
Efficient Secure Comparison Protocols

Geoffroy Couteau

ENS, Paris, France ?

Abstract. A secure comparison protocol allows players to evaluate the
greater-than predicate on hidden values; it addresses a problem that be-
longs to the field of multiparty computation, in which players wish to
jointly and privately evaluate a function on secret inputs. Introduced by
Yao under the name millionaires’ problem [Yao86], secure comparisons
have received a great deal of attention. They have proven to be one of the
most fundamental building block in a large variety of multiparty com-
putation protocols. However, due to their inherent non-arithmetic struc-
ture, they are in general less efficient than other fundamental primitives,
and as such, are often a major bottleneck in multiparty computation
protocols.
In this work, we design new two-party protocols for the greater-than
functionality, secure against honest-but-curious adversaries (who follow
the specifications of the protocol), improving over the state of the art.
They can be readily used in a large variety of applications in which secure
comparisons constitute the main efficiency bottleneck. Our protocols are
defined in the preprocessing model, and are extremely efficient during
the online phase. They are based solely on oblivious transfers, and can
therefore use oblivious transfer extensions to get rid of all but a constant
amount of expensive computations. Toward our goal of secure compari-
son, we also design protocols for testing equality between private inputs,
which improve similarly over the state of the art. The latter contribution
is of independent interest.

Keywords. Two-party computation, Secure comparison, Oblivious trans-
fer.

1 Introduction

Multiparty Computation (MPC) addresses the challenge of performing compu-
tation over sensitive data without compromising its privacy. In the past decades,
several general-purpose solutions to this problem have been designed, starting
with the seminal works of Yao [Yao86] and Golwasser, Micali, and Widger-
son [GMW87b,GMW87a]. Among the large variety of problems related to MPC
that have been considered, the secure comparison problem, in which the play-
ers wish to find out whether x ≥ y for given x, y without disclosing them, is
probably the one that received the most attention. Indeed, in addition to being

? CNRS – UMR 8548 and INRIA – EPI Cascade

2 Geoffroy Couteau

(historically) the very first MPC problem ever considered (introduced in [Yao86]
under the name of millionaire’s problem), it is a fundamental primitive in a
considerable number of important applications of multiparty computation. Ex-
amples include auctions, signal processing, database queries, machine learning
and statistical analysis, biometric authentication (face recognition, fingerprint
recognition), combinatorial problems, or computation on rational numbers. Se-
cure comparison is at the heart of any task involving sorting data, finding a
minimum value, solving any optimization problem, or even in tasks as basic as
evaluating the predicate of a while loop, among countless other examples.

Two-party and multiparty computation seem now at the edge of becoming
practical, with increasing evidence that they are no more beyond the reach of
the computational power of today’s computers. However, secure comparisons
appear to be a major bottleneck in secure algorithms. Various implementations
of secure algorithms unanimously lead to the conclusion that secure comparison
is the most computationally involved primitive, being up to two orders of mag-
nitude slower than, e.g., secure multiplication. Hence, we believe that improving
secure comparison protocols is one of the major roads toward making multiparty
computation truly practical.

In this work, we focus on the most conservative version of the two-party secure
comparison problem, in which neither the inputs nor the output are revealed to
the players (the inputs and the output are either encrypted or secretly shared
between the players).1 This is the setting of most applications, in which secure
comparison will be used as an internal building block of a larger protocol, hence
disclosing the result of the comparison to the players would reveal values at
intermediate steps of the larger protocol. We construct new two-party protocols
for securely comparing private inputs which compare very favorably to state-
of-the-art solutions. In particular, our protocols are extremely suited for large
scale secure computation protocols using secure comparison as a basic routine
(this statement will be made precise later on). As this is the model used in most
applications, we focus on the honest-but-curious setting, in which players are
assumed to follow the specifications of the protocol, but are willing to gain any
possible information from the transcript of the protocol. We leave as open the
interesting question of extending our protocols to handle malicious adversaries
(who might deviate arbitrarily from the specifications of the protocol), while
preserving (as much as possible) their efficiency.

1.1 State of the Art for Secure Comparison

The secure comparison problem has been a very active research field in the
past decade, with far too many contributions to mention them all. Hence, we
choose to regroup these protocols into three main categories, and discuss the
most prominent constructions (to our knowledge) in each category. To avoid
unnecessary details in the presentation, we assume some basic knowledge on
1 Note, however, that our protocols can trivially be adapted to inputs and/or outputs
in clear and do still improve over the state-of-the-art in these settings.

Efficient Secure Comparison Protocols 3

classical cryptographic primitives, such as garbled circuits, oblivious transfer
and cryptosystems. Preliminaries on oblivious transfers are given Section 2. In
the following, we let κ denote a security parameter.

From Garbled Circuits. The first category regroups protocols in the two-
party setting following the garbled circuit approach of Yao [Yao86]. The protocol
of [KS08], which was later improved in [KSS09], is, to our knowledge, the most
communication-efficient secure comparison protocol. It requires each party to
know one of the two private inputs, but there are very simple folklore methods
to reduce the problem of comparing shared or encrypted inputs to the problem
of comparing inputs held by the parties (we will recall such methods in our
construction). Similarly, the output of the protocol is revealed to the players,
but this can be easily modified by letting the first player pick a random bit
and garble a circuit computing the result of the comparison xored with this
bit — the two players then end up with secret shares of the output. For `-
bit inputs, the protocol of [KSS09] proceeds by letting the first player garble
a circuit containing ` comparison gates, each gate consisting of three xor gates
and one and gate. Using the free-xor trick [KS08], the xor gates are garbled
for free. The resulting garbled circuit therefore consists of ` garbled and gates.
Using the recent result of [ZRE15] which reduces the size of garbled and gates
while remaining compatible with the free-xor trick, each garbled and gate is of
size 2(κ + 1). The first player sends the garbled circuit together with the keys
corresponding to his input, then players perform ` parallel oblivious transfers
so that the second player obliviously recovers the keys corresponding to his
own input. In addition to being very communication-efficient (it was compared
favorably to several alternative candidates in a survey [VBdHE15]),2 in a setting
where several instances of the comparison protocol are likely to be invoked, it
can rely on oblivious transfer extensions [IKNP03] so that any number n of
secure comparison protocol, on inputs of any length `, can be executed using
a constant number of public key operations (independent of both n and `) and
only cheap, symmetric operations per invocation of the secure protocol, making
it computationally very efficient.

From Homomorphic Encryption. The second category contains protocols
based on some special-purpose homomorphic cryptosystem. In [DGK07], the au-
thors construct a new factorization-based cryptosystem, the DGK cryptosystem,
which is additively homomorphic modulo some small prime (they corrected a flaw
in the original proposal in [DGK08]). Their protocol involves 2` DGK cipher-
texts (the size of the ciphertext depends of the hardness of factorization; current
recommendation indicate that a 2048-bit RSA modulus is necessary to reach
112 bits of security) and is often regarded as one of the most computationally

2 It should be mentioned that this survey does not take into account recent optimiza-
tions on garbled circuits and uses highly unoptimized oblivious transfers; we expect
an optimized implementation to be considerably more efficient than the one used
in [VBdHE15], hence to compare even better with current alternatives.

4 Geoffroy Couteau

efficient. The more recent construction of [GHJR15] relies on the flexibility of lat-
tice based cryptosystems to design secure comparison protocol. Using a degree-8
somewhat homomorphic encryption scheme and ciphertext packing techniques,
the (amortized) bit complexity of their protocol is Õ(`+κ). Although asymptot-
ically efficient, this method is expected to remain less efficient than alternative
methods using simpler primitives for realistic parameters.

From the Arithmetic Black Box Model. The third category consists of
protocols built on top of an arithmetic black box [CDN01] (ABB), which is
an ideal reactive functionality for performing securely basic operations (such
as additions and multiplications) over secret values loaded in the ABB. The
ABB itself can be implemented from various primitives, such as oblivious trans-
fer [Rab81, EGL82] or additively homomorphic encryption (most articles ad-
vocate the Paillier scheme [Pai99]). Protocols in this category vary greatly in
structure. Most protocols [DFK+06,GSV07, RT07,NO07, Cd10a, Yu11] involve
Õ(`) private multiplications, each typically requiring O(1) operations over a field
of size O(`+ κ), resulting in an overall Õ(`(`+ κ)) bit complexity (for the sake
of simplicity, we consider only the total communication of the protocols; in some
constructions, most of the work can be performed in a preprocessing phase). The
protocols of Toft [Tof11], and Toft and Lipmaa [LT13], provide solutions using
only a sublinear (in `) number of invocations to the cryptographic primitive;
however, the total bit complexity remains superlinear in ` as each invocation of
the cryptographic primitive involves O(`+κ) bits of communication. In addition,
because of the constants involved, these protocols are only competitive for large
values of `. Eventually, the protocol of [YY12] relies on probabilistically cor-
rect conversion of shares modulo various values, and can be implemented (with
negligible error probability) with bit complexity O(`+ κ2); again, the constants
involved here make the protocol competitive for very large values of ` only.3

General Overview. The most practical constructions transmit at least O(λ`)
bits, for some security parameter λ = poly(κ) which depends of the particu-
lar construction. Some constructions are asymptotically more efficient [YY12,
GHJR15], but this comes at the cost of very large constants or somewhat homo-
morphic encryption, hence these constructions do not beat the most practical
constructions [KSS09,DGK07] for realistic values of `. Asymptotically, the most
efficient construction is the O(`+κ2) protocol of [YY12]. Regarding computation,
we expect the protocol of [KSS09] to be the most efficient in any large-scale pro-
tocol relying on secure comparison, due to its possibility to use oblivious transfer
extensions to be implemented with a small (constant) number of public-key op-
erations and cheap symmetric operations.

3 A rough estimation indicates that this approach becomes competitive with
e.g. [KSS09] only for inputs whose bit-size ` is of the order of several thousands.

Efficient Secure Comparison Protocols 5

1.2 Our Contribution

In this work, we construct new protocols for secure comparison, which improve
over the best state-of-the-art protocols. More precisely, we construct protocols
enjoying the following features:

– Our protocols are based solely on the existence of oblivious transfer [Rab81,
EGL82]. The latter can be instantiated from a large variety of cryptographic
assumptions. Apart from oblivious transfer, our protocols involve only cheap
modular additions over small groups. In particular, this also implies that
our protocols perform very well regarding computation in an amortized set-
ting, in which many secure comparisons are involved. Indeed, using obliv-
ious transfer extension [IKNP03] allows to confine all the computationally
involved public-key operations to a single run of a constant number of base
oblivious transfers, while performing polynomially many secure comparisons.
In addition, our protocols are tailored to benefit from the advances in the
design of efficient oblivious transfer extension. In particular, we heavily rely
on the short-string oblivious transfer extension protocol of [KK13].

– Our protocols are in the preprocessing model : they are designed in two
phases, the first of which depends only on the size of the inputs, and not
on their actual values. The online phases of our protocols are information-
theoretically secure. Although our protocols compare already very favorably
to the state-of-the-art during the preprocessing phase, they perform partic-
ularly well in the online phase.

– When instantiated with specific constructions for oblivious transfer exten-
sion (in particular the protocol of [KK13]), our protocols are, to our knowl-
edge, more efficient than any existing secure comparison protocol regarding
communication, for inputs of any bit-size. In particular, they improve over
the protocol of [KSS09] by a factor 20 to 30 in the online phase, and by
approximately 40% overall.
Note that numerous two-party computation protocols rely essentially on two
components: secure multiplication and secure comparison (additions can in
general be performed without interactions). Secure multiplication protocols
can be very efficiently precomputed, hence the online communication of these
protocols essentially consists in performing the secure comparisons, which is
a major efficiency bottleneck. Our result shows that secure comparisons can
be precomputed extremely efficiently, with an online phase which involve
just exchanging a few strings; hence, in all such protocols, the online phase
can be dramatically reduced.

– Our protocols are designed in a modular way, so that one can easily adapt
them to the constraints of a particular setting (e.g., by choosing to optimize
the online communication or the overall communication, by reducing the
round complexity at the cost of increasing the communication).

– Our protocols have a low asymptotic communication complexity. Asymptoti-
cally, the complexity of our logarithmic-round protocol isO

(
` log `

log log κ + κ2

log κ

)
.

