the new version. This results in three types of attacks. First, we present a
reflection attack on a weak-key class of size 2224. For the cases where the key is
not one of these weak keys, we present an impossible reflection attack with time
complexity of 2254.34. We then present a fixed-point attack on the full cipher
applicable to all keys with time complexity of 2237. These attacks, which are
the main contribution of this paper, are presented in Table 1. Finally, we briefly
discuss related-key differential attacks applicable to GOST2.

Type of attack Time Data Memory No. of keys Section
(bytes)

Fixed point 2237 264KP 2138.15 All 4.2

Reflection 2192 232KP 268.58 2224 4.1

Impossible reflection 2254.34 263CP 2166.58 2256 − 2224 A
Impossible reflection 2255.34 264KP 2166.58 2256 − 2224 A
KP Known plaintexts
CP Chosen plaintexts

Table 1. Single-key Attacks on the Full GOST2

It is important to stress that although all these attacks require less effort than
exhaustive search, their complexities are still impractical to be implemented.
However, unlike the GOST block cipher which has withstood cryptanalysis for
two decades, the modified GOST is a new cipher and should be considered
carefully before being used.2

This paper is organized as follows: in Section 2 we present the GOST block
cipher, and the modified version which we refer to as GOST2. Then, in Section 3
we discuss previous work relating to GOST. In Section 4 we present our attacks

1The 64-bit cipher was renamed “Magma” to reflect the change
2A previous version of this paper suggested that GOST2 would be a candidate

for standardization, either inside Russia, or through ISO. After uploading the paper to
ePrint, the authors were contacted by Grigory Marshalko who confirmed the correctness
of our results, and clarified that there are no plans to standardize GOST2 [14].
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for GOST2 and discuss a previously known attack. We summarize the paper in
Section 5.

2 The GOST and GOST2 Block Ciphers

The GOST block cipher has a 64-bit Feistel structure using a 256-bit key. The
64-bit block is treated as two words of 32-bit each which are referred to as the
“left word” and the “right word”. The state in round i is denoted by Si = (Li, Ri)
where Li and Ri are the left and right words entering round i, respectively. In
each round, a 32-bit to 32-bit round function F is applied to the right word and
the round’s subkey Ki. The output of F is XORed to the left input word, and
the words are swapped. We get that

Ri+1 = F(Ri,Ki)⊕ Li

Li+1 = Ri

where R0 is the right half of the plaintext, L0 is the left half of it, Ki is the ith

round subkey, and ⊕ is the XOR operation. We say that Si+1 ← RKi(Si) (resp.,
Si−1 ← R−1Ki

(Si)) is the 1-round encryption (resp., decryption) of Si with the

appropriate subkey. In the sequel we also use � to denote addition modulo 232,
|| for concatenation of strings, ≪ j to denote left cyclic rotation by j bits, and
X[i–j] to denote bits i to j of X.

Inside the round function, the input is mixed with the round’s 32-bit subkey
Ki using modular addition. Then, it is split into 8 chunks of 4 bits entering
the eight S-boxes. Finally, the output of the S-boxes is left rotated by 11 bits.
This is repeated 32 times, for rounds numbered 0–31, and the output of the last
round is used as the ciphertext. A schematic view of 1-round GOST is depicted
in Figure 1.

Li Ri

Li�1 Ri�1

�
Ki

S1

S2

S3

S4

S5

S6

S7

S8

≪ 11
À

1

Fig. 1. One round of GOST. The symbols �,⊕, and≪j are used for modular addition,
bitwise addition, and cyclic left rotation by j bits, respectively.

The differences between the original version of GOST and the modified ver-
sion are only in the key schedule and the choice of S-boxes. In both versions,
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the key schedule takes the 256-bit key K and splits it into 8 subkeys of 32 bits
denoted K0 to K7.

In the original GOST, the first 24 rounds used the subkeys in their cyclic
order (i.e., K0 = K8 = K16 = K0, K1 = K9 = K17 = K1, etc.). In the final 8
rounds (i.e., rounds 24–31), the subkeys were used in a reverse order such that
K7 was used in round 24, K6 was used in round 25, etc. In the modified version,
the key schedule has changed, but the keys are still used in an ascending cyclic
order in rounds 0–7, 8–15, and 16–23, and in a descending cyclic order in rounds
24–31. The order of the subkeys for both versions is presented in Table 2. From
here on, we refer to the modified version of GOST presented in [9] as GOST2.
Also, whenever we want to stress that Kj is used in round i (i.e., Kj = Ki), we
write it as Kj

i .

