
New Protocols for Secure Equality Test and Comparison

Geoffroy Couteau

KIT, Karlsruhe, Germany

Abstract. Protocols for securely comparing private values are among the most fundamental
building blocks of multiparty computation. introduced by Yao under the name millionaire’s
problem, they have found numerous applications in a variety of privacy-preserving protocols;
however, due to their inherent non-arithmetic structure, existing construction often remain
an important bottleneck in large-scale secure protocols.
In this work, we introduce new protocols for securely computing the greater-than and the
equality predicate between two parties. Our protocols rely solely on the existence of oblivious
transfer, and are UC-secure against passive adversaries. Furthermore, our protocols are well
suited for use in large-scale secure computation protocols, where secure comparisons (SC)
and equality tests (ET) are commonly used as basic routines: they perform particularly well
in an amortized setting, and can be preprocessed efficiently (they enjoy an extremely efficient,
information-theoretic online phase). We perform a detailed comparison of our protocols to
the state of the art, showing that they improve over the most practical existing solutions
regarding both communication and computation, while matching the asymptotic efficiency
of the best theoretical constructions.

Keywords. Two-party computation, Equality test, Secure comparison, Oblivious transfer.

1 Introduction

Multiparty Computation (MPC) addresses the challenge of performing computation over
sensitive data without compromising its privacy. In the past decades, several general-
purpose solutions to this problem have been designed, starting with the seminal works
of Yao [Yao86] and Golwasser, Micali, and Widgerson [GMW87]. Among the large variety
of problems related to MPC that have been considered, the secure comparison problem,
in which the players wish to find out whether x ≥ y for given x, y without disclosing
them, is probably the one that received the most attention. Indeed, in addition to being
the first MPC problem ever considered (introduced in [Yao86] under the name of million-
aire’s problem), it has proven to be a fundamental primitive in a considerable number
of important applications of multiparty computation. Examples include auctions, signal
processing, database queries, machine learning and statistical analysis, biometric authen-
tication, combinatorial problems, or computation on rational numbers. Secure comparison
is at the heart of any task involving sorting data, finding a minimum value, solving any
optimization problem, or even in tasks as basic as evaluating the predicate of a while loop,
among countless other examples. The related task of secure equality test, known as the
socialist millionaires’ problem, in which the players wish to find out whether x = y for
given x, y without disclosing them, enjoys comparably many applications.

Two-party and multiparty computation seem now at the edge of becoming practical,
with increasing evidence that they are no more beyond the reach of the computational
power of today’s computers. However, secure equality tests and comparisons appear to be
a major bottleneck in secure algorithms that use them as a basic routines. Various imple-
mentations of secure algorithms unanimously lead to the conclusion that secure comparison
is the most computationally involved primitive, being up to two orders of magnitude slower
than, e.g., secure multiplication. Hence, we believe that designing improved protocols for
these tasks is an important road toward making multiparty computation truly practical.

In this work, we consider secure equality test and comparison on inputs secretely shared
between the parties, with output shared between the parties as well. This is the natural set-
ting of large-scale computation, where inputs and outputs cannot always be disclosed to the
parties. Our new two-party protocols compare very favorably to state-of-the-art solutions.
In particular, our protocols are well suited for large scale secure computation protocols
using secure comparison as a basic routine. Our protocols are secure in the universal com-
posability framework of Canetti [Can01], which ensures that security is preserved under
general composition. As this is the model used in most practical applications, we focus on
the passive adversarial model, in which players are assumed to follow the specifications
of the protocol. We leave as open the interesting question of extending our protocols to
handle malicious adversaries, while preserving (as much as possible) their efficiency.

1.1 State of the Art for Secure Equality Test and Comparison

To avoid unnecessary details in the presentation, we assume some basic knowledge on
classical cryptographic primitives, such as garbled circuits, oblivious transfers and cryp-
tosystems. Preliminaries on oblivious transfers are given in Section 2 of the supplementary
material. In the following, we let ` denote an input length, and κ denote a security param-
eter. As secure protocols for equality tests and comparisons were commonly built together
in the literature, the state of the art for both remains essentially the same, hence we unify
the presentation.

– From Garbled Circuits. The first category regroups protocols following the garbled
circuit approach of Yao [Yao86]. The protocols of [KS08], which were later improved
in [KSS09] and [ZRE15], are amongst the most communication-efficient protocols for
secure equality test or comparison. The protocols of [KSS09] proceed by letting the
first player garble a circuit containing ` comparison gates (resp. ` − 1 equality test
gates), which amounts to ` AND gates with the free-xor trick (resp. `−1 AND gates).
In a setting where several instances of the protocols will be invoked, oblivious transfer
extensions [IKNP03] can be used for an arbitrary number of executions, using a con-
stant number of public key operations and only cheap symmetric operations for each
invocation of the secure protocol, making them very efficient.

– From Homomorphic Encryption. Solutions to the millionaire problem from homomorphic-
encryption originated in [BK04]. The most efficient method in this category, to our
knowledge, is [DGK07], which uses an ad hoc cryptosystem. This protocol was cor-
rected in [DGK09], and improved in [Veu12]. The protocol communicates 4` ciphertexts
(in the version that outputs shares of the result) and is often regarded as one of the
most computationally efficient. The more recent construction of [GHJR15] relies on
the flexibility of lattice based cryptosystems to design a secure comparison protocol.
Using a degree-8 somewhat homomorphic encryption scheme and ciphertext packing
techniques, the (amortized) bit complexity of their protocol is Õ(` + κ). Although
asymptotically efficient, this method is expected to remain less efficient than alterna-
tive methods using simpler primitives for any realistic parameters.

