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Abstract. Position based cryptography (PBC), proposed in the seminal work of Chandran, Goyal,
Moriarty, and Ostrovsky (SIAM J. Computing, 2014), aims at constructing cryptographic schemes in
which the identity of the user is his geographic position. Chandran et al. construct PBC schemes for
secure positioning and position-based key agreement in the bounded-storage model (Maurer, J. Cryptology,
1992). Apart from bounded memory, their security proofs need a strong additional restriction on the
power of the adversary: he cannot compute joint functions of his inputs. Removing this assumption is
left as an open problem.
We show that an answer to this question would resolve a long standing open problem in multiparty
communication complexity: finding a function that is hard to compute with low communication
complexity in the simultaneous message model, but easy to compute in the fully adaptive model.
On a more positive side: we also show some implications in the other direction, i.e.: we prove that
lower bounds on the communication complexity of certain multiparty problems imply existence of PBC
primitives. Using this result we then show two attractive ways to “bypass” our hardness result: the
first uses the random oracle model, the second weakens the locality requirement in the bounded-storage
model to online computability. The random oracle construction is arguably one of the simplest proposed
so far in this area. Our results indicate that constructing improved provably secure protocols for PBC
requires a better understanding of multiparty communication complexity. This is yet another example
where negative results in one area (in our case: lower bounds in multiparty communication complexity)
can be used to construct secure cryptographic schemes.

1 Introduction

The standard way to identify participants in cryptographic protocols is to check their knowledge of some
secret data (like a password or a key), to verify some biometric information, or the possession of some
hardware tokens. A new intriguing idea, known under the name of position-based cryptography (PBC) [16]
is to construct algorithms in which the participating parties are identified by their geographic position. For
example, consider the setting where we want to grant access to a server only to the personnel within some
military base. A position-based system could be used to give access to every user that is physically located
within the base, but deny it to everybody outside. There are many other examples one can think of where
position-based authentication would be useful. Say, a protocol for sending confidential documents to everyone
who is present in some conference room, granting WiFi access to people within some building, or checking if a
food delivery was indeed ordered from some physical address. Of course, such protocols can be combined with
other means of authentication, and hence they can also serve for providing an additional layer of security. See
[16] for more on potential applications of this concept.

PBC protocols are typically based on the physical characteristics of wireless communication channels;
concretely, they are based on the fact that electronic signals are traveling at the speed of light, denoted c
(and hence traveling from point Â to B̂ takes time ‖ÂB̂‖/c, where ‖·‖ denotes the length of the segment
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ÂB̂). Thus, if a verifier V sends a message at time T and receives a reply from a prover P within time T ′,
the verifier can be sure that this reply was sent by a machine that is positioned at distance no more than
c · (T ′ − T )/2. A natural idea would be to exploit this fact, and use some standard trilateration techniques
(like the one used in the GPS system) by having a group of verifiers V1, . . . ,Vn positioned in space and
letting them jointly verify the distance from the prover. Unfortunately, as shown by Chandran et al. [16], the
problem of designing PBC protocols is harder than it may seem at the first sight. In fact, they show that in
the so-called vanilla model (i.e. without any additional assumptions), PBC is impossible: There exists an

adversarial strategy which places devices around some point Â, and these devices can jointly convince the
verifiers in any PBC protocol that they are at point Â, thus breaking the scheme. One way to get around
this would be to restrict the number of adversary’s devices (as the number of devices required in their attack
is as large as the number of the verifiers used in the protocol). This however is not very realistic, as deploying
several adversarial devices is usually easy in practice, since modern wireless devices are cheap and small.

Chandran et al. is use Maurer’s bounded-storage model (BSM) [26], studied in a number of papers,
including [3,11,19,36,25,27], the bounded-retrieval model (BRM) is a closely related variant of the BSM
[17,13,20]. In this model, it is assumed that the users of cryptographic protocols have short time access to
a long random string X that is so large that it cannot be stored by the adversary in its entirety. The only
thing that the adversary can do is to compute and store some function adv on X (where |adv(X)| ≤ ξ|X|,
for a constant 0 ≤ ξ � 1). On the other hand, the honest parties of a protocol should be only required to
access small parts of X in order to complete the protocol. The way this model is used in [16] is as follows: it
is assumed that there is a group of verifiers Vi positioned in space. Suppose that a prover P claims to be at
some position P̂ . Each of the verifiers broadcasts a long string Xi in such a way that all the Xi’s arrive at P̂
at the same time T . When this happens, the prover computes some function f on the Xi’s, and takes some
actions that depend on the computed value (e.g. sends the computed value back to the verifiers in order to

prove that he is in point P̂). The function f should be very efficiently computable. In particular, to compute
it one should only have to access a small fraction of the Xi’s [16].

In this model Chandran et al. construct a positioning protocol, where a prover convinces the verifiers that
he is physically at some point P̂. In practice a protocol like this is not very useful as a standalone primitive,
since it comes with no guarantee that any future communication will be happening with the machine that is
indeed in P̂ (due to man-in-the-middle attacks). Chandran et al. also construct a more advanced primitive,
called a position-based key-agreement protocol. Here the final output of the honest parties is a key K which is
not known to a potential adversary. Both the positioning and the position-based key agreement protocols
have a very simple structure (see Sect. 2.3). Namely, in case of the positioning protocol the prover just sends
back f(X1, . . . , Xn) to the verifiers (who check if this value is correct and was received at the right time). For
the position-based key agreement the prover simply lets the agreed key K be equal to f(X1, . . . , Xn). Such
protocols are called one-round, and are very attractive because of their simplicity. They will also be the focus
of this paper.

The proof in [16] requires one additional restriction on the power of the adversary, namely, it is assumed
(see [16], page 1294, Sect. 1.2) that whenever an adversarial device receives strings Xi1 , . . . , Xia at the same
time, it cannot compute an arbitrary joint function adv on Xi1 , . . . , Xia (with short output). Instead, it
can only compute several (adaptively chosen) functions on each Xij independently (the same restriction
applies to the honest parties). Removing this assumption is left as an “important open problem” in [16]
and studying this open question is the main topic of this work. We show deep connections between the
problem of constructing positioning and position-based key agreement protocols in the unrestricted BSM
model (i.e. without restrictions on the adv function except of a bound on its output size), and the area of
multiparty communication complexity. Before describing our contribution in more detail (in Sect. 1.2) let
us provide a short introduction to this area (more formal definitions are given in Sect. 2.2, and for a more
comprehensive introduction see [24])

1.1 Multiparty communication complexity

In a typical communication complexity problem, there are k players, denoted plr1, . . . ,plrk. There are also
k inputs x1, . . . , xk ∈ {0, 1}n, and the players must communicate to compute some function f(x1, . . . , xk) of
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the inputs. The communication cost of a protocol is measured as the worst-case maximal number of bits
communicated, taken over all possible inputs and all choices for the random string.

In the multiplayer setting (when k > 2) there are two different models for how the input is shared. In the
number-in-hand (NIH) model, each player plri sees the ith input xi. In the number-on-the-forehead (NOF)
model, each plri sees all inputs except xi. One can imagine in an NOF protocol that all players meet in a
room, and plri has xi written on her forehead. In this way, players can see all inputs except what is written
on their foreheads. When k = 2, the NIH and NOF models are one and the same, but for k > 2, they are
quite different. In particular, communication in the NOF model becomes intuitively very easy, because so
much information is shared. This makes proving NOF communication lower bounds harder. In this paper, we
focus on NOF communication complexity.