Round 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Subkey (GOST) K0 K1 K2 K3 K4 K5 K6 K7 K0 K1 K2 K3 K4 K5 K6 K7

Subkey (GOST2) K0 K1 K2 K3 K4 K5 K6 K7 K3 K4 K5 K6 K7 K0 K1 K2

Round 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Subkey (GOST) K0 K1 K2 K3 K4 K5 K6 K7 K7 K6 K5 K4 K3 K2 K1 K0

Subkey (GOST2) K5 K6 K7 K0 K1 K2 K3 K4 K6 K5 K4 K3 K2 K1 K0 K7

Table 2. The order of subkeys in GOST and GOST2

Another change made to the design of GOST is the proposal of concrete S-
boxes to be used in the standard. The designers suggested to use the permutation
Π1 as the first 4 S-boxes, and the permutation Π2 as the other 4 S-boxes.
Both S-boxes are presented in Table 3. We note that although our complexity
analyses use the fact that the S-boxes are bijective in order to derive average
case complexities, we do not exploit possible weaknesses in these S-boxes. We
refer the interested reader to [9] for the rationale behind the choice of S-boxes.

Input 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

Π1 6x Ax Fx 4x 3x 8x 5x 0x Dx Ex 7x 1x 2x Bx Cx 9x

Π2 Ex 0x 8x 1x 7x Ax 5x 6x Dx 2x 4x 9x 3x Fx Cx Bx

Table 3. The proposed S-boxes for GOST2

3 Previous Work

Several works such as [1, 13, 19] were able to attack reduced versions of GOST,
or attack the cipher in the related-key model. The first attack in the single key
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model on the full cipher is due to Kara in [12]. Kara presented a reflection attack
on a weak-key class of size 2224, using 232 chosen plaintexts in 2192 time.

Kara’s attack was improved by Isobe in [11]. Isobe was able to eliminate the
weak-key assumption, presenting an attack using 2224 time, 264 memory, and
232 known plaintexts. Another improvement was made a year later by Dinur,
Dunkelman and Shamir in [8] where a new fixed-point property was presented.
They further presented a new attack algorithm that can use either this property
or Isobe’s reflection property, and several trade-offs for the attack complexities,
allowing the adversary to optimize for time, memory, or data complexities.

An extensive collection of structural attacks on GOST can be found in the
work of Courtois [2]. In addition, Courtois also presented a differential attack in
the single key setting using 2179 time in [6], which is in fact a shorter version
of [4].

Other attacks for GOST are either inferior in their complexities, attack less
rounds, or work in the related-key model. The single key attacks which are
relevant to this paper are presented in Table 4. We stress that none of these
attacks is applicable to GOST2, and that to the best of our knowledge, we are
the first to attack this new cipher.

Reference Data Memory Time Type S-boxes

[11] 232CP 264 2224 Reflection Bijective

[5] 264KP 264 2248 Algebraic Russian
Banks [15]

[7] 264KP 264 2226 Differential Russian
Banks [15]

[8] 264KP 236 2192 fixed point any

[8] 264KP 219 2204 fixed point any

[8] 232KP 236 2224 Reflection any

[8] 232KP 219 2236 Reflection any
KP Known plaintexts
CP Chosen plaintexts

Table 4. Single-key Attacks on the Full GOST

4 Attacking the Modified Version of GOST

In this section, we show how to adapt previous attacks against GOST to GOST2.
This shows that GOST2 fails to deter the exact attacks it was supposed to
avoid, thus casting doubt on its design methodology, and most notably on its
key schedule.

We start by discussing some properties of Feistel structures. The first of which
is the reflection property [12]. A reflection point is a state S = (L,R) such that
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L = R. We use the following lemma which is a well-known property of Feistel
networks:

Lemma 1. if S is a reflection point, then for any subkey k, Rk(S) = R−1k (S).

Lemma 1 leads to the following corollary:

Corollary 1. if S is a reflection point, then for any sequence of subkeys Ki,
Ki+1, . . . ,Ki+j, it holds that

RKi
(RKi+1

(. . . (RKi+j
(S)))) = R−1Ki

(R−1Ki+1
(. . . (R−1Ki+j

(S)))).