– From the Arithmetic Black Box Model. The third category consists of protocols built
on top of an arithmetic black box [CDN01] (ABB), which is an ideal reactive function-
ality for performing securely basic operations (such as additions and multiplications)
over secret values loaded in the ABB. The ABB itself can be implemented from various
primitives, such as oblivious transfer [Rab81,EGL82] or additively homomorphic en-
cryption (most articles advocate the Paillier scheme [Pai99]). Protocols in this category
vary greatly in structure. Most protocols [DFK+06,NO07,Cd10a] involve Õ(`) private

2

multiplications, each typically requiring O(1) operations over a field of size O(`+ κ),
resulting in an overall Õ(`(` + κ)) bit complexity. The protocols of Toft [Tof11], and
Toft and Lipmaa [LT13], use only a sublinear (in `) number of invocations to the
cryptographic primitive; however, the total bit complexity remains superlinear in `.
For large values of ` (κ2/` = o(1)), the protocol of [YY12] enjoys an optimal O(`)
communication complexity; however, the constants involved are quite large: it reduces
to 84λ + 96 bit oblivious transfer and 6 `-bit secure multiplications for a 1/2λ error
probability, and becomes competitive with e.g. [KSS09] only for inputs of at least 500
bits (assuming a 1/240 error probability).

– From Generic Two-Party Computation. Generic two-party computation (2PC) tech-
niques can be used to securely compute functions represented as boolean circuits. An
elegant logarithmic-depth boolean circuit, computing simultaneously the greater-than
and the equality predicates, was suggested in [GSV07]. It uses a natural recursive for-
mula, and has 3`−log `−2 AND gates. This circuit can be evaluated using 6`−2 log `−4
oblivious transfers on bits, which can be precomputed and amortized using oblivious
transfer extensions. In the amortized setting, we found this approach to be (by far)
the most efficient in terms of communication and computation; however, it is more in-
teractive than the garbled circuit approach, which still enjoy efficient communication
and computation.

In this paper, we will compare our protocols to the two most efficient alternatives in
the amortized setting, namely, the garbled circuit approach, and the generic 2PC approach
(which is more interactive, but has lower communication and computation). For fairness
of the comparison, we will apply all optimizations that we apply to our protocols to these
alternatives, when it is relevant.

1.2 Our Contribution

In this work, we construct new protocols for secure equality tests and comparisons which
improve over the best state-of-the-art protocols. Our protocols are secure in the universal
composability framework, assuming only an oblivious transfer. Using oblivious transfer
extensions allows to confine all public-key operations to a one-time setup phase. The online
phase of our protocols enjoys information theoretic security, and is optimal regarding both
communication and computation: O(`) bits are communicated, and O(`) binary operations
are performed, with small constants. Regarding overall complexity, our protocols match
the best existing constructions in terms of asymptotic efficiency (and have in particular
an optimal O(`) complexity for large values of `, see Table 1), and outperform the most
efficients for practical parameters, by 70% to 80% for equality test, and by 20% to 40% for
secure comparison. Our protocols have non-constant round complexity: O(log∗ κ) rounds
for equality test (2 to 4 online rounds in practice), and O(log log `) rounds for comparison
(2 to 10 online rounds). Our secure comparison protocol relies on a new technique to (non-
interactively) reduce comparison of values shared between the players to comparison of
values held by each players, which might be of independent interest.

Our paper contains additional side contributions, including a new simple method which
reduces by 25% the communication of the Naor-Pinkas oblivious transfer protocol [NP01]
when the size of the transmitted strings is lower than κ/2, and a variant of our equality
test protocol in a batch settings (where many equality tests are performed “by blocks”),
which uses additively homomorphic encryption to further improve the communication of
our equality test protocol by up to 50%.

3

1.3 Universal Composability

We prove the security of our protocols in the universal composability framework (UC), and
assume that the reader has some familiarity with it. The UC framework has been introduced
by Canetti in [Can01]. It defines protocols by the mean of systems of interactive Turing
machines. The expected behavior of the protocol is captured by an ideal functionality F .
This functionality is a simple interactive machine, connected to a set of dummy parties,
some of whom might be corrupted by an ideal adversary Sim through perfectly secure
authenticated channels. In the real execution of a protocol π, probabilistic polynomial time
players, some of whom might be corrupted by a real adversary Adv, interact with each other
through some channels. The environment refers to an interactive machine Z that oversees
the execution of the protocol in one of the two worlds (the ideal world with the functionality
F , or the real world with the protocol π). We refer to [Can01], for the definitions of the
real world ensembles EXECπ,Adv,Z and the ideal world ensemble EXECF,Sim,Z . A protocol
UC securely implements a functionality F if for any adversary Adv, there is a simulator
Sim so that the real world ensemble and the ideal world ensemble are indistinguishable
for any environment Z.

