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Abstract. A secure comparison protocol allows players to evaluate the
greater-than predicate on hidden values; it addresses a problem that
belongs to the field of multiparty computation, in which players wish to
jointly and privately evaluate a function on secret inputs. Introduced by
Yao under the name millionaires’ problem [68], secure comparisons have
received a great deal of attention. They have proven to be one of the most
fundamental building block in a large variety of multiparty computation
protocols. However, due to their inherent non-arithmetic structure, they
are less efficient than other fundamental primitives, making them a major
bottleneck in multiparty computation protocols.
In this work, we design a new two-party protocol for the greater-than
functionality, improving over the state of the art. We prove the secu-
rity of our protocol in the UC model, with respect to passive corruption
(that is, semi-honest adversaries), assuming only oblivious transfers. Our
construction can readily be used in a large variety of protocols in which
secure comparisons constitute the main efficiency bottleneck. We con-
struct all our protocols in the preprocessing model, with an extremely
efficient information-theoretically secure online phase. We use oblivious
transfer extensions to get rid of all but a constant amount of expen-
sive computations. Toward our goal of secure comparison, we also design
protocols for testing equality between private inputs, which improve sim-
ilarly over the state of the art. The latter contribution is of independent
interest.

Keywords. Two-party computation, Secure comparison, Equality test,
Oblivious transfer.

1 Introduction

Multiparty Computation (MPC) addresses the challenge of performing compu-
tation over sensitive data without compromising its privacy. In the past decades,
several general-purpose solutions to this problem have been designed, starting
with the seminal works of Yao [68] and Golwasser, Micali, and Widgerson [30,31].
Among the large variety of problems related to MPC that have been consid-
ered, the secure comparison problem, in which the players wish to find out
whether x ≥ y for given x, y without disclosing them, is probably the one that
received the most attention. Indeed, in addition to being (historically) the very
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first MPC problem ever considered (introduced in [68] under the name of mil-
lionaire’s problem), it is a fundamental primitive in a considerable number of
important applications of multiparty computation. Examples include auctions,
signal processing, database queries, machine learning and statistical analysis,
biometric authentication (face recognition, fingerprint recognition), combinato-
rial problems, or computation on rational numbers. Secure comparison is at the
heart of any task involving sorting data, finding a minimum value, solving any
optimization problem, or even in tasks as basic as evaluating the predicate of a
while loop, among countless other examples.

Two-party and multiparty computation seem now at the edge of becoming
practical, with increasing evidence that they are no more beyond the reach of
the computational power of today’s computers. However, secure comparisons
appear to be a major bottleneck in secure algorithms. Various implementations
of secure algorithms unanimously lead to the conclusion that secure comparison
is the most computationally involved primitive, being up to two orders of mag-
nitude slower than, e.g., secure multiplication. Hence, we believe that improving
secure comparison protocols is one of the major roads toward making multiparty
computation truly practical.

In this work, we consider secure comparison on inputs privately held by each
player, so that the output is shared between the players. This setting captures
every possible applications, as simple folklore methods allow to reduce the prob-
lem of comparing shared or encrypted inputs to the problem of comparing inputs
held by the parties. We construct new two-party protocols for securely compar-
ing private inputs which compare very favorably to state-of-the-art solutions. In
particular, our protocols are well suited for large scale secure computation pro-
tocols using secure comparison as a basic routine (this statement will be made
precise later on). The security of our protocols is proven in the universal compos-
ability framework of Canetti [12], which ensures that security is preserved under
general composition. As this is the model used in most practical applications, we
focus on the passive adversarial model, in which players are assumed to follow
the specifications of the protocol, but are willing to gain any possible information
from the transcript of the protocol. We leave as open the interesting question
of extending our protocols to handle malicious adversaries, while preserving (as
much as possible) their efficiency.

1.1 State of the Art for Secure Comparison

The secure comparison problem has been a very active research field in the past
decade, with far too many contributions to mention them all. Therefore, we
choose to regroup these protocols into three main categories, and discuss the
most prominent constructions (to our knowledge) in each category. To avoid
unnecessary details in the presentation, we assume some basic knowledge on
classical cryptographic primitives, such as garbled circuits, oblivious transfer
and cryptosystems. Preliminaries on oblivious transfers are given Section 2. In
the following, we let κ denote a security parameter.
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From Garbled Circuits. The first category regroups protocols following the
garbled circuit approach of Yao [68]. The protocol of [45], which was later im-
proved in [44], is, to our knowledge, the most communication-efficient secure
comparison protocol. In the original protocol, the output of the protocol is re-
vealed to the players, but this can be easily modified by letting the first player
pick a random bit and garble a circuit computing the result of the comparison
xored with this bit — the two players then end up with secret shares of the
output. For `-bit inputs, the protocol of [44] proceeds by letting the first player
garble a circuit containing ` comparison gates, each gate consisting of three xor
gates and one AND gate. Using the free-xor trick [45], the xor gates are garbled
for free. The resulting garbled circuit therefore consists of ` garbled AND gates.
Using the recent result of [71] which reduces the size of garbled AND gates while
remaining compatible with the free-xor trick, each garbled AND gate is of size
2(κ + 1). The first player sends the garbled circuit together with the keys cor-
responding to his input, then players perform ` parallel oblivious transfers so
that the second player obliviously recovers the keys corresponding to his own
input. In addition to being very communication-efficient (it was compared fa-
vorably to several alternative candidates in a survey [63]),1 in a setting where
several instances of the comparison protocol are likely to be invoked, it can rely
on oblivious transfer extensions [39] so that any number n of secure comparison
protocol, on inputs of any length `, can be executed using a constant number of
public key operations (independent of both n and `) and only cheap, symmetric
operations per invocation of the secure protocol, making it computationally very
efficient.

From Homomorphic Encryption. The second category contains protocols
based on some special-purpose homomorphic cryptosystem. In [21], the authors
construct a new factorization-based cryptosystem, the DGK cryptosystem, which
is additively homomorphic modulo some small prime (they corrected a flaw in
the original proposal in [22]). Their protocol involves 2` DGK ciphertexts (the
size of the ciphertext depends of the hardness of factorization; current recom-
mendation indicate that a 2048-bit RSA modulus is necessary to reach 112 bits
of security) and is often regarded as one of the most computationally efficient.
The more recent construction of [28] relies on the flexibility of lattice based
cryptosystems to design secure comparison protocol. Using a degree-8 some-
what homomorphic encryption scheme and ciphertext packing techniques, the
(amortized) bit complexity of their protocol is Õ(` + κ). Although asymptoti-
cally efficient, this method is expected to remain less efficient than alternative
methods using simpler primitives for realistic parameters.

From the Arithmetic Black Box Model. The third category consists of pro-
tocols built on top of an arithmetic black box [18] (ABB), which is an ideal reac-
1 It should be mentioned that this survey does not take into account recent optimiza-
tions on garbled circuits and uses highly unoptimized oblivious transfers; we expect
an optimized implementation to be considerably more efficient than the one used
in [63], hence to compare even better with current alternatives.
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tive functionality for performing securely basic operations (such as additions and
multiplications) over secret values loaded in the ABB. The ABB itself can be im-
plemented from various primitives, such as oblivious transfer [26,56] or additively
homomorphic encryption (most articles advocate the Paillier scheme [54]). Proto-
cols in this category vary greatly in structure. Most protocols [13,20,27,53,58,69]
involve Õ(`) private multiplications, each typically requiring O(1) operations
over a field of size O(` + κ), resulting in an overall Õ(`(` + κ)) bit complex-
ity (for the sake of simplicity, we consider only the total communication of the
protocols; in some constructions, most of the work can be performed in a pre-
processing phase). The protocols of Toft [62], and Toft and Lipmaa [49], provide
solutions using only a sublinear (in `) number of invocations to the crypto-
graphic primitive; however, the total bit complexity remains superlinear in ` as
each invocation of the cryptographic primitive involves O(` + κ) bits of com-
munication. In addition, because of the constants involved, these protocols are
only competitive for large values of `. Eventually, the protocol of [70] relies on
probabilistically correct conversion of shares modulo various values, and can be
implemented (with negligible error probability) with bit complexity O(` + κ2);
again, the constants involved here make the protocol competitive for very large
values of ` only.2

General Overview. The most practical constructions transmit at least O(λ`)
bits, for some security parameter λ = poly(κ) which depends of the particu-
lar construction. Some constructions are asymptotically more efficient [28, 70],
but this comes at the cost of very large constants or somewhat homomorphic
encryption, hence these constructions do not beat the most practical construc-
tions [21,44] for realistic values of `. Asymptotically, the most efficient construc-
tion is the O(` + κ2) protocol of [70]. Regarding computation, we expect the
protocol of [44] to be the most efficient in any large-scale protocol relying on
secure comparison, due to its possibility to use oblivious transfer extensions to
be implemented with a small (constant) number of public-key operations and
cheap symmetric operations.

1.2 Our Contribution

In this work, we construct new protocols for secure comparison, which improve
over the best state-of-the-art protocols. More precisely, we construct protocols
enjoying the following features:

– Our protocols are secure in the universal composability framework, assum-
ing only the existence of oblivious transfer [26, 56]. The latter can be in-
stantiated from a large variety of cryptographic assumptions. Apart from
oblivious transfer, our protocols involve only cheap modular additions over
small groups. In particular, this implies that our protocols perform very

2 A rough estimation indicates that this approach becomes competitive with e.g. [44]
only for inputs whose bit-size ` is of the order of several thousands.
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well regarding computation in an amortized setting, in which many secure
comparisons are involved. Indeed, oblivious transfer extensions [39] allow to
confine all the computationally involved public-key operations to a single
run of a constant number of base oblivious transfers, while performing poly-
nomially many secure comparisons. In addition, our protocols are tailored
to benefit from the advances in the design of efficient oblivious transfer ex-
tension. In particular, we heavily rely on the short-string oblivious transfer
extension protocol of [43].

– Our protocols work in the preprocessing model : they are designed in two
phases, the first of which depends only on the size of the inputs, and not on
their actual values.

– When instantiated with specific constructions for oblivious transfer exten-
sion (in particular the protocol of [43]), our protocols are, to our knowledge,
more efficient than any existing secure comparison protocol regarding com-
munication, for inputs of any bit-size. In particular, they improve over the
protocol of [44] by a factor 20 to 30 in the online phase, and by approximately
40% overall.
Note that numerous two-party computation protocols rely essentially on two
components: secure multiplication and secure comparison (additions can in
general be performed without interactions). Secure multiplication protocols
can be very efficiently precomputed, hence the online communication of these
protocols essentially consists in performing the secure comparisons, which is
a major efficiency bottleneck. Our result shows that secure comparisons can
also be precomputed extremely efficiently, with an online phase which involve
just exchanging a few strings; hence, in all such protocols, the online phase
can be dramatically reduced.

– Our protocols are designed in a modular way, so that one can easily adapt
them to the constraints of a particular setting (e.g., by choosing to optimize
the online communication or the overall communication, or by reducing the
round complexity at the cost of increasing the communication).

– Our protocols have a low asymptotic communication complexity. Asymptot-
ically, the complexity of our logarithmic-round protocol is Õ

(
`+ κ2

)
. This

approaches the complexity of the best protocols regarding asymptotic com-
munication [28,70], while remaining efficient for realistic parameters. To our
knowledge, our protocols are the first to enjoy both a low asymptotic com-
plexity and a low cost for practical parameters.

We view our contribution as a further indication that basing multiparty com-
putation on oblivious transfers is one of the major directions toward making it
truly practical. Additional contributions resulting from the methods we use in-
clude:

– New efficient protocols for checking whether two strings are equal,
– A simple method thar reduces by 25% the communication of the Naor-Pinkas

oblivious transfer protocol [51], when the size of the transmitted strings is
lower than κ/2 (see Section 3).