It is particularly interesting to understand what role interaction plays in communication complexity.
In an arbitrary (“fully adaptive”) protocol, players are allowed to speak back and forth, and messages are
broadcast. It is also interesting to consider a more restrictive model, where each player sends a single message
to a referee, who does not see the inputs, and must compute f(x1, . . . , xk) only from the messages sent
by the players. This restricted model of communication is called the Simultaneous Messages (SM) model.
Occasionally, the communication complexity of problems can be the same in the SM and interactive model,
but for other problems, allowing interactive communication can even lead to an exponential decrease in the
communication complexity. The NOF communication model was invented thirty years ago in [15], who also
gave as an application lower bounds for branching programs.

Position based cryptography was partly inspired by the area called secure positioning [8,33,37,12]. More
recently there was work towards constructing PBC protocols based on other “physical” assumptions, such as
quantum channels [10,35,14]5 (see also [9] and the webpage [34]) or noisy channels [21].

1.2 Our contribution

We show that constructing a one-round positioning protocol in the unrestricted BSM gives a construction of
a function π with linear SM complexity (in the NOF model). If we additionally require that the computation
on the prover is local (i.e. he only needs to look at small parts of the input), then π has low complexity
in the fully adaptive model. Finding a function with such properties is a longstanding open problem in
communication complexity, and therefore this result can be viewed as a “negative” answer to the question
posted in [16].

On a more positive side: we show some implications in the other direction. Namely, we prove that any
function that has high communication complexity in the so-called “one-round almost SM model” (see Sect. 2.2
for the definition) can be transformed into a secure positioning protocol. The assumed hardness has to hold
in a strong, randomized sense, i.e., the probability that any “adaptive SM” protocol computes the output
correctly has to be negligible. Fortunately, we show a function that satisfies this requirement. Our function
uses a hash function as a building block, and the security proof models this hash function as a random oracle
(hence, our construction does not contradict the negative result mentioned above). The resulting positioning
protocol is very simple: essentially, one verifier sends a long string X, the other verifiers send much shorter
strings Zi, and the output is the sub-string of X on the positions determined by the hash of the concatenated
Zi’s.

We also construct positioning and position-based key agreement schemes from any function that has high
complexity in the “fully adaptive SM model” (see Sect. 2.2). For our construction to work we need to assume
even stronger hardness: the output of the function has to be “close to uniform” (in the sense of “statistical
distance”, see Sect. 2 for the definition). We show that the so-called “generalized inner product” function has
this property. The resulting protocol does not have the “locality” property, i.e., the prover in the protocol
needs to read its entire input. The good news is that this computation is very simple, can be performed very
efficiently in an “online” fashion, and hence it may still be possible to implement it in practice.

5 Note that [35] uses the random oracle model, that we use in this work (in Sect. 4.1).
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2 Preliminaries

Let A and B be random variables distributed over set A. The statistical distance between A and B is defined
as ∆(A;B) := 1

2

∑
a∈A |P (A = a)− P (B = a)|. The statistical distance of A from uniformity is defined as

d(A) := ∆(A;UA), where UA has uniform distribution over A. The statistical distance of A from uniformity
conditioned on B is defined as d(A | B) = ∆((A,B); (UA, B)) (where UA is uniform and independent from
B). The min-entropy of a random variable W is defined as H∞(W ) := − log2(maxw P[W = w]). We will use
the following fact that can be viewed as a chain-rule for the statistical distance from uniformity (see, e.g.,
[19], Lemma 3).

Lemma 1. For any random variables X1, . . . , Xn, and Y we have that d(X1, . . . , Xn|Y ) ≤
∑n
i=1 d(Xi|X1,

. . . , Xi−1, Y ).

We also have the following (see, e.g., [19], Lemma 1).

Lemma 2. For every random variables X and Y taking values from X and Y (respectively) we have that
maxα:Y→X (P (X = α(Y ))) ≤ d(X | Y )+1/|X |. Moreover, if X = {0, 1}, then 2 maxα:Y→X (P (X = α(Y )))−
1 = d(X | Y ).

2.1 Guessing bits from “compressed” information

The following machinery will be needed in Sect. 4.1. Consider the following natural question. Suppose X ←
{0, 1}n is chosen uniformly at random. Let compress : {0, 1}n → {0, 1}βn be any function that “compresses”
X, i.e., such that β < 1. Let us ask what is the maximal probability that given compress(X) one can compute
the substring consisting of t random positions in X? More precisely, let guess : {1, . . . , n}t×{0, 1}βn → {0, 1}t
be any function that tries to “predict” these bits. We ask what is the maximal (over compress and guess)
probability that guess(R, compress(X)) = (X[R1], . . . , X[Rt]), where R = (R1, . . . , Ra) ← {1, . . . , n}t is
random. This question was first answered by Nisan and Zuckerman [29]. In what follows, we use the
presentation from [16] (which, in turn, is partly based on [36]). The following lemma can be derived from the
discussion in Sect. 4.3 (page 1306) of [16].

Lemma 3 ([29,36,16]). Take any β < 1. For every t take n such that n > t. Then for every compress :
{0, 1}n → {0, 1}βn and guess : {1, . . . , n}t × {0, 1}βn → {0, 1}t and a uniformly random X ← {0, 1}n and
R = (R1, . . . , Rt)← {1, . . . , n}t we have that

P (guess(R, compress(X)) = (X[R1], . . . , X[Rt])) ≤ negl(t).

Proof. Simple inspection of the argument in Sect. 4.3 of [16]. Observe that EG in [16] is defined as EG(X,R) :=
(X[Z1], . . . , X[Zt]). The argument in [16] uses parameters β and δ in, where β is defined as the “adversarial
storage rate“ (and is the same parameter as in our notation), and the δ is such that the min-entropy rate
of X is β + δ. Since in our case X is uniform, thus we can simply set δ := (1− β). Observe that δ > 0. In
[16] the authors use a security parameter κ and require that t ≥ (2/δ)κ. We can however also treat t as the
security parameter, and then set κ := tδ/2. In [16] it is shown that the probability p of guessing EG(X,R)
correctly is negligible in κ. Therefore it is also negligible in t (as δ is a positive constant). ut

If A is a finite set, then A← A denotes the fact that A is sampled uniformly at random from A. For a
natural q the symbol GF(q) denotes the Galois field of order q. The “||” symbol denotes the concatenation of
strings, and for X = (X1, . . . , Xn) ∈ Xn (for some set X ) and i, j ∈ {1, . . . , n} (such that i ≤ j) by writing
X[i] we mean Xi, and by X[i, . . . , j] we mean (Xi, . . . , Xj). We will use the random oracle model (ROM) [7].

2.2 Multiparty communication complexity

A brief introduction to the multiparty complexity was already given in Sect. 1.1. We now introduce more
formally the concrete computation models that are used later in this paper. A protocol is a tuple prot :=
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(plr1, . . . ,plrk,ref) of players (modeled as Turing machines) that interact with each other. We assume that
the protocol is in the public coins model, i.e., the players have access to some common source of randomness.
The input of the protocol is a tuple (x1, . . . , xk) ∈ X1 × · · · × Xk (where Xi’s are some sets). Informally
speaking, the goal of the players is to jointly compute some function f : X1 × · · · × Xk → Y (where Y is
some set). The models that are considered in the literature differ in terms of what access the players have
to the input, and how can they communicate. The player ref is called the referee and typically takes no
input. In the number-on-the-forehead (NOF) model each plri sees all inputs except xi. We also impose
some restrictions on the communication between the parties. We say that the protocol prot operates in fully
adaptive simultaneous message (SM) model if the parties communicate as follows.