This approaches the complexity of the best protocols regarding asymptotic

6 Geoffroy Couteau

communication [YY12,GHJR15], while remaining efficient for realistic pa-
rameters. To our knowledge, our protocols are the first to enjoy both a low
asymptotic complexity and a low cost for practical parameters.

We view our contribution as a further indication that basing multiparty com-
putation on oblivious transfers is one of the major directions toward making it
truly practical.

1.3 Our Method

The approach on which we rely is close to the intuition underlying the secure
comparisons in [Tof11, LT13]: to compare two strings, one can divide them in
equal length blocks, and compare the first block on which they differ. It remains
to obliviously select this block; this is done using both oblivious transfers and
equality tests. A (secure) equality test protocol is a protocol which, on input
two strings (x, y), each string being privately held by a player, outputs shares
(modulo 2) of a bit which is 1 if and only if x = y (i.e., let b be the bit which
is 1 if and only if x = y; the two players get respective bits b0, b1 such that
b0 + b1 = b mod 2). The players must not learn anything from the transcript of
the protocol.

Keeping this approach in mind, we start by designing an equality test protocol
which is based solely on oblivious transfer. It relies on a classical observation:
two strings are equal if and only if their Hamming distance is zero. Using this
observation, we design a protocol which reduces an equality test on `-bit strings
to an equality test on (approximately) log `-bit strings (a similar approach was
used in [GHJR15]). Eventually, when the strings are small enough, we call an
oblivious transfer-based equality test protocol which is tailored to small inputs.

Our equality test protocol do also improve over previous constructions. Us-
ing oblivious transfer extensions, in an amortized setting, it improves over prior
works by two orders of magnitude during the online phase, and by 50% overall
(regarding communication). Equality test protocols enjoy independent applica-
tions as building blocks in various multiparty computation protocols. Examples
include, but are not limited to, protocols for switching between homomorphic
encryption schemes [CPP16], protocols for secure linear algebra [CKP07], se-
cure pattern matching [HT14], and secure evaluation of linear programs [Tof09].
Therefore, our equality test protocol is a contribution of independent interest.
In addition, we provide as a supplementary material a variant of our equality
test protocol in a batch settings (where many equality tests are performed “by
blocks”), which uses additively homomorphic encryption to improve the perfor-
mances (it reduces the communication of our equality test protocol by up to
50%). However, the latter construction would be usable in our secure compar-
ison protocol only for very large strings and so is essentially a contribution of
independent interest. Therefore, we postpone its description to the appendix.

Efficient Secure Comparison Protocols 7

1.4 Applications

Our secure comparison protocols are readily usable as building blocks in a variety
of semi-honest two-player secure algorithms. In this subsection, we outline a non-
exhaustive list of some interesting applications for which they suit particularly
well. In general, our protocols compare very well to state-of-the-art protocols
in settings were a large number of comparisons are involved and a preprocess-
ing step, independent of the inputs, can be executed. In the applications listed
thereafter, we expect our secure comparison protocol to perform well compared
to prior alternatives, both in terms of computation and communication, and to
result in strong efficiency improvements for the application.

Obliviously Sorting Data. Sorting data is probably one of the most widely
used basic algorithmic operation, as well as a computationally involved one. As
a consequence, sorting encrypted value has proven useful in contexts such as pri-
vate auctions [NIIO14, BKU14], oblivious RAM [Gol87,WSC08,WS08, PR10],
or private set intersection [HEK12], but it remains to date quite slow (imple-
mentations [HICT14] report that sorting over a million 32-bit words takes be-
tween 5 and 20 minutes, depending on the method used), in spite of receiving a
lot of attention [Goo10,JKU11,Zha11,HKI+12,HICT14,Goo14]. Various obliv-
ious sorting algorithms have been designed, but they all rely crucially on secure
comparisons; in most algorithms, sorting m integers requires O(m logm) secure
comparisons (in O(logm) rounds, with O(m) parallel secure comparisons at each
round), which easily amounts to millions of secure comparisons on words which
are generally 32-bit or 64-bit words.

Biometric Authentication. The field of biometric authentication is a very
active research field. While efficiently solving the issues related to the use of
passwords, which are hard to remember and easy to crack, they raise concerns
regarding the privacy of the individuals, as they involve storing and manipulat-
ing private data associated to an individual, such as fingerprints, iris, or faces.
As such, a large body of work has been dedicated to the problem of secure
biometric matching (see [BAC+11,Mu14] for surveys on the topic). One of the
most important primitives for such protocols (used in e.g., secure face recogni-
tion [SSW10,EFG+09,XT14]) is a secure protocol to find the minimum value in
a database (e.g., a database of features) of size n. This protocol involves O(n)
secure comparisons; for example, the protocol of [EFG+09] was evaluated on a
database with 320 features; it requires 720 secure comparison protocols on 64-bit
inputs (larger databases are likely to be used in realistic applications).

Data Mining and Machine Learning. The enormous amount of data which
is generated daily, the emergence of cloud computing, and the constantly growing
power of our computers, have placed data mining at the heart of any company
hoping to use those data in a beneficial way. When storing data in the cloud,
which is owned by some potentially ill-intentioned cloud provider, the natural so-
lution to ensure the privacy of the data is to encrypt it; multiparty computation

8 Geoffroy Couteau

protocols can then allow companies or individuals to privately evaluate machine
learning algorithms on the encrypted data. Secure comparisons are required for
very basic machine learning operations, such as classification [BPTG14,RPV+14]
or evaluating decision trees [WFNL15]. They are necessary in a large variety of
applications of secure machine learning; examples include generating private
recommendations [EVTL12], spam classification [WFNL15], multimedia anal-
ysis [CC15], clinical decisions [RPV+14], evaluation of disease risk [ARL+13],
or image feature extraction [LLY+16]. For example, the protocols of [WFNL15]
privately evaluate decision trees and random forest, and require a secure compar-
ison on 64-bit numbers per decision node. For classical applications, a random
forest can contain thousands, or tens of thousands, of decision nodes.

Securely Solving Combinatorial Problems. Combinatorial problems, such
as finding the flow of maximum capacity in a weighted graph, or searching for the
shortest path between two nodes, are encountered in many applications. Their
secure counterpart have been investigates in e.g. [ACM+13,AV15,Lau15,BS15]
and have applications in several cryptographic protocols, such as private finger-
print matching (using a secure algorithm to find the maximum matching size
in a bipartite graph, see [BS15]), privacy-preserving GPS guidance, or privacy-
preserving determination of topological features in social networks (which is a
special case of the maximum flow problem, see [ACM+13]). Secure protocols for
combinatorial problems typically involve a very large number of secure compar-
isons: according to [ACM+13], for a graph with n nodes and m ≤ n2 edges,
secure algorithms use n2 comparisons for Dijkstra’s shortest path algorithm, nm
comparisons for Bellman-Ford’s shortest path algorithm, and nm2 comparisons
for Edmond-Karp’s maximum flow algorithms. Hence, even for graphs of reason-
able size, a very large number of secure comparisons is required; this is indeed
pointed out as being (by far) the dominant cost in those secure protocols.

Computing on Non-Integer Values. While there is a vast literature on
multiparty computation on (modular) integers because of their mathematically
convenient structure, in realistic applications data is often stored as floating
numbers or as fixed-point numbers, and some very classical applications in-
volve non-integer operations, such as computing square roots. This motivated
the development of multiparty computation protocol on rational numbers [CS10,
Cd10a,Lie12,ABZS13]. Secure algorithms for fixed-point arithmetic, as well as
for arithmetic on floating numbers, heavily rely on comparisons. It was pointed
out in [Cd10a] that comparisons and integer truncation are core components
of fixed-point arithmetic, and the most important performance bottlenecks in
complex applications.

Other Applications. The above list is far from exhaustive; other applica-
tions for secure comparisons include various types of secure auctions [DGK07,
HGW+15], range queries over encrypted databases (which involve a secure com-
parison per element of the database) [SJB14], or secure algorithms for opti-
mization problems (for example, securely evaluating a simplex algorithm [Tof09,

Efficient Secure Comparison Protocols 9

Cd10b], which occurs in supply chain planning between concurrent suppliers,
might involve hundreds of secure comparisons on ≈ 100-bits values, according
to [Cd10b]).

1.5 Organization

In Section 2, we recall definitions and classical results on oblivious transfers, as
well as on oblivious transfer extensions. Section 3 introduces our new equality
test protocol. Section 4 focus on the construction of secure comparison protocols.
Eventually, we describes a variant of our equality test in Appendix A of the
supplementary material.

2 Preliminaries

In this section, we recall the necessary background on oblivious transfer, the
cryptographic primitive on which our protocols are based. We present some
existing results, on which we will rely when estimating the efficiency of our
protocols. These constructions allow to execute oblivious transfers very efficiently
(in an amortized setting), and some of them are adapted to inputs satisfying
particular conditions (namely, being short or correlated) that will be satisfied in
our protocols.

Notations. Given a finite set S, the notation x ←R S means a uniformly
random affectation of an element of S to the variable x. We let κ denote a
security parameter (we will use κ = 128 in our estimation). The symbol ⊕
denotes the xor operation (when applied on bit-strings, it denotes the bitwise
xor). Given integers (x, y), we write [x = y] (resp. [x ≤ y]) to denote the bit
value which is 1 if this predicate is true, and 0 else. Given a rational number
f , dfe and bfc denote respectively the smallest integer above f and the largest
integer below f . For a group G, we denote by |G| the length of the group, which
is the bit-size of (a representation of) the elements of G. Eventually, we denote
by Hd(x, y) the Hamming distance between bit-strings x and y, which is the
number of bits on which they differ.

2.1 Oblivious Transfers

Oblivious transfers (OT) were introduced in [Rab81, EGL82]. A
(
2
1

)
-OT is a

two-party functionality which, on input two messages (m0,m1) from a sender
and a bit b from a receiver, outputs mb to the receiver. Sender privacy states
that the entire view of the receiver can be simulated from mb only. Receiver
privacy states the views of the sender when interacting with a receiver with
input 0 or with input 1 are indistinguishable (see [NP01] for more details on
these security notions). The primitive can be extended naturally to k-out-of-n
oblivious transfers;

(
n
k

)
-OTt` denotes t invocations of a k-out-of-n OT on strings

of length `. Oblivious transfer is a fundamental primitive in MPC as it implies
general multiparty computation [Kil88, IPS08] and can be made very efficient.

10 Geoffroy Couteau

Naor-Pinkas Oblivious Transfer Protocol For the sake of completeness,
we recall the

(
2
1

)
-OTt` protocol proposed in [NP01]. It is secure against malicious

adversaries in the random oracle model.4

Input: The sender holds t pairs of `-bit strings (x0i , x
1
i)i≤t, and the receiver

holds t selection bits (bi)i≤t.
Output: The receiver gets (xbii)i≤t; the sender gets nothing.
Setting: The parties agree on a group G of order p with generator g, such that

DDH is conjectured to hold over G. Let C be a random element of G chosen
by the sender. Let H : {0, 1}∗ 7→ {0, 1}κ be a hash function.

1. For i = 1 to t, the receiver picks ri ←R Zp and sets pkibi ← gri and pki1−bi ←
C/pkibi . The receiver sends (pki0)i≤t.

2. The sender computes pki1 ← C/pki0 for i ≤ t and picks r ←R Zp. He sends
u← gr together with (Ei0, E

i
1)← (H((pki0)r, 0)⊕ xi0, H((pki1)r, 1)⊕ xi1).

3. The sender computes his output as (Eibi ⊕H(uri , bi))i≤t.

The security of the protocol in the random oracle model relies on the deci-
sional Diffie-Hellman (DDH) assumption, which states that the distribution of
tuples of the form (gx, gy, gxy) for random exponents x, y is computationally
indistinguishable from the distribution of random triples of group elements. The
protocol transmits (t+ 1)|G|+ 2t` bits. Using recommended parameters for the
length of G gives |G| ≈ 2κ when G is instantiated as a well-chosen elliptic curve.