We use Corollary 1 to present in Section 4.1 reflection attacks for a weak-key
class of size 2224 with time complexity of 2161 using 264 known plaintexts and
an attack with time complexity of 2192 using 232 known plaintexts. In Appendix
A we present a complementary attack, i.e., an attack that works when the key
is chosen among the other 2256 − 2224 keys.

In Section 4.2 we present a fixed-point attack on the full GOST2 with time
complexity 2237. A fixed point is an intermediate state S such that

S = RKi
(RKi+1

(. . . (RKi+j
(S))))

for some sequence of keys Ki, . . . ,Ki+j used in rounds i to i+ j. As we can see
from Table 2, rounds 10–15 use the same keys as rounds 16–21. This leads to
the following observation used in Section 4.2:

Observation 1 If S10 is a fixed point with respect to rounds 10–15 (i.e., S10 =
S16), then S10 = S16 = S22.

We conclude by briefly discussing several related-key differential attacks, and
their effect on the security of GOST2.

4.1 A Reflection Attack for a Weak-key Class of GOST2

In this attack, we make use of a reflection point in the intermediate state. As
can be seen from Table 2, the order of keys in rounds 18–31 is:

K7
18,K

0
19,K

1
20,K

2
21,K

3
22,K

4
23,K

6
24,K

5
25,K

4
26,K

3
27,K

2
28,K

1
29,K

0
30,K

7
31.

We assume that the key belongs to a weak-key class where K5
24 = K6

25.3 Then, if
the intermediate state before round 25 (i.e., S25) is a reflection point, we get due
to Corollary 1 that C = S32 = S18, and thus the number of effective encryption
rounds is 18 rather than 32. The probability of any state in GOST2 to be a
reflection point is 2−32, which means that an adversary observing 232 plaintexts
should encounter on average one reflection point in S25.

3In Appendix A we show how to mount an impossible reflection attack when K5
24 6=

K6
25.
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P Rounds 0–2

K0,K1,K2

K0 K1,K2

S3

S3
Rounds 3–12

K3, . . . ,K12

K3,K4, . . . ,K7

S13
Rounds 13–17

K13, . . . ,K17
C

K0,K1,K2,K5 “ K6

S13

Rounds 18–24

K18, . . . ,K24

L25 “ R25

S25
Rounds 25–31

K25, . . . ,K31

C

1

Fig. 2. A schematic description of the reflection attack.

The description of the attack is as follows (cf. Figure 2): The adversary
observes 232 pairs of plaintexts and ciphertexts denoted by (Pi, Ci). Then, she
uses an outer loop and two inner loops. In the outer loop she iterates over the
values of S3 and K5

16 = K6
17. Then, in the first inner loop, she iterates over the

known plaintexts and ciphertext pairs (Pi, Ci), and over all possible values for
K0. She computes S1 = RK0

(Pi) and uses S3 to retrieve K1 and K2 which can
be computed through the 2-round Feistel network without additional complexity
by solving the equations

L3 ⊕ L1 = F (R1,K1)

and
R3 ⊕R1 = F (L3,K2)

with respect to known R3 and L3.4 She also obtains S13 = R−1K13
(R−1K14

(R−1K15
(

R−1K16
(R−1K17

(Ci = S18))))) using the newly obtained K2 = K15 and K1 = K14

and the interim K0 = K13,K16 = K17. Finally, she stores in T [S13] the tuple
(Pi,K

0
0 ,K

1
1 ,K

2
2 ).

In the second inner loop, which is run sequentially after the previous one,
she iterates over all possible values of K3

3 ,K
4
4 , and K7

7 for the encryption of S3

through rounds 3–12 to obtain S13. Then, she fetches the tuple (Pi,K0,K1,K2)
from T [S13] (note that for every S13 there is one such tuple on average). At this
point, the adversary holds a candidate keyK = (K0,K1,K2,K3,K4,K5,K6,K7)
which can be tested using a trial encryption. A pseudo-code describing the attack
is presented in Algorithm 1.