6 Geoffroy Couteau

1.3 Universal Composability

As we prove the security of our protocols in the universal composability frame-
work (UC), we assume that the reader has some familiarity with it. The universal
composability framework has been introduced by Canetti in [12]. It defines pro-
tocols by the mean of systems of interactive Turing machines. The expected
behavior of the protocol is captured by an ideal functionality F . This function-
ality is a very simple interactive machine, which is connected to a set of dummy
parties, some of whom might be corrupted by an ideal adversary Sim, through
perfectly secure authenticated channels. In the real execution of a protocol π,
probabilistic polynomial time players, some of whom might be corrupted by a
real adversary Adv, interact with each other through some channels. The envi-
ronment refers to an interactive machine Z that oversees the execution of the
protocol in one of the two worlds (the ideal world with the functionality F , or
the real world with the protocol π). We refer to [12], for the definitions of the
real world ensembles EXECπ,Adv,Z and the ideal world ensemble EXECF,Sim,Z .
A protocol UC securely implements a functionality F if for any adversary Adv,
there is a simulator Sim so that the real world ensemble and the ideal world
ensemble are indistinguishable for any environment Z.

1.4 Our Method

The approach on which we rely is close to the intuition underlying the secure
comparisons in [49, 62]: to compare two strings, one can divide them in equal
length blocks, and compare the first block on which they differ. We design a
protocol that uses both oblivious transfers and equality tests to obliviously select
such a block. A (secure) equality test protocol is a protocol which, on input
two strings (x, y), each string being privately held by a player, outputs shares
(modulo 2) of a bit which is 1 if and only if x = y (i.e., let b be the bit which
is 1 if and only if x = y; the two players get respective bits b0, b1 such that
b0 + b1 = b mod 2).

Keeping this approach in mind, we start by designing an equality test proto-
col which is based solely on oblivious transfer. It relies on a classical observation:
two strings are equal if and only if their Hamming distance is zero. Using this
observation, we design a protocol which reduces an equality test on `-bit strings
to an equality test on (approximately) log `-bit strings (a similar approach was
used in [28], using the very powerful primitive of somewhat homomorphic en-
cryption). Eventually, when the strings are small enough, we call an oblivious
transfer-based equality test protocol which is tailored to small inputs.

Our equality test protocol do also improve over previous constructions. Us-
ing oblivious transfer extensions, in an amortized setting, it improves over prior
works by two orders of magnitude during the online phase, and by 50% overall
(regarding communication). This contribution is of independent interest: equal-
ity test protocols enjoy independent applications as building blocks in various
multiparty computation protocols. Examples include, but are not limited to,
protocols for switching between homomorphic encryption schemes [17], secure
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linear algebra [19], secure pattern matching [36], and secure evaluation of linear
programs [61]. In addition, we provide as a supplementary material a variant of
our equality test protocol in a batch settings (where many equality tests are per-
formed “by blocks”), which uses additively homomorphic encryption to improve
the performances (it reduces the communication of our equality test protocol
by up to 50%). Due to space constraints, we postpone its description to the
appendix.

1.5 Applications

Our secure comparison protocols are readily usable as building blocks in a va-
riety of semi-honest two-player secure algorithms. In this subsection, we outline
a non-exhaustive list of some interesting applications for which they suit partic-
ularly well. In general, our protocols compare well to state-of-the-art protocols
in settings were a large number of comparisons are involved and a preprocess-
ing step, independent of the inputs, can be executed. In the applications listed
thereafter, we expect our secure comparison protocol to perform well compared
to prior alternatives, both in terms of computation and communication, and
to result in strong efficiency improvements for the application. Note, however,
that our protocols are quite interactive, making them less suited in settings were
latency would be a major issue.

Obliviously Sorting Data. Sorting data is probably one of the most widely
used basic algorithmic operation, as well as a computationally involved one. As
a consequence, sorting encrypted value has proven useful in contexts such as pri-
vate auctions [7,52], oblivious RAM [29,55,64,65], or private set intersection [38],
but it remains to date quite slow (implementations [34] report that sorting over
a million 32-bit words takes between 5 and 20 minutes, depending on the method
used), even though it received a lot of attention [32–35, 41, 72]. Various oblivi-
ous sorting algorithms have been designed, but they all rely crucially on secure
comparisons; in most algorithms, sorting m integers requires O(m logm) secure
comparisons (in O(logm) rounds, with O(m) parallel secure comparisons at each
round), which easily amounts to millions of secure comparisons on words which
are generally 32-bit or 64-bit words.

Biometric Authentication. The field of biometric authentication is a very
active research field. While efficiently solving the issues related to the use of
passwords, which are hard to remember and easy to crack, they raise concerns
regarding the privacy of the individuals, as they involve storing and manipulat-
ing private data associated to an individual, such as fingerprints, iris, or faces.
As such, a large body of work has been dedicated to the problem of secure bio-
metric matching (see [8,50] for surveys on the topic). One of the most important
primitives for such protocols (used in e.g., secure face recognition [24,59, 67]) is
a secure protocol to find the minimum value in a database (e.g., a database of
features) of size n. This protocol involves O(n) secure comparisons; for example,
the protocol of [24] was evaluated on a database with 320 features; it requires
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720 secure comparison protocols on 64-bit inputs (larger databases are likely to
be used in realistic applications).

Data Mining and Machine Learning. The enormous amount of data which
is generated daily, the emergence of cloud computing, and the constantly growing
power of our computers, have placed data mining at the heart of any company
who wishes to use those data in a beneficial way. When storing data in the cloud,
which is owned by some potentially ill-intentioned cloud provider, the natural
solution to ensure the privacy of the data is to encrypt it; multiparty compu-
tation protocols can then allow companies or individuals to privately evaluate
machine learning algorithms on the encrypted data. Secure comparisons are re-
quired for very basic machine learning operations, such as classification [11, 57]
or evaluating decision trees [66]. They are necessary in a large variety of ap-
plications of secure machine learning; examples include generating private rec-
ommendations [25], spam classification [66], multimedia analysis [16], clinical
decisions [57], evaluation of disease risk [5], or image feature extraction [47].
For example, the protocols of [66] privately evaluate decision trees and random
forest, and require a secure comparison on 64-bit numbers per decision node.
For classical applications, a random forest can contain thousands, or tens of
thousands, of decision nodes.

Securely Solving Combinatorial Problems. Combinatorial problems, such
as finding the flow of maximum capacity in a weighted graph, or searching for the
shortest path between two nodes, are encountered in many applications. Their
secure counterpart have been investigates in e.g. [2,3,9,46] and have applications
in several cryptographic protocols, such as private fingerprint matching (using a
secure algorithm to find the maximum matching size in a bipartite graph, see [9]),
privacy-preserving GPS guidance, or privacy-preserving determination of topo-
logical features in social networks (which is a special case of the maximum flow
problem, see [2]). Secure protocols for combinatorial problems typically involve
a very large number of secure comparisons: according to [2], for a graph with n
nodes and m ≤ n2 edges, secure algorithms use n2 comparisons for Dijkstra’s
shortest path algorithm, nm comparisons for Bellman-Ford’s shortest path al-
gorithm, and nm2 comparisons for Edmond-Karp’s maximum flow algorithms.
Hence, even for graphs of reasonable size, a very large number of secure compar-
isons is required; this is indeed pointed out as being (by far) the dominant cost
in those secure protocols.

Computing on Non-Integer Values. While there is a vast literature on
multiparty computation on (modular) integers because of their mathematically
convenient structure, in realistic applications data is often stored as floating
numbers or as fixed-point numbers, and some very classical applications involve
non-integer operations, such as computing square roots. This motivated the de-
velopment of multiparty computation protocol on rational numbers [1,13,15,48].
Secure algorithms for fixed-point arithmetic, as well as for arithmetic on floating
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numbers, heavily rely on comparisons. It was pointed out in [13] that compar-
isons and integer truncation are core components of fixed-point arithmetic, and
the most important performance bottlenecks in complex applications.

Other Applications. Other applications for secure comparisons include vari-
ous types of secure auctions [21,37], range queries over encrypted databases [60]
(which involve a secure comparison per element of the database), or secure al-
gorithms for optimization problems (for example, securely evaluating a simplex
algorithm [14, 61], which occurs in supply chain planning between concurrent
suppliers, might involve hundreds of secure comparisons on ≈ 100-bits values,
according to [14]).

1.6 Organization

In Section 2, we recall definitions and classical results on oblivious transfers, as
well as on oblivious transfer extensions. Section 3 introduces our new equality
test protocol. Section 4 focus on the construction of secure comparison protocols.
Eventually, we describes a variant of our equality test in Appendix A of the
supplementary material.

1.7 Notations

Given a finite set S, the notation x←R S means a uniformly random affectation
of an element of S to the variable x. For an integer n, Zn denotes the set of
integers modulo n. Throughout this paper, + will always denote addition over
the integers, and not modular additions. We use bold letters to denote vectors.
For a vector x, we denote by x[i] its i’th coordinate; we identify k-bit-strings to
vectors of Zk2 . We denote by x ∗y the Hadamard product (x[i] ·y[i])i between x
and y. Let ⊕ denote the xor operation (when applied on bit-strings, it denotes
the bitwise xor). For integers (x, y), [x = y], [x < y], and [x ≤ y] denote the value
of the corresponding predicate. For an integer k, let 〈·〉k denote the randomized
function that, on input x, returns two uniformly random shares of x over Zk (i.e.,
a random pair (a, b) ∈ Zk such that a+ b = x mod k). We extend this notation
to vectors in a natural way: for an integer vector x, (a, b) ←R 〈x〉 denote the
two vectors obtained by applying 〈·〉k to the coordinates of x. Finally, for an
integer x, we denote by |x| the bit-size of x.

2 Oblivious Transfer

Oblivious transfers (OT) were introduced in [26, 56]. An oblivious transfer is a
two-party protocol between a sender and a receiver, where the sender obliviously
transfer one of two string to the receiver, according to the selection bit of the
latter. The ideal functionality for k oblivious transfers on l-bit strings is specified
as follows:

F k,l
OT : ((s0, s1) , x) 7→

(
⊥,
(
sx[i][i]

)
i≤k

)
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where (s0, s1) ∈ (Fl2)k× (Fl2)k is the input of the sender, and x ∈ Fk2 is the input
of the receiver. In a random oblivious transfer (ROT), the input of the sender is
picked at random:

F k,l
ROT : (⊥, x) 7→

(
(s0, s1) ,

(
sx[i][i]

)
i≤k

)
The primitive can be extended naturally to k-out-of-n oblivious transfers;

we let
(
n
k

)
-OTt` denotes t invocations of a k-out-of-n OT on strings of length

`. Oblivious transfer is a fundamental primitive in MPC as it implies general
multiparty computation [40,42] and can be made very efficient.

2.1 Oblivious Transfer Extension

Although oblivious transfer requires public-key cryptographic primitives, which
can be expensive, oblivious transfer extension allows to execute an arbitrary
number of oblivious transfers, using only cheap, symmetric operations, and a
small number of base OTs. OT extensions were introduced in [6]. The first truly
practical OT extension protocol was introduced in [39], assuming the random
oracle model,3. We briefly recall the intuition of the OT extension protocol of [39].
A
(
2
1

)
-OTκt can be directly obtained from a

(
2
1

)
-OTκκ: the sender associates two

κ-bit keys to each pair of messages and obliviously transfer one key of each pair
to the receiver. Then, the receiver stretches two t-bit strings from the two keys of
each pair, using a pseudo-random generator, and sends the xor of each of these
strings and the corresponding message to the receiver. The

(
2
1

)
-OTt` itself can be

implemented with a single call to a
(
2
1

)
-OTκt functionality, in which the receiver

plays the role of the receiver (and reciprocally). The total communication of the
reduction from

(
2
1

)
-OTt` to

(
2
1

)
-OTκκ is 2t`+2tκ bits. Regarding the computational

complexity, once the base OTs have been performed, each OT essentially consists
in three evaluations of a hash function.

Optimization. An optimization to the [39] paper was proposed in [4] (and
discovered independently in [43]). It reduces the communication of the OT ex-
tension protocol from 2t`+ 2tκ bits to 2t`+ tκ bits, and allows to perform the
base OTs without an a-priori bound on the number of OTs to be performed later
(the OTs can be continuously extended).