1. Every player plri (for i = 1 to k) receives input x1, . . . , xi−1, xi+1, . . . , xk (where each xi ∈ Xi), and the
referee ref receives no input.

2. The computation is structured in some number of rounds. In the jth round the following happens:
For i = 1, . . . , k every player plri (for i = 1, . . . , k) broadcasts some value wji , which is a function
of his input variables and the messages broadcast by other players in the previous rounds.

3. Finally, ref computes the output of the protocol, denoted prot(x1, . . . , xk), that is a function of the
values wji that were broadcast by the plri’s during the computation.

We say that the protocol operates in one-round SM model if the number of rounds in Step 2 above is 1 (in
the literature this has also been called simply the “SM model”). The one-round almost SM model [31] is the
same as the one-round SM model, except that one of the players, plrk, say, is the referee (and hence there is
no need to specify ref separately, and we can write prot = (plr1, . . . ,plrk)). Compared to the one-round
SM model the only difference is in Step 3, that in case of the one-round almost SM model becomes:

3’. plrk computes the output of the protocol, denoted prot(x1, . . . , xk), that is a function of his own input
(x1, . . . , xk−1) and the values wji that were broadcast by the plri’s during the computation.

Observe that in case of the one-round almost SM model we can assume that the message w1
k (sent by plrk)

is empty, since the only receiver of this message is plrk himself.
For a protocol prot the maximal total length of the wji ’s (where the maximum is taken over all

(x1, . . . , xk) ∈ X1 × · · · × Xk) is called the communication cost of prot. The communication complexity of a
function f is the minimum communication cost of any protocol computing f .

As explained above, we are mostly interested in the average-case complexity of the multiparty protocols.

Definition 1. We say that a function f : X1 × · · · × Xk → Y is (s, ε)-hard in the one-round SM model (or
the fully adaptive model) if for every protocol prot whose communication complexity is at most s, and that
operates in the one-round SM model (or the fully adaptive model, respectively), the probability that prot
computes f correctly is at most ε, i.e.,

P (prot(X1, . . . , Xk) = f(X1, . . . , Xk)) ≤ ε, (1)

where the probability is taken over (X1, . . . , Xk)← X1 × · · · × Xk and the public randomness available to the
players (the probability in Eq. (1) is called the correctness probability).

Observe that the adversary can always achieve ε = 1/|Y|. As we will be interested in protocols where ε is
negligible, we will usually use Y’s that are of size exponential in the security parameter t (e.g., Y = {0, 1}t).
We will also use a stronger notion of hardness that informally speaking requires that the information about
f(X1, . . . , Xk) obtained by a referee in a multiparty protocol with communication complexity s is small.

Definition 2. We say that a function f : X1 × · · · × Xk → Y is (s, ε)-strongly-hard in the one-round SM
model (or the fully adaptive model) if for every protocol prot whose communication complexity is at most s,
and that operates in the one-round SM model (or the fully adaptive model, respectively) we have that

d
(
f(X1, . . . , Xk) | {W j

1 , . . . ,W
j
k}

t
j=1

)
≤ ε, (2)

where the experiment in (2) consists of sampling (X1, . . . , Xk)← X1 × · · · × Xk and the public randomness of
the players, and each W j

i is the message broadcast by plri in the jth round.
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To see why the notion defined in Def. 1 is at least as strong as the one from Def. 2, observe that, by Lemma
2, Eq. (2) implies that

P (prot(X1, . . . , Xk) = f(X1, . . . , Xk)) ≤ 1/|Y|+ ε

(see Eq. (1)), which is small for large Y (and small ε).

2.3 Secure Positioning and the Position-Based Key Agreement

In this section we describe in details the model that was already informally discussed in Sect. 1 (for the full
formal definition see [16]). A secure positioning protocol in D dimensions is a tuple Π = (V1, . . . ,VD+1, P),
where the Vi’s are the verifiers positioned in a D-dimensional space (and not lying on one (D−1)-dimensional
hyperspace) and a P is a prover, positioned within the polytope determined by the verifiers. The protocol will

be attacked be a set of adversaries {A1, . . . ,At}, each Ai positioned in place Âi. The Vi’s, Ai’s, and P are
modeled as randomized Turing machines. We also assume that the Ai’s have access to the common public
randomness.

We assume that all the machines are equipped with perfect clocks and that their computation takes no
time. Each machine is aware of its own position in space (more formally: it gets it as an auxiliary input). The

position of each verifier Vi is denoted by V̂i. The verifiers also get as input a position P̂ where the prover
“claims to be”. Their goal is to check if he indeed is in this position. The decision (yes/no) of the verifiers is
communicated at the end of the protocol by one of them (V1, say).

The only messages that are sent are of a broadcast type (i.e. there are no directional antennas). A message
sent by a machine positioned in point U arrives to a machine in point U ′ in time ‖UU ′‖/c, where c is the
speed of light. We assume that the adversary cannot block or delay the messages sent between the honest
participants. It is clear that such an assumption is unavoidable, as, by blocking all the messages, the adversary
can always prevent any protocol from succeeding. The communication links between the verifiers are secure
(secret and authenticated), which can be achieved by standard cryptographic techniques.

As already highlighted in Sect. 1, the important difference between our model and the one of [16] is that

we assume that if in some moment T several messages Xi1 , . . . , Xi` meet at point Âi, then Ai can compute
any joint function advTi of (Xi1 , . . . , Xi`). Let ATi be the result of this computation, and let A be the random
variable denoting the concatenation of all the ATi . We require that |A| ≤ s, where s is called the retrieval
bound. Informally speaking, the adversary can either broadcast ATi or store it in his memory, but to keep the
model as simple as possible we will make no distinction between these two cases. Namely, we assume that
(1) each adversary always broadcasts every value immediately after he computed it, and (2) each adversary
stores every message broadcast by any adversary.6 Hence a value of a function advTi can depend on all the
adversarial messages received by Ai at or before time T (including the messages sent by Ai himself in time
T ).

We assume that several adversaries can be put in one place in space, but for simplicity we require that the
adversaries that are in the same place do not broadcast messages at the same time (clearly, this assumption
can be made without loss of generality, as such adversaries can be “simulated” by one).

We also assume that every adversary computes (and broadcasts) a value only once. Note that this also
does not affect the generality of the model, as we do not put any restrictions on the number of adversaries, and
moreover, several adversaries can be put in the same point in space. Therefore an adversary that computes m
values (in different moments in time), can be “simulated” by m adversaries placed in the same point. We say
that Π is an (s, ρ)-secure positioning protocol if the following two conditions hold:

correctness: If the prover P is placed in the claimed position P̂ ∈ G then V1 produces as output “yes”,
security: For any set of adversaries {A1, . . . ,At} with retrieval bound s (such that no adversary or honest

prover is in position P̂), the verifier V1 produces as output “yes” with probability at most ρ. (If V1
produced “yes” then we say that the adversaries broke the scheme.)