Preprocessing Oblivious Transfers. There is a very simple and black-box
way to preprocess oblivious transfers before knowing the inputs, which was in-
troduced in [Bea95]. Let us consider two players, a sender Alice and a receiver
Bob. In the preprocessing stage, the players do not know their actual inputs to
the protocol, but they know the bit-size of these inputs. Alice picks two uni-
formly random inputs (x0, x1) of the correct bit-size, and acts as sender in an
oblivious transfer on those random inputs. Bob picks a uniformly random se-
lection bit b and gets xb from the protocol. Later, in the online phase, Alice
gets an input (m0,m1), and Bob gets a selection bit β. Bob simply tells Alice
whether b = β, by sending a single bit b ⊕ β. If indeed b = β, then Alice sends
(y0, y1)← (x0 ⊕m0, x1 ⊕m1) to Bob, who computes xb ⊕ yb = mb = mβ . Else,
β = 1 − b and Alice sends (y0, y1) ← (x0 ⊕ m1, x1 ⊕ m0) to Bob, who com-
putes xb ⊕ yb = m1−b = mβ . When the bit-size ` of the input is large (say, of
bit-size ` = κ), these 2` + 1 bits of communication add a notable overhead to
the oblivious transfer; however, for very small inputs, this preprocessing phase
allows to precompute very efficiently the oblivious transfers. We will rely on this
observation when designing our secure comparison protocols.

4 The random oracle model [BR93] assumes that the hash function H acts as a truly
random function to which the players are only given black-box access.

Efficient Secure Comparison Protocols 11

2.2 Oblivious Transfer Extension

An oblivious transfer extension protocol is a protocol which allows two play-
ers to reduce polynomially many OTs to a constant number of base OTs. They
play a crucial role in secure multiparty computation; indeed, while it is provably
impossible to construct MPC protocols without public key operations (without
assuming an honest majority, which is in particular the case for two-party com-
putation), the existence of oblivious transfer extension shows that all the public
key operations of an MPC protocol can be confined to a single, constant-size pre-
processing phase. OT extensions were introduced in [Bea96], but the construction
was essentially of theoretical interest. [IKNP03] proposed the first truly practical
OT extension protocol. Assuming the random oracle model,5 polynomially many
OTs can be reduced to κ base OTs of κ-bit strings, using only cheap operations
(such as evaluating hash functions). The idea of the protocol is the following: a(
2
1

)
-OTκt can be directly obtained from a

(
2
1

)
-OTκκ; indeed, the sender associates

two κ-bit keys to each pair of messages and the receiver gets to know one of
the two keys, corresponding to its selection bit, of each pair. Then, the receiver
stretches two t-bit strings from the two keys of each pair, using a pseudo-random
generator, and sends the xor of each of these strings and the corresponding mes-
sage to the receiver. The

(
2
1

)
-OTt` itself can be implemented with a single call

to a
(
2
1

)
-OTκt functionality, in which the receiver plays the role of the receiver

(and reciprocally). The total communication of the reduction from
(
2
1

)
-OTt` to(

2
1

)
-OTκκ is 2t`+2tκ bits. Regarding the computational complexity, once the base

OTs have been performed, each OT essentially consists in three evaluations of a
hash function.

An optimization to the [IKNP03] paper was proposed in [ALSZ13] (and dis-
covered independently in [KK13]). This optimization reduces the communication
of the OT extension protocol from 2t`+ 2tκ bits to 2t`+ tκ bits. This optimiza-
tion does also allow to perform the base OTs without an a-priori bound on the
number of OTs to be performed later: the OTs can be continuously extended.
Note also that oblivious transfer extensions can be preprocessed too, as for clas-
sical oblivious transfers; this leads again to a particularly efficient online phase
when ` is small, which transmits only 2`+ 1 bits.

Oblivious Transfer of Short Strings. [KK13] constructed OT extension pro-
tocols tailored to the case of short inputs. More specifically, the authors describe
a reduction of

(
2
1

)
-OTt` to

(
2
1

)
-OTκκ with t(κ′/ log n+n · `) bits of communication

(for some security parameter κ′ which should be taken equal to 2κ), n being a
parameter that can be chosen arbitrarily so as to minimize this cost. Intuitively,
this is done by reducing log n invocations of

(
2
1

)
-OT to one invocation of

(
n
1

)
-OT;

the result is then obtained by combining this reduction with a new
(
n
1

)
-OT ex-

tension protocol introduced in [KK13]. In our concrete efficiency estimations, we

5 The random oracle model can be avoided by assuming that the hash function is a
correlation-robust function, see [KK13], AppendixA.2

12 Geoffroy Couteau

will heavily rely on this result as our equality test protocol involves OTs on very
short strings.

Correlated Oblivious Transfers. The authors of [ALSZ13] described several
OT extension protocols, tailored to OTs on inputs satisfying some particular
conditions. In particular, the communication of the OT extension protocol can be
reduced from 2t`+tκ bits to t`+tκ bits when the inputs to each OT are correlated,
i.e. when each input pair is of the form (r, f(r)) for a uniformly random r and a
function f known by the sender (which can be different for each OT). We note
that the optimizations of [KK13] and [ALSZ13] can be combined: log n correlated(
2
1

)
-OT can be reduced to one correlated

(
n
1

)
-OT (defined by input pairs of the

form (r, f1(r), · · · fn−1(r)) for a random r and functions f1 · · · fn−1 known by the
sender). This gives a correlated short-string oblivious transfer extension protocol
which transmits t(κ′/ log n+ (n− 1) · `) bits.

3 Fast Oblivious Transfer-Based Equality Test

In this section, we design a protocol allowing two players, holding respective `-
bit inputs x and y, to securely compute shares (modulo 2) of the bit b = [x = y].
Our equality test (ET) protocol enjoys the following features:

– It relies solely on oblivious transfer; in particular, this means that it can be
based on a large variety of cryptographic assumptions, and in an amortized
setting, we can use oblivious transfer extension and perform polynomially
many ETs using only cheap, symmetric operations (such as evaluating hash
functions).

– It can be very efficiently preprocessed. During the online phase, only slightly
more than 2` bits are exchanged, and only modular additions are computed.

– Compared to the state-of-the-art, it strongly improves the communication
(by up to 80%), and has very low amortized computation.

This ET protocol is the core building block of our secure comparison proto-
cols. Our protocol is in the spirit of [GHJR15]: using the fact that two strings of
length ` are equal if and only if their Hamming distance (of length log `) is zero,
we perform several reduction steps, each step reducing an equality test on k-bit
inputs to an equality test on log k-bit inputs. After log∗ ` such steps, we invoke
a protocol dedicated to equality tests on very small strings.

Equality Tests on Large Strings. When the inputs to the equality test are
of size ` > κ, the players can use the following folklore method to reduce it to an
equality test on κ-bit strings: the players agree on the description of a hash func-
tion H : {0, 1}` 7→ {0, 1}κ and perform the protocol on the hash of their inputs.
This reduces the size of the inputs to κ-bits while preserving equality. Note,
however, that this adds a computational assumption to the protocol, namely,
that the hash function is collision-resistant. Under this (mild) requirement, for
large strings, the equality test protocol can be made independent of the size of
the inputs.

Efficient Secure Comparison Protocols 13

3.1 Sub-Protocols

We start by describing the two components of our protocol, the small-string
equality test protocol and the equality-preserving size-reduction protocol.

Small-Strings Equality Test. We design a protocol for testing equality be-
tween two k-bit strings, for some given k. The protocol involves 2k − 2 oblivious
transfers on bits, hence is suitable only for very small values of k. In the following,
we let (Ij)0≤j≤2k−3 denote the list of non-empty strict subsets of {0, · · · , k− 1}
(in any arbitrary fixed order).

Input: a = (ai)i≤k−1 ∈ {0, 1}k for Alice and b = (bi)i≤k−1 ∈ {0, 1}k for Bob.
Output: A random bit x for Alice and

∏k−1
i=0 (ai ⊕ bi)⊕ x for Bob.

Preprocessing phase: (the inputs are not required in this phase; only their
length must be known)
1. Alice picks random bits (αj , cj)0≤j≤2k−3 ←R ({0, 1}2)2

k−2. Bob picks
random bits (β)0≤j≤2k−3 ←R {0, 1}2

k−2.
2. Alice acts as sender in a

(
2
1

)
-OT2k−2

1 on inputs (cj , αj ⊕ cj) for j = 0 to
2k−3. Bob’s selection bits are the βj , for j = 0 to 2k−3; let (c′j)0≤j≤2k−3
be his outputs.

Online phase: Once the inputs are revealed to the players,
1. For j = 0 to 2k− 3, Alice sends γj ← αj ⊕

∏
i∈Ij āi; simultaneously, Bob

sends δj ← βj ⊕
∏
i∈{0,k−1}\Ij bi.

2. Alice sets her output to
⊕

0≤j≤2k−3(cj ⊕ αjδj ⊕ γjδj) ⊕
⊕

0≤i≤k−1 āi.
Bob sets his output to

⊕
0≤j≤2k−3(c′j ⊕ βjγj)⊕

⊕
0≤i≤k−1 bi.

The idea of the protocol is fairly simple: observe that [a = b] =
∏k−1
i=0 (āi⊕bi).

This product can be developed and rewritten

[a = b] =
⊕

0≤i≤k−1

(āi ⊕ bi)⊕
2k−3⊕
j=0

∏
i∈Ij

āi ·
∏

i∈{0,k−1}\Ij

bi

Hence, the players simply compute shares of all those products, using a single
oblivious transfer per value of j, and xor all their shares together. Each oblivious
transfer is performed on random inputs during the precomputation phase; the
players exchange two correction bits per bit-OT to get the correct result during
the online phase, using a standard precomputation technique.

k-Bit Equality-Preserving Size-Reduction (k−EPSR). This protocol al-
lows two players holding inputs of length k to reduce the length of their input
while preserving the equality between the inputs: the protocol outputs strings of
size dlog(k + 1)e which are equal if and only if the input strings are equal. The
communication consists of k parallel invocations of a one-out-of-two oblivious
transfer on strings of size dlog(k + 1)e.

14 Geoffroy Couteau

Input: r = (ri)i≤k ∈ {0, 1}k for Alice and s = (si)i≤k ∈ {0, 1}k for Bob.
Output: Two dlog(k+ 1)e-bit strings, r′ = (r′i)i≤dlog(k+1)e ∈ {0, 1}dlog(k+1)e for

Alice and s′ = (s′i)i≤dlog(k+1)e ∈ {0, 1}dlog(k+1)e for Bob so that r′ = s′ if
and only if r = s.

Preprocessing phase: (the inputs are not required in this phase; only their
length must be known)
1. Alice picks a random string x = x1x2 · · ·xk and (ρi)i≤k ←R Zkk+1.

Bob picks a random string y = y1y2 · · · yk. Alice acts as sender in a(
2
1

)
-OTklog(k+1) on k inputs (ρi, 1−2xi+ρi mod k+ 1)i≤k. Bob gets (σi)i

on selection bits yi.
2. Alice sets r′ ←

∑
i ρi mod k + 1. Bob sets s′ ←

∑
i σi mod k + 1.

Online phase: Once the inputs are revealed to the players,
1. Alice sends r⊕x to Bob. Simultaneously, Bob sends s⊕y to Alice. Both

players compute z ← r ⊕ x⊕ s⊕ y (the strings are xored bitwise).
2. Alice sets r′ ←

∑
i(−1)zi(ρi − xi) mod k + 1; Bob sets s′ ←

∑
i wi +

(−1)ziσi mod k + 1.

It follows easily from a careful inspection of the protocol that r′ − s′ =
Hd(r, s) mod k + 1. As r and s are both k-bit long, it holds that Hd(r, s) ≤ k,
hence r′ = s′ holds over the integers if and only if Hd(r, s) = 0 holds over the
integers, which happens only when r = s.

3.2 Equality Test Protocol

Using the sub-protocols described above, we are now ready to describe an equal-
ity test protocol on `-bit strings. The protocol performs log∗ ` rounds of k−EPSR,
up to a point where the players hold strings of length upper bounded by n, for
some threshold n ≥ 2. Then, the players perform a small string equality test
protocol, which involves 2n− 2 oblivious transfers on bits. One should note that
setting n = 2 always minimizes the communication; however, it might be desir-
able in some applications to stop at n = 3 or n = 4, which saves one round at
the cost of a slightly increased communication (by a few hundreds of bits).

Input: r = (ri)i≤` ∈ {0, 1}` for Alice and s = (si)i≤` ∈ {0, 1}` for Bob. The
players agree on some threshold n.

Output: Two bits, bA for Alice and bB for Bob, with bA ⊕ bB = 1 iff r = s.