Oblivious Transfer of Short Strings. An optimized OT extension protocol
for short strings was introduced in [43], where the authors describe a reduction
of
(
2
1

)
-OTt` to

(
2
1

)
-OTκκ with t(2κ/ log n+ n · `) bits of communication, n being a

parameter that can be chosen arbitrarily so as to minimize this cost. Intuitively,
this is done by reducing log n invocations of

(
2
1

)
-OT to one invocation of

(
n
1

)
-OT;

the result is then obtained by combining this reduction with a new
(
n
1

)
-OT

extension protocol introduced in [43]. In our concrete efficiency estimations, we
3 The random oracle model can be avoided by assuming that the hash function is a
correlation-robust function, see [43], AppendixA.2
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will heavily rely on this result as our equality test protocol involves only OTs on
very short strings.

Correlated and Random Oblivious Transfers. The authors of [4] described
several OT extension protocols, tailored to OTs on inputs satisfying some partic-
ular conditions. In particular, the communication of the OT extension protocol
can be reduced from 2t` + tκ bits to t` + tκ bits when the inputs to each OT
are correlated, i.e. when each input pair is of the form (r, f(r)) for a uniformly
random r and a function f known by the sender (which can be different for
each OT). For random oblivious transfer extension, the bit-communication can
be further reduced to tκ. We note that the optimizations of [43] and [4] can
be combined: log n correlated

(
2
1

)
-OT can be reduced to one correlated

(
n
1

)
-OT

(defined by input pairs of the form (r, f1(r), · · · fn−1(r)) for a random r and
functions f1 · · · fn−1 known by the sender). This gives a correlated short-string
oblivious transfer extension protocol which transmits t(2κ/ log n + (n − 1) · `)
bits.

3 Equality Test

3.1 Equality Test Protocol

In this section, we design an equality-test (ET) protocol to securely evaluate
shares over Z2 of the equality predicate.

Ideal Functionalities. The ideal functionality for our ET protocol is repre-
sented Figure 3. Following the common standard for multiparty computation,
we design our protocol in the preprocessing model, where the players have ac-
cess to a preprocessing functionality FET-prep. The preprocessing functionality is
used in an initialization phase to generate material for the protocol; it does not
require the inputs of the players. Our ideal preprocessing functionality is also
represented Figure 3.

Protocol. We now describe our implementation of FET in the FET-prep-hybrid
model, with respect to passive corruption of at most one of the players. The
protocol runs with two players, Alice and Bob. It is parametrized by two integers
(`, n), where n is called the threshold of the protocol. The players recursively
perform size reduction steps using the material produced by the size reduction
procedure of FET-prep. Each step reduces inputs of size ` to inputs of size |`+ 1|
while preserving the equality predicate. The players stop the reduction when the
bitsize of their inputs becomes smaller than the threshold n (taken equal to 3 or
4 in our concrete estimations). The equality predicate is computed on the small
inputs with the material produced by the product sharing procedure of FET-prep.

Protocol ΠET
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Functionality FET

The functionality runs with two parties, Alice and Bob. Upon receiving (ET, x)
from Alice and (ET, y) from Bob, set β ← 1 if x = y, and β ← 0 else. Set
(a, b)←R 〈β〉2. Return a to Alice and b to Bob.

Functionality FET-prep

The functionality runs with two parties, Alice and Bob.

Size Reduction: Upon receiving (SR, `) from both players, the functionality
picks (x, y)←R (Z`2)2 and sets (a, b)←R 〈x⊕ y〉`+1. FET-prep outputs (x,a) to
Alice and (y, b) to Bob.

Product Sharing: Upon receiving (PS, n) from both players, the functionality
picks (x, y) ←R (Z2n−2

2 )2 and sets (a, b) ←R 〈x ∗ y〉2. FET-prep outputs (x, a)
to Alice and (y, b) to Bob.

Fig. 1: Ideal Functionalities for Equality Test and Preprocessing

Initialize: Let i← 1 and j ← `. The players perform the following operations:
– (size reduction) While j > n, both players call FET-prep on input (SR, j)

to get outputs (ri,ai) and (si, bi). The players set i ← i + 1 and j ←
|j + 1|.

– (product sharing) Both players call FET-prep on input (PS, n) to get out-
puts (r, a) and (s, b).

Equality Test: On input two `-bit integers, x from Alice and y from Bob, let
x1 ← x and y1 ← y. Let i← 1 and j ← `. The players perform the following
operations:
1. While j > n, Alice sends x′i ← ri⊕xi to Bob, and Bob sends y′i ← si⊕yi

to Alice. Let zi ← x′i ⊕ y′i. Alice sets xi+1 ← −
∑j
l=1(−1)zi[l]ai[l] mod

j + 1, and Bob sets yi+1 ←
∑j
l=1(−1)zi[l]bi[l]+zi[l] mod j + 1. The play-

ers set i← i+ 1 and j ← |j + 1|. Note that (xi, yi) ∈ Z2
j .

2. Let (Ik)1≤k≤2n−2 denote the list of non-empty strict subsets of {1, · · · , n}
(in any arbitrary fixed order). For k = 1 to 2n − 2, Alice, sets Xk ←∏
l∈Ik(1⊕xi[l]) and αk ← r[k]⊕Xk. Then, Bob sets Yk ←

∏
l/∈Ik yi[l], and

βk ← s[k]⊕Yk. Alice sends (α, (αk)k≤2n−2) and Bob sends (β, (βk)k≤2n−2).
3. Alice outputs ⊕

k≤2n−2

(a[k]⊕ βkXk)⊕
∏
l≤n

(1⊕ xi[l])⊕ α⊕ β

Bob outputs ⊕
k≤2n−2

(b[k]⊕ αks[k])⊕
∏
l≤n

yi[l]⊕ α⊕ β

Theorem 1. The protocol ΠET securely implements FET in the FET-prep-hybrid
model, with respect to passive corruption.



Efficient Secure Comparison Protocols 13

3.2 Security Analysis

Let Adv be an adversary that interacts with Alice and Bob, running the protocol
ΠET. We will construct a simulator Sim which interacts with FET, so that no
environment Z can distinguish an interaction with Adv in ΠET from an interac-
tion with Sim in the ideal world. Sim starts by invoking a copy of Adv. Each
time Sim received from Z an input value, he writes it on Adv’s input tape as if
coming from Z. Each time Adv writes on its output tape, Sim writes the same
thing on his output tape.

One Player is Corrupted. We focus here on the case of a corrupted Bob; as
the protocol is perfectly symmetrical, the simulation is similar for a corrupted
Alice.

Initialize: Sim runs a local copy of FET-prep. He honestly answers to each call
to the SR command, and stores the outputs of each call (This step does not
require the input of Alice).

Equality Test:
1. When Sim receives y′1 = s1⊕y from Adv, he retrieves s1 from his memory

and computes y = y′1 ⊕ s1. SimA sends (ET, y) to FET on behalf of the
corrupted party, and receives a bit T . During each round of the size
reduction protocol, Sim does only send uniformly random values x′i of
the appropriate size on behalf of Alice. Moreover, for i ≥ 1 and while
j > n, Sim stores yi+1 ←

∑j
l=1(−1)zi[l]bi[l] + zi[l] mod j + 1, using the

vector bi stored in FET-prep and the string zi = x′i ⊕ y′i.
2. When Sim receives (β, (βk)k≤2n−2), he retrieves Bob’s output (b, s) to

the PS command, and picks uniformly random bits (αk)k≤2n−2. Sim
sets

α←
⊕

k≤2n−2

(b[k]⊕ αks[k])⊕
∏
l≤n

yi[l]⊕ T ⊕ β

and sends (α, (αk)k≤2n−2) to Bob.

Remaining Cases. When both parties are corrupted, Sim simply runs Adv
internally. When neither party is corrupted, Sim internally runs Alice and Bob
honestly, with inputs (0, 0), and forwards the messages exchanged to Adv.

Indistinguishability. We focus on the case were Bob is corrupted; the argu-
ment follows symmetrically for a corrupted Alice, and is straightforward when
both players are corrupted, or no player is corrupted. We show that the joint view
of Z and Adv in the real world is indistinguishable from the view of Z and the sim-
ulated Adv in the ideal world. Let t be the number of repetitions of step 1 during
the execution of the protocol. As the corrupted player is semi-honest, it honestly
follows the specifications of the protocol. Let (s, b, (x′i)i≤t, α, (αj)j≤2n−2) be the
view of Adv in a run of ΠET with inputs (x, y). Let (oA, oB) denote the outputs
of Alice and Bob, that are sent to Z.
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Claim. For every i ≤ t, [x = y] = [xi = yi].

We show that for every i ≤ t − 1, [xi = yi] = [xi+1 = yi+1]. As (x, y) =
(x1, y1), the claim follows. Let i ≤ t− 1 be an integer. As the players follow the
protocol, it holds that yi+1−xi+1 =

∑j
l=1(−1)zi[l](bi[l]+ai[l])+zi[l] mod j + 1,

with zi = xi ⊕ yi ⊕ ri ⊕ si. Furthermore, for any l ≤ j, bi[l] + ai[l] = ri[l] ⊕
si[l] mod j+1. Observe that when zi[l] = 0, it holds that xi[l]⊕yi[l] = ri[l]⊕si[l],
whereas when zi[l] = 1, it holds that xi[l]⊕ yi[l] = 1− (ri[l]⊕ si[l]). Overall, it
holds that (−1)zi[l](ri[l] ⊕ si[l]) + zi[l] = xi[l] ⊕ yi[l]. Therefore, yi+1 − xi+1 =∑j
l=1(xi[l]⊕ yi[l]) mod j + 1. But the right hand term is exactly the Hamming

distance between xi and yi, which is bounded by the bitsize j of the strings (hence
no overflow occurs with the modulus j+1). Observe that the Hamming distance
between two strings is 0 if and only if the two strings are equal. Therefore,
yi+1 − xi+1 = 0 if and only if xi = yi. The claim follows.

Claim. The outputs of Alice and Bob in ΠET form shares over Z2 of [x = y].

By the previous claim, it suffices to show that the output of Alice and Bob
in ΠET form shares over Z2 of [xt = yt]. It holds that oA⊕oB =

⊕
k≤2n−2(a[k]⊕

b[k] ⊕ βkXk ⊕ αks[k]) ⊕
∏
l≤n(1 − xt[l]) ⊕

∏
l≤n yt[l]. As for k ≤ 2n − 2, αk =

r[k]⊕Xk, βk = s[k]⊕ Yk, and a[k]⊕ b[k] = r[k]s[k], this simplifies to oA⊕ oB =⊕
k≤2n−2XkYk ⊕

∏
l≤n(1− xt[l])⊕

∏
l≤n yt[l].

Observe that the right hand term is exactly the product
∏n
l=1((xt[l] ⊕ 1) ⊕

yt[l]), in developed form. Moreover, this product evaluates to 1 if and only if it
holds that for any l ≤ n, (xt[l] ⊕ 1) ⊕ yt[l] = 1, which happens exactly when
xt[l] = yt[l], and to 0 otherwise. Therefore,

∏n
l=1((xt[l]⊕ 1)⊕ yt[l]) = [xt = yt].

Claim. When Bob is corrupted, the joint distribution (s, b, (x′i)i≤t, α, (αj)j≤2n−2,
oA, oB) is perfectly indistinguishable from the transcript of an interaction with
Sim together with the output of FET.

Recall that Sim honestly picks (s, b). Moreover, for each i ≤ t, x′i = xi⊕ri is
perfectly masked by the random value ri, and for each j ≤ 2n−2, αj = r[j]⊕Xk

is perfectly masked by the random bit r[k]. The value α is simulated so that the
output computed by Bob is exactly the output T of FET for the ideal version of
Bob. As α is masked by T , which is a uniformly random bit from the viewpoint
of Bob (by definition of FET), α is also uniform. The outputs of FET form shares
of [x = y], as do (oA, oB) (from our above analysis). The claim follows.

3.3 Implementing the Preprocessing Functionality

We now describe the implementation of the functionality FET-prep, in the FOT-
hybrid model.

Protocol ΠET-prep
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Size-Reduction(`): Alice picks (x,a)←R Z`2×Z``+1, and Bob picks y ←R Z`2.
The players call F `,|`+1|

OT , on input (a[i]+x[i] mod `+1,a[i]+1−x[i] mod `+
1)i≤` for Alice and y for Bob. Let b denote Bob’s output. Alice outputs (x,a)
and Bob outputs (y, b).