The data complexity of the attack is 232 known plaintexts, suggesting that
the reflection property holds for one plaintext on average. The outer loop iterates
over 264 possible values for S3 and over 232 possible values for K5

16 = K6
17 making

its time complexity 296. The first inner loop iterates over the 232 known pairs
of plaintexts and ciphertexts, and over 232 candidates for K0, making its time
complexity 264. The second inner loop iterates over 232 candidates for each of
the values of K3,K4, and K7, i.e., it runs 296 times. The total time complexity
is therefore 296 · (264 + 296) ≈ 2192. The size of the table T is 264 lines of 192
bits, resulting in memory complexity of 268.58 bytes.5

4When the S-box layer is bijective K1 = S−1((L1 ⊕ L3) ≫ 11) � R1) and K2 =
S−1((R1 ⊕R3)≫ 11)� L3.

5The memory complexity can be reduced to 267.58 by storing only Pi and K0 in the
first inner loop and recomputing K1 and K2 in the second inner one.

7



Algorithm 1 Pseudocode of the attack for GOST2.

Input: 232 pairs of known plaintexts and ciphertexts - {Pi, Ci}.

for S3,K
5
16 = K6

17 do {Outer loop}
for (Pi, Ci),K0 do {Inner loop 1}
K1,K2 ← Solve(Pi, S3,K0)
S13 ← R−1

K13
(R−1

K14
(R−1

K15
(R−1

K16
(R−1

K17
(Ci = S18)))))

T [S13]← (Pi,K0,K1,K2)
end for
for K3,K4,K7 do {Inner loop 2}
S13 ← RK12(RK11(RK10(RK9(RK8(RK7(RK6(RK5(RK4(RK3(S3))))))))))
(Pi,K0,K1,K2)← T [S13]
TRY(K0,K1,K2,K3,K4,K5,K6,K7)

end for
end for

4.2 An Attack on the Full GOST2

In this section we show how to mount a fixed-point attack against GOST2 using
Observation 1. The probability that S10 is a fixed point with respect to rounds
10–15 is 2−64 suggesting that an adversary would observe one such message
on average after encrypting 264 plaintexts (i.e., the entire codebook). A second
observation is that knowing the input and output to a 3-round Feistel network, an
adversary can iterate over some of the bits in the first and last rounds and check if
they match in the middle round to filter out wrong keys. In this attack, we guess
the 12 least significant bits of K0 and K2, which are denoted by K0[0–11] and
K2[0–11], respectively, and match bits 11–22 in R1. This gives 212 · 212 · 2−12 =
212 suggestions for 24 bits of the key. By additionally guessing the carry bit
in position 11, the adversary can compute key bits 12–19 in K1 denoted by
K1[12–19].

P Rounds 0–2

K0,K1,K2

K0,K1,K2
P S3

S3

S3
Rounds 3–9

K3, . . . ,K9

K3, . . . ,K7

S10

X
Rounds 10–15

K10, . . . ,K15
S16

X

K0r0-11s,K2r0-11s
K1r12-19s

X X X

Rounds 16–21

K16, . . . ,K21
S22

X
Rounds 22–27

K22, . . . ,K28

K3, . . . ,K7

Rounds 28–31

K28, . . . ,K31

C

K7, . . . ,K2
CS28

S28

1

Fig. 3. A schematic description of the fixed-point attack.

The attack procedure is as follows (cf. Figure 3): In the outer loop, the
adversary iterates over K7 and K0[0–11] and K2[0–11], and K1[11]. In the first
inner loop she iterates over the 264 pairs of plaintexts and ciphertexts, and the
remaining bits of K0,K1, and K2. She decrypts Ci through rounds 31–28 to
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obtain S28 and encrypts Pi through rounds 0–2 to obtain S3, then uses a table
T to store in row S3||S28 the subkey values K0

28[12–31],K1
29[0–10,12–31], and

K2
30[12–31] supposedly leading from S3 to S28.

In the second inner loop she iterates over all possible S10 and all possi-
ble K5, K6 to encrypt S10 through rounds 10–12 and obtain S13. From S13

and S16 = S10 she check if the values of K0[0–11] and K2[0–11] in the outer
loop lead from S13 to S16. For the values surviving this filter, she obtains
K1[12–19]. Then, by iterating over K3 and K4 she decrypts S10 through rounds
9–3 to obtain S3 and encrypts S22 = S10 through rounds 22–28 to obtain S28.
Using the interim S3 and S28 she fetches 27 possible suggestions from T for
K0

28[12–31],K1
29[0–10,12–31],K2

30[12–31], on average. She uses K1[12–19] to fur-
ther discard wrong values and tries the remaining keys, i.e., a single key on
average.