6 Observe that these assumptions can be made without loss of generality, as storing the computed values does not
affect the retrieval bound.
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Following [16], we also consider a stronger type of protocols called the position-based key agreement. In
such a protocol the goal of the prover and the verifiers is to agree on a key K ∈ {0, 1}m. More formally, at
the end of the execution the prover produces as output KP , and one of the verifiers, V1 (say) produces KV .
We say that Π is an (s, ρ)-secure position-based key agreement protocol in D dimensions if the following two

conditions hold (assuming the prover P is placed in the claimed position P̂ ∈ G):

correctness: The agreed keys are identical, i.e., KP = KV .
security: For any set of adversaries {A1, . . . ,At} with retrieval bound s (such that no adversary is in

position P̂) we have that d(KP | A) ≤ ρ (recall that A is the random variable denoting all the information
computed by the adversaries).7

For reasons explained in the introduction we are interested in protocols that have the following simple
structure (let T be some moment in time):

1. Each Vi sends a message Xi ← Xi (where Xi is some set) to P in time T − ‖V̂iP̂‖/c (in this way all Xi’s
arrive to P in time T ).

2. P computes Y = π(X1, . . . , XD+1) (for some function π : X1 × · · · × XD+1 → Y) and
– in case of the positioning protocols: P broadcasts Y ,
– in case of the key-agreement protocols: P sets KP = Y .

3. In the last step the verifiers compute π(X1, . . . , XD+1) in some way (e.g., they may simply send to one
verifier all the inputs and let him compute the output). The details of this computation depend on
the function that they compute. In many cases there also exist techniques that allow to save on the
communication and space complexities of this procedure, e.g., each Xi can be generated pseudorandomly
from some seed Si, in which case it is enough that the verifiers store and send to each other only the Si’s.
We write more about it when we consider the concrete implementations in Sect. 4.

– in case of the positioning protocols: each Vi accepts the proof only if y that he received is indeed
equal to π(X1, . . . , XD+1) and it arrived to him in time T + ‖V̂iP̂‖/c,

– in case of the key-agreement protocols: the verifier V1 produces KV = π(X1, . . . , XD+1) as the
agreed key.

A protocol of this type will be called a one-round protocol parametrized by π. We say that a protocol is for
positions in the set W ⊆ RD if it works only if P̂ ∈ W (note, however, that we do not restrict the set of
positions where the adversary can be placed). Let us also comment on the assumption that Xi is sampled
uniformly from some set. This is done mostly for the sake of simplicity, and to keep our model consistent
with the one in Sect. 2.2. We could also have a more general definition where the Xi’s would come from some
more general class of distributions, e.g., the distributions with high min-entropy (as is done in [16]). For the
equivalence results shown in Sect. 3 to hold, we would need to extend the hardness definitions in Sect. 2.2
to cover also the case when the Xi’s are not uniform, but this can be done in a straightforward way. Also
our constructions can be easily generalized to cover the case when the inputs come from a high-min entropy
source (this generalization will be described in the full version of this paper).

It is natural to ask how do these two primitives relate to each other. Obviously, every (s, ρ)-secure
position-based key agreement protocol can be converted into an (s, ρ′)-secure positioning protocol with
ρ′ = 2−|K| + ρ in the following way: let the prover send KP to V1, and let V1 output “yes” only if KP = KV .
It easily follows from Lemma 2 that if P is not in the position P̂ then the probability that he can guess KP
is at most ρ′.

On the other hand, it is also possible to convert every secure (s, ρ)-secure positioning protocol (for some
negligible ρ) into an (s, ρ′)-secure position-based key agreement protocol (for negligible ρ′), at a cost of
introducing computational assumptions. Concretely, pubilc-key encryption and non-malleable commitments,
we refer to [16] (Section 6, page 1311) for further details.

7 In [16] the security of a key agreement is defined using the “indistinguishability” paradigm (cf. Def. 2.2 in [16]): no
adversary, after learning A, should be able to distinguish KP from a uniformly random key, with advantage larger
than ρ. It is easy to see that these definitions are equivalent.
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2.4 Prover’s efficiency

The function π needs to be computed also by the prover P, and it is important to choose π such that
this computation can be done efficiently. Note that the advantage of P over the adversaries is that he has
simultaneous access to all the π’s inputs X1, . . . , XD+1. Since the Xi’s are very long, we would ideally like to
be able to compute π by looking only on some small parts of the inputs (polylogaritmic in |X|, say). This
property, called locality, was stated as an explicit requirement in [16]. It is also common in the previous papers
on the bounded-storage model [26,3,20,18]. One of our constructions in this paper (see Sec. 4.2) does not
have this property (the one in Sect. 4.1 has it). Instead it has the property of being online computable which
means that π reads its input by just processing its input online in small memory. We remark that in some
cases such algorithms may actually be easier to implement than some of the locally computable ones (think
of a locally computable algorithm that is required to access many bits on its input that are located far away).

3 The reductions

In this section we show strong connections between the two areas described in Sect. 2. We start (Sect. 3.1)
with showing that a construction of a positioning protocol immediately gives a construction of a function with
a high one-round SM complexity. Note that this means that a similar implication holds for position-based key
agreement (since, as explained in Sect. 2.3, position-based key agreement is a stronger primitive than secure
positioning). Then, in Sect. 3.2, we show an implication in the opposite direction, namely, we prove that every
function with high one-round almost SM complexity gives rise to a secure positioning protocol, and every
function with high fully adaptive SM complexity gives rise to a secure position-based key agreement protocol.

From an application point of view, the results in Sect. 3.1 are “negative”, as they show that in order to
construct secure positioning protocols (and the position-based key agreement protocols) we need to show
multiparty functions that have high communication complexity, which seems to be non-trivial, especially
if the locality is required (see end of Sect. 3.1 for a discussion on this). On the other hand, the results
from Sect. 3.2 can be viewed as “positive”, since they provide a way to construct secure positioning (and
position-based key agreement) protocols. Notice that these positive results yield a constructive use of lower
bounds in communication complexity. We instantiate these constructions with concrete protocols is Sect. 4.

3.1 Secure positioning in the BRM implies lower bounds for SM complexity

We now show that existence of a one-round protocol for secure positioning implies lower bounds for the
multiparty communication complexity. Note that, as described in Sect. 2.3, the secure positioning protocols
are a weaker primitive than the position-based key agreement protocols, and a similar implication also holds
for the position-based key agreement. To keep the exposition simple we address only the case when the
verifiers are placed on vertices of a regular D-dimensional simplex, but it should be clear that our argument
can be easily extended to more general cases. The statement of the lemma assumes that D = 2 or D = 3.
This is because, obviously, the case of D > 3 has no practical relevance, and for D = 1 the function π has only
two arguments, so, as described in the introduction, it makes little sense to talk about the NOF complexity.
Recall that a regular 2-dimensional simplex is an equilateral triangle, and a regular 3-dimensional simplex is
a regular tetrahedron. We now have the following theorem.

Theorem 1. Suppose Π is an (s, ρ)-secure one-round positioning protocol in D dimensions (for D = 2
or D = 3) parametrized by π : X1 × · · · × XD+1 → Y with verifiers positioned on vertices of a regular
D-dimensional simplex. Then π is (s, ρ)-hard in the 1-round SM model.

Proof. Let a denote the length of the edge of the simplex, or, in other words, the distance between any
pair of verifiers. For the sake of contradiction suppose π can be computed in a one-round SM model by
a protocol prot = (plr1, . . . ,plrD+1,ref) with communication complexity s and correctness probability
ρ′ > ρ. For every plrj ∈ {plr1, . . . ,plrD+1} let Msgj = Msgj(X1, . . . , Xj−1, Xj+1, . . . , XD+1) denote the
message computed by plrj , and let Ref(Msg1, . . . ,MsgD+1) be the value computed by the referee ref (equal
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to π(X1, . . . , XD+1) with probability ρ′). We now show a set of adversaries A1, . . . ,AD+1,B1, . . . ,BD+1 with

retrieval bound s that break Π with probability ρ′ (and none of them is positioned in position P̂).