Product-Sharing(n): Alice picks (x, a) ←R (Z2n−2
2 )2, and Bob picks y ←R

Z2n−2
2 . The players call F 2n−2,2

OT on input (a[i], a[i] ⊕ x[i])i≤n for Alice and
y for Bob. Let b denote Bob’s output. Alice outputs (x, a) and Bob outputs
(y, b).

Theorem 2. The protocol ΠET securely implements FET when calls to FET-prep
in ΠET are replaced by executions of ΠET-prep in the FOT-hybrid model, with
respect to passive corruption.

Note that we will not prove that ΠET-prep UC implements FET-prep, as it is not
the case (enhancing it to full UC security would degrade its efficiency). Instead,
we show that ΠET-prep satisfies a weaker notion, called input-privacy. This notion
was formally defined in [10], whose authors extend the UC framework to show
that it is sufficient for a protocol to be input-private, when composed with a
UC secure protocol, to assert the security of the composed protocol (under some
natural conditions). We postpone the security argument to Appendix B, noting
that it is rather straightforward as the framework of of [10] was specifically
designed to assert the security of this kind of protocols.

3.4 Communication Complexity

We first analyse the complexity of our protocol using any standard oblivious
transfer protocol, which transmits O(κ) bits. The size reduction procedure trans-
mits O(`κ) bits on input `, and the product sharing procedure transmits O(2nκ)
bits on input n. Setting n to a small constant value (e.g. n = 3), the bit communi-
cation of ΠET is dominated by its first size reduction procedure, which transmits
O(κ`) bits in the initialization phase (recall that this is a preprocessing phase,
performed before the parties get to know their inputs). In the online phase,
where the equality test is performed using the preprocessed material, only O(`)
bits are transmitted.

We now analyse the complexity of our protocol in an amortized setting, where
many equality test protocols are likely to be invoked (not necessarily in parrallel).
Observe that we can always assume that the inputs of the players are less than
κ-bit long: if this is not the case, each party can start by hashing his input, using
a hash function H : {0, 1}∗ 7→ {0, 1}κ. When H is modeled as a random oracle4,
this preserves the correctness of the protocol with overwhelming probability.
Therefore, as the largest strings obliviously transferred during the protocol ΠET

are |`+ 1| ≤ |κ+ 1| bit long (for κ = 128, this corresponds to 8-bit strings), we
4 The random oracle model is already assumed in the OT extension protocol we rely
on, hence this does not add any assumption to the protocol.



16 Geoffroy Couteau

can benefit from the short-string oblivious transfer extension protocol of [43].
Ignoring the computation of the base OTs, which is performed a single time
for an arbitrary number of equality tests, k size reduction procedures on `-bit
inputs transmit O(k`(κ/ log x+x · |`|)) bits, where x is a parameter than can be
arbitrarily set so as to minimize this cost. This minimizes to O(k`κ/ log κ), up to
some log log term. As a consequence, when performing many equality tests, the
(amortized) cost of a single equality test is O(κ`/ log κ) bits in the preprocessing
phase (and still O(`) bits in the online phase). For inputs of size ` > κ, where
the players can hash their input first, the complexity becomes O(κ2/ log κ) in
the preprocessing phase, and O(κ) in the online phase.

3.5 Concrete Efficiency

We now analyze the efficiency of our protocol for various input-lengths. In all
our numerical applications, we set the security parameter κ to 128. We estimate
both the efficiency in a single run setting, and in an amortized setting, where we
can use oblivious transfer extension.

Comparison with Equality Test from Garbled Circuit. We compare our
protocol to the garbled-circuit-based protocol of [44], which is to our knowledge
the most efficient state-of-the-art protocol for equality test (in the description of
the protocol, the result of the test is revealed to both players, but the protocol
can be trivially modified so that the output is shared between the players).

Let us provide an intuition of this protocol; details on garbled circuits and the
free-xor trick can be found in [45]. First, the comparison function is represented
as a circuit with ` comparison gates, each gate being implemented with three xor
gates (which are for free in the construction, in the sense that they do not require
communicating anything) and a and gate. During the preprocessing phase, Alice
starts by assigning two keys to each wire of the circuit (corresponding to the
two possible values 0 and 1), and for each gate g, she computes a garbled gate,
which encrypts the output-wire keys of the gate so that given two input-wire
keys corresponding to inputs (b, b′), only the output-wire key corresponding to
g(b, b′) can be recovered. Using the recent result of [71], each AND gate can be
garbled quite efficiently, using only two (κ+1)-bit strings. Then, once the inputs
are revealed to the players, Alice sends to Bob the ` keys corresponding to the
bits of her entry, and acts as sender in ` parallel oblivious transfers, using as
input each pair of keys corresponding to the possible values for an input of Bob.
Bob’s selection bits are his input bits. Once he has recovered the necessary keys,
Bob can evaluate the circuit securely and get the output.

Note that the pairs of keys in this scheme satisfy some correlation, hence the
optimization of [4] for correlated oblivious transfer extensions can be applied.
However, this prevents Alice from constructing and sending the garbled circuit
during the preprocessing phase, as the values of the keys will be determined by
the correlated oblivious transfers (in which one of the outputs is a random value).
In our estimations, we choose not to use this optimization, which results in a
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slight loss in overall communication, but almost cuts in half the communication
during the online phase.

Non-Amortized Setting. We now evaluate the concrete efficiency of our pro-
tocol. We first focus on the simpler setting, the non-amortized setting, in which
a single ET will be performed. We stop the size reduction protocol as soon as
n ≤ 4 (stopping at n ≤ 3 or n ≤ 2 saves a few hundreds of bits for some sizes of
`, at the cost of additional rounds). For the oblivious transfer, we use the scheme
of Naor and Pinkas [51], whose security in the random oracle model relies on the
decisional Diffie-Hellman (DDH) assumption (we use an elliptic curve of prime
order p, which can be taken of bit-size log p = 2κ according to recommended
parameters). The protocols of [51] have the following communication:

– t executions of a
(
2
1

)
-OT` on strings of size ` ≤ κ transmit κ4t bits. The

initialization phase consists of two group elements sent by the sender which
amounts to 4κ bits.

– t executions of a
(
N
1

)
-OT` on strings of size ` ≤ κ transmit κ(N + 2)t bits.

The initialization phase consists of N +1 group elements sent by the sender
which amounts to 2(N + 1)κ bits.

We will use this
(
N
1

)
-OT` in a crucial way. One of the constructions described

in [51] gives a trade-off between communication (which is increased) and compu-
tation (which is decreased). The idea is that to perform logN oblivious transfers
on `-bit strings, it suffices to perform a single

(
N
1

)
-OT` logN , in which the N in-

puts are all the 2logN possible concatenations of one input from each of the log n
input pairs. But recall that the communication of the protocol of [51] is always
the same for any ` ≤ κ (for larger values, the oblivious transfer are performed
on keys, which are used to encrypt the values, adding 2` bits of overhead to the
protocol). Our equality test protocol involves only oblivious transfers on very
small strings, of size smaller than |κ+ 1|. Hence, by picking a sufficiently small
N so that ` logN ≤ κ, the trade-off protocol of Naor and Pinkas does in fact
reduce the communication. Indeed, performing logN oblivious transfers on short
strings transmits 4κ logN bits, while using instead a single

(
N
1

)
-OT` logN trans-

mits (N + 2)κ bits if ` logN ≤ κ. This amounts to (N + 2)κ/ logN bits per(
2
1

)
-OT, which is minimized for N = 4 and transmits 3κ bits. Hence, performing

the
(
2
1

)
-OT by pairs, as a single

(
4
1

)
-OT, reduces the communication by 25%

when the transmitted strings are of size ` ≤ κ/2.
Table 1 sums up the costs of our equality test protocol for various values of

`, and compares it to the garbled-circuit-based protocol of [44]. Note that we use
the oblivious transfer of [51] in both our ET and the protocol of [44], but while
we can use the optimization described above to reduce the communication in our
protocol (as it transmits short strings), this does not hold for garbled circuits,
in which the transmitted values are κ-bit keys (and our optimization does not
result in any improvement in this case). Hence, t

(
2
1

)
-OT transmit 3κt bits in our

ET, but 4κt bits in [44]. As one can see from Table 1, our protocol transmits more
bits than [44] in the preprocessing phase, but has a communication two orders of
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magnitudes smaller in the online phase. Overall, our protocol is approximately
50% more efficient than [44].

Table 1: Communication of `-bit ETs, single run setting

Our ET [44]

` length rounds length rounds

Preprocessing Phase
4 5376 bits 2 rounds 1032 bits 1 round
8 8448 bits 3 rounds 2064 bits 1 round
16 10365 bits 4 rounds 4128 bits 1 round
32 16896 bits 4 rounds 8256 bits 1 round
64 29568 bits 4 rounds 16512 bits 1 round
128 57600 bits 4 rounds 33024 bits 1 round

Online Phase
4 28 bits 1 rounds 2560 bits 2 rounds
8 44 bits 2 rounds 5120 bits 2 rounds
16 54 bits 3 rounds 10240 bits 2 rounds
32 88 bits 3 rounds 20480 bits 2 rounds
64 154 bits 3 rounds 40960 bits 2 rounds
128 300 bits 3 rounds 81920 bits 2 rounds

Amortized Setting. We now provide a concrete efficiency analysis of the pro-
tocol in an amortized setting, using oblivious transfer extensions. We do not
take into account the cost of the base oblivious transfers for the OT exten-
sion scheme, as this is a constant independent of the number of equality tests
performed, which is the same for both our protocol and the protocol of [44].
Adapting the construction of [43] to the case of correlated short inputs, the ex-
act cost of reducing m oblivious transfers of t-bit strings to κ oblivious transfers
of κ-bit strings is m(2κ/ log x + (x − 1)t) (this takes into account an optimiza-
tion described in [43, Appendix A] and the optimization for correlated inputs
of [4]).Therefore, the amortized cost of a size reduction protocol on input k
is k(2κ/ log x + (x − 1)k), where x can be chosen so as to minimize this cost.
Table 2 sums up the amortized costs of our equality test protocol for various
values of `, and compares it again with [44]; oblivious transfers for the garbled
circuit approach of [44] are performed using the OT extension protocol of [4] on
κ-bit inputs, which transmits 3κ bits per OT. As shown in Table 2, our proto-
col improves over the communication of [44] by up to 80% overall. During the
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online phase, our protocol is extremely efficient, two orders of magnitude faster
than [44].

Table 2: Amortized communication of `-bit ETs using OT extension

Our ET [44]

` length rounds length rounds

Preprocessing Phase
4 1106 bits 2 rounds 1032 bits 1 round
8 2018 bits 3 rounds 2064 bits 1 round
16 2945 bits 4 rounds 4128 bits 1 round
32 5212 bits 4 rounds 8256 bits 1 round
64 9863 bits 4 rounds 16512 bits 1 round
128 20194 bits 4 rounds 33024 bits 1 round

Online Phase
4 28 bits 1 rounds 2048 bits 2 rounds
8 44 bits 2 rounds 4096 bits 2 rounds
16 54 bits 3 rounds 8192 bits 2 rounds
32 88 bits 3 rounds 16384 bits 2 rounds
64 154 bits 3 rounds 32768 bits 2 rounds
128 300 bits 3 rounds 65536 bits 2 rounds

4 Secure Comparison from Equality Test

4.1 Comparison Protocol

In this section, we design a secure comparison (SC) protocol to securely evaluate
shares over Z2 of the greater-than predicate. Note that when we consider the
comparison of elements of Zn for some n, we refer to the comparison of these
elements seen as integers smaller than n.

Ideal Functionalities. The ideal functionality FSC for our SC protocol is rep-
resented Figure 4. Our implementation will be close in spirit to the ET protocol
of the previous section: it relies on a preprocessing functionality FSC-prep, which
contains a size reduction command, used to perform several steps of reduction of
the input size (while preserving the comparison predicate), and a product shar-
ing protocol, used to perform a secure comparison on small inputs. However,
the size reduction procedure is way more involved than in our ET protocol. To
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simplify the exposition, we initially assume that the players have access to an in-
termediate functionality Fcompress, which performs the reduction procedure. We
will implement this functionality in the (FET,FSC-prep)-hybrid model afterward.
Both Fcompress and FSC-prep are represented Figure 4.