1.4 Our Method

The high level intuition of our approach is an observation that was already made in previous
works [Tof11,LT13]: to compare two strings, it suffices to divide them in equal length blocks,
and compare the first block on which they differ. Therefore, a protocol for (obliviously)
finding this block can be used to reduce the secure comparison problem on large strings
to the secure comparison problem on smaller strings. One can then recursively apply this
size-reduction protocol, until the strings to be compared are small enough, and compute
the final result using a second protocol tailored to secure comparison on small strings.
However, this intuition was typically implemented in previous work using heavy public-key
primitives, such as homomorphic encryption. In this work, we show how this strategy can
be implemented using exclusively oblivious transfers on small strings.

To implement the size-reduction protocol, we rely on a protocol to obliviously determine
whether two strings are equal. Therefore, a first step toward realizing a secure comparison
protocol is to design a protocol for testing equality between two strings, which outputs
shares (modulo 2) of a bit which is 1 if and only if the strings are equal. Keeping this
approach in mind, we start by designing an equality test protocol which is based solely
on oblivious transfer. Recall that in an oblivious transfer protocol, one party (the sender)
inputs a pair (s0, s1), while the other party (the receiver) inputs a bit b; the receiver receives
sb as output and learns nothing about s1−b, while the sender learns nothing about b. Our
protocol relies on a classical observation: two strings are equal if and only if their Hamming
distance is zero. More specifically, our protocols proceed as follows:

Equality Test. Consider two inputs (x, y), of length `. We denote (xi, yi)i≤` their bits.
The parties execute ` parallel oblivious transfers over Z`+1, where the first player input
pairs (ai + xi mod `+ 1, ai + 1− xi mod `+ 1) (ai is a random mask over Z`+1), and the
second party input his secret bits yi; let bi be his output (bi = ai+xi⊕yi mod `+1, where
⊕ is the exclusive or). Observe that x′ ←

∑
i ai mod ` + 1 and y′ ←

∑
i bi mod ` + 1 are

equal if and only if the Hamming distance between x and y is 0, if and only if x = y. Note
that (x′, y′) are of length log(`+ 1).

The players repeatedly invoke the above method, starting from (x′, y′), to shrink the
input size while preserving equality, until they end up with string of length at most (say)

4

3 bits (it takes about O(log∗ `) invocations of the protocol, where the first invocation
dominates the communication cost). The players then perform a straightforward equality
test on these small strings, using oblivious transfers to evaluate an explicit exponential-size
formula for equality checking on the small entries.

The core feature of this compression method is that it can be almost entirely prepro-
cessed: by executing the compression protocol on random inputs (r, s) in a preprocessing
phase (and storing the masks generated), the players can reconstruct the output of the
protocol on input (x, y) simply by exchanging x⊕ r and s⊕ y in the online phase. There-
fore, the communication of the entire equality test protocol can be made as low as a few
dozens to a few hundreds of bits in the online phase. Furthermore, in the preprocessing
phase, the protocol involves only oblivious transfers on very small entries (each entry has
size at most log ` bits), for which particularly efficient constructions exist [KK13].

Secure Comparison. We now describe our solution to the secure comparison problem.
This protocol has a structure somewhat comparable to the previous one, but is more
involved. The parties break their inputs (x, y) in

√
` blocks of length

√
` each. In the first

part of the protocol, the parties will construct
√
` shares of bits, which are all equal to 0

except for the ith bit, where i is the index of the first block on which x differs from y.
This step relies on parallel invocations to the equality test functionality, and on oblivious
transfers. Then, using these bit-shares and oblivious transfers, the players compute shares
of the first block on which x differs from y.

At this point, we cannot directly repeat the above method recursively, as this method
takes inputs known to the parties, while the output values are only shared between the
parties. However, under a condition on the size of the group on which the shares are
computed, we prove a lemma which shows that the parties can non-interactively reduce
the problem of securely comparing shared value to the problem of securely comparing
known values, using only local computations on their shares. From that point, the parties
can apply the compression protocol again (for O(log log `) rounds), until they obtain very
small values, and use (similarly as before) a straightforward protocol based on an explicit
exponential-size formula for comparison. Alternatively, to reduce the interactivity, the com-
pression protocol can be executed a fixed (constant) number of times, before applying, e.g.,
a garbled-circuit-based protocol or a generic 2PC protocol on the reduced-size inputs.

This protocol involves O(
√
`) equality tests and oblivious transfers on small strings,

both of which can be efficiently preprocessed. This leads to a secure comparison protocol
that communicates about a thousand bits in the online phase, for 64-bit inputs.

1.5 Comparison with Existing Works

For Secure Comparisons. We provide Table 1 a detailed comparison between the state
of the art, our logarithmic-round protocol SC1, and its constant-round variants SC2 and
SC3. We evaluate efficiency in an amortized setting and ignore one-time setup costs. We
considered two methods based on garbled circuit, the protocol of [KSS09] and the same
protocol enhanced with the method of [AIKW13] to optimize the online communication.
We also considered the solution based on the DGK cryptosystem [DGK07,DGK09,Veu12],
the protocol of [LT13], the probabilistically correct protocol of [YY12], and generic 2PC
applied to the protocol of [GSV07]. Note that [LT13, YY12] are described with respect
to an arithmetic black box, hence their cost depends on how the ABB is implemented.
For [LT13], which requires an ABB over large order fields, we considered a Paillier based
instantiation, as advocated by the authors. For [YY12], which involves (mainly) an ABB

5

over F2, we considered the same optimizations than in our protocols, implementing the
ABB with oblivious transfers on bits.