We assume that position P̂ is the center of mass of the simplex determined by the verifiers. Hence, P̂
is in the same distance to all the verifiers, and therefore all the messages Xi are sent in the same moment
U = T − ‖P̂V̂1‖/c, where (as it can be easily verified using basic geometric arguments) ‖P̂V̂1‖ is equal to
a
√

3/3 (if D = 2) and is equal to a
√

6/4 (if D = 3). This situation is depicted on Fig. 1 for the case D = 2.

V1 V2

V3

P

a

a a

a
√
3/3

V1 V2

V3

P

X1

X
2

X
3

Y

Y

Y

Fig. 1. On the left: the configuration of the prover and the verifiers for in the two-dimensional case. On the right: the
execution of the positioning protocol in this configuration. The dashed lines indicate the messages sent back by the
prover. Note that the Xi’s and Y are broadcast (there are no directional antennas in our model), and the lines are
only indicating the communication that matters for the protocol.

Obviously, all the verifiers expect to receive the answer from the prover in time T+‖P̂V̂1‖/c = U+2‖P̂V̂1‖/c.
The adversaries A1, . . . ,AD+1,B1, . . . ,BD+1 behave in the following way (see Fig. 2).
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V3,B3
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2
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3
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Fig. 2. On the left: the actions of the Ai’s, on the right: the actions of the Bi’s (recall that each Wi is a function of
all the Xj ’s except of Xi).

– Each Aj is positioned in point Âj defined as follows: Âj is the center of mass of the facet determined by the

points V̂1, . . . , V̂j−1, V̂j+1, . . . , V̂D+1. This facet is either a line segment — in case D = 2, or an equilateral
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triangle — in case D = 3. From the regularity of this facet we get that the messages X1, . . . , Xj−1, Xj+1,

. . . , XD+1 (sent by the verifiers V1, . . . ,Vj−1,Vj+1, . . . ,VD+1) arrive to point Âj in the same moment. In
the moment when they arrive there, the adversary Aj computes Wj = Msgj(X1, . . . , Xj−1, Xj+1, . . . ,

XD+1) and broadcasts the result. This happens in time U + ‖ÂjV̂i‖/c.
– Each Bi is positioned in point V̂i.8 He does the following:
• When the messages X1, . . . , Xi−1, Xi+1, . . . , XD+1 arrive to him (observe that, from the regularity of

the simplex, they all arrive in the same moment T ′ = U+a/c) he computes Wi := Msgi(X1, . . . , Xi−1,
Xi+1, . . . , XD+1) and stores the result.

• He also stores each message Wj broadcast by Aj (for j ∈ {1, . . . , i − 1, i + 1, . . . , D + 1}) when it

arrives to him. This happens in time T ′′ = U + ‖ÂjV̂i‖/c+ ‖ÂjB̂i‖/c (where B̂i is the position of Bi,
which is equal to V̂i). Hence T ′′ is equal to U + 2‖ÂjV̂i‖/c.
Additionally since ‖ÂjB̂i‖ is nonnegative, it follows that ‖ÂjV̂i‖ + ‖ÂjB̂i‖ ≥ ‖ÂjV̂i‖ = a, and
therefore T ′′ ≥ T ′.

• After the two steps above are completed (which happens in time max(T ′, T ′′) = T ′′) the adversary
Bi knows all W1, . . . ,WD+1 and he can simply compute the output Y as Ref(W1, . . . ,WD+1), and

pass it Vi (which takes zero time, since Bi is positioned exactly in V̂i). Moreover, he can do it exactly

in time U + 2‖P̂V̂1‖/c when Vi expects to receive y. This is possible, because (as we show below)

T ′′ < U + 2‖P̂V̂1‖/c. (3)

We now show (3). Let us start with case D = 2. Since in this case each facet of the simplex is a line segment

of length a, hence ‖ÂjV̂i‖ = a/2. Therefore (3) becomes

U + a/c < U + 2a
√

3/(3c), (4)

which holds because 1 < 2
√

3/3. In case D = 3 each facet is a regular triangle with edge of length a. Thus

‖ÂjV̂i‖ =
√

3/3, and therefore (3) becomes

U + 2a
√

3/(3c) < U + 2a
√

6/(4c), (5)

which holds because 2
√

3/3 < 2
√

6/4. Clearly the adversaries constructed this way compute function π
correctly with exactly the same probability σ′ as the SM protocol computes it. It remains to calculate how
much communication was generated by the adversaries. Observe that each Msgj is computed by each Aj and
Bj , respectively. Each Bj can compute the final answer by storing Msgj and receiving {Msgi}i6=j , hence the

total amount of retrieved information is
∑D+1
i=1 Msgi = s. This finishes the proof.

Finally, note that both inequalities (4) and (5) are sharp, and the differences between the left hand sides
and the right hand sides are non-negligible. This means that Bi has to wait some noticeable amount of time
before he sends y to the verifier Vi. Hence, it is also ok to place Bi in some position B̂i further away from Vi
(as long as the B̂i is in equal distance to the remaining verifiers). ut

Recall that according to the standard definitions (see Sect. 2.4) we want function π to be locally computable,
which means that it should be possible to compute it by looking only at a polylogarithmic number of bits of
its input (X1, . . . , XD+1). It is easy to see that such an algorithm is trivial to implement by a multiparty
protocol that has polylogarithmic communication complexity in the fully adaptive settings. On the other
hand, function π, by Theorem 1, needs to have a linear complexity in the one-round SM model. Since finding
such functions is an open problem we view this result as an indication why showing one-round positioning
protocols in the unrestricted BSM model is hard. The reader may object that typically the communication
complexity literature is more focused on deterministic functions that compute one bit, while here we consider

8 The reader may object that it is not realistic to assume that an adversary is positioned at zero distance from a
verifier. At the end of the proof we argue that Bi can actually be put at some place far from any verifier. We decided
to assume that Bi is positioned exactly in point V̂i to keep the exposition simple.
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randomized functions (with small correctness probability) with multi-bit output. This is not a problem for the
following reasons: (1) it is easy to see that a lower bound on the communication complexity of our multi-bit
output randomized function also implies a lower bound on a single-bit output functions (since there has to be
at least one bit of output that is hard to guess with good probability), and (2) randomized lower bounds
imply the deterministic ones.

3.2 Lower bounds for SM complexity imply results for PBC

In this section we show implications in the other direction than in Sect. 3.1, i.e., we show how to build
positioning and position-based key agreement protocols from functions that have high communication
complexity. Unlike in case of Sect. 3.1 we consider these two cases separately (the first one in Theorem 2),
and the second one in Theorem 3. Although in principle the second construction would suffice for showing
the general implication (as the key agreement is a stronger primitive than the positioning), such a separation
makes sense, since the requirements for the communication complexity that we need in Theorem 2 are weaker
(and hence Theorem 2 does not directly follow from Theorem 3). Also the conditions on the position of the
prover P are more restrictive in Theorem 3. First, we need the following geometric fact (see [16]).

Lemma 4. Suppose D ∈ {2, 3}. Consider pairwise distinct points V̂1, . . . , V̂D+1 positioned in a D-dimensional

space, and let P̂ be any point within the D-dimensional simplex S whose vertices are in points V̂1, . . . , V̂D+1.