1. (r0, s0)← (r, s), k ← `, i← 0
2. While k > n,

– Alice and Bob perform an equality-preserving k-bit size-reduction pro-
tocol on (ri, si); let (ri+1, si+1) be the output of the protocol. Note that
to optimize the round complexity, Alice and Bob should exchange their
roles as sender and receiver in two consecutive k−EPSR.

– i← i+ 1, k ← dlog(k + 1)e
3. Alice and Bob perform a small-string equality test protocol on the strings

(ri, si) (of length smaller than n); the output of this protocol is their final
output.

Efficient Secure Comparison Protocols 15

Note that the preprocessing phase of this protocol (which is the preprocessing
phase of the sub-protocols it invokes) corresponds exactly to executing equality
tests on random strings and relies solely on oblivious transfer, while the online
phase is information-theoretically secure; it involves only sending a few strings
and computing some modular additions in small-order groups.

3.3 Security Analysis

Let us show that our equality test protocol is secure against honest-but-curious
adversaries, for both Alice and Bob, if the oblivious transfer protocol is secure
against honest-but-curious adversaries. Note that if the inputs are of size ` > κ
and the players wish to reducing the communication by hashing their inputs,
one must also assume a collision-resistant hash function.

First, note that in all the oblivious transfers involved in both the small-string
equality test and in the k−EPSR, the sender uses two independently random in-
puts, i.e., two inputs (m0,m1) such that for b ∈ {0, 1}, mb is perfectly indistin-
guishable from a random input (of the appropriate length) from the viewpoint
of an adversary, given that this adversary does not know m1−b. Therefore, the
sender privacy of the OTs, which guarantees that at most one inputs out of
two can be recovered by a (semi-honest) receiver, ensures that the view of the
receiver in each OT consists solely of uniformly random bit-strings.

In the small-string equality test, Alice acts as sender in 2k − 2 OTs on inde-
pendently random inputs (cj , αj ⊕ cj). As cj is random, by the sender privacy
of the OTs, the value αj remains perfectly hidden from Bob’s viewpoint. Later,
in the online phase, Alice reveals γj = αj ⊕

∏
i∈Ij āi. As αj is uniformly ran-

dom and remained perfectly hidden during the preprocessing phase, γj perfectly
masks the bit

∏
i∈Ij āi, which ensures Alice’s privacy during the small-string

equality test. Bob’s privacy is immediately implied by the receiver privacy of the
oblivious transfers: by the receiver privacy, Alice learns nothing at all during the
preprocessing phase, and Bob reveals δj ← βj ⊕

∏
i∈{0,k−1}\Ij bi in the online

phase, which perfectly masks
∏
i∈{0,k−1}\Ij bi as βj is uniformly random from

the viewpoint of Alice.
We now turn our attention to the equality-preserving size-reduction proto-

cols. The argument is similar: during the preprocessing phase, the inputs to
the OTs are independently random and therefore, by the sender privacy of the
OTs, they perfectly mask the bits of x. Hence, r ⊕ x perfectly masks r, as x
is uniformly random and remained hidden from the viewpoint of Bob during
the preprocessing phase. The receiver privacy implies that Alice learns nothing
during the preprocessing phase; during the online phase, s ⊕ y perfectly masks
s as y is uniformly random. Note that the security is trivially maintained when
performing several k−EPSR sequentially.

Overall, the view of each player in the full equality test is indistinguishable
from uniformly random, if the oblivious transfer protocol ensures both sender
privacy and receiver privacy. �

16 Geoffroy Couteau

3.4 Communication Complexity

Asymptotically, the cost of the first `−EPSR protocol clearly dominates the
communication, hence we focus on this sub-protocol to estimate the communi-
cation complexity of the equality test protocol. Using any standard constant-
round oblivious transfer protocol, which communicates O(κ) bits, we get a
protocol with bit complexity O(κ`) in the preprocessing phase, and O(`) in
the online phase. However, in an amortized setting where many equality tests
are likely to be invoked, we can do better. Using the short-string oblivious
transfer extension protocol of [KK13], we can reduce m `−EPSR to κ base
OTs on κ-bit strings, using O(m`(κ/ log x + x · dlog `e)) bits of communica-
tion, where x is a parameter than can be arbitrarily set so as to minimize
this cost. Taking x = O(W(eκ/dlog `e)) (where W denotes the Lambert func-
tion, which is the reciprocal of the function u 7→ ueu), the communication be-
comes O(m`κ/ logW(eκ/dlog `e)), which is approximately O(m`κ/ log κ) up to
some log log term (recall that we can always assume ` ≤ κ, by letting the players
hash their input first if its size exceeds κ, hence log ` ≤ log κ). As a consequence,
when performing many equality tests, the (amortized) cost of a single equality
test is O(κ`/ log κ) bits in the preprocessing phase (and still O(`) bits in the
online phase). For inputs of size ` > κ, the players can hash their inputs so that
the complexity becomes O(κ2/ log κ) in the preprocessing phase, and O(κ) in
the online phase.

3.5 Concrete Efficiency

We now analyze the efficiency of our protocol for various input-lengths. In all
our numerical applications, we set the security parameter κ to 128. We estimate
both the efficiency in a single run setting, and in an amortized setting, where we
can use oblivious transfer extension.

Comparison with Equality Test from Garbled Circuit. We compare our
protocol to the garbled-circuit-based protocol of [KSS09], which is to our knowl-
edge the most efficient state-of-the-art protocol for equality test (in the descrip-
tion of the protocol, the result of the test is revealed to both players, but the
protocol can be trivially modified so that the output is shared between the play-
ers).

Let us provide an intuition of this protocol; details on garbled circuits and
the free-xor trick can be found in [KS08]. First, the comparison function is rep-
resented as a circuit with ` comparison gates, each gate being implemented with
three xor gates (which are for free in the construction, in the sense that they do
not require communicating anything) and a and gate. During the preprocessing
phase, Alice starts by assigning two keys to each wire of the circuit (correspond-
ing to the two possible values 0 and 1), and for each gate g, she computes a
garbled gate, which encrypts the output-wire keys of the gate so that given two
input-wire keys corresponding to inputs (b, b′), only the output-wire key corre-
sponding to g(b, b′) can be recovered. Using the recent result of [ZRE15], each

Efficient Secure Comparison Protocols 17

and gate can be garbled quite efficiently, using only two (κ+1)-bit strings. Then,
once the inputs are revealed to the players, Alice sends to Bob the ` keys cor-
responding to the bits of her entry, and acts as sender in ` parallel oblivious
transfers, using as input each pair of keys corresponding to the possible values
for an input of Bob. Bob’s selection bits are his input bits. Once he has recovered
the necessary keys, Bob can evaluate the circuit securely and get the output.

Note that the pairs of keys in this scheme satisfy some correlation, hence
the optimization of [ALSZ13] for correlated oblivious transfer extensions can be
applied. However, this prevents Alice from constructing and sending the gar-
bled circuit during the preprocessing phase, as the values of the keys will be
determined by the correlated oblivious transfers (in which one of the outputs
is a random value). In our estimations, we choose not to use this optimization,
which results in a slight loss in overall communication, but almost cuts in half
the communication during the online phase.

Non-Amortized Setting. We now evaluate the concrete efficiency of our pro-
tocol. We first focus on the simpler setting, the non-amortized setting, in which
a single ET will be performed. We stop the size reduction protocol as soon as
n ≤ 4 (stopping at n ≤ 3 or n ≤ 2 saves a few hundreds of bits for some
sizes of `, at the cost of additional rounds). For the oblivious transfer, we use
the scheme of Naor and Pinkas [NP01] recalled in the previous section, setting
the group as an elliptic curve of prime order p (which can be taken of bit-size
log p = 2κ according to recommended parameters). The security of the protocol
in the random oracle model can be reduced to the DDH assumption. We recall
the complexity of the OT of [NP01], assuming the bit-size of group elements is
2κ and the random oracle outputs κ-bit strings:

– t executions of a
(
2
1

)
-OT` on strings of size ` ≤ κ transmit κ4t bits. The

initialization phase consists of two group elements sent by the sender which
amounts to 4κ bits.

– t executions of a
(
N
1

)
-OT` on strings of size ` ≤ κ transmit κ(N + 2)t bits.

The initialization phase consists of N + 1 group elements sent by the sender
which amounts to 2(N + 1)κ bits.

We will use this
(
N
1

)
-OT` in a crucial way. One of the constructions de-

scribed in [NP01] gives a trade-off between communication (which is increased)
and computation (which is decreased). The idea is that to perform logN obliv-
ious transfers on `-bit strings, it suffices to perform a single

(
N
1

)
-OT` logN , in

which the N inputs are all the 2logN possible concatenations of one input from
each of the log n input pairs. But recall that the communication of the proto-
col of [NP01] is always the same for any ` ≤ κ (for larger values, the oblivious
transfer are performed on keys, which are used to encrypt the values, adding 2`
bits of overhead to the protocol). Our k-bit equality test protocol involves only
oblivious transfers on very small strings, of size ` = log k ≤ log κ. Hence, by
picking a sufficiently small N so that ` logN ≤ κ, the trade-off protocol of Naor
and Pinkas does in fact reduce the communication. Indeed, performing logN

18 Geoffroy Couteau

oblivious transfers on short strings transmits 4κ logN bits, while using instead
a single

(
N
1

)
-OT` logN transmits (N + 2)κ bits if ` logN ≤ κ. This amounts to

(N + 2)κ/ logN bits per
(
2
1

)
-OT, which is minimized at N = 4 and transmits

3κ bits. Hence, performing the
(
2
1

)
-OT by pairs, as a single

(
4
1

)
-OT, reduces the

communication by 25% when the transmitted strings are of size ` ≤ κ/2.
Table 1 sums up the costs of our equality test protocol for various values

of `, and compares it to the garbled-circuit-based protocol of [KSS09]. Note
that we use the oblivious transfer of [NP01] in both our ET and the protocol
of [KSS09], but while we can use the optimization described above to reduce
the communication in our protocol (as it transmits short strings), this does not
hold for garbled circuits, in which the transmitted values are κ-bit keys (and our
optimization does not result in any improvement in this case). Hence, t

(
2
1

)
-OT

transmit 3κt bits in our ET, but 4κt bits in [KSS09]. Note also that we do not
preprocess oblivious transfers, because this would involve an overhead of 2κ` bits
in the overall communication of the protocol of [KSS09] (and is not required at
all in our ET). As one can see from Table 1, our protocol transmits more bits
than [KSS09] in the preprocessing phase, but has a communication two orders of
magnitudes smaller in the online phase. Overall, our protocol is approximately
50% more efficient than [KSS09].

Table 1: Communication of `-bit ETs, single run setting

Our ET [KSS09]

` length rounds length rounds

Preprocessing Phase
4 5376 bits 2 rounds 1032 bits 1 round
8 8448 bits 3 rounds 2064 bits 1 round
16 10365 bits 4 rounds 4128 bits 1 round
32 16896 bits 4 rounds 8256 bits 1 round
64 29568 bits 4 rounds 16512 bits 1 round
128 57600 bits 4 rounds 33024 bits 1 round

Online Phase
4 28 bits 1 rounds 2560 bits 2 rounds
8 44 bits 2 rounds 5120 bits 2 rounds
16 54 bits 3 rounds 10240 bits 2 rounds
32 88 bits 3 rounds 20480 bits 2 rounds
64 154 bits 3 rounds 40960 bits 2 rounds
128 300 bits 3 rounds 81920 bits 2 rounds

Efficient Secure Comparison Protocols 19

Amortized Setting. We now provide a concrete efficiency analysis of the pro-
tocol in an amortized setting, using oblivious transfer extensions. We do not
take into account the cost of the base oblivious transfers for the OT extension
scheme, as this is a constant independent of the number of equality tests per-
formed, which is the same for both our protocol and the protocol of [KSS09].
Adapting the construction of [KK13] to the case of correlated short inputs, the
exact cost of reducingm oblivious transfers of t-bit strings to κ oblivious transfers
of κ-bit strings is m(κ′/ log x+ (x− 1)t) for some security parameter (this takes
into account an optimization described in the appendix A of [KK13] and the
optimization for correlated inputs of [ALSZ13]). However, the authors of [KK13]
point out that to reach κ bits of security, κ′ must be set to 2κ; hence the actual
cost is m(2κ/ log x + (x − 1)t) bits. This implies that the amortized cost of a
k−EPSR is k(2κ/ log x + (x − 1)k), where x can be chosen so as to minimize
this cost. Table 2 sums up the amortized costs of our equality test protocol for
various values of `, and compares it again with [KSS09]; oblivious transfers for
the garbled circuit approach of [KSS09] are performed using the OT extension
protocol of [ALSZ13] on κ-bit inputs, which transmits 3κ bits per OT. As shown
in Table 2, our protocol improves over the construction of [KSS09] by up to 80%
overall. During the online phase, our protocol is extremely efficient, two orders of
magnitude faster than [KSS09]. Note that there are equality test protocols in the
literature whose online phase transmits a small constant number of ciphertexts,
independent of `, the most prominent example being the equality test of [LT13].
It transmits 2` ciphertexts in the preprocessing phase, and only 3 ciphertexts in
the online phase. However, using the Paillier encryption scheme advocated by
the authors, this amounts to 3 · 4096 = 12288 bits in the online phase (using the
recommended parameters for 112 bits of security), which is still far less efficient
than our protocol.