Functionality FSC

The functionality runs with two parties, Alice and Bob. Upon receiving (SC, x)
from Alice and (SC, y) from Bob, set β ← 1 if x ≤ y, and β ← 0 else. Set
(a, b)←R 〈β〉2. Return a to Alice and b to Bob.

Functionality Fcompress

The functionality runs with two parties, Alice and Bob. Upon receiving
(compress, `, λ, x) from Alice and (compress, `, λ, y) from Bob, where λ < ` and
(x, y) are `-bit long, it picks two uniformly random values (x̂, ŷ) ←R Z2

2λ+1 such
that x̂ ≤ ŷ if and only if x ≤ y. It returns x̂ to Alice and ŷ to Bob.

Functionality FSC-prep

The functionality runs with two parties, Alice and Bob.

Size Reduction: Upon receiving (SR, λ, µ) from both players, the functionality
picks (s0, s1, t0, t1,u0,u1) ←R (Zµµ+1)

2 × (Zµ
2λ+1)

4 and (c, d, e) ←R (Zµ2 )
4.

FSC-prep sets

(s, t,u)←
((

sc[i][i]
)
i≤µ ,

(
td[i][i]

)
i≤µ ,

(
ue[i][i]

)
i≤µ

)
It outputs (e, s0, s1, t0, t1,u) to Alice and (c, d, s, t,u0,u1) to Bob.

Product Sharing: Upon receiving (PS, n) from both players, the functionality
picks (ρ, σ) ←R (Z2n−1

2 )2 and sets (a, b) ←R 〈ρ ∗ σ〉2. FET-prep outputs (ρ, a)
to Alice and (σ, b) to Bob.

Fig. 2: Ideal Functionalities for Secure Comparison and Preprocessing

Protocol. We now describe our implementation of FSC, in the (FET,Fcompress)-
hybrid model, with respect to passive corruption of at most one of the players.
The protocol runs with two players, Alice and Bob. It is parametrized by two
integers (`, n), where n is the threshold of the protocol. The players recursively
perform size reduction steps using the material produced by the size reduction
procedure of FSC-prep. Each step reduces inputs of size ` to inputs of size roughly√
` while preserving the comparison predicate. The players stop the reduction

when the bitsize of their inputs becomes smaller than the threshold n (taken
equal to 3 or 4 in our concrete estimations). The comparison predicate is com-
puted on the small inputs with the material produced by the product sharing
procedure of FSC-prep.
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Protocol ΠSC

Initialize: Both players call FSC-prep on input (PS, n) to get (ρ, a) and (σ, b).
Secure Comparison: On input two `-bit integers, x from Alice and y from

Bob, let i← 1, xi ← x, and yi ← y.
1. The players agree on two integers λi, µi such that λi ≤ ` and µi is

the smallest integer satisfying λiµi ≥ `. Alice calls Fcompress on input
(compress, `, λi, xi), and Bob on input (compress, `, λi, yi). Let (xi+1, yi+1)
denote their respective outputs. The players set `← λi and i← i+1. If
|`| > n− 1, the players iterate the step 1.

2. Alice sets x′i ← xi−1. Let f : (j, l) 7→ l−1+2j−1. For j = 1 to n−1, let
(Ijl )1≤l≤2j denote the list of subsets of {1, · · · , j} (in any arbitrary fixed
order). For j = 1 to n, for l = 1 to 2j−1, Alice picks α←R {0, 1} and sets
αjl ← ρ[f(j, l)]⊕x′i[j]·

∏
k∈Ij−1

l
(1⊕x′i[k]), and Bob picks β ←R {0, 1} and

sets βjl ← σ[f(j, l)]⊕ (1⊕ yi[j]) ·
∏
k/∈Ij−1

l
yi[k].5 Alice sends (α, (αjl)jl)

and Bob sends (β, (βjl)jl) (this amounts to 2n+1 bits exchanged).
3. Alice outputs ⊕

j≤n
l≤2j−1

ρ[f(j, l)]βjl ⊕ a[f(j, l)]⊕ α⊕ β

Bob outputs ⊕
j≤n

l≤2j−1

(σ[f(j, l)]⊕ βjl)αjl ⊕ b[f(j, l)]⊕ α⊕ β

Theorem 3. The protocol ΠSC securely implements FSC in the (FSC-prep,Fcompress)-
hybrid model, with respect to passive corruption.

We postpone the proof of this theorem to Appendix B, noting that it closely
resemble the proof of Theorem 1.

4.2 Compression Functionality

We now implement the functionality Fcompress, in the (FSC-prep,FET)-hybrid
model.

Protocol Πcompress

Let (`, λ) be two integers such that λ ≤ `. Let µ be the smallest integer such
that λµ ≥ `. On input x from Alice and y from Bob, both of size `-bit,
5 By convention, an empty product is equal to 1.
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Initialize: The players call FSC-prep on input (SR, λ, µ) to get outputs (e, s0, s1,
t0, t1,u) for Alice and (c, d, s, t,u0,u1) for Bob.

Compression: Let (xj)j≤µ ∈ Z2λ (resp. (yj)j≤µ ∈ Z2λ) be the decomposition
of x (resp. y) into µ blocs of size λ (i.e., x =

∑µ
j=1 xj2

λ(j−1) and y =∑µ
j=1 yj2

λ(j−1)). The players perform the following operations:
1. For j = 1 to µ, the players call FET on inputs (ET, xj) and (ET, yj). Let

(αj , βj)j≤µ ∈ Z2µ
2 denote their respective outputs.

2. Alice picks r ←R Zµµ+1. For j = 1 to µ, Bob sends βj ⊕ c[j] to Alice.
If this is 0, Alice sends (s0[j] + αj + r[j] mod µ + 1, s1[j] + 1 − αj +
r[j] mod µ+ 1); else, she sends this pair in permuted order. This allows
Bob to recover r[j]+(αj⊕βj) mod µ+1. For j = 1 to µ, Alice sets x′j ←∑j
k=1 r[k] mod µ+1 and Bob sets y′j ←

∑j
k=1 r[k]+(αk⊕βk) mod µ+1.

Observe that (x′j , y′j) ∈ Z2
µ+1.

3. For j = 1 to µ, the players call FET on inputs (ET, x′j) and (ET, y′j). Let
(α′j , β

′
j)j≤µ ∈ Z2µ

2 denote their respective outputs and (α′0, β
′
0)← (0, 0).

For j = 1 to µi, Alice sets γj ← αj−1⊕αj and bob sets δj ← βj−1⊕ βj .
The following steps 4 and 5 are executed in parrallel:

4. Alice picks rA ←R Zµ
2λ+1 . For j = 1 to µ, Bob sends δj ⊕d[j] to Alice. If

this is 0, Alice sends (t0[j] + γjxj + rA[j] mod 2λ+1, t1[j] + (1− γj)xj +
rA[j] mod 2λ+1); else, she sends this pair in permuted order. This allows
Bob to recover rA[j] + (γj ⊕ δj)xj mod 2λ+1.

5. Bob picks rB ←R Zµ
2λ+1 . For j = 1 to µ, Alice sends γj ⊕ e[j] to Bob. If

this is 0, Bob sends (u0[j] + δjyj + rB[j] mod 2λ+1,u1[j] + (1− δj)yj +
rB[j] mod 2λ+1); else, he sends this pair in permuted order. This allows
Alice to recover rB[j] + (γj ⊕ δj)yj mod 2λ+1.

Output: Alice outputs x̂ ← 2λ +
∑µ
j=1 rA[j] + rB[j] + (γj ⊕ δj)yj mod 2λ+1

and Bob outputs ŷ ←
∑µ
j=1 rB[j] + rA[j] + (γj ⊕ δj)xj mod 2λ+1.

Theorem 4. The protocol Πcompress securely implements Fcompress in the (FET,
FSC-prep)-hybrid model, with respect to passive corruption.

We postpone the proof of this theorem to Appendix B.

4.3 Implementing the Preprocessing Functionality

We now describe the implementation of the functionality FSC-prep, in the (FOT,FROT)-
hybrid model.

Protocol ΠSC-prep

Size-Reduction(`): The players perform the following operations:
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1. The players call Fµ,µ+1
ROT , with Alice acting as sender and Bob as receiver.

Let (s0, s1) denote Alice’s output, and let e ∈ Zµ+1
2 and s←

(
se[i][i]

)
i≤µ

denote Bob’s output.
2. The players call Fµ,2λ+1

ROT , with Alice acting as sender and Bob as receiver.
Let (t0, t1) denote Alice’s output, and let d ∈ Z2λ+1

2 and t←
(
td[i][i]

)
i≤µ

denote Bob’s output.
3. The players call Fµ,2λ+1

ROT , with Alice acting as receiver and Bob as
sender. Let (u0,u1) denote Bob’s output, and let e ∈ Z2λ+1

2 and u ←(
ue[i][i]

)
i≤µ denote Alice’s output.

Product-Sharing(n): Alice picks (x, a) ←R (Z2n−2
2 )2, and Bob picks y ←R

Z2n−1
2 . The players call F 2n−2,1

OT on input (a[i], a[i] ⊕ x[i])i≤n for Alice and
y for Bob. Let b denote Bob’s output. Alice outputs (x, a) and Bob outputs
(y, b).

Theorem 5. The protocol ΠSC securely implements FSC when calls to FSC-prep
in ΠSC are replaced by executions of ΠSC-prep in the (FROT,FOT)-hybrid model,
with respect to passive corruption.

The proof of this theorem is essentially identical to the proof of Theorem 2.

4.4 Efficiency Analysis

As for the equality test protocol, we estimate both the asymptotic complexity
and the concrete efficiency of our protocols; however, we focus only on the amor-
tized setting here, which is more meaningful in most applications. In all our
numerical applications, we set the security parameter κ to 128. We consider two
protocols in our estimations:

– The protocol ΠSC described above, which performs a logarithmic (in the
bitsize ` of the inputs) number of size reduction steps (hence has logarithmic
round complexity)

– A constant-round variant of ΠSC where only a constant number c of size
reduction steps are performed, and the final comparison on smaller entries
is executed using the protocol of [44] (which transmits O(κt) bits on t-bit
inputs).

Communication Complexity. For any integer t, we denote by Πt
ET the proto-

col ΠET for t-bit inputs. The full protocol involves µ parallel executions of Πλ
ET,

Π
|µ+1|
ET , OT|µ+1|, 2µ executions of OTλ+1, and performing a secure comparison

on (λ+1)-bit inputs. Asymptotically, an equality test transmits O(κ2/ log κ) bits
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independently of the size of `, as the size of the strings to be compared can be re-
duced while statistically preserving their equality. In the constant-round setting,
this gives us a O(c · log∗ κ)-round protocol with asymptotic communication

O

(
c

(
` log κ

κ

) 1
c+1 κ2

log κ
+ `

)

In the logarithmic-round setting, we set c = O(log `/ log log κ) (hence the
round complexity becomes O(log ` · log∗ κ/ log log κ)); the asymptotic communi-
cation becomes

O

(
κ2 log `

log κ log log κ
+ `

)

Concrete Efficiency. We now estimate the efficiency of our secure comparison
protocol, in an amortized setting (using oblivious transfer extension). We use
the equality test of the previous section, with short-string correlated oblivious
transfer extension [4,43]. The results are given in Table 3; they correspond to the
results obtained using the optimal block-decomposition of the inputs. The notes
in Table 3 indicate the optimal values of λi, µi for each value of `. SC 1 denotes
the protocol obtained by recursively applying the reduction protocol, until the
inputs are small enough so that the small-string secure comparison protocol
becomes efficient. We set the thresholds of both the secure comparison protocol
and the equality-tests subprotocol to 4. If one is willing to reduce the round
complexity of the protocol at the cost of transmitting more bits, the threshold
can be increased. SC 2 denotes the protocol obtained by performing a single
reduction step, then using the garbled circuit approach of [44] to complete the
protocol. This approach is interesting only for ` > 16, as for ` ≤ 32, the optimal
values for λ are equal to 4 or less, hence applying the small-string equality test
directly is more efficient than using garbled circuits (and has the same round
complexity). As one can see from Table 3, the communication in SC1 is reduced
by 30 to 45% compared to the garbled circuit approach overall, and by 97−99%
during the online phase. SC2 has comparable overall efficiency, but offers slightly
less communication improvements during the online phase, in exchange for a
better round complexity.