Then, for any point Â 6= P̂ there exists i such that ‖V̂iÂ‖ > ‖V̂iP̂‖.

We now have the following.

Theorem 2. Suppose D ∈ {2, 3}. Let π : X1 × · · · × XD+1 → Y be an (s, ρ)-hard function in the one-round
almost SM model. Let Π be a one-round positioning protocol parametrized by π. Then Π is (s, ρ)-secure for

positions within the D-dimensional simplex whose vertices are the positions of the verifiers V̂1, . . . , V̂D+1.
Moreover, something slightly stronger holds, namely the protocol Π is secure even if only Vk (i.e.: the

arbiter in the almost adaptive NOF protocol) receives the message from the prover.

Proof. We say that an adversary Ai directly computes on some Xj if he produces his output exactly when

Xj passes through Âi. We also recursively define a partial order dependence relation “�” among the verifiers
and the adversaries as follows:

– Vi � Aj if the value broadcast by Vi reaches Aj not later than when Aj produces his output. More
precisely let Ti be the time when Vi broadcast Xi and let Tj be the time when Aj computes his function,

then Vi � Aj if ‖ÂjV̂i‖/c ≤ Tj − Ti.
– analogously Ai � Aj if the value computed by Ai reaches Aj not later than when Aj produces his output.

(Clearly the dependence relation is a partial order.) Set k := D+ 1. Let P be the prover, and V1, . . . ,VD+1 be

the verifiers. Assume the position P̂ of P is within the D-dimensional simplex whose vertices are the positions
of the verifiers V̂1, . . . , V̂D+1. For the sake of contradiction assume that Π can be broken by adversaries with
retrieval bound s with probability ρ′ > ρ. This means that one of the adversaries is able to send to the verifier
Vk a message Y equal to π(X1, . . . , Xk) with probability ρ′ (assuming (X1, . . . , Xk)← X1 × · · · × Xk), and

this message arrived to Vk in time T + ‖V̂kP̂‖/c, where T is the time where all the Xi’s arrive to point P̂.
We now show a one-round almost adaptive protocol for computing π with probability ρ′ and communication
complexity s. The protocol works as follows.

Let Adv1 be the set of all adversaries Ai that depend on some proper subset of verifiers. Our protocol
(in the first round) computes all Ai’s such that Ai ∈ Adv1. This can clearly be done since each such Ai is a
function of some proper subset of the input variables X`.

Let Adv2 be the set of all the remaining adversaries. Take any Ai ∈ Adv2. We know that Ai depends on
all the verifiers (as otherwise it would be in Adv1). Let Âi be the position of this adversary. By Lemma 4 it

has to be the case that for some V̂j we have

‖V̂jÂi‖ > ‖V̂jP̂‖. (6)
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Any Ai which depends on V̂j must produce its output after receiving Xj . Therefore (6) implies that the time
Ti when Ai produces its output is such that

Ti > T. (7)

Consider some Ai ∈ Adv2 that is positioned further away from Vk than P . By (7) the output of such Ai will

not reach Vk before time T + ‖V̂kP̂‖/c, and hence it is irrelevant for the protocol.
Therefore what remains is to consider the adversaries Ai ∈ Adv2 that are closer to Vk than P. From (7)

we have that the computation of such Ai happens after Xk passed through Ai, and therefore Ai does not
compute on Xk directly. Thus, every computation performed by the Ai’s from Adv2 (that are closer to Vk
than P) can be performed if one knows the set X1, . . . , Xk−1 plus the outputs of the Aj ’s from Adv1. Hence,
it can be done by plrk acting as a referee.

Since the SM protocol that we constructed simply simulates the adversaries Ai by computing their outputs,
its communication complexity is s. This completes the proof. ut

We now show Theorem 3 that is similar to Theorem 2, but it holds for position-based key agreement.
Observe that for the lemma to hold we need a stronger assumption than in Theorem 2, namely that π is
hard in the fully-adaptive SM model. Also, unlike in Theorem 2, we do not specify explicitly what geometric
configurations of the verifiers and the prover are allowed. Instead, we simply say that they need to be such
that the messages sent by the verifier (see Sect. 2.3) never “meet” at any place other than the position P̂ of

the prover. More precisely, we require that there does not exist time U and place Ẑ 6= P̂ such that at time U
all the Xi’s are in Ẑ. We refer the reader to [16], Sect. 7.3.1 as to what these valid configurations for the
parties are. We now prove the following theorem.

Theorem 3. Suppose D ∈ {2, 3}. Let π : X1 × · · · × XD+1 → Y be an (s, ρ)-strongly-hard function in the
fully adaptive SM model. Let Π be a one-round key-agreement protocol in D dimensions parametrized by π.
Then Π is a (s, ρ)-secure key-agreement protocol assuming all the messages sent by the verifiers never meet

at any other place than the position P̂ of the prover.

Proof. For the sake of contradiction suppose Π is not (s, ρ)-secure, i.e. there exists adversaries A1, . . . ,At,
each positioned in Âi, . . . , Ât (resp.), such that

d(π(X1, . . . , XD+1) | A) = ρ′ > ρ, (8)

where X1, . . . , XD+1 ← X1 × · · · × XD+1 are the input variables, and A is a concatenation of the outputs ATi
of the advTi functions computed by the adversaries when the protocol Π is executed on input (X1, . . . , XD+1).
To finish the proof we show an NOF protocol with communication complexity s such that

d(π(X1, . . . , XD+1) |W ) = ρ′, (9)

where W is a concatenation of the messages sent by the players when the NOF protocol is executed on
variables (X1, . . . , XD+1). Clearly, showing (9) will contradict the assumption that π is (s, ρ)-strongly-hard
in the NOF model.

Let � be the partial order from the proof of Lemma 2. The NOF protocol simply computes all the ATi
starting least Ai’s in the “�” order, and maintaining the invariant that a given ATj can be computed only
if the A`’s that precede Aj in this order were computed. By our assumption, its never the case that a Ai
computes directly on all the Xi’s. Therefore this computation can be performed by a (fully adaptive) NOF
protocol. It is also easy to see that the output W of this protocol has identical distribution to A. This finishes
the proof. ut

4 Concrete constructions

In this section we provide two concrete constructions of positioning and position-based key agreement
protocols. This is done using the theory developed in Sect. 3.2, i.e., we first prove that some function π has
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high communication complexity, and then use this function to construct a position-based protocol. We start
with a construction of a positioning protocol that has the “locality” property (see Sect. 2.4), and works
in the random oracle model. Note, that using the techniques from [16], this positioning protocol can be
transformed into a position-based key agreement, using the computational assumptions discussed in Sect. 2.3.
Then, in Sect. 4.2, we show a construction of a position-based key agreement in the plain model (i.e. without
a random oracle assumption). This second construction comes without the locality property, i.e., the prover
has to read the entire random strings Xi that are sent to him by the verifiers. On the other hand, it has the
on-line-computability property, i.e., the Xi’s need to be read only once in an on-line fashion, by an a machine
with very small memory (see Sect. 2.4).