4 Secure Comparison from Equality Test

We now come back to the main goal of this paper and build a secure com-
parison protocol. Our protocol can be declined in two variants, depending of
the preferred setting. It builds upon our equality test protocol described in the
previous section. Note that relying on equality test protocols to perform secure
comparisons is a standard method, used e.g. in [Tof11,LT13,GHJR15].

4.1 Sub-Protocols

Given inputs of size ` = λµ, λ and µ being two parameters which can be set
arbitrarily so as to optimize the protocol, the core protocol is a reduction from
a secure comparison of `-bit inputs to a secure comparison of λ-bit inputs. De-
pending of the latency of the network, the players can either stop there and
compute the λ-bit secure comparison using a dedicated constant round protocol
(e.g. the garbled circuit approach of [KS08,KSS09]); or, in the same spirit than
the equality test of the previous section, they can apply the reduction again,

20 Geoffroy Couteau

Table 2: Amortized communication of `-bit ETs using OT extension

Our ET [KSS09]

` length rounds length rounds

Preprocessing Phase
4 1106 bits 2 rounds 1032 bits 1 round
8 2018 bits 3 rounds 2064 bits 1 round
16 2945 bits 4 rounds 4128 bits 1 round
32 5212 bits 4 rounds 8256 bits 1 round
64 9863 bits 4 rounds 16512 bits 1 round
128 20194 bits 4 rounds 33024 bits 1 round

Online Phase
4 28 bits 1 rounds 2048 bits 2 rounds
8 44 bits 2 rounds 4096 bits 2 rounds
16 54 bits 3 rounds 8192 bits 2 rounds
32 88 bits 3 rounds 16384 bits 2 rounds
64 154 bits 3 rounds 32768 bits 2 rounds
128 300 bits 3 rounds 65536 bits 2 rounds

decomposing λ as λ′µ′ and so on, until they end up with two short strings that
can be securely compared using an oblivious transfer-based small-string secure
comparison protocol. Note that this second alternative is not constant round (al-
though the number of rounds remains reasonable for realistic inputs) and relies
solely on the existence of oblivious transfer, while the first alternative is con-
stant round and relies also on the assumption underlying the secure comparison
protocol invoked after the reduction step.6

Small-String Secure Comparison. We start by presenting, in the spirit of
the previous section, a secure comparison protocol for k-bit inputs which relies on
2k− 1 parallel calls to a bit oblivious transfer primitive, which makes it suitable
for very small values of k only. The protocol follows easily from the following
observation: let a = a0a1 · · · ak−1 and b = b0b1 · · · bk−1 be two k-bit inputs. It
holds that [a > b] = [a0 > b0] ∨ [a0 = b0] ∧ [a1 · · · ak−1 > b1 · · · bk−1]. Using the
fact that x ∨ y = x⊕ y ⊕ xy, we can rewrite this equality as

[a > b] = a0 · b̄0 ⊕ (ā0 ⊕ b0) · [a1 · · · ak−1 > b1 · · · bk−1]

⊕ (a0 · b̄0) · ((ā0 ⊕ b0) · [a1 · · · ak−1 > b1 · · · bk−1])

6 For the garbled circuit protocol of [KS08,KSS09], this does not add any assumption,
but forces us to work in the random oracle model, which we do anyway in our
concrete instantiations with OT extensions.

Efficient Secure Comparison Protocols 21

Observe now that a0 · b̄0 · (ā0 ⊕ b0) · [a1 · · · ak−1 > b1 · · · bk−1] = 0, hence the
equation simplifies to [a > b] = a0 · b̄0 ⊕ (ā0 ⊕ b0) · [a1 · · · ak−1 > b1 · · · bk−1].
We can therefore apply this equation recursively, using the fact that [ak−1 >
bk−1] = ak−1 · b̄k−1 and [ak−1 = bk−1] = ak−1⊕ bk−1. Written in extenso, we get
an equation of the form [a > b] =

⊕2k−1
i=1 Ai ·Bi, where each Ai (resp. Bi) can be

locally computed from a only (resp. b only). Shares of [a > b] can therefore be
computed by the two players using 2k− 1 oblivious transfer: Alice picks random
bits (ci)i≤2k−1 and acts as sender in 2k − 1 parallel OTs with Bob, with inputs
(ci, Ai ⊕ ci) for i = 1 to 2k − 1; Bob’s selection bits are the Bi. Let (c′i)i denote
Bob’s outputs; observe that c′i = ci⊕Ai ·Bi. Therefore, Alice sets her output to⊕

i ci and Bob sets his output to
⊕

i c
′
i.

Efficiency. The protocol involve oblivious transfers on bits, which can be effi-
ciently preprocessed (see subsection 2.1). 2k − 1 bit-OT are performed in the
preprocessing phase, and 2(2k − 1) + 1 bits are exchanged in the online phase.
Although the small-string secure comparison protocol is obviously not suited
for large strings, it is useful for concrete efficiency estimations to know from
which bit-length it becomes less efficient than the garbled circuit approach. Us-
ing κ = 128, this protocol is more efficient that the garbled circuit approach for
k ≤ 5; it becomes (very quickly) less efficient for bigger values of k.

Conversion Method. We describe a non-interactive method to convert a se-
cure comparison protocol in which both players hold shares (over the integers)
of the two k-bit inputs to a secure comparison protocol in which each player
holds one of the two k-bit inputs. This conversion protocol is a folklore method.

Input: Two integers (xA, yA) for Alice and (xB , yB) for Bob; let us denote
(x, y)← (xA + xB , yA + yB).

output: (zA, bA) ∈ {0, 1}k × {0, 1} for Alice and (zB , bB) ∈ {0, 1}k × {0, 1} for
Bob, such that [x ≤ y] = bA ⊕ bB ⊕ [zA ≤ zB].

Method: Alice sets zA ← xA−yA mod 2k and bA ← b(2k+xA−yA)/2kc mod 2.
Bob sets zB ← yB − xB mod 2k and bB ← b(yB − xB)/2kc mod 2.

Note that in most applications, the inputs will be given to one player en-
crypted using an additively homomorphic encryption scheme, while the other
player holds the secret key of the scheme. Assuming that the plaintext space of
the scheme is larger than 2κ+k, the first player can pick zA at random over 2κ+k

(κ bits must be added to the bit-length of the inputs to mask them statistically),
and compute an encryption of zB from the ciphertexts, that he sends to the sec-
ond player. Hence this involves sending a single ciphertext. The requirement of
the plaintext space being way larger than the size of the encrypted values is
easily met in practice7, as additively homomorphic encryption schemes have in
7 An alternative solution is for the plaintext space Zp to be twice larger than the
inputs, and for the inputs to be shared modulo p between the player; we use this
in our actual protocol and describe this method in the intuition of the protocol
paragraph.

22 Geoffroy Couteau

general large plaintext spaces (ranging from 2256 to 22048 for standard security
parameters), while encrypted values are often 32-bit to 64-bit words.

Let us now explain why this method is correct. It holds that (2k+xA−yA)−
(yB − xB) = 2k + x− y. Observe that this is necessarily positive, as x− y ≤ 2k.
Observe also that the target output, [x ≤ y], can be computed as [x ≤ y] =
b(2k+x−y)/2kc = b((2k+xA−yA)−(yB−xB))/2kc. As 2k+xA−yA ≥ yB−xB ,
decomposing 2k+xA−yA = 2kuA+zA, and yB−xB = 2kuB+zB , it necessarily
holds that uA ≥ uB , hence the integer division of (2k + xA − yA)− (yB − xB) =
2k(uA− uB) + (zA− zB) by 2k is equal to uA− uB if zA ≥ zB , and uA− uB − 1
else, which gives us the equation [x ≤ y] = uA − uB − [zA ≤ zB]. Reducing this
equation modulo 2, using the fact that (uA mod 2) = bA and (uB mod 2) = bB ,
gives the claimed result.

Reduction Protocol. We now design a protocol to reduce a secure comparison
on `-bit values to a secure comparison protocol on smaller values. We assume that
each player holds a private input; when entries are given as shares, the conversion
method can be applied to get private inputs. Let (ai)i≤µ (resp. (bi)i≤µ) be the
input of Alice (resp. Bob) written by blocks: for all i ≤ µ, |ai| = |bi| = λ.
For a parameter l, ETl denotes the execution of the equality test protocol from
Section 3 on l-bit inputs.

Preprocessing phase: The inputs are not required in this phase; only their
length must be known. The following steps are all performed in parallel.
1. The players perform µ parallel preprocessing steps for ETλ and ETlog(µ+1).
2. The players perform µ parallel oblivious transfers, where Alice acts as

sender with random inputs (ρi, ρ
′
i) from Zµ+1 for i = 1 to µ, and Bob

uses random selection bits (θi)i≤µ. Let (σi)i≤µ denote Bob’s outputs.
3. The players perform µ parallel oblivious transfers, where Alice acts as

sender with random inputs (χi, χ
′
i) from Z2λ+1 for i = 1 to µ, and Bob

uses random selection bits (τi)i≤µ. Let (ηi)i≤µ denote Bob’s outputs.
4. The players perform µ parallel oblivious transfers, where Bob acts as

sender with random inputs (ξi, ξ
′
i) from Z2λ+1 for i = 1 to µ, and Bob

uses random selection bits (ζi)i≤µ. Let (νi)i≤µ denote Alice’s outputs.
5. The players perform the preprocessing step of a secure comparison on

(λ + 1)-bit private inputs, using the method of their choice (for exam-
ple, the garbled circuit of [KSS09], or recursively applying the reduction
protocol).

Online phase: Once the inputs are revealed to the players,
1. The players perform µ online parallel ETλ on respective inputs (ai, bi)

for all i ≤ µ. Let (xAi , x
B
i)i≤µ be their respective outputs.

2. Bob sends (ιi)i≤µ ← (xBi ⊕ θi)i≤µ. Alice picks (αi)i≤µ ←R Zµµ+1 and
sends (u0i , u

1
i)i≤µ ← (αi+xAi − ((1− ιi)ρi+ ιiρ

′
i) mod µ+1, αi+1−xAi −

((1− ιi)ρ′i+ ιiρi) mod µ+ 1)i≤µ. Let (βi)i≤µ ← (ux
B
i +σi mod µ+ 1)i≤µ

denote Bob’s output.
3. Alice sets (α′i)i≤µ ←

∑i
j=1(1 − αi) mod µ + 1; Bob sets (β′i)i≤µ ←∑i

j=1(1−βi) mod µ+1. The players perform µ parallel online ETlog(µ+1)

Efficient Secure Comparison Protocols 23

on respective inputs (α′i, β
′
i)i≤µ. Let (yAi , y

B
i)i≤µ be their respective out-

puts. Each player P sets zP1 ← yP1 and (zPi)2≤i≤µ ← (yPi ⊕ yPi−1)2≤i≤µ.
4. Bob sends (ι′i)i≤µ ← (zBi ⊕ τi)i≤µ. Alice picks rAi ←R Z2λ+1 for i = 1 to
µ, and sends (v0i , v

1
i)i≤µ ← (zAi ai+r

A
i −((1−ι′i)χi+ι′iχ′i) mod 2λ+1, (1−

zAi)ai + rAi − ((1 − ι′i)χ′i + ι′iχi) mod 2λ+1)i≤µ. Let (RBi)i≤µ ← (vz
B
i +

ηi2
λ+1)i≤µ denote Bob’s output.