5 Conclusion and Open Questions

In this work, we proposed new two-player protocols for equality test and com-
parison secure against honest-but-curious adversaries, which improve over prior
state-of-the-art. This leaves room for improvements in several directions. First,
our result cannot be immediatly generalized to n players as such; extending
the protocols to handle an arbitrary number of players holding shares of the
two inputs would be an interesting improvement. Second, due to the highly
non-algebraic structure of our protocols, standard method for enhancing their
security into security against malicious adversaries would be rather inefficient
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Table 3: Amortized communication of `-bit SC

SC 1 SC 2 [44]

` length rounds length round length round

Preprocessing Phase
4 1185 bits 2 rounds - 1032 bits 1 round
81 3572 bits 2 rounds - 2064 bits 1 round
162 8396 bits 2 rounds - 4128 bits 1 round
323 15120 bits 3 rounds 13450 bits 3 rounds 8256 bits 1 round
644 31388 bits 3 rounds 29880 bits 3 rounds 16512 bits 1 round
1285 52121 bits 3 rounds 49291 bits 3 rounds 33024 bits 1 round

Online Phase
4 30 bits 2 rounds - 2048 bits 2 rounds
8 162 bits 6 rounds - 4096 bits 2 rounds
16 308 bits 6 rounds - 8192 bits 2 rounds
32 530 bits 12 rounds 4014 bits 7 rounds 16384 bits 2 rounds
64 1120 bits 12 rounds 5154 bits 7 rounds 32768 bits 2 rounds
128 2101 bits 12 rounds 7071 bits 7 rounds 65536 bits 2 rounds

1 µ1 = 4, λ1 = 2
2 µ1 = 6, λ1 = 3 reduces the input size to ` = 5, then µ2 = 3, λ2 = 2
3 µ1 = 6, λ1 = 6 reduces the input size to ` = 7, then µ2 = 4, λ2 = 2
4 µ1 = 10, λ1 = 7 reduces the input size to ` = 8, then µ2 = 4, λ2 = 2
5 µ1 = 15, λ1 = 9 reduces the input size to ` = 10, then µ2 = 4, λ2 = 2

here. Hence, enhancing our protocols to malicious security in an efficient way
might be a challenging problem. Eventually, one might consider trying to opti-
mize the round efficiency of our protocols, which are way more interactive than
the garbled circuit approach.

Acknowledgments. We are grateful to David Pointcheval for his fruitful ob-
servations and his countless advices.
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A Batch ET from Additively Homomorphic Encryption

In this section, we present a batch protocol to efficiently perform simultaneous
equality tests. Unlike the other protocols of this article, this construction assumes
an additively homomorphic encryption scheme, with a few additional properties.
Our protocol share some similarities with the equality test protocol of [28] (which
relies on ciphertext packing to amortize the communication of equality tests),
and in fact matches the communication complexity of [28], which has to our
knowledge the best communication complexity among existing works. However,
contrary to [28], we do not need somewhat homomorphic encryption; our pro-
tocol can be instantiated with e.g. factorization-based additively homomorphic
cryptosystems such as the Paillier scheme [54] or the Damgard-Jurik scheme [23].
For concrete parameters, the amortized communication strongly improves upon
every prior ET protocol we know of, including the protocol described Section 3.
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A.1 Encryption Scheme

Definition 6. (Encryption Scheme) An IND-CPA encryption scheme is a tuple
of algorithms (Setup,Enc,Dec) such that:

– Setup(1κ) outputs a key-pair (pk, sk); pk implicitly defines a plaintext space
M and a ciphertext space C .

– Enc(pk,m), on input pk and a plaintext m ∈M , outputs a ciphertext c ∈ C .
– Dec(sk, c), on input sk and a ciphertext c ∈ C , deterministically outputs a

plaintext m′ ∈M .

In addition, an IND-CPA encryption scheme satisfies the properties of correct-
ness and IND-CPA security, defined below.

The correctness states that decryption is the reverse operation of encryption:
for any (pk, sk) ←R Setup(1κ), for any m ∈ M and any c ←R Enc(pk,m),
Dec(sk, c) = m. The IND-CPA security is defined by considering the following
game between an adversary and a challenger:

– The challenger picks (pk, sk)←R Setup(1κ) and sends pk to the adversary.
– The adversary sends (m0,m1)←R M 2 to the challenger.
– The challenger picks b ←R {0, 1} and sends c ←R Enc(pk,mb) to the chal-

lenger.
– The challenger outputs a guess b′ and wins the game if b′ = b.

An encryption scheme is IND-CPA secure if no polynomial-time adversary can
win the game with non-negligible advantage over the random guess.

Additively Homomorphic Encryption Scheme. An encryption scheme is addi-
tively homomorpic if there is a law � : C 2 7→ C such that for any (m0,m1) ∈
M 2, for any (c0, c1)←R (Enc(pk,m0),Enc(pk,m1)), Dec(sk, c0� c1) = m0+m1.
Note that this trivially implies than one can add a constant value to a ciphertext
(by first encrypting it and then using �); one can also see that via a square-and-
multiply algorithm, given an encryption of some m and an integer λ, one can
compute an encryption of λm. We will denote • this external multiplication.

Randomizable Encryption Scheme. A randomizable encryption scheme is an en-
cryption scheme with an additional algorithm Rand which, on input pk and an
encryption of some plaintext m, outputs a ciphertext taken uniformly at random
in the distribution {Enc(pk,m)} of encryptions of m.

Expendable Plaintext Space. In our protocol, we require the message space to be
of the form ZP , for some integer P = 2poly(κ). In addition the plaintext space
must be expendable, in the sense that one can specify a threshold T when calling
Setup(1κ, T ), so that the message space M = ZP it specifies is of size P ≥ T . For
example, for the Paillier encryption scheme and its variants, this would simply
correspond to taking the modulus bigger than T .



Efficient Secure Comparison Protocols 31

A.2 Batch Equality Test

We let (Setup,Enc,Dec) denote a randomizable additively homomorphic encryp-
tion scheme with expendable plaintext space. Let n be the number of equality
tests to be performed. As there is no possible confusion, we write Enc(m) for
Enc(pk,m).

Inputs: n pairs of `-bit strings (x(i), y(i))i≤n.
Outputs: n bits (bAi )i≤n for Alice, and n bits (bBi )i≤n for Bob, such that for all

i ≤ n, bAi ⊕ bBi = [x(i) ≤ y(i)].
Batch reduction: In this step, Alice and Bob rely on the additively homo-

morphic encryption scheme to compute shares of the Hamming distances
between each x(i), y(i), modulo coprime integers pi.
– Let (p0, · · · pn−1) be the n smallest pairwise coprime numbers such that
p0 > `; letM ←

∏
i pi. Alice calls Setup(1

κ, 2κ+2|M |+2) and gets (pk, sk);
pk implicitely defines a plaintext space ZP of size P ≥ 2κ+2|M |+2. For
j = 0 to ` − 1, let xj ∈ ZM (resp. yj) be the smallest integer satisfying
xj = x(i)[j] mod pi (resp. yj = y(i)[j] mod pi) for every i ≤ n− 1. Alice
sends cj ←R Enc(xj) for j = 0 to `− 1 to Bob.

– For j = 0 to ` − 1, Bob picks rj ←R Z2κ+2M2 , computes and sends
c′j ←R Rand(pk, yj • cj � rj) to Alice, who decrypts all the ciphertexts
to get some values sj .

– For j = 0 to ` − 1, Alice sets σj ← sj modM and Bob sets ρj ←
rj modM . Note that it holds that for all (i, j) ∈ [n− 1]× [`− 1],

2(ρj − σj) + x(i)[j] + y(i)[j] = x(i)[j]⊕ y(i)[j] mod pi

Hence, (−2σj + x(i)[j] mod pi) and (2ρi + y(i)[j] mod pi) form shares of
the bits of x(i) ⊕ y(i) modulo pi.

– Alice computes αi ←
∑`−1
j=0−2σj + x(i)[j] mod pi and Bob computes

βi ←
∑`−1
j=0−2ρj + y(i)[j] mod pi. Note that as pi > ` is greater than

the Hamming distance Hd between x(i) and y(i), it holds that αi + βi =
Hd(x

(i), y(i)), which is 0 if and only if x(i) = y(i). Hence, seeing from now
on αi and βi as integers, the problem was reduced to finding whether
αi = pi − βi, which are strings of size O(log ` log log `).

Reduced Equality Test: Alice and Bob perform n ET with respective input
size |pi|, on respective inputs (αi, pi−βi), to get the n outputs of the protocol.

Note that as for our protocol Section 3, this protocol can be executed on
random inputs in a preprocessing phase; the online phase is then essentially the
same than our previous ET protocol.

Intuition of the Protocol. The protocol exploits the following observation: given
an index j < `, computing shares of (x(i)[j]⊕y(i)[j])i≤n (modulo various coprime
numbers) can be reduced to performing a single multiplication protocol modulo
M =

∏
i pi. This protocol is performed over the integers by using an additively
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homomorphic scheme of sufficiently large plaintext space, the resulting shares
masking statistically the result over the integer. The players then get all the
shares of the (x(i)[j]⊕ y(i)[j])i≤n by reducing there shares modulo M and using
the chinese remainder theorem on there shares. This reduces n equality tests
on `-bit strings to n equality tests on strings of sizes ranging from |p1 + 1| to
|pn + 1|. As this method does not allow to reduce further the size of the inputs,
n OT-based equality tests are then called in parallel on the reduced inputs.

Communication. The batch reduction involves 2` ciphertexts, hence a total of
2`|C | bits. Under the extended Riemann hypothesis, the nth prime number larger
than ` is of size O(log(`+n log n)), hence M = O(n log(`+n log n)). Under this
assumption, the n reduced equality tests transmit O(nκ log(` + n log n)/ log κ)
bits.

Most additively homomorphic that satisfy our requirements have ciphertexts
of size O(k + κ) for k-bit inputs with large enough k; taking this condition in
account, the amortized communication becomes O(` log κ+ κ) bits.

Table 4: Amortized communication of `-bit ET over n executions

Damgard-Jurik based ET ET of Section 3

n = 1000 n = 100

` length rounds length rounds length rounds

Preprocessing Phase
16 3339 bits 4 rounds 3183 bits 4 rounds 2945 bits 4 rounds
32 4199 bits 4 rounds 4568 bits 4 rounds 5212 bits 4 rounds
64 5913 bits 4 rounds 7275 bits 4 rounds 9863 bits 4 rounds
128 9342 bits 4 rounds 12670 bits 4 rounds 20194 bits 4 rounds

Online Phase
16 96 bits 3 rounds 81 bits 3 rounds 54 bits 3 rounds
32 129 bits 3 rounds 115 bits 3 rounds 88 bits 3 rounds
64 193 bits 3 rounds 181 bits 3 rounds 154 bits 3 rounds
128 321 bits 3 rounds 313 bits 3 rounds 300 bits 3 rounds

Concrete Efficiency. We now estimate the concrete efficiency of our protocol,
and compare it to our previous solution. We use the Damgard-Jurik generaliza-
tion [23] of the Paillier encryption scheme, which enjoys better ciphertext over
plaintext size ratio as the size of the plaintext space increases. More precisely,
the Damgard-Jurik cryptosystem for an RSA modulus N is parametrized with
an integer s, so that its plaintext space is ZNs , and its ciphertext space is ZNs+1 .
We consider a 2048-bit RSA modulus, as recommended by the NIST standard,
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and set arbitrarily the number n of parallel ETs to 100 and 1000 respectively.
For the oblivious transfers, we use κ = 128.