4.1 Protocols in the Random Oracle Model

As proven in Sect. 3.2 (see Theorem 2), to construct such a protocol it is enough to show a function
π : X1 × · · · × Xk → Y whose one-round almost SM complexity is high. Let t be a security parameter. We
assume that the parties have access to t random oracles containing functions {Hj : {0, 1}∗ → {1, . . . , n}}tj=1

(let H denote this family of functions). The function π will depend on the functions in H. Also every party will

have access to the functions in H. More concretely, let πH,tk,n : ({0, 1}t)k−1 × {0, 1}n → {0, 1}t be a function

defined as: πH,tk,n (Z1, . . . , Zk−1, X) := (X[H1(Z)], . . . , X[Ht(Z)]) , where Z = (Z1|| · · · ||Zk−1).

Our positioning protocol ΠH,tD,n in D dimensions (for D ∈ {2, 3}) is simply the one-round positioning

protocol parametrized by πH,tD+1,n (see Sect. 2.3). More concretely: it consists of D + 1 verifiers V1, . . . ,VD+1

(positioned in V̂1, . . . , V̂D+1, resp.). Each Vi (for i ≤ D) sends a random Zi ← {0, 1}t in time T − ‖V̂iP̂‖/c
(where P̂ is the claimed position of the prover), and VD+1 sends a random X ← {0, 1}n (in time T −
‖V̂D+1P̂‖/c). All the messages arrive to P in time T . Then, P computes X[H1(Z)], . . . , X[Ht(Z)], and sends
the result back to VD+1, who checks if the result is correct (at the end of this section we discuss how this

check can be done very efficiently). The security of ΠH,tD,n follows directly from Theorem 3, and the following
fact.

Lemma 5. Consider an almost adaptive one-round SM protocol plr1, . . . ,plrk with plrk being the referee,
and every player having random oracle access to the functions in H. Let βn denote the total communication
complexity of this protocol (where n ∈ N and β < 1 is some constant) and let q be the number of times the
parties query the random oracles. Assume q is polynomial in t and n is any function of t such that n ≥ t. Let
Y denote the output of plrk. Then we have

P
(
Y = πH,tk,n (Z1, . . . , Zk−1, X)

)
≤ negl(t), (10)

where negl denotes a negligible function, the probability in (10) is taken over random X ← {0, 1}n,
(Z1, . . . , Zk−1)← ({0, 1}t)k−1, and the random choice of the functions on H.

Proof. Suppose we have an almost adaptive one-round SM protocol plr1, . . . , plrk (with plrk being the
referee) such that the probability in (10) is non-negligible. Recall the guessing game from Sect. 2.1. We now
show how to use plr1, . . . ,plrk to construct a pair of functions compress : {0, 1}n → {0, 1}βn and guess :
{1, . . . , n}t × {0, 1}βn → {0, 1}t such that the probability that guess(R, compress(X)) = (X[R1], . . . , X[Rt])
is non-negligible in t, where X ← {0, 1}n and R = (R1, . . . , Rt)← {1, . . . , n}t. Since by Lemma 3 we know
that this is impossible, we will obtain that the probability in (10) has to be negligible.

The functions compress and guess that we construct are randomized, i.e., they depend on some external
fresh randomness. In particular, we will assume that the hash functions H that the players have access
to (via the random oracle) were sampled in advance. Of course, such sampling cannot be done efficiently
(since the set of all such functions is of exponential size), but this is ok, since our construction is anyway
information-theoretic (note that Lemma 3 does not involve any complexity-theoretic assumptions). We will
later argue why the assumption about the availability of external randomness can be done without loss of
generality. First, however, let us present the definitions of the functions compress and guess.
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The function compress is defined as follows. First it samples (Z1, . . . , Zk−1) ← ({0, 1}t)k−1. Then, on
input (X,R1, . . . , Rk−1) it produces as output a tuple (V1, . . . , Vk−1), where each Vi is equal to the output
of player plri on input (R1, . . . , Ri−1, Ri+1, . . . , Rk−1, X) (recall that in this model the referee plrk does
not produce any output in the first phase). Note that simulating the plri’s may require replying to their
random oracle queries. We reply to each such query using the hash functions H that were sampled beforehand.
Observe that |(V1, . . . , Vk−1)| ≤ βn, and therefore compress can fit this output in the set {0, 1}βn.

On input (R1, . . . , Rt) and X the function guess does the following. It simulates the referee plrk on input
(Z1, . . . , Zk−1) (which are the values that were already sampled by compress). It answers all the random
oracle queries using H, with one important exception. Namely, every query of a form (Z1|| · · · ||Zk−1) to an
oracle containing a hash function Hj (for j = 1, . . . , t) is answered with Rj .

Now, let E denote the event that it never happened that any of the plr1, . . . ,plrk−1 queried any of the
random oracles on (Z1|| · · · ||Zk−1). It is easy to see that we have the following:

P
(
Y = πH,tk,n (Z1, . . . , Zk−1, X) | E

)
= P (guess(R, compress(X)) = (X[R1], . . . , X[Rt]) | E) . (11)

This is because if E occurred then the functions compress and guess perfectly “emulated” the execution of
plr1, . . . ,plrk. Observe that here we use the assumption that the Rj ’s are uniform, which implies that our
answers to the “(Z1|| · · · ||Zk−1)” queries are indistinguishable from the answers of the “real” random oracle.
Of course, this would not be true if such a query was earlier asked by one of plr1, . . . ,plrk−1, but this did
not happen, since in (11) we condition on the event E .

On the other hand, it is clear that P (¬E) ≤ q/2t. This is because querying the oracle on “(Z1|| · · · ||Zk−1)”
requires the knowledge of all the Zi’s, and every plri (for i = 1, . . . , k− 1) does not know one of them. Hence
the probability that any plri guesses “(Z1|| · · · ||Zk−1)” in one query is 2−t (remember that each of them is
uniformly random on {0, 1}t). Consequently, the probability that it guesses it in at least one of its q queries
is at most q/2t. Since we assumed that q is polynomial in t, thus we get that P (¬E) ≤ negl(t). Combining it
with (11) we obtain

P
(
Y = πH,tk,n (Z1, . . . , Zk−1, X)

)
(12)

≤ P (guess(R, compress(X)) = (X[R1], . . . , X[Rt])) + negl(t). (13)

Thus, since we assumed that (12) is non-negligible, we obtain that the probability in (13) is non-negligible.
What remains is to describe how to “derandomize” the compress and guess functions that we constructed.

This can be done via a very standard argument. Since the inequality (13) holds when the probability is
computed including the internal randomness ρ of compress and guess thus there has to exist a concrete value
ρ0 such that (13) holds if we fix ρ to ρ0. We can therefore derandomize these functions by simply “hardwiring”
these randomness into them. This finishes the proof. ut

Let us also discuss the nature of the πH,tk,n function, focusing on the (simplest) case when t = 1, i.e.,
only one bit is produced as output. The reader familiar with the communication complexity literature may
observe that this function is similar to so-called shift function [28], and more general notion called the general

addressing function (GAF) [31,4]. The shift function is defined very similarly to πH,1k,n , except that the Zi’s
take values in the Zn group, and H1 is defined as H(Z1, . . . , Zn) := X[Z1 + · · ·Zk−1] (in case of GAF we can
also have groups other than Zn). Somewhat surprisingly it appears very hard to prove the lower bounds for
the SM complexity in this model. The only known non-trivial lower bound in the shift function is Ω(n1/k)
[28,31]. Moreover, sublinear upper bounds on this complexity are known [31,30,1,2]. The hardness of this
problem can in some sense serve as a justification for the use of the random oracles in our construction.
Theorem 3 and Lemma 5 together imply the following.