5. Alice sends (ι′′i)i≤µ ← (zAi ⊕ ζi)i≤µ. Bob picks rBi ←R Z2λ+1 for i = 1
to µ, and sends (w0

i , w
1
i)i≤µ ← ((−zBi bi + rBi − ((1 − ι′′i)ξi + ι′′i ξ

′
i) mod

2λ+1, (zBi − 1)bi + rBi − ((1− ι′′i)ξ′i + ι′′i ξi) mod 2λ+1)i≤µ. Let (RAi)i≤µ ←
(wz

A
i + νi mod 2λ+1)i≤µ denote Alice’s output.

6. Alice and Bob perform the online step of a (λ+1)-bit secure comparison
protocol, on respective inputs sA ←

∑
i(r

A
i − RAi) mod 2λ+1 and sB ←

2λ −
∑
i(r

B
i −RBi) mod 2λ+1.

On the Preprocessing of OTs. One can see from the description of the protocol
that we preprocess the oblivious transfers, as outlined in subsection 2.1. This is
efficient as long as it transmits short strings only. For the OTlog(µ+1), this will be
verified even for huge values of ` (say, millions of bits). However, for the OTλ+1,
the optimal value of λ will become quite large for inputs with a few thousands
of bits. If this is the case, the preprocessing steps 3 and 4 should be removed,
and the oblivious transfers on (λ+1)-bit ,àk;inputs should be performed directly
during the online phase. We include these steps in our description of the protocol
as for most realistic values of ` (say, up to a few hundreds of bits, which captures
nearly any plausible application), λ will remain small.

Intuition of the Protocol. The inputs a and b of the players are divided into µ
blocks of size λ. The protocol builds upon the observation that to compare the
two inputs, it is sufficient to compare the first block on which they differ8. The
purpose of steps 1−3 is therefore to let Alice and Bob compute shares (zAi , z

B
i)i

of bits (zi)i = (zAi ⊕ zBi)i such that zi = 1 if and only if i is the highest index
satisfying ai 6= bi (let us denote i∗ this index). This is done by first computing
equality tests for each of their blocks; let t1 · · · tµ denote the µ bits such that
ti = 1 if and only if ai = bi. Using oblivious transfers, the players get shares
of (
∑
j≤i ti mod µ + 1)i≤µ; observe that those values are zero for all i < i∗ and

non-zero for all i ≥ i∗. Using equality tests again, the players get shares of values
which are therefore 0 for all i < i∗ and 1 for all i ≥ i∗. Computing the differences
locally gives shares of bits zi which are all zero, except for the zi∗ , which is 1.
Those selection bits allow the players to compute shares of

∑
i ziai = ai∗ and∑

i zibi = bi∗ , using oblivious transfers again. The reason why the OTs are
performed modulo 2λ+1 will become clear afterward.

It remains for the players to execute a secure comparison protocol on ai∗ and
bi∗ . However, note that those values are shared between the players (modulo
2λ+1), and not privately known to each party. Hence, the players must first
reduce the problem of securely comparing shared value to securely comparing
8 A similar intuition is used in [Tof11,LT13]

24 Geoffroy Couteau

values held by each player. To do so, we use the following observation, initially
made in [NO07]: for any modulus p, the value [ai∗ ≤ bi∗] can be determined from
[ai∗ ≤ p/2], [bi∗ ≤ p/2], and [ai∗ − bi∗ mod p ≤ p/2]. More precisely, one can
observe that we can compute [ai∗ ≤ bi∗] as [ai∗ ≤ bi∗] = (1⊕ [ai∗ ≤ p/2]⊕ [bi∗ ≤
p/2]) · (1⊕ [ai∗ − bi∗ mod p ≤ p/2])⊕ [ai∗ ≤ p/2].

In our protocol, we have set p = 2λ+1, so that p/2 = 2λ. As all the blocks
ai, bi are λ-bit long, the conditions [ai∗ ≤ p/2 = 2λ] and [bi∗ ≤ p/2 = 2λ]
are necessarily verified. Therefore, the equation becomes [ai∗ ≤ bi∗] = [ai∗ −
bi∗ mod 2λ+1 ≤ 2λ]. The latter comparison involves a shared value, and a public
value. Let us denote (aAi∗ , b

A
i∗) and (aBi∗ , b

B
i∗) the shares of (ai∗ , bi∗) modulo 2λ+1

held by Alice and Bob respectively. Observe that

[ai∗ − bi∗ mod 2λ+1 ≤ 2λ] = [aAi∗ − bAi∗ mod 2λ+1 ≤ 2λ − aBi∗ + bBi∗ mod 2λ+1].

Hence, Alice computes sA ← aAi∗ − bAi∗ mod 2λ+1, Bob computes sB ← 2λ −
aBi∗ + bBi∗ mod 2λ+1, and both players can conclude the protocol by performing a
secure comparison on the (λ+ 1)-bit values sA and sB .

4.2 Security Analysis (sketch)

Let us sketch an argument showing that our secure comparison protocol is secure
against honest-but-curious adversaries, for both Alice and Bob, if the oblivious
transfer protocol is secure against honest-but-curious adversaries. The argument
for the small-string secure comparison protocol is identical than for the small-
string equality test protocol (both protocols having exactly the same structure).
In the reduction protocol, the sender privacy ensures that the view of the receiver
is always perfectly indistinguishable from random, as the inputs to each (pre-
processed) OT are independently random; the receiver privacy of the OTs states
that the sender learns nothing. During each equality test and under the security
of the underlying OT scheme, the view of both players (including their output
in the ET) is indistinguishable from random. Therefore, the view of both players
during the reduction protocol is perfectly indistinguishable from random. As the
output of each reduction protocol is a uniformly random (λ + 1)-bit string for
each player, sequentially performing multiple reduction protocols will not alter
the security.

4.3 Efficiency Analysis

As for the equality test protocol, we estimate both the asymptotic complex-
ity and the concrete efficiency of our protocols; however, we focus only on the
amortized setting here, which is more meaningful in most applications. In all
our numerical applications, we set the security parameter κ to 128. We con-
sider two settings, an (almost) constant-round and a logarithmic-round setting.
In the constant-round setting, c reduction steps are performed (for some con-
stant c); the final secure comparison is performed using the protocol of [KSS09]
(which transmits O(κ`) bits on `-bit inputs). In the logarithmic-round setting,
our protocol is recursively applied until the strings are small enough, then the
small-string secure comparison protocol is called.

Efficient Secure Comparison Protocols 25

Table 3: Amortized communication of `-bit SC

SC 1 SC 2 [KSS09]

` length rounds length round length round

Preprocessing Phase
4 1185 bits 2 rounds - 1032 bits 2 rounds
81 3572 bits 2 rounds - 2064 bits 2 rounds
162 8396 bits 2 rounds - 4128 bits 2 rounds
323 15120 bits 3 rounds 13450 bits 3 rounds 8256 bits 2 rounds
644 31388 bits 3 rounds 29880 bits 3 rounds 16512 bits 2 rounds
1285 52121 bits 3 rounds 49291 bits 3 rounds 33024 bits 2 rounds

Online Phase
4 30 bits 2 rounds - 2048 bits 1 round
8 162 bits 6 rounds - 4096 bits 1 round
16 308 bits 6 rounds - 8192 bits 1 round
32 530 bits 12 rounds 4014 bits 7 rounds 16384 bits 1 round
64 1120 bits 12 rounds 5154 bits 7 rounds 32768 bits 1 round
128 2101 bits 12 rounds 7071 bits 7 rounds 65536 bits 1 round

1 µ = 4, λ = 2
2 µ = 6, λ = 3 reduces the SC to ` = 5, then µ = 3, λ = 2 for the next reduction
3 µ = 6, λ = 6 reduces the SC to ` = 7, then µ = 4, λ = 2 for the next reduction
4 µ = 10, λ = 7 reduces the SC to ` = 8, then µ = 4, λ = 2 for the next reduction
5 µ = 15, λ = 9 reduces the SC to ` = 10, then µ = 4, λ = 2 for the next reduction

Communication Complexity. The full protocol involves µ parallel executions
of ETλ, ETlog(µ+1), OTlog(µ+1), 2µ executions of OTλ+1, and performing a se-
cure comparison on (λ+1)-bit inputs. Asymptotically, an equality test transmits
O(κ2/ log κ) bits independently of the size of `, as the strings to be compared can
be reduced while statistically preserving their equality. In the (almost) constant-
round setting, this gives us a O(c · log∗ κ)-round protocol with asymptotic com-

munication O
(
c
(
` log κ
κ

) 1
c+1 κ2

log κ + `

)
.

In the logarithmic-round setting, we set c = O(log `/ log log κ) (hence the
round complexity becomes O(log ` · log∗ κ/ log log κ)); the asymptotic communi-
cation becomes O

(
κ2 log `

log κ log log κ + `
)
.

Concrete Efficiency. We now estimate the efficiency of our secure comparison
protocol, in an amortized setting (using oblivious transfer extension). We use
the equality test of the previous section, with short-string correlated oblivious
transfer extension [KK13,ALSZ13]. The results are given in Table 3; they cor-
respond to the results obtained using the optimal block-decomposition of the

26 Geoffroy Couteau

inputs. The notes in Table 3 indicate the optimal values of λ, µ for each value
of `. SC 1 denotes the protocol obtained by recursively applying the reduction
protocol, until the inputs are small enough so that the small-string secure com-
parison protocol becomes efficient. In practice, we apply the small-string secure
comparison protocol as soon as λ ≤ 4; in the equality tests, we set the threshold
of the size-reduction protocol to n = 4. If one is willing to reduce the round
complexity of the protocol at the cost of transmitting more bits, the threshold
can be increased. SC 2 denotes the protocol obtained by performing a single re-
duction step, then using the garbled circuit approach of [KSS09] to complete the
protocol. This approach is interesting only for ` > 16, as for ` ≤ 32, the optimal
values for λ are equal to 4 or less, hence applying the small-string equality test
directly is more efficient than using garbled circuits (and has the same round
complexity). As one can see from Table 3, the overall communication is reduced
by 30 to 45% compared to the garbled circuit approach, and the communication
during the online phase is considerably lower.

5 Conclusion and Open Questions

In this work, we proposed new two-player protocols for equality test and com-
parison secure against honest-but-curious adversaries, which improve over prior
state-of-the-art. This leaves room for improvements in several directions. First,
our result cannot be immediatly generalized to n players as such; extending
the protocols to handle an arbitrary number of players holding shares of the
two inputs would be an interesting improvement. Second, due to the highly
non-algebraic structure of our protocols, standard method for enhancing their
security into security against malicious adversaries would be rather inefficient
here. Hence, enhancing our protocols to malicious security in an efficient way
might be a challenging problem. Eventually, one might consider trying to opti-
mize the round efficiency of our protocols, which are way more interactive than
the garbled circuit approach.

References

ABZS13. M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele. Secure computation
on floating point numbers. In NDSS 2013, February 2013. (Page 8.)

ACM+13. A. Aly, E. Cuvelier, S. Mawet, O. Pereira, and M. V. Vyve. Securely
solving simple combinatorial graph problems. In FC 2013, LNCS 7859,
pages 239–257. Springer, April 2013. (Page 8.)

ALSZ13. G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient obliv-
ious transfer and extensions for faster secure computation. In ACM CCS
13, pages 535–548. ACM Press, November 2013. (Pages 11, 12, 17, 19,
and 25.)

ARL+13. E. Ayday, J. L. Raisaro, M. Laren, P. Jack, J. Fellay, and J.-P. Hubaux.
Privacy-preserving computation of disease risk by using genomic, clinical,
and environmental data. In Proceedings of USENIX Security Workshop on
Health Information Technologies (HealthTech" 13), number EPFL-CONF-
187118, 2013. (Page 8.)

Efficient Secure Comparison Protocols 27

AV15. A. Aly and M. V. Vyve. Securely solving classical network flow problems.
In ICISC 14, LNCS, pages 205–221. Springer, 2015. (Page 8.)

BAC+11. R. Belguechi, V. Alimi, E. Cherrier, P. Lacharme, and C. Rosenberger. An
overview on privacy preserving biometrics. Recent Application in Biomet-
rics, pages 65–84, 2011. (Page 7.)

Bea95. D. Beaver. Precomputing oblivious transfer. In CRYPTO’95, LNCS 963,
pages 97–109. Springer, August 1995. (Page 10.)