The attack uses 264 known plaintexts and it builds a table of size 264+71+3.15 =
2138.15 bytes. The time complexity is dominated by the total number of itera-
tions. The number of iterations in the outer loop is 232+25. The time it takes
to build the table in the first phase is 264+71. The second phase takes 264+64

iterations for the outer part, which discards 2−12 of the keys. The inner part
of the second phase, which is executed for the surviving keys requires another
264 iterations. The probability that a row in the table matches the 2128 bits of
S3 and S28 that were obtained in this part is (2−64)2 = 2−128, i.e., each call
to the table fetches 27 possible keys, which are filtered according to K1[12–19],
leaving a single key to test. The total time complexity of the attack is then
232+25 · (264+71 + 264+64 · 2−12 · 264 ≈ 2237). A pseudocode of the attack proce-
dure is presented in Algorithm 2.

4.3 Related-key Differential Properties in GOST2 and their Effect
on the Security of GOST2

An interesting omission by the authors of [9] is mitigation against related-key
differential attacks. Indeed, in their introduction they discuss the works in [8,11],
but not any of the works in [7, 13, 18]. It seems that some attacks were not
addressed in the design of GOST2, and that the cipher is still vulnerable to
these attacks. In this subsection we mention three possible related-key differential
attack.

A 32-round Related-key Differential Distinguisher with Probability
1 (A Complemention Property) Assume two related keys differing in the
most significant bit of each of the subkeys. A pair of plaintexts also differing
in the most significant bits of the two words will result in a pair of ciphertexts
differing in the same bits with probability 1. This characteristic can be used
to distinguish the full GOST2 from a random permutation in the related-key
model, with probability 1 using only 2 chosen plaintexts. It can also be used to
speed up exhaustive search on the full GOST2 by a factor of 2. Moreover, using
reduced-round variants of this observation can speed up all of our attacks by a
factor of 2.
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Algorithm 2 Pseudocode of the attack for GOST2.

Input: 264 pairs of known plaintexts and ciphertexts.

for K7,K0[0–11],K2[0–11],K1[11] do {Outer loop}
for (Pi, Ci),K

0
28[12–31],K1

29[0–10,12–31],K2
30[12–31] do {First phase}

S28 ← R−1
K28

(R−1
K29

(R−1
K30

(R−1
K31

(Ci))))
S3 ← RK2(RK1(RK0(Pi)))
T [S3||S28]← (K0

28[12–31],K1
29[0–10,12–31],K2

30[12–31])
end for
for S10 = S16 = S22,K

5
5 ,K

6
6 do {Second phase - outer part}

S13 ← RK12(RK11(RK10(S10)))
if FILTER(S16, S13,K0[0–11],K2[0–11]) == TRUE then

for K3
3 ,K

4
4 do {Second phase - inner part}

(K0[0–11],K1[12–19],K2[0–11])← SOLVE(S16, S13,K0[0–11],K2[0–11],K1[11])
S3 ← R−1

K3
(R−1

K4
(R−1

K5
(R−1

K6
(R−1

K7
(R−1

K8
(R−1

K9
(S10)))))))

S28 ← RK27(RK26(RK25(RK24(RK23(RK22(S22))))))
(K0[12–31],K1[0–10,12–31],K2[12–31])← T [S3||S28]
FILTER(K1[12-19])
TRY(K0,K1,K2,K3,K4,K5,K6,K7)

end for
end if

end for
end for

A 16-round Related-key Differential Distinguisher with Probability 1
Assume that a pair of plaintexts (P, P ′) whose intermediate states (S8, S

′
8) differ

only in bit 31 (i.e., the most significant bit of the right half). Then, a pair of
related keys having a difference in the most significant bit of the subkeys indexed
by an odd number (i.e., K1,K3,K5, and K7), leads to the same difference before
round 24 with probability 1. We can extend this differential characteristic 4
rounds backwards and 3 rounds forward with probability ( 3

4 )4. This gives a
truncated input difference with 8 known bits in S4 leading to a truncated output
difference with 28 known bits in S27. By guessing K0,K1,K2,K3 and K7 we can
bridge the distance between the plaintext and S4, and between the ciphertext
and S27. The attack can recover the full key with 236 chosen plaintexts, using
238 bytes of memory, in 2226 time, and 2 related keys.