Corollary 1. For any β < 1 and for n > t the protocol ΠH,tD,n is a (βn, negl(t))-secure positioning protocol
for positions within the D-dimensional simplex whose vertices are the positions of the protocol’s verifiers.
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Let us also now mention that in a practical implementation one can let the verifiers choose the Zi’s in advance.
Therefore VD+1 can compute Hi(Zi)’s and store only the X[Hi(Zi)]’s. Thus, the storage requirements of this
protocol are very low.

4.2 Protocols in the Plain Model

In this section we propose an alternative construction of positioning and key agreement protocols. The
protocols presented in this section are online computable (see Sect. 2.4), and do not require the random oracle
assumption. Let us first recall the definition of the generalized inner product function [5]. Let F = GF(2m) be a
finite field (for simplicity we restrict ourselves to the Galois fields of order 2m, but our results can be generalized
to arbitrary finite fields). For some natural parameters ` and k (such that k ≥ 2) define the generalized inner

product (GIP) function as GIP`,k : (F`)k → F as GIPF
`,k((x11, . . . , x

1
`), . . . , (x

k
1 , . . . , x

k
` )) =

∑`
i=1

∏k
j=1 x

j
i .

The positioning and the position-based key agreement protocols (in D ∈ {2, 3} dimensions), denoted
Γ pos
`,D,t and Γ ka

`,D,t (resp.), are simply the one-round protocols parameterized by GIPF
`,D+1 (see Sect. 2.3), i.e.,

the verifiers V1, . . . ,VD+1 broadcast random strings Xi ← F`, and the prover computes GIP(X1, . . . , XD+1),
which he either keeps as the agreed key, or broadcasts back to the verifiers (depending on whether the
protocol is for key agreement or for positioning). The verifiers compute GIP(X1, . . . , XD+1) and keep it as
the agreed key (in the first case), or simply check if it is identical to what they got from the prover (in the
second case). We now have the following lemma that states that GIP is hard in the fully adaptive model.
Note that this lemma implies hardness in the almost adaptive one-round SM model (since this model is more
restrictive), and hence, together with Theorems 2 and 3, implies security of the Γ pos

`,D,t and Γ ka
`,D,t protocols.

The communication complexity of the GIP function has been studied in multiple papers [5,6,32,23,22], but up
to our knowledge, not in the strong randomized settings that we need in this work. Our proof is a rather
straightforward adaptation of the techniques from this prior work.

Lemma 6. Suppose F = GF(2m) (for any m such that 2m ≥ k1+ξ for some ξ > 0). Then for every `, k, the
GIPF

`,k function is (s, δ)-strongly hard in the fully adaptive model, for some s = Ω(m`/2k) and δ = negl(`).

Proof. Consider an arbitrary fully adaptive protocol (plr1, . . . , plrk). Let s denote its communication

complexity. Suppose that
−→
X 1, . . . ,

−→
Xk are sampled uniformly and independently, each from F`. Let V denote

the sequence of all the messages that were broadcast by the parties during the execution of the protocol on

input (
−→
X 1, . . . ,

−→
Xk). Let Y := GIPF

`,k(
−→
X 1, . . . ,

−→
Xk). We will now treat Y ∈ GF(2m) as bit-strings of length m.

We start with the following.

Claim. For any i ∈ 1, . . . ,m and s = Ω(m`/2k) we have that

d(Y [i] | Y [1, . . . , i− 1], V )) ≤ negl(`). (14)

Proof (Proof of the Claim). We use the results of [5] which introduced the so-called multiparty communication
complexity with help. More precisely, in [5] the authors consider protocols where the players can obtain an
extra “help” from an external entity in a form of a function H that gets as input all the inputs of all the
players, the only restriction being that the output of H has to be one bit shorter than the output of the
computed function. Hence, in our case H is any function of a type H : (F`)k → {0, 1}m−1. What they prove
in their Lemma 3.3 can be translated to our notation as follows:

For any protocol whose communication complexity is at most

log

(
1/2− ε
Γ (f, C)

)
(15)

(we will comment on the “Γ (f, C)” term in a moment) and for any H : (F`)k → {0, 1}m−1 and any
function α we have that

P
(
GIPF

`,k(
−→
X 1, . . . ,

−→
Xk) = α(H(

−→
X 1, . . . ,

−→
Xk), V )

)
≤ 1− ε. (16)

(provided 2m ≥ k1+ξ for some ξ > 0).
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Above Γ (f, C) is a value called the strong discrepancy of f in C (for this discussion it is irrelevant what C is).
Moreover, as inspection of the proof of Corollary 4.12 [5] shows we have that

log(1/Γ (f, C)) ≥ Ω(m`/2k). (17)

Now, set ε := 1/2−
√
Γ (f, C). It is easy to see that (15) now becomes equal to

log(1/
√
Γ (f, C)) ≥ Ω(m`/2k).

This also implies that ε− 1/2 is negligible in `. Moreover, by Lemma 2, we have that

d(GIPF
`,k(
−→
X 1, . . . ,

−→
Xk) | H(

−→
X 1, . . . ,

−→
Xk), V ) ≤ 2(1− ε)− 1 ≤ negl(`), (18)

Now set H(
−→
X 1, . . . ,

−→
Xk) := (Y [1, . . . , i− 1], Y [i+ 1], . . . , Y [m]). Then, (18) becomes

negl(`) ≥ d(Y | Y [1, . . . , i− 1], Y [i+ 1], . . . , Y [m], V )

≥ d(Y [i] | Y [1, . . . , i− 1], V ), (19)

where (19) follows from Lemma 2. Hence (14) is proven.

To finish the proof of Lemma 6 we just apply the chain-rule for the statistical distance (Lemma 1), obtaining

d(Y | V ) ≤ m · negl(`) = negl(`).

We therefore obtain that for any protocol with the communication complexity Ω(m`/2k) we have d(GIPF
`,k(
−→
X 1,

. . . ,
−→
Xk) | V ) ≤ negl(`), and the lemma is proven. ut

Now, combining Lemma 6 with Theorems 2 and 3 we obtain the following.

Corollary 2. For D ∈ {2, 3} and for k,m, and ` as in Lemma 6, we have that Γ pos
`,D,t is one-round

(Ω(m`), negl(`))-secure positioning protocol in D dimensions for positions inside of a simplex determined by
the verifiers, and Γ ka

`,D,t is a one-round (Ω(m`), negl(`))-secure key agreement protocol in D dimensions for
positions such that the messages sent by the verifiers never meet at any other position than the one claimed
by the prover (see [16], Sect. 7.3.1).

Since the generalized inner product is a multi-source extractor, the reader might be tempted to think that
our construction works when GIP`,k is replaced with any k-source extractor. We note that this is not the
case, as the generalized inner product has additional properties, that multi-source extractors do not have.
Namely the multi-source extractors require that their inputs are fully independent (conditioned on adversary’s
information), which is not the case for GIP.

4.3 Practical considerations for the GIP-based protocol

Note that, unlike in the case of protocol ΠH,tD,n (see remark after Corollary 1), there is no simple trick to avoid
the need for the verifiers to store large amounts of data (the Xi’s), as long as we want the protocols to be
information-theoretically secure. However, if we move to the “computational world” we can simply let the
Xi’s be generated pseudorandomly: for i = 1, . . . , D+ 1 sample a short random seed Si, and let Xi := prg(Si),
where prg is a pseudorandom generator. In this case, the verifiers need to store only the Si’s. Also, instead of
sending the Xi’s (via a private channel) to each other, they can just send the Si.
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