Bea96. D. Beaver. Correlated pseudorandomness and the complexity of private
computations. In 28th ACM STOC, pages 479–488. ACM Press, May
1996. (Page 11.)

BKU14. A. Bektaş, M. S. Kiraz, and O. Uzunkol. A secure and efficient protocol
for electronic treasury auctions. In Cryptography and Information Security
in the Balkans, pages 123–140. Springer, 2014. (Page 7.)

BPTG14. R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine learning classifi-
cation over encrypted data. Cryptology ePrint Archive, Report 2014/331,
2014. http://eprint.iacr.org/2014/331. (Page 8.)

BR93. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM CCS 93, pages 62–73. ACM Press,
November 1993. (Page 10.)

BS15. M. Blanton and S. Saraph. Oblivious maximum bipartite matching size
algorithm with applications to secure fingerprint identification. LNCS,
pages 384–406. Springer, 2015. (Page 8.)

CC15. W.-T. Chu and F.-C. Chang. A privacy-preserving bipartite graph match-
ing framework for multimedia analysis and retrieval. In Proceedings of
the 5th ACM on International Conference on Multimedia Retrieval, pages
243–250. ACM, 2015. (Page 8.)

Cd10a. O. Catrina and S. de Hoogh. Improved primitives for secure multiparty
integer computation. In SCN 10, LNCS 6280, pages 182–199. Springer,
September 2010. (Pages 4 and 8.)

Cd10b. O. Catrina and S. de Hoogh. Secure multiparty linear programming using
fixed-point arithmetic. In ESORICS 2010, LNCS 6345, pages 134–150.
Springer, September 2010. (Pages 8 and 9.)

CDN01. R. Cramer, I. Damgård, and J. B. Nielsen. Multiparty computation from
threshold homomorphic encryption. In EUROCRYPT 2001, LNCS 2045,
pages 280–299. Springer, May 2001. (Page 4.)

CKP07. R. Cramer, E. Kiltz, and C. Padró. A note on secure computation of the
Moore-Penrose pseudoinverse and its application to secure linear algebra.
In CRYPTO 2007, LNCS 4622, pages 613–630. Springer, August 2007.
(Page 6.)

CPP16. G. Couteau, T. Peters, and D. Pointcheval. Encryption switching protocols.
to appear in the proceedings of CRYPTO, 2016. http://eprint.iacr.
org/2015/990. (Page 6.)

CS10. O. Catrina and A. Saxena. Secure computation with fixed-point numbers.
In FC 2010, LNCS 6052, pages 35–50. Springer, January 2010. (Page 8.)

DFK+06. I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft. Uncondition-
ally secure constant-rounds multi-party computation for equality, compar-
ison, bits and exponentiation. In TCC 2006, LNCS 3876, pages 285–304.
Springer, March 2006. (Page 4.)

DGK07. I. Damgård, M. Geisler, and M. Krøigaard. Efficient and secure comparison
for on-line auctions. In ACISP 07, LNCS 4586, pages 416–430. Springer,
July 2007. (Pages 3, 4, and 8.)

http://eprint.iacr.org/2014/331
http://eprint.iacr.org/2015/990
http://eprint.iacr.org/2015/990

28 Geoffroy Couteau

DGK08. I. Damgård, M. Geisler, and M. Krøigaard. A correction to “efficient and
secure comparison for on-line auctions”. Cryptology ePrint Archive, Report
2008/321, 2008. http://eprint.iacr.org/2008/321. (Page 3.)

DJ01. I. Damgård and M. Jurik. A generalisation, a simplification and some
applications of Paillier’s probabilistic public-key system. In PKC 2001,
LNCS 1992, pages 119–136. Springer, February 2001. (Pages 31 and 33.)

EFG+09. Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and
T. Toft. Privacy-preserving face recognition. In Privacy Enhancing Tech-
nologies, pages 235–253. Springer, 2009. (Page 7.)

EGL82. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing
contracts. In CRYPTO’82, pages 205–210. Plenum Press, New York, USA,
1982. (Pages 4, 5, and 9.)

EVTL12. Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk. Generating private
recommendations efficiently using homomorphic encryption and data pack-
ing. Information Forensics and Security, IEEE Transactions on, 7(3):1053–
1066, 2012. (Page 8.)

GHJR15. C. Gentry, S. Halevi, C. S. Jutla, and M. Raykova. Private database access
with HE-over-ORAM architecture. In ACNS 15, LNCS, pages 172–191.
Springer, 2015. (Pages 4, 6, 12, 19, and 31.)

GMW87a. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In 19th
ACM STOC, pages 218–229. ACM Press, May 1987. (Page 1.)

GMW87b. O. Goldreich, S. Micali, and A. Wigderson. How to prove all NP-statements
in zero-knowledge, and a methodology of cryptographic protocol design. In
CRYPTO’86, LNCS 263, pages 171–185. Springer, August 1987. (Page 1.)

Gol87. O. Goldreich. Towards a theory of software protection and simulation by
oblivious RAMs. In 19th ACM STOC, pages 182–194. ACM Press, May
1987. (Page 7.)

Goo10. M. T. Goodrich. Randomized shellsort: A simple oblivious sorting al-
gorithm. In 21st SODA, pages 1262–1277. ACM-SIAM, January 2010.
(Page 7.)

Goo14. M. T. Goodrich. Zig-zag sort: a simple deterministic data-oblivious sorting
algorithm running in O(n logn) time. In 46th ACM STOC, pages 684–693.
ACM Press, 2014. (Page 7.)

GSV07. J. A. Garay, B. Schoenmakers, and J. Villegas. Practical and secure solu-
tions for integer comparison. In PKC 2007, LNCS 4450, pages 330–342.
Springer, April 2007. (Page 4.)

HEK12. Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled
circuits better than custom protocols? In NDSS 2012, February 2012.
(Page 7.)

HGW+15. Q. Huang, Y. Gui, F. Wu, G. Chen, and Q. Zhang. A general privacy-
preserving auction mechanism for secondary spectrum markets. 2015.
(Page 8.)

HICT14. K. Hamada, D. Ikarashi, K. Chida, and K. Takahashi. Oblivious radix sort:
An efficient sorting algorithm for practical secure multi-party computation.
Cryptology ePrint Archive, Report 2014/121, 2014. http://eprint.iacr.
org/2014/121. (Page 7.)

HKI+12. K. Hamada, R. Kikuchi, D. Ikarashi, K. Chida, and K. Takahashi. Prac-
tically efficient multi-party sorting protocols from comparison sort algo-
rithms. In Information Security and Cryptology–ICISC 2012, pages 202–
216. Springer, 2012. (Page 7.)

http://eprint.iacr.org/2008/321
http://eprint.iacr.org/2014/121
http://eprint.iacr.org/2014/121

Efficient Secure Comparison Protocols 29

HT14. C. Hazay and T. Toft. Computationally secure pattern matching in the
presence of malicious adversaries. Journal of Cryptology, 27(2):358–395,
April 2014. (Page 6.)

IKNP03. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious trans-
fers efficiently. In CRYPTO 2003, LNCS 2729, pages 145–161. Springer,
August 2003. (Pages 3, 5, and 11.)

IPS08. Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on obliv-
ious transfer - efficiently. In CRYPTO 2008, LNCS 5157, pages 572–591.
Springer, August 2008. (Page 9.)

JKU11. K. V. Jónsson, G. Kreitz, and M. Uddin. Secure multi-party sorting and
applications. Cryptology ePrint Archive, Report 2011/122, 2011. http:
//eprint.iacr.org/2011/122. (Page 7.)

Kil88. J. Kilian. Founding cryptography on oblivious transfer. In 20th ACM
STOC, pages 20–31. ACM Press, May 1988. (Page 9.)

KK13. V. Kolesnikov and R. Kumaresan. Improved OT extension for transfer-
ring short secrets. In CRYPTO 2013, Part II, LNCS 8043, pages 54–70.
Springer, August 2013. (Pages 5, 11, 12, 16, 19, and 25.)

KS08. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates
and applications. In ICALP 2008, Part II, LNCS 5126, pages 486–498.
Springer, July 2008. (Pages 3, 16, 19, and 20.)

KSS09. V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Improved garbled circuit
building blocks and applications to auctions and computing minima. In
CANS 09, LNCS 5888, pages 1–20. Springer, December 2009. (Pages 3,
4, 5, 16, 18, 19, 20, 22, 24, 25, and 26.)

Lau15. P. Laud. A private lookup protocol with low online complexity for secure
multiparty computation. In ICICS 14, LNCS, pages 143–157. Springer,
2015. (Page 8.)

Lie12. M. Liedel. Secure distributed computation of the square root and appli-
cations. In Information Security Practice and Experience, pages 277–288.
Springer, 2012. (Page 8.)

LLY+16. P. Li, T. Li, Z.-A. Yao, C.-M. Tang, and J. Li. Privacy-preserving out-
sourcing of image feature extraction in cloud computing. Soft Computing,
pages 1–11, 2016. (Page 8.)

LT13. H. Lipmaa and T. Toft. Secure equality and greater-than tests with sublin-
ear online complexity. In ICALP 2013, Part II, LNCS 7966, pages 645–656.
Springer, July 2013. (Pages 4, 6, 19, and 23.)

Mu14. B. Mu. A survey on secure processing of similarity queries. 2014. (Page 7.)
NIIO14. T. Nishide, M. Iwamoto, A. Iwasaki, and K. Ohta. Secure (m+ 1) st-

price auction with automatic tie-break. In Trusted Systems, pages 422–437.
Springer, 2014. (Page 7.)

NO07. T. Nishide and K. Ohta. Multiparty computation for interval, equality,
and comparison without bit-decomposition protocol. In PKC 2007, LNCS
4450, pages 343–360. Springer, April 2007. (Pages 4 and 24.)

NP01. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In 12th
SODA, pages 448–457. ACM-SIAM, January 2001. (Pages 9, 10, 17,
and 18.)

Pai99. P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT’99, LNCS 1592, pages 223–238. Springer, May
1999. (Pages 4 and 31.)

PR10. B. Pinkas and T. Reinman. Oblivious RAM revisited. In CRYPTO 2010,
LNCS 6223, pages 502–519. Springer, August 2010. (Page 7.)

http://eprint.iacr.org/2011/122
http://eprint.iacr.org/2011/122

30 Geoffroy Couteau

Rab81. M. Rabin. How to exchange secrets by oblivious transfer. Technical Report
TR-81, Harvard University,, 1981. (Pages 4, 5, and 9.)

RPV+14. Y. Rahulamathavan, R. C.-W. Phan, S. Veluru, K. Cumanan, and M. Ra-
jarajan. Privacy-preserving multi-class support vector machine for out-
sourcing the data classification in cloud. Dependable and Secure Comput-
ing, IEEE Transactions on, 11(5):467–479, 2014. (Page 8.)

RT07. T. I. Reistad and T. Toft. Secret sharing comparison by transformation
and rotation. In Information Theoretic Security, pages 169–180. Springer,
2007. (Page 4.)

SJB14. B. K. Samanthula, W. Jiang, and E. Bertino. Lightweight and secure two-
party range queries over outsourced encrypted databases. arXiv preprint
arXiv:1401.3768, 2014. (Page 8.)

SSW10. A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-
preserving face recognition. In ICISC 09, LNCS 5984, pages 229–244.
Springer, December 2010. (Page 7.)

Tof09. T. Toft. Solving linear programs using multiparty computation. In FC
2009, LNCS 5628, pages 90–107. Springer, February 2009. (Pages 6 and 8.)

Tof11. T. Toft. Sub-linear, secure comparison with two non-colluding parties. In
PKC 2011, LNCS 6571, pages 174–191. Springer, March 2011. (Pages 4,
6, 19, and 23.)

VBdHE15. T. Veugen, F. Blom, S. J. de Hoogh, and Z. Erkin. Secure comparison
protocols in the semi-honest model. Selected Topics in Signal Processing,
IEEE Journal of, 9(7):1217–1228, 2015. (Page 3.)

WFNL15. D. J. Wu, T. Feng, M. Naehrig, and K. Lauter. Privately evaluating
decision trees and random forests. Cryptology ePrint Archive, Report
2015/386, 2015. http://eprint.iacr.org/2015/386. (Page 8.)

WS08. P. Williams and R. Sion. Usable PIR. In NDSS 2008, February 2008.
(Page 7.)