As illustrated in Table 1, our protocols improve over existing protocols (asymptotically)
regarding both communication and computation. This comes at the cost of a non-constant
O(log log `) interactivity (or O(c · log∗ κ) in the constant-round setting). In particular, for
large values of ` (and for any value of ` in the online phase), our protocols enjoy an optimal
O(`) communication and computation complexity. The hidden constants are small, making
our protocols more efficient than the state of the art for any practical parameter. For values
of ` between 4 and 128, the protocols of [KSS09, GSV07] (which enjoy tiny constants)
outperforms all other existing protocols regarding communication and computation. We
therefore focus on these protocols as a basis for comparison with our protocols in our
concrete efficiency estimations.

Equality Tests. The state of the art given Table 1 remains essentially the same for
equality tests. Indeed, all the papers listed in the table (at the exception of [DGK07],
but including the present paper) do also construct equality tests protocols, with the same
(asymptotic) complexity and from the same assumptions. The only difference in asymptotic
complexity between our equality test protocol and the protocol SC1 is with respect to the
round complexity: while SC1 has O(log log `) rounds, our equality test protocol has an
almost-constant number of rounds O(log∗ κ). Note that we consider only equality tests
whose output is shared between the players (as this is necessary for our secure comparison
protocol); if the players get to learn the output in the clear (this is known as the socialist
millionaires problem), more efficient solutions exist, but there is no simple way of designing
equality tests with shared outputs from these solutions.

1.6 Applications

Equality test protocols enjoy many applications as building blocks in various multiparty
computation protocols. Examples include, but are not limited to, protocols for switch-
ing between encryption schemes [CPP16], secure linear algebra [CKP07], secure pattern
matching [HT14], and secure evaluation of linear programs [Tof09]. Secure comparisons
have found a tremendous number of applications in cryptography; we provide thereafter a
non-exhaustive list of applications for which our protocols lead to increased efficiency. We
note that in applications for which implementations have been described, the communica-
tion of secure comparisons was generally pointed out as the main efficiency bottleneck.

– Obliviously sorting data [Goo10,Goo14] has proven useful in contexts such as private
auctions [NIIO14], oblivious RAM [Gol87], or private set intersection [HEK12], but
it remains to date quite slow (in [HICT14], sorting over a million 32-bit words takes
between 5 and 20 minutes). All existing methods crucially rely on secure comparisons
and require at least O(m logm) secure comparisons in O(logm) rounds to sort lists of
size m.

– Biometric authentication, while solving issues related to the use of passwords, raises
concerns regarding the privacy of individuals, and received a lot of attention from the
cryptographic community. Protocols for tasks such as secure face recognition [SSW10]
require finding the minimum value in a database, which reduces to O(m) secure com-
parisons in O(logm) rounds.

– Secure protocols for machine learning employ secure comparisons as a basic routine for
tasks such as classification [BPTG14], generating private recommendations [EVTL12],
spam classification [WFNL15], multimedia analysis [CC15], clinical decisions [RPV+14],
evaluation of disease risk [ARL+13], or image feature extraction [LLY+16].

6

Table 1: Amortized Costs of State of The Art Secure Comparison
Protocol [KSS09] [DGK07,DGK09,Veu12]1 [LT13]1 [KSS09]+ [AIKW13]1 [YY12]

Preprocessing Phase

Communication O(κ`) – O(nκ log `) O(n`) O(κ2

log κ
+ `)

Computation O(κ`) O(`(κ+ `) · Cn) O(nκ log ` · Cn) O(n` · Cn) O(κ2

log κ
+ `)

Rounds 1 – O(1) 1 O(1)

Assumption OT – ABB RSA ABB

Online Phase

Communication O(κ`) O(n`) O(n log `) O(`+ n) O(κ+ `)

Computation O(κ`) O(` log ` · Cn) O(n log ` · Cn) O(κ`+ n · Cn) O(κ+ `)

Rounds 2 2 O(log `) 2 O(log κ)

Assumption OWF DGK ABB RSA None

Protocol [GSV07] SC1 SC2,SC3 (c is some fixed constant)

Preprocessing Phase

Communication O(κ`
log κ

) O(κ`
log κ

) if ` = o(κ2) O(κ`
log κ

) if `1−1/c = o(κ2)

O(`) else O(`) else
Computation O(κ`

log κ
) O(κ`

log κ
) if ` = o(κ2) O(κ`

log κ
) if `1−1/c = o(κ2)

O(`) else O(`) else
Rounds O(log `) O(log log `) O(c log∗ κ)

Assumption OT OT OT

Online Phase

Communication O(`) O(`) O(`)

Computation O(`) O(`) O(`)

Rounds O(log `) O(log log `) O(c log∗ κ)

Assumption none none OWF (SC2) or none (SC3)
1 n > `+ κ is the length of an RSA modulus. Cn denotes the cost of a modular multiplication modulo n. Note
that [AIKW13] can also be instantiated from the DDH or the LWE assumption.

– Secure algorithms for combinatorial problems, such as finding the flow of maximum
capacity in a weighted graph, or searching for the shortest path between two nodes,
have been investigated in several works, e.g. [Lau15], and have applications in proto-
cols such as private fingerprint matching [BS15], privacy-preserving GPS guidance, or
privacy-preserving determination of topological features in social networks [ACM+13].
They typically involve a very large number of secure comparisons (e.g. n2 comparisons
for Dijkstra’s shortest path algorithm on an n-node graph [ACM+13]).