For each value of ` in the table, s is taken to be the smallest integer such that
s ·2048 ≥ 2 logPn(`)+129, where Pn(`) is the product of the smallest n pairwise
coprime numbers, starting with ` + 1. Each ciphertext is of size (s + 1) · 2048.
Table 4 indicates the average number of bits transmitted per ET. The actual
value of ` has very little influence on s; in fact, s = 12 is the optimal parameters
for all the values of ` that we consider (hence the ciphertexts are of size 26624
bits). With those parameters, n ET on `-bit strings are reduced to n ET on
strings of bit-size 6 to 13 (as all the pi are different, the reduction gives different
bit-sizes); experimentally, it turns out that this improves over our OT-base ET
for ` > 16.

B Security Proofs

B.1 Ideal Functionalities for Equality Test

Functionality FET

The functionality runs with two parties, Alice and Bob. Upon receiving (ET, x)
from Alice and (ET, y) from Bob, set β ← 1 if x = y, and β ← 0 else. Set
(a, b)←R 〈β〉2. Return a to Alice and b to Bob.

Functionality FET-prep

The functionality runs with two parties, Alice and Bob.

Size Reduction: Upon receiving (SR, `) from both players, the functionality
picks (x, y)←R (Z`2)2 and sets (a, b)←R 〈x⊕ y〉`+1. FET-prep outputs (x,a) to
Alice and (y, b) to Bob.

Product Sharing: Upon receiving (PS, n) from both players, the functionality
picks (x, y) ←R (Z2n−2

2 )2 and sets (a, b) ←R 〈x ∗ y〉2. FET-prep outputs (x, a)
to Alice and (y, b) to Bob.

Fig. 3: Ideal Functionalities for Equality Test and Preprocessing

The ideal functionalities FET,FET-prep are recalled Figure 3. We recall the
protocol ΠET-prep:

Protocol ΠET-prep

Size-Reduction(`): Alice picks (x,a)←R Z`2×Z``+1, and Bob picks y ←R Z`2.
The players call F `,|`+1|

OT , on input (a[i]+x[i] mod `+1,a[i]+1−x[i] mod `+
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1)i≤` for Alice and y for Bob. Let b denote Bob’s output. Alice outputs (x,a)
and Bob outputs (y, b).

Product-Sharing(n): Alice picks (x, a) ←R (Z2n−2
2 )2, and Bob picks y ←R

Z2n−2
2 . The players call F 2n−2,2

OT on input (a[i], a[i] ⊕ x[i])i≤n for Alice and
y for Bob. Let b denote Bob’s output. Alice outputs (x, a) and Bob outputs
(y, b).

B.2 Security Analysis of ΠET-prep

We now prove the following theorem:

Theorem 2 (Repeated from Section 3). The protocol ΠET securely implements
FET when calls to FET-prep in ΠET are replaced by executions of ΠET-prep in the
FOT-hybrid model, with respect to passive corruption.

Let � denote the composition operator; let Π be the protocol such that
Π �FET-prep = ΠET. The natural way of proving Theorem 2 would be to prove
that ΠET-prep UC implements FET-prep in the FOT-hybrid model; as Π �FET-prep
UC implements FET, it would follow from the composition theorem of the UC
framework that Π �ΠET-prep UC implements FET in the FOT-hybrid model.

However, this approach fails here. The reason is that ΠET-prep does in fact not
UC implement FET-prep. To understand the issue, recall that a proof in the UC
framework is done by exhibiting a simulator with access to the functionality (here
FET-prep), so that the view produced by the simulator together with the outputs
of the corrupted parties are indistinguishable from the view and the outputs
in a real execution of the protocol. The simulator extracts the inputs of the
corrupted parties, queries the ideal functionality on those inputs, and somehow
forces the corrupted players to obtain the same outputs. Observe now that in the
protocol ΠET-prep, parts of the outputs of both Alice and Bob are picked by the
player themselves, independently of the behaviour of their opponent. Therefore,
no simulator can possibly ensure that the corrupted player will compute the
same output than what was returned by FET-prep. This is a bit counterintuitive,
as the protocol ΠET-prep clearly does “exactly what FET-prep does” (recall that
the players are semi-honest, hence they honestly follow the specifications of the
protocol). We could solve this by adding some resharing step in ΠET-prep, but this
would noticeably increase the communication of our protocol. Fortunately, this
exact issue was handled in great details in [10]. Therefore, we start by recalling
the results of [10], and use them to complete the proof of Theorem 2.

Input Private Protocols. The authors of [10] extend the universal compos-
ability framework, by defining the notion of input-privacy. Informally, a protocol
is input-private if there is a simulator (with access to the corresponding ideal
functionality) which produces a view indistinguishable from an execution of the
protocol for any environment that completely ignores the output of the protocol.
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We refer to [10, Section 4] for a formal definition. The core result is a composi-
tion theorem, which states that an ordered composition Π� of an input-private
protocol Πip and a UC secure protocol ΠUC is a UC secure protocol (the model
considered is that of static, passive corruption, as in the present paper). The
term “ordered” refers to a restricted class of composition, in which there is a
one-way communication from Πip to ΠUC. An additional requirement is that the
outputs of Π� must all come from ΠUC – in other words, Πip does not output any
value in the composed protocol, but only intermediate random values, perfectly
independent of the outputs. Intuitively, this result is tailored to protocols Πip

that return random shares of some output, as the view of a corrupted player can
be simulated without the output.

Security. The protocol Π � ΠET-prep immediatly satisfies the constraint of or-
dered composition with predicable output specified in [10] (outputs fromΠET-prep
are used in ΠET, but there is no data dependency in the other direction). The
functionality FET-prep can be virtually seen as a functionality that does not pro-
duce outputs, but only stores the result of some computation (this storage being
represented by secret shares in the real protocol). The input-privacy of ΠET-prep
with respect to FET-prep in the FOT-hybrid model is straightforward: it is trivial
to see that the protocol is correct, and no messages are exchanged between the
players during the protocol, which consists entirely in calls made to FOT. There-
fore, the simulator simply runs a local copy of FOT and answers honestly to the
queries of the players. The view of any environment that ignores the output of
the protocol contains only the responses of FOT to the corrupted player, hence
the simulation is trivially perfect.

By the input-privacy of ΠET-prep, and the ordered composition with pre-
dictable output of Π �ΠET-prep, as Π �FET-prep UC implements FET, the theorem
2 from [10, Section 7.2] (which is the composition theorem mentionned above)
shows that Π �ΠET-prep UC implements FET in the FOT-hybrid model.

B.3 Ideal Functionalities for Secure Comparison

We restate Figure 4 the ideal functionalities FSC,FSC-prep,Fcompress given Sec-
tion 4.

B.4 Security Analysis of ΠSC

We recall the protocol ΠSC, parametrized by (`, n):

Protocol ΠSC

Initialize: Both players call FSC-prep on input (PS, n) to get (ρ, a) and (σ, b).
Secure Comparison: On input two `-bit integers, x from Alice and y from

Bob, let i← 1, xi ← x, and yi ← y.



36 Geoffroy Couteau

Functionality FSC

The functionality runs with two parties, Alice and Bob. Upon receiving (SC, x)
from Alice and (SC, y) from Bob, set β ← 1 if x ≤ y, and β ← 0 else. Set
(a, b)←R 〈β〉2. Return a to Alice and b to Bob.

Functionality Fcompress

The functionality runs with two parties, Alice and Bob. Upon receiving
(compress, `, λ, x) from Alice and (compress, `, λ, y) from Bob, where λ < ` and
(x, y) are `-bit long, it picks two uniformly random values (x̂, ŷ) ←R Z2

2λ+1 such
that x̂ ≤ ŷ if and only if x ≤ y. It returns x̂ to Alice and ŷ to Bob.

Functionality FSC-prep

The functionality runs with two parties, Alice and Bob.

Size Reduction: Upon receiving (SR, λ, µ) from both players, the functionality
picks (s0, s1, t0, t1,u0,u1) ←R (Zµµ+1)

2 × (Zµ
2λ+1)

4 and (c, d, e) ←R (Zµ2 )
4.

FSC-prep sets

(s, t,u)←
((

sc[i][i]
)
i≤µ ,

(
td[i][i]

)
i≤µ ,

(
ue[i][i]

)
i≤µ

)
It outputs (e, s0, s1, t0, t1,u) to Alice and (c, d, s, t,u0,u1) to Bob.

Product Sharing: Upon receiving (PS, n) from both players, the functionality
picks (ρ, σ) ←R (Z2n−1

2 )2 and sets (a, b) ←R 〈ρ ∗ σ〉2. FET-prep outputs (ρ, a)
to Alice and (σ, b) to Bob.

Fig. 4: Ideal Functionalities for Secure Comparison and Preprocessing

1. The players agree on two integers λi, µi such that λi ≤ ` and µi is
the smallest integer satisfying λiµi ≥ `. Alice calls Fcompress on input
(compress, `, λi, xi), and Bob on input (compress, `, λi, yi). Let (xi+1, yi+1)
denote their respective outputs. The players set `← λi and i← i+1. If
|`| > n− 1, the players iterate the step 1.

2. Alice sets x′i ← xi−1. Let f : (j, l) 7→ l−1+2j−1. For j = 1 to n−1, let
(Ijl )1≤l≤2j denote the list of subsets of {1, · · · , j} (in any arbitrary fixed
order). For j = 1 to n, for l = 1 to 2j−1, Alice picks α←R {0, 1} and sets
αjl ← ρ[f(j, l)]⊕x′i[j]·

∏
k∈Ij−1

l
(1⊕x′i[k]), and Bob picks β ←R {0, 1} and

sets βjl ← σ[f(j, l)]⊕ (1⊕ yi[j]) ·
∏
k/∈Ij−1

l
yi[k].6 Alice sends (α, (αjl)jl)

and Bob sends (β, (βjl)jl) (this amounts to 2n+1 bits exchanged).
3. Alice outputs ⊕

j≤n
l≤2j−1

ρ[f(j, l)]βjl ⊕ a[f(j, l)]⊕ α⊕ β

6 By convention, an empty product is equal to 1.
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Bob outputs ⊕
j≤n

l≤2j−1

(σ[f(j, l)]⊕ βjl)αjl ⊕ b[f(j, l)]⊕ α⊕ β

We now prove the following theorem:

Theorem 3 (Repeated from Section 4). The protocol ΠSC securely implements
FSC in the (FSC-prep,Fcompress)-hybrid model, with respect to passive corruption.

Let Adv be an adversary that interacts with Alice and Bob, running the
protocol ΠSC. We will construct a simulator Sim which interacts with FSC, so
that no environment Z can distinguish an interaction with Adv in ΠSC from an
interaction with Sim in the ideal world. Sim starts by invoking a copy of Adv.
Each time Sim received from Z an input value, he writes it on Adv’s input tape
as if coming from Z. Each time Adv writes on its output tape, Sim writes the
same thing on his output tape.

One Player is Corrupted. We focus here on the case of a corrupted Bob; as
the protocol is perfectly symmetrical, the simulation is similar for a corrupted
Alice.

Initialize: Sim runs local copies of (Fcompress,FSC-prep). He honestly answers
to the call to the PS command, and stores the output. (This step does not
require the input of Alice)

Secure Comparison:
1. When Sim receives (compress, `, λ1, y1) from Bob, he stores y = y1 and

sends (SC, y) to FSC on behalf of Bob in the ideal world. Sim receives
an output bit T . For each compression round, Sim queries Fcompress with
random inputs of the appropriate size on behalf of Alice.

2. When Sim receives (β, (βjl)jl), he retrieves Bob’s output (σ, b) to the
PS command, and picks uniformly random bits (αjl)j≤n−1,l≤2j−1 . Sim
sets

α←
⊕
j≤n

l≤2j−1

ρ[f(j, l)]βjl ⊕ a[f(j, l)]⊕ T ⊕ β

and sends (α, (αjl)jl) to Bob.

Remaining Cases. When both parties are corrupted, Sim simply runs Adv
internally. When neither party is corrupted, Sim internally runs Alice and Bob
honestly, with inputs (0, 0), and forwards the messages exchanged to Adv.
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Indistinguishability. We focus on the case were Bob is corrupted; the argu-
ment follows symmetrically for a corrupted Alice, and is straightforward when
both players are corrupted, or no player is corrupted. We show that the joint
view of Z and Adv in the real world is indistinguishable from the view of Z and
the simulated Adv in the ideal world. As no messages are exchanged in step 1,
we must only deal with the view produced in step 2. During an execution of
the real protocol, the environment will see (α, (αjl)jl), as well as the outputs
(oA, oB) of the players. In the ideal world, on input (x, y), the outputs of FSC

are random shares of [x ≤ y]. We must therefore first show that this holds in
the real protocol too. Recall that the players are semi-honest: they follow the
specifications of the protocol.