WSC08. P. Williams, R. Sion, and B. Carbunar. Building castles out of mud: prac-
tical access pattern privacy and correctness on untrusted storage. In ACM
CCS 08, pages 139–148. ACM Press, October 2008. (Page 7.)

XT14. C. Xiang and C. Tang. Privacy-preserving face recognition with outsourced
computation. Cryptology ePrint Archive, Report 2014/969, 2014. http:
//eprint.iacr.org/2014/969. (Page 7.)

Yao86. A. C.-C. Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167. IEEE Computer Society Press, October
1986. (Pages 1, 2, and 3.)

Yu11. C.-H. Yu. Sign modules in secure arithmetic circuits. Cryptology ePrint
Archive, Report 2011/539, 2011. http://eprint.iacr.org/2011/539.
(Page 4.)

YY12. C.-H. Yu and B.-Y. Yang. Probabilistically correct secure arithmetic com-
putation for modular conversion, zero test, comparison, MOD and expo-
nentiation. In SCN 12, LNCS 7485, pages 426–444. Springer, September
2012. (Pages 4 and 6.)

Zha11. B. Zhang. Generic constant-round oblivious sorting algorithm for MPC.
In ProvSec 2011, LNCS 6980, pages 240–256. Springer, October 2011.
(Page 7.)

ZRE15. S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole - reducing
data transfer in garbled circuits using half gates. LNCS, pages 220–250.
Springer, 2015. (Pages 3 and 16.)

http://eprint.iacr.org/2015/386
http://eprint.iacr.org/2014/969
http://eprint.iacr.org/2014/969
http://eprint.iacr.org/2011/539

Efficient Secure Comparison Protocols 31

A Batch ET from Additively Homomorphic Encryption

In this section, we present a batch protocol to efficiently perform simultaneous
equality tests. Unlike the other protocols of this article, this construction assumes
an additively homomorphic encryption scheme, with a few additional properties.
Our protocol share some similarities with the equality test protocol of [GHJR15]
(which relies on ciphertext packing to amortize the communication of equality
tests), and in fact matches the communication complexity of [GHJR15], which
has to our knowledge the best communication complexity among existing works.
However, contrary to [GHJR15], we do not need somewhat homomorphic en-
cryption; our protocol can be instantiated with e.g. factorization-based addi-
tively homomorphic cryptosystems such as the Paillier scheme [Pai99] or the
Damgard-Jurik scheme [DJ01]. For concrete parameters, the amortized com-
munication improves upon every prior ET protocol we know of, including the
OT-based protocol described Section 3.

A.1 Encryption Scheme

Definition 1. (Encryption Scheme) An IND-CPA encryption scheme is a tuple
of algorithms (Setup,Enc,Dec) such that:
– Setup(1κ) outputs a key-pair (pk, sk); pk implicitly defines a plaintext space

M and a ciphertext space C .
– Enc(pk,m), on input pk and a plaintext m ∈M , outputs a ciphertext c ∈ C .
– Dec(sk, c), on input sk and a ciphertext c ∈ C , deterministically outputs a

plaintext m′ ∈M .

In addition, an IND-CPA encryption scheme satisfies the properties of correct-
ness and IND-CPA security, defined below.

The correctness states that decryption is the reverse operation of encryption:
for any (pk, sk) ←R Setup(1κ), for any m ∈ M and any c ←R Enc(pk,m),
Dec(sk, c) = m. The IND-CPA security is defined by considering the following
game between an adversary and a challenger:
– The challenger picks (pk, sk)←R Setup(1κ) and sends pk to the adversary.
– The adversary sends (m0,m1)←R M 2 to the challenger.
– The challenger picks b ←R {0, 1} and sends c ←R Enc(pk,mb) to the chal-

lenger.
– The challenger outputs a guess b′ and wins the game if b′ = b.

An encryption scheme is IND-CPA secure if no polynomial-time adversary can
win the game with probability at most negligibly higher than 1/2.

Additively Homomorphic Encryption Scheme. An encryption scheme is addi-
tively homomorpic if there is a law � : C 2 7→ C such that for any (m0,m1) ∈
M 2, for any (c0, c1)←R (Enc(pk,m0),Enc(pk,m1)), Dec(sk, c0� c1) = m0 +m1.
Note that this trivially imply than one can add a constant value to a ciphertext
(by first encrypting it and then using �); one can also see that via a square-and-
multiply algorithm, given an encryption of some m and an integer λ, one can
compute an encryption of λm. We will denote • this external multiplication.

32 Geoffroy Couteau

Randomizable Encryption Scheme. A randomizable encryption scheme is an en-
cryption scheme with an additional algorithm Rand which, on input pk and an
encryption of some plaintext m, outputs a ciphertext taken uniformly at random
in the distribution {Enc(pk,m)} of encryptions of m.

Expendable Plaintext Space. In our protocol, we require the message space to be
of the form ZP , for some integer P = 2poly(κ). In addition the plaintext space
must be expendable, in the sense that one can specify a threshold T when calling
Setup(1κ, T), so that the message space M = ZP it specifies is of size P ≥ T .
For example, for the Paillier encryption scheme and its variants, this can simply
corresponds to taking the modulus bigger than the threshold.

A.2 Batch Equality Test

We let Π = (Setup,Enc,Dec) denote a randomizable additively homomorphic
encryption scheme with expendable plaintext space. Let n be the number of
equality tests to be performed. As there is no possible confusion, we write Enc(m)
for Enc(pk,m).

Inputs: n pairs of `-bit strings (x(i), y(i))i≤n.
Outputs: n bits (bAi)i≤n for Alice, and n bits (bBi)i≤n for Bob, such that for all

i ≤ n, bAi ⊕ bBi = [x(i) ≤ y(i)].
Batch reduction: In this step, Alice and Bob rely on the additively homo-

morphic encryption scheme to compute shares of the Hamming distances
between each x(i), y(i), modulo coprime integers pi. This corresponds to a
batch `−EPSR.
– Let (p0, · · · pn−1) be the n smallest pairwise coprime numbers such that
p0 > `; let M ←

∏
i pi. Alice calls Setup(1κ, 2κ+2 logM+2) and gets

(pk, sk); pk implicitely defines a plaintext space ZP of size P ≥ 2κ+2 logM+2.
For j = 0 to ` − 1, let xj ∈ ZM (resp. yj) be the smallest integer satis-
fying xj = x(i)[j] mod pi (resp. yj = y(i)[j] mod pi) for every i ≤ n− 1.
Alice sends cj ←R Enc(xj) for j = 0 to `− 1 to Bob.

– For j = 0 to ` − 1, Bob picks rj ←R Z2κ+2M2 , computes and sends
c′j ←R Rand(pk, yj • cj � rj) to Alice, who decrypts all the ciphertexts
to get some values sj .

– For j = 0 to ` − 1, Alice sets σj ← sj mod M and Bob sets ρj ←
rj mod M . Note that it holds that for all (i, j) ∈ [n− 1]× [`− 1],

2(ρj − σj) + x(i)[j] + y(i)[j] = x(i)[j]⊕ y(i)[j] mod pi

Hence, (−2σj + x(i)[j] mod pi) and (2ρi + y(i)[j] mod pi) form shares of
the bits of x(i) ⊕ y(i) modulo pi.

– Alice computes αi ←
∑`−1
j=0−2σj + x(i)[j] mod pi and Bob computes

βi ←
∑`−1
j=0−2ρj + y(i)[j] mod pi. Note that as pi > ` is greater than

the Hamming distance Hd between x(i) and y(i), it holds that αi + βi =
Hd(x

(i), y(i)), which is 0 if and only if x(i) = y(i). Hence, seeing from now
on αi and βi as integers, the problem was reduced to finding whether
αi = pi − βi, which are strings of size O(log ` log log `).

Efficient Secure Comparison Protocols 33

Reduced Equality Test: Alice and Bob perform n ET with respective input
size dlog pie, on respective inputs (αi, pi − βi), to get the n outputs of the
protocol.

Note that as for our protocol Section 3, this protocol can be executed on
random inputs in a preprocessing phase; the online phase is then essentially the
same than our previous ET protocol.

Intuition of the Protocol. The protocol exploits the following observation: given
an index j < `, computing shares of (x(i)[j]⊕y(i)[j])i≤n (modulo various coprime
numbers) can be reduced to performing a single multiplication protocol modulo
M =

∏
i pi. This protocol is performed over the integer by using an additively

homomorphic scheme of sufficiently large plaintext space, the resulting shares
masking statistically the result over the integer. The players then get all the
shares of the (x(i)[j]⊕ y(i)[j])i≤n by reducing there shares modulo M and using
the chinese remainder theorem on there shares. This reduces n equality tests on
`-bit strings to n equality tests on strings of sizes ranging from dlog(p1 + 1)e
to dlog(pn + 1)e. As this method does not allow to reduce further the size of
the inputs, n OT-based equality tests are then called in parallel on the reduced
inputs.

Communication. The batch reduction involves 2` ciphertexts, hence a total of
2`|C | bits. Under the extended Riemann hypothesis, the nth prime number larger
than ` is of size O(log(`+n log n)), hence M = O(n log(`+n log n)). Under this
assumption, the n reduced equality tests transmit O(nκ log(` + n log n)/ log κ)
bits.

Most additively homomorphic that satisfy our requirements have ciphertexts
of size O(k + κ) for k-bit inputs with large enough k; taking this condition in
account, the amortized communication becomes O(` log κ+ κ) bits.

Concrete Efficiency. We now estimate the concrete efficiency of our protocol,
and compare it to our previous solution. We use the Damgard-Jurik generaliza-
tion [DJ01] of the Paillier encryption scheme, which have better ciphertext over
plaintext size ratio as the size of the plaintext space increases. More precisely,
the Damgard-Jurik cryptosystem for an RSA modulus N is parametrized with
an integer s, so that its plaintext space is ZNs , and its ciphertext space is ZNs+1 .
We consider a 2048-bit RSA modulus, as recommended by the NIST standard,
and set arbitrarily the number n of parallel ETs to 100 and 1000 respectively.
For the oblivious transfers, we use κ = 128.

For each value of ` in the table, s is taken to be the smallest integer such
that s · 2048 ≥ 2 logM(`) + κ + 1, where M(`) is the product of the smallest
1000 pairwise coprime numbers, starting with ` + 1. Each ciphertext is of size
(s+ 1) · 2048. Table 4 indicates the average number of bits transmitted per ET.
The actual value of ` has very little influence on s; in fact, s = 12 is the optimal
parameters for all the values of ` that we consider (hence the ciphertexts are
of size 26624 bits). With those parameters, n ET on `-bit strings are reduced

34 Geoffroy Couteau

to n ET on strings of bit-size 6 to 13 (as all the pi are different, the reduction
gives different bit-sizes); experimentally, it turns out that this improves over our
OT-base ET for ` > 16.

Table 4: Amortized communication of `-bit ET over n executions

Damgard-Jurik based ET ET of Section 3

n = 1000 n = 100

` length rounds length rounds length rounds

Preprocessing Phase
16 3339 bits 4 rounds 3183 bits 4 rounds 2945 bits 4 rounds
32 4199 bits 4 rounds 4568 bits 4 rounds 5212 bits 4 rounds
64 5913 bits 4 rounds 7275 bits 4 rounds 9863 bits 4 rounds
128 9342 bits 4 rounds 12670 bits 4 rounds 20194 bits 4 rounds

Online Phase
16 96 bits 3 rounds 81 bits 3 rounds 54 bits 3 rounds
32 129 bits 3 rounds 115 bits 3 rounds 88 bits 3 rounds
64 193 bits 3 rounds 181 bits 3 rounds 154 bits 3 rounds
128 321 bits 3 rounds 313 bits 3 rounds 300 bits 3 rounds

	Efficient Secure Comparison Protocols
	Introduction
	State of the Art for Secure Comparison
	Our Contribution
	Our Method
	Applications
	Organization

	Preliminaries
	Oblivious Transfers
	Oblivious Transfer Extension

	Fast Oblivious Transfer-Based Equality Test
	Sub-Protocols
	Equality Test Protocol
	Security Analysis
	Communication Complexity
	Concrete Efficiency

	Secure Comparison from Equality Test
	Sub-Protocols
	Security Analysis (sketch)
	Efficiency Analysis

	Conclusion and Open Questions
	Batch ET from Additively Homomorphic Encryption
	Encryption Scheme
	Batch Equality Test