– Other applications that heavily rely on comparisons include computing on non inte-
ger values [ABZS13], various types of secure auctions [DGK07], range queries over
encrypted databases [SJB14], or algorithms for optimization problems [Tof09,Cd10b].

1.7 Organization

Section 2 recalls definitions and classical results on oblivious transfers, as well as on obliv-
ious transfer extensions. Section 3 introduces our new equality test protocol. Section 4
focuses on the construction of secure comparison protocols; it builds upon our protocol for
equality test, but requires additional care and some new ideas. Eventually, Appendix A
described a variant of our equality test protocol with further improves its communication
by a factor two in a batch setting, at the cost of using public-key operations.

7

1.8 Notations

Given a finite set S, the notation x←R S means that x is picked uniformly at random from
S. For an integer n, Zn denotes the set of integers modulo n. Throughout this paper, + will
always denote addition over the integers, and not modular additions. We use bold letters
to denote vectors. For a vector x, we denote by x[i] its i’th coordinate; we identify k-bit-
strings to vectors of Zk2 (but do not use bold notations for them). We denote by x ∗ y the
Hadamard product (x[i] · y[i])i between x and y. Let ⊕ denote the xor operation (when
applied on bit-strings, it denotes the bitwise xor). For integers (x, y), [x = y], [x < y],
and [x ≤ y] denote a bit which is 1 if the equality/inequality holds, and 0 otherwise.
The notation (x mod k), between parenthesis, indicates that x mod t is seen as an integer
between 0 and t−1, not as an element of Zt. For an integer k, let 〈·〉k denote the randomized
function that, on input x, returns two uniformly random shares of x over Zk (i.e., a random
pair (a, b) ∈ Zk such that a+b = x mod k). We extend this notation to vectors in a natural
way: for an integer vector x, (a, b)←R 〈x〉k denote the two vectors obtained by applying
〈·〉k to the coordinates of x. Finally, for an integer x, we denote by |x| the bit-size of x.

2 Oblivious Transfer

Oblivious transfers (OT) were introduced in [Rab81]. An oblivious transfer is a two-party
protocol between a sender and a receiver, where the sender obliviously transfers one of two
string to the receiver, according to the selection bit of the latter. The ideal functionality
for k oblivious transfers on l-bit strings is specified as follows:

F k,l
OT : ((s0, s1) , x) 7→

(
⊥,
(
sx[i][i]

)
i≤k

)
where (s0, s1) ∈ (Fl2)k × (Fl2)k is the input of the sender, and x ∈ Fk2 is the input of the
receiver. In a random oblivious transfer (ROT), the input of the sender is picked at random:

F k,l
ROT : (⊥, x) 7→

(
(s0, s1) ,

(
sx[i][i]

)
i≤k

)
The primitive can be extended naturally to k-out-of-n oblivious transfers; we let

(
n
k

)
-OTt`

denote t invocations of a k-out-of-n OT on strings of length `. Oblivious transfer is a
fundamental primitive in MPC as it implies general multiparty computation [Kil88] and
can be made very efficient.

2.1 Oblivious Transfer Extension

Although oblivious transfer requires public-key cryptographic primitives, which can be
expensive, oblivious transfer extension allows to execute an arbitrary number of oblivious
transfers, using only cheap, symmetric operations, and a small number of base OTs. OT
extensions were introduced in [Bea96]. The first truly practical OT extension protocol was
introduced in [IKNP03], assuming the random oracle model.1 We briefly recall the intuition
of the OT extension protocol of [IKNP03]. A

(
2
1

)
-OTκt can be directly obtained from a(

2
1

)
-OTκκ: the sender associates two κ-bit keys to each pair of messages and obliviously

transfer one key of each pair to the receiver. Then, the receiver stretches two t-bit strings
from the two keys of each pair, using a pseudo-random generator, and sends the xor of
each of these strings and the corresponding message to the receiver. The

(
2
1

)
-OTt` itself can

1 The random oracle model can be avoided by assuming that the hash function is a correlation-robust
function, see [KK13], Appendix A.2.

8

be implemented with a single call to a
(
2
1

)
-OTκt functionality, in which the receiver plays

the role of the sender (and reciprocally). The total communication of the reduction from(
2
1

)
-OTt` to

(
2
1

)
-OTκκ is 2t` + 2tκ bits. Regarding the computational complexity, once the

base OTs have been performed, each OT essentially consists in three evaluations of a hash
function. An optimization to the protocol of [IKNP03] was proposed in [ALSZ13] (and
discovered independently in [KK13]). It reduces the communication of the OT extension
protocol from 2t`+2tκ bits to 2t`+tκ bits, and allows to perform the base OTs without an
a-priori bound on the number of OTs to be performed later (the OTs can be continuously
extended).

Oblivious Transfer of Short Strings. An optimized OT extension protocol for short
strings was introduced in [KK13], where the authors describe a reduction of

(
2
1

)
-OTt` to(

2
1

)
-OTκκ with t(2κ/ log n + n · `) bits of communication, n being a parameter that can

be chosen arbitrarily so as to minimize this cost. Intuitively, this is done by reducing
log n invocations of

(
2
1

)
-OT to one invocation of

(
n
1

)
-OT; the result is then obtained by

combining this reduction with a new
(
n
1

)
-OT extension protocol introduced in [KK13]. In

our concrete efficiency estimations, we will heavily rely on this result as our equality test
protocol involves only OTs on very short strings.