Claim. oA ⊕ oB = [x ≤ y].

Let t be the number of repetitions of step 1. Let x′t ← xt−1. By definition of
Fcompress, [x′t < yt] = [xt ≤ yt] = [x ≤ y]. We now show that oA⊕oB = [x′t < yt].
Replacing (αjl, βjl)jl by the corresponding expression, and using the fact that
ρ[l]σ[l] = a[l]⊕ b[l], we get

oA ⊕ oB =
⊕
j≤n

x′t[j](1⊕ yt[j])

 ⊕
l≤2j−1

∏
k∈Ij−1

l

(1⊕ x′t[k]) ·
∏

k/∈Ij−1
l

yt[k]


The term between the parenthesis is simply the product

∏
k≤j−1(1⊕ xt[k]⊕

yt[t]) developed. This product evaluates to 1 if and only if it hold for each
k ≤ j−1 that xt[k] = yt[k] (which is equivalent to 1⊕xt[k]⊕yt[k] = 1). Observe
now that [x′t < yt] can be computed recursively using the following formula:

[x′t < yt] = [x′t[1] < yt[1]]⊕ [x′t[1] = yt[1]] · [x′t[2] · · ·x′t[n] < yt[2] · · · yt[n]]

As for any j ≤ n, [x′t[j] < yt[j]] = (1 ⊕ x′t[j])yt[j] and [x′t[j] = yt[j]] =
1⊕ x′t[j]⊕ yt[j], recursively applying the above formula gives

[x′t < yt] =
⊕
j≤n

x′t[j](1⊕ yt[j])

(
j−1∏
k=1

(1⊕ x′t[k]⊕ yt[k])

)

Which concludes the proof of the claim. Moreover, each value αjl sent during
the protocol is perfectly masked by ρ[f(j, l)], hence all the αjl are perfectly
indistinguishable from uniformly random values, and all the simulated αjl are
uniformly random bits. α is random in the real protocol, and is masked by the
output T of FSC in the simulated protocol, which is a uniformly random bit
by definition of FSC. It is straightforward to see that the semi-honest Bob will
indeed obtain the bit T as output in the simulated protocol. Therefore, the joint
view of Z and Adv in the real protocol is perfectly indistinguishable from their
joint view in the simulated protocol.
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B.5 Security Analysis of Πcompress

We recall the protocol Πcompress:

Protocol Πcompress

Let (`, λ) be two integers such that λ ≤ `. Let µ be the smallest integer such
that λµ ≥ `. On input x from Alice and y from Bob, both of size `-bit,

Initialize: The players call FSC-prep on input (SR, λ, µ) to get outputs (e, s0, s1,
t0, t1,u) for Alice and (c, d, s, t,u0,u1) for Bob.

Compression: Let (xj)j≤µ ∈ Z2λ (resp. (yj)j≤µ ∈ Z2λ) be the decomposition
of x (resp. y) into µ blocs of size λ (i.e., x =

∑µ
j=1 xj2

λ(j−1) and y =∑µ
j=1 yj2

λ(j−1)). The players perform the following operations:
1. For j = 1 to µ, the players call FET on inputs (ET, xj) and (ET, yj). Let

(αj , βj)j≤µ ∈ Z2µ
2 denote their respective outputs.

2. Alice picks r ←R Zµµ+1. For j = 1 to µ, Bob sends βj ⊕ c[j] to Alice.
If this is 0, Alice sends (s0[j] + αj + r[j] mod µ + 1, s1[j] + 1 − αj +
r[j] mod µ+ 1); else, she sends this pair in permuted order. This allows
Bob to recover r[j]+(αj⊕βj) mod µ+1. For j = 1 to µ, Alice sets x′j ←∑j
k=1 r[k] mod µ+1 and Bob sets y′j ←

∑j
k=1 r[k]+(αk⊕βk) mod µ+1.

Observe that (x′j , y′j) ∈ Z2
µ+1.

3. For j = 1 to µ, the players call FET on inputs (ET, x′j) and (ET, y′j). Let
(α′j , β

′
j)j≤µ ∈ Z2µ

2 denote their respective outputs and (α′0, β
′
0)← (0, 0).

For j = 1 to µi, Alice sets γj ← αj−1⊕αj and bob sets δj ← βj−1⊕ βj .
The following steps 4 and 5 are executed in parrallel:

4. Alice picks rA ←R Zµ
2λ+1 . For j = 1 to µ, Bob sends δj ⊕d[j] to Alice. If

this is 0, Alice sends (t0[j] + γjxj + rA[j] mod 2λ+1, t1[j] + (1− γj)xj +
rA[j] mod 2λ+1); else, she sends this pair in permuted order. This allows
Bob to recover rA[j] + (γj ⊕ δj)xj mod 2λ+1.

5. Bob picks rB ←R Zµ
2λ+1 . For j = 1 to µ, Alice sends γj ⊕ e[j] to Bob. If

this is 0, Bob sends (u0[j] + δjyj + rB[j] mod 2λ+1,u1[j] + (1− δj)yj +
rB[j] mod 2λ+1); else, he sends this pair in permuted order. This allows
Alice to recover rB[j] + (γj ⊕ δj)yj mod 2λ+1.

Output: Alice outputs x̂ ← 2λ +
∑µ
j=1 rA[j] + rB[j] + (γj ⊕ δj)yj mod 2λ+1

and Bob outputs ŷ ←
∑µ
j=1 rB[j] + rA[j] + (γj ⊕ δj)xj mod 2λ+1.

We now prove the following theorem:

Theorem 4 (Repeated from Section 4). The protocol Πcompress securely im-
plements Fcompress in the (FET,FSC-prep)-hybrid model, with respect to passive
corruption of at most one of the players.

We first look at the correctness; the simulation will then be rather straightfor-
ward. The general idea of the protocol is that to compare two strings, it suffices



40 Geoffroy Couteau

to divide these strings in blocs, and to compare the first block on which they
differ. The purpose of the compression step is for the players to obliviously select
this block. The inputs (x, y) are first divided into µ blocks of size λ. At the end
of step 1, the players obtain shares (αj , βj) (over Z2) of all the bits [xj = yj ].

During step 2, the players compute values (x′j , y
′
j) whose difference modulo

µ+1 is
∑j
k=1[xk = yk]. This requires to use some preprocessed material. Let j∗

be the first block on which x differs from y. Observe that
∑j
k=1[xk = yk] = 0

for j < j∗, and
∑j
k=1[xk = yk] > 0 afterward.

The players perform in step 3 equality tests on the values (x′j , y′j). Therefore,
they obtain shares of the bits [x′i − y′j = 0]. Observe that these bits are 1 for
j ≤ j∗, and 0 afterward. From these shares, the players can locally compute
shares (γj , δj) of bits which are 0 for every j 6= j∗, and 1 for j = j∗ (If x = y,
the shares (γj , δj) will be shares of 0 for every j).

In step 4 and 5, using preprocessed material again, the players can compute
shares of

∑µ
j=1(γj ⊕ δj)xj = xj∗ (denoted (xAj∗ , x

B
j∗)) and

∑µ
j=1(γj ⊕ δj)yj = yj∗

(denoted (yAj∗ , y
B
j∗)). We know that [x ≤ y] = [xj∗ ≤ yj∗ ], but (xj∗ , yj∗) are not

privately known to each player: they are secretly shared between the players.
However, note that the shares of the values are computed modulo 2λ+1, and it
necessarily holds that xj∗ ≤ 2λ (resp. yj∗ ≤ 2λ). Therefore, we can easily show
that

[xj∗ ≤ yj∗ ] = [(2λ + xAj∗ − yAj∗ mod 2λ+1) ≤ (xBj∗ − yBj∗ mod 2λ+1)]

The terms of the right-hand term can be locally computed by Alice and
Bob from their shares, and correspond to the values x̂, ŷ in the description of
Πcompress. If x = y, the “shares of (xj∗ , yj∗)” computed by the players are instead
shares of 0; as 0 ≤ 2λ and [0 ≤ 0] = [x ≤ y] = 1, the correctness is maintained.
We therefore have [x ≤ y] = [x̂ ≤ ŷ], where (x̂, ŷ) are λ+1 bit long. Note that as
(x̂, ŷ) have been locally computed as modular sums of uniformly random shares
of (xj∗ , yj∗), they are uniformly random from the viewpoint of each player.

With the correctness argument in mind, the simulation is straightforward (as
before, we focus on the case of a corrupted Bob): the simulator Sim runs local
copies of FET and FSC-prep and perform honestly the initialization phase, storing
the outputs. In step 1, Sim extracts Bob’s input y from his calls to ET, and
sends (compress, `, λ, y) to Fcompress on behalf of Bob in the ideal world. Sim
gets an output ŷ′. In steps 1 - 3, Sim makes random calls to the ET command
and sends random values of the appropriate size on behalf of Alice.

Sim broadcasts µ random bits γ′j in step 5 and waits to receive the tuple
sent by Bob in step 5 together with the values d′j = δj⊕d[j] sent in step 4 (steps
4 and 5 are executed simultaneously). Using the value stored in the initialization
phase, Sim extracts (δ1, · · · , δµ, rB). Sim picks (Rj)j≤µ ←R Z2λ+1 subject
to
∑
j Rj = ŷ′ mod 2λ+1. For j = 1 to µ, if δj = 0, Sim sends (td[j][j] −

rB[j] + Rj mod 2λ+1, t1⊕d[j]) (note that td[j] is known to Bob, while t1⊕d[j]

is a perfectly random element of Z2λ+1 from his point a view). If δj = 1, Sim
sends this pair in permuted order.
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It is easy to see that the semi-honest Bob will then obtain ŷ′ as output. In
the simulated protocol as well as in the real protocol, all the values exchanged
are perfectly indistinguishable from uniformly random values. Moreover, in both
the ideal world and the real protocol, the outputs obtained are random values
(oA, oB) satisfying [oA ≤ oB ] = [x ≤ y]. Therefore, the real execution is perfectly
indistinguishable from a simulated execution in the ideal world.

B.6 Security Analysis of ΠSC-prep (Sketch)

We will not detail a security argument for ΠET-prep; it suffices to observe that the
security argument is essentially identical to the security argument for ΠET-prep,
as ΠSC-prep and ΠET-prep are very similar, and ΠSC has essentially the same struc-
ture than ΠET. For completeness we recall the protocol ΠSC-prep:

Protocol ΠSC-prep

Size-Reduction(`): The players perform the following operations:
1. The players call Fµ,µ+1

ROT , with Alice acting as sender and Bob as receiver.
Let (s0, s1) denote Alice’s output, and let e ∈ Zµ+1

2 and s←
(
se[i][i]

)
i≤µ

denote Bob’s output.
2. The players call Fµ,2λ+1

ROT , with Alice acting as sender and Bob as receiver.
Let (t0, t1) denote Alice’s output, and let d ∈ Z2λ+1

2 and t←
(
td[i][i]

)
i≤µ

denote Bob’s output.
3. The players call Fµ,2λ+1

ROT , with Alice acting as receiver and Bob as
sender. Let (u0,u1) denote Bob’s output, and let e ∈ Z2λ+1

2 and u ←(
ue[i][i]

)
i≤µ denote Alice’s output.

Product-Sharing(n): Alice picks (x, a) ←R (Z2n−2
2 )2, and Bob picks y ←R

Z2n−1
2 . The players call F 2n−2,1

OT on input (a[i], a[i] ⊕ x[i])i≤n for Alice and
y for Bob. Let b denote Bob’s output. Alice outputs (x, a) and Bob outputs
(y, b).

The following theorem can be proven as Theorem 2:

Theorem 5 (Repeated from Section 4). The protocol ΠSC securely implements
FSC when calls to FSC-prep in ΠSC are replaced by executions of ΠSC-prep in the
(FROT,FOT)-hybrid model, with respect to passive corruption.
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