A 30-round Related-key Differential Distinguisher with Probability
2−30 As was shown by Ko et al. in [13], a difference in the second most significant
bit can be canceled by a related-key having a difference in the same position with
probability 1

2 . Ko et al. also show how to concatenate this transition to obtain
a related-key differential characteristic for 30 rounds with probability 230. We
observe that the same property holds also for GOST2, and that the the key
recovery attack of [13] can be adapted in a straightforward way.

10



5 Summary

In this paper we discussed the security of GOST2, a variant of GOST aimed to
mitigate previous attacks against the cipher. We showed that the proposed fixes
are insufficient in resisting these attacks, which rely on the key schedule, and
that they can be adapted to the new version.

We presented a reflection attack for a weak-key class of 2224 keys using 2192

full GOST2 encryptions, 232 known plaintexts, and 268.58 bytes of memory. We
also presented a fixed-point attack on the full cipher applicable to all keys using
2237 full GOST2 encryptions, 264 known plaintexts, and 2138.15 bytes of memory.
Finally, we discussed possible related-key differential attacks and showed that
related-key attack on GOST are applicable to GOST2.

To conclude, it seems that the change in the key schedule was insufficient to
offer 256-bit security by the new cipher. We encourage the designers to consider a
better key schedule, possibly with rotations, XORs, or round dependent constant
additions.
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A An Impossible Reflection Attack for the Full GOST2

In this section we present an impossible reflection attack on the full GOST2. This
attack is a complementary attack to the one presented in Section 4.1 and uses
the fact that K5 6= K6. When this happens, the event S18 = C is impossible,
as it implies that K6

24 = K5
25 (for any bijective S-boxes such as π1 and π2 that

were suggested in [9]).
The attack uses an outer loop and two sequential inner loops. In the outer

loop the adversary iterates over all K5 and K6 6= K5. In the first inner loop,
she iterates over all possible S3, and over all pairs (Pi, Ci) of plaintexts and
ciphertexts, to find the values K0,K1, and K2 leading from the Pi to S3. Then,
she assumes towards contradiction that S18 = Ci and decrypts S18 = Ci back
to S13. She stores in a temporary table T1 the values K0

0 ,K
1
1 , and K2

2 indexed
by S3||S18.

In the second inner loop the adversary iterates over S3,K
3
3 ,K

4
4 , and K7

7 , and
tries to encrypt S3 to S13. If S3||S13 is in the table, the keys associated with their
entry along with the values of the iterators (i.e., the current K3,K4,K5,K6, and
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Algorithm 3 Pseudocode of the improved impossible reflection attack for
GOST2.
Input: 264 pairs of known plaintexts and ciphertexts.
{Outer loop}
for K5,K6 do

for S3, (Pi, Ci) do {Inner loop 1}
for K2 do
S2 ← R−1

K2
(S3)

T [L2]← K2

end for
for K0 do
S1 ← RK0(Pi)
K2 ← T [R1]
K1 ← SOLVE(Pi, S3,K0,K2)
S18 ← Ci

S13 ← R−1
K0

(R−1
K1

(R−1
K2

(R−1
K5

(R−1
K6

(S18)))))
T1[S3||S13]← (K0,K1,K2)

end for
end for
for S3,K3,K4,K7 do {Inner loop 2}
S13 ← RK3(RK4(RK5(RK6(RK7(RK3(RK4(RK5(RK6(RK7(S3))))))))))
(K0,K1,K2)← T1[S3||S13]
Discard(K0,K1,K2,K3,K4,K5,K6,K7)

end for
for all undiscarded keys do

TRY(K0,K1,K2,K3,K4,K5,K6,K7)
end for

end for

K7) are discarded as impossible keys. Finally, the adversary tries all remaining
keys to find the right one.

The probability that a key is impossible is e−1 and thus, the number of
impossible keys is e−1 · 2256 ≈ 2254.56. We can reduce the number of possible
keys by another factor of 2 by using GOST2’s complementing property, leading
to a time complexity of 2−1 · (1−e−1) ·2256 ≈ 2254.33. The data complexity is 264

known plaintexts (263 chosen plaintexts when using the complement property),
and the memory complexity is (1− e−1 · 2192).

The memory complexity of this attack can be slightly improved to 2160 by
also building a table of size 2160 in the first loop, storing for each pair of plaintext
and ciphertext, all possible S3 and then iterate over S3 again in the second step.
A full description of the attack can be found in Algorithm 3.
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