Correlated and Random Oblivious Transfers. The authors of [ALSZ13] described
several OT extension protocols, tailored to OTs on inputs satisfying some particular con-
ditions. In particular, the communication of the OT extension protocol can be reduced
from 2t`+ tκ bits to t`+ tκ bits when the inputs to each OT are correlated, i.e. when each
input pair is of the form (r, f(r)) for a uniformly random r and a function f known by the
sender (which can be different for each OT). For random oblivious transfer extension, the
bit-communication can be further reduced to tκ. We note that the optimizations of [KK13]
and [ALSZ13] can be combined: log n correlated

(
2
1

)
-OT can be reduced to one corre-

lated
(
n
1

)
-OT (defined by input pairs of the form (r, f1(r), · · · fn−1(r)) for a random r and

functions f1 · · · fn−1 known by the sender). This gives a correlated short-string oblivious
transfer extension protocol which transmits t(2κ/ log n+ (n− 1) · `) bits.

3 Equality Test

In this section, we design an equality-test (ET) protocol to securely compute shares over
Z2 of the equality predicate.

Ideal Functionalities. The ideal functionality for our ET protocol is represented on Fig-
ure 1. Following the common standard for multiparty computation, we design our protocol
in the preprocessing model, where the players have access to a preprocessing functionality
FET-prep. The preprocessing functionality is used in an initialization phase to generate ma-
terial for the protocol; it does not require the inputs of the players. Our ideal preprocessing
functionality is also represented on Figure 1.

Protocol. We now describe our implementation of FET in the FET-prep-hybrid model,
with respect to passive corruption. The protocol runs with two players, Alice and Bob. It
is parametrized by two integers (`, n), where n is called the threshold of the protocol. The
players recursively perform size reduction steps using the material produced by the size
reduction procedure of FET-prep. Each step reduces inputs of size ` to inputs of size |`+ 1|
while preserving the equality predicate. The players stop the reduction when the bitsize of
their inputs becomes smaller than the threshold n (taken equal to 3 or 4 in our concrete

9

Functionality FET

The functionality runs with two parties, Alice and Bob. Upon receiving (ET, x) from Alice and (ET, y)
from Bob, set β ← 1 if x = y, and β ← 0 else. Set (a, b)←R 〈β〉2. Return a to Alice and b to Bob.

Functionality FET-prep

The functionality runs with two parties, Alice and Bob.

Size Reduction: Upon receiving (SR, j) from both players, the functionality picks (x, y)←R (Zj2)
2

and sets (a, b)←R 〈x⊕ y〉j+1. FET-prep outputs (x,a) to Alice and (y, b) to Bob.
Product Sharing: Upon receiving (PS, n) from both players, the functionality picks (x, y) ←R

(Z2n−2
2)2 and sets (a, b)←R 〈x ∗ y〉2. FET-prep outputs (x, a) to Alice and (y, b) to Bob.

Fig. 1: Ideal Functionalities for Equality Test and Preprocessing

Protocol ΠET

Initialize: Let i← 1 and j ← `. The players perform the following operations:
– (size reduction) While j > n, both players call FET-prep on input (SR, j) to get outputs (ri,ai)

and (si, bi). The players set i← i+ 1 and j ← |j + 1|.
– (product sharing) Both players call FET-prep on input (PS, n) to get outputs (r, a) and (s, b).

Equality Test: On input two `-bit integers, x from Alice and y from Bob, let x1 ← x and y1 ← y. Let
i← 1 and j ← `. The players perform the following operations:
1. While j > n, Alice sends x′i ← ri⊕xi to Bob, and Bob sends y′i ← si⊕yi to Alice. Let zi ← x′i⊕y′i.

Alice sets xi+1 ← −
∑j
l=1(−1)

zi[l]ai[l] mod j + 1, and Bob sets yi+1 ←
∑j
l=1(−1)

zi[l]bi[l] +
zi[l] mod j + 1. The players set i← i+ 1 and j ← |j + 1|. Note that (xi, yi) ∈ Z2

j .
2. Once j ≤ n, let (Ik)1≤k≤2n−2 denote the list of non-empty strict subsets of {1, · · · , n} (in any

arbitrary fixed order). For k = 1 to 2n−2, Alice, sets Xk ←
∏
l∈Ik

(1⊕xi[l]) and αk ← r[k]⊕Xk.
Then, Bob sets Yk ←

∏
l/∈Ik

yi[l], and βk ← s[k] ⊕ Yk. Alice picks α ←R {0, 1} and sends
(α, (αk)k≤2n−2), and Bob picks β ←R {0, 1} and sends (β, (βk)k≤2n−2).

3. Alice outputs ⊕
k≤2n−2

(a[k]⊕ βkXk)⊕
∏
l≤n

(1⊕ xi[l])⊕ α⊕ β

Bob outputs ⊕
k≤2n−2

(b[k]⊕ αks[k])⊕
∏
l≤n

yi[l]⊕ α⊕ β

Fig. 2: Protocol for Equality Test

estimations). The equality predicate is computed on the small inputs with the material
produced by the product sharing procedure of FET-prep. The protocol is represented on
Figure 2.

Theorem 1. The protocol ΠET securely implements FET in the FET-prep-hybrid model,
with respect to passive corruption.

3.1 Proof of Theorem 1

Let Adv be an adversary that interacts with Alice and Bob, running the protocol ΠET.
We will construct a simulator Sim which interacts with FET, so that no environment Z
can distinguish an interaction with Adv in ΠET from an interaction with Sim in the ideal
world. Sim starts by invoking a copy of Adv. Each time Sim received from Z an input
value, he writes it on Adv’s input tape as if coming from Z. Each time Adv writes on its
output tape, Sim writes the same thing on his output tape.

10

One Player is Corrupted. We focus here on the case of a corrupted Bob; as the protocol
is essentially symmetrical, the simulation is similar for a corrupted Alice.

Initialize: Sim runs a local copy of FET-prep. He honestly answers to each call to the SR
and PS commands, and stores the outputs of each call (This step does not require the
input of Alice).

Equality Test:
1. When Sim receives y′1 = s1 ⊕ y from Adv, he retrieves s1 from his memory and

computes y = y′1⊕s1. Sim sends (ET, y) to FET on behalf of the corrupted party,
and receives a bit T . During each round of the size reduction protocol, Sim does
only send uniformly random values x′i of the appropriate size on behalf of Alice.
Moreover, for i ≥ 1 and while j > n, Sim stores yi+1 ←

∑j
l=1(−1)

zi[l]bi[l] +
zi[l] mod j + 1, using the vector bi stored in FET-prep and the string zi = x′i ⊕ y′i.

2. When Sim receives (β, (βk)k≤2n−2), he retrieves Bob’s output (b, s) to the PS
command, and picks uniformly random bits (αk)k≤2n−2. Sim sets

α←
⊕

k≤2n−2
(b[k]⊕ αks[k])⊕

∏
l≤n

yi[l]⊕ T ⊕ β

and sends (α, (αk)k≤2n−2) to Bob.

Remaining Cases. When both parties are corrupted, Sim simply runs Adv internally.
When neither party is corrupted, Sim internally runs Alice and Bob honestly, with inputs
(0, 0), and forwards the messages exchanged to Adv.

Indistinguishability. We focus on the case where Bob is corrupted; the argument fol-
lows symmetrically for a corrupted Alice, and is straightforward when both players are
corrupted, or no player is corrupted. We show that the joint view of Z and Adv in the real
world is indistinguishable from the view of Z and the simulated Adv in the ideal world; as
the simulator perfectly (and honestly) simulates the initialization phase (which does not
require the inputs of the parties), we focus on the online phase (and implicitly include the
preprocessing material in the view of all the parties). Let t be the number of repetitions
of step 1 during the execution of the protocol. As the corrupted player is semi-honest, it
honestly follows the specifications of the protocol. Let (s, b, (x′i)i≤t, α, (αj)j≤2n−2) be the
view of Adv in the online phase during a run of ΠET with inputs (x, y). Let (oA, oB) denote
the outputs of Alice and Bob, that are sent to Z.

Claim (Correctness of the Size Reduction). For every i ≤ t, [x = y] = [xi = yi].

We show that for every i ≤ t − 1, [xi = yi] = [xi+1 = yi+1]. As (x, y) = (x1, y1), the
claim follows. Let i ≤ t− 1 be an integer. As the players follow the protocol, it holds that
yi+1 − xi+1 =

∑j
l=1(−1)

zi[l](bi[l] + ai[l]) + zi[l] mod j + 1, with zi = xi ⊕ yi ⊕ ri ⊕ si.
Furthermore, for any l ≤ j, bi[l] + ai[l] = ri[l] ⊕ si[l] mod j + 1. Observe that when
zi[l] = 0, it holds that xi[l] ⊕ yi[l] = ri[l] ⊕ si[l], whereas when zi[l] = 1, it holds that
xi[l]⊕yi[l] = 1−(ri[l]⊕si[l]). Overall, it holds that (−1)zi[l](ri[l]⊕si[l])+zi[l] = xi[l]⊕yi[l].
Therefore, yi+1 − xi+1 =

∑j
l=1(xi[l]⊕ yi[l]) mod j + 1. But the right hand term is exactly

the Hamming distance between xi and yi, which is bounded by the bitsize j of the strings
(hence no overflow occurs with the modulus j + 1). Observe that the Hamming distance
between two strings is 0 if and only if the two strings are equal. Therefore, yi+1−xi+1 = 0
if and only if xi = yi. The claim follows.

11

Claim (Correctness of ΠET). The outputs of Alice and Bob in ΠET form shares over Z2 of
[x = y].

By the previous claim, it suffices to show that the output of Alice and Bob in ΠET form
shares over Z2 of [xt = yt]. It holds that oA⊕oB =

⊕
k≤2n−2(a[k]⊕b[k]⊕βkXk⊕αks[k])⊕∏

l≤n(1−xt[l])⊕
∏
l≤n yt[l]. As for k ≤ 2n−2, αk = r[k]⊕Xk, βk = s[k]⊕Yk, and a[k]⊕b[k] =

r[k]s[k], this simplifies to oA ⊕ oB =
⊕

k≤2n−2XkYk ⊕
∏
l≤n(1− xt[l])⊕

∏
l≤n yt[l].

Observe that the right hand term is exactly the product
∏n
l=1((xt[l] ⊕ 1) ⊕ yt[l]), in

developed form. Moreover, this product evaluates to 1 if and only if it holds that for any
l ≤ n, (xt[l]⊕ 1)⊕ yt[l] = 1, which happens exactly when xt[l] = yt[l], and to 0 otherwise.
Therefore,

∏n
l=1((xt[l]⊕ 1)⊕ yt[l]) = [xt = yt].

Claim (Indistinguishability). When Bob is corrupted, the joint distribution (s, b, (x′i)i≤t, α,
(αj)j≤2n−2, oA, oB) is equal to the distribution of transcripts of an interaction with Sim
together with the output of FET.

Recall that Sim honestly picks (s, b). Moreover, for each i ≤ t, x′i = xi⊕ ri is perfectly
masked by the random value ri, and for each j ≤ 2n−2, αj = r[j]⊕Xk is perfectly masked
by the random bit r[k]. The value α is simulated so that the output computed by Bob is
exactly the output T of FET for the ideal version of Bob. As α is masked by T , which is a
uniformly random bit from the viewpoint of Bob (by definition of FET), α is also uniform.
The outputs of FET form shares of [x = y], as do (oA, oB) (from our above analysis). The
claim follows.

3.2 Implementing the Preprocessing Functionality

We now describe the implementation of the functionality FET-prep, in the FOT-hybrid
model. The protocol is represented on Figure 3.

Protocol ΠET-prep

Size-Reduction(`): Alice picks (x,a)←R Z`2 × Z``+1, and Bob picks y ←R Z`2. The players call F `,|`+1|
OT ,

on input (x[i]−a[i] mod `+1, 1−a[i]−x[i] mod `+1)i≤` for Alice and y for Bob. Let b denote Bob’s
output. Alice outputs (x,a) and Bob outputs (y, b).

Product-Sharing(n): Alice picks (x, a) ←R (Z2n−2
2)2, and Bob picks y ←R Z2n−2

2 . The players call
F 2n−2,2

OT on input (a[i], a[i] ⊕ x[i])i≤2n−2 for Alice and y for Bob. Let b denote Bob’s output. Alice
outputs (x, a) and Bob outputs (y, b).

Fig. 3: Preprocessing Protocol for Equality Test

Theorem 2. The protocol ΠET securely implements FET when calls to FET-prep in ΠET

are replaced by executions of ΠET-prep in the FOT-hybrid model, with respect to passive
corruption.

3.3 Proof of Theorem 2

We prove Theorem 2, introduced in Section 3. Let � denote the composition operator; let
Π be the protocol such that Π �FET-prep = ΠET. The natural way of proving Theorem 2
would be to prove that ΠET-prep UC implements FET-prep in the FOT-hybrid model; as

12

Π �FET-prep UC implements FET, it would follow from the composition theorem of the UC
framework that Π �ΠET-prep UC implements FET in the FOT-hybrid model.

However, this approach fails here. The reason is that ΠET-prep does in fact not UC
implement FET-prep. To understand the issue, recall that a proof in the UC framework is
done by exhibiting a simulator with access to the functionality (here FET-prep), so that
the view produced by the simulator together with the outputs of the corrupted parties are
indistinguishable from the view and the outputs in a real execution of the protocol. The
simulator extracts the inputs of the corrupted parties, queries the ideal functionality on
those inputs, and somehow forces the corrupted players to obtain the same outputs. Observe
now that in the protocol ΠET-prep, parts of the outputs of both Alice and Bob are picked
by the players themselves, independently of the behaviour of their opponent. Therefore,
no simulator can possibly ensure that the corrupted player will compute the same output
than what was returned by FET-prep. This is a bit counterintuitive, as the protocol ΠET-prep
clearly does “exactly what FET-prep does” when the players are semi-honest. We could solve
this by adding some resharing step in ΠET-prep, but this would noticeably increase the
communication of our protocol. Fortunately, this exact issue was handled in great details
in [BLLP14]. Therefore, we start by recalling the results of [BLLP14], and use them to
complete the proof of Theorem 2.

Input Private Protocols. The authors of [BLLP14] extend the universal composability
framework, by defining the notion of input-privacy. Informally, a protocol is input-private
if there is a simulator (with access to the corresponding ideal functionality) which pro-
duces a view indistinguishable from an execution of the protocol for any environment that
completely ignores the output of the protocol. We refer to [BLLP14, Section 4] for a for-
mal definition. The core result is a composition theorem, which states that an ordered
composition Π� of an input-private protocol Πip and a UC secure protocol ΠUC is a UC
secure protocol (the model considered is that of static, passive corruption, as in the present
paper). The term “ordered” refers to a restricted class of composition, in which there is
a one-way communication from Πip to ΠUC. An additional requirement is that the out-
puts of Π� must all come from ΠUC – in other words, Πip does not output any value in
the composed protocol, but only intermediate random values, perfectly independent of the
outputs. Intuitively, this result is tailored to protocols Πip that return random shares of
some output, as the view of a corrupted player can be simulated without the output.

Security. The protocol Π �ΠET-prep immediatly satisfies the constraint of ordered com-
position with predicable output specified in [BLLP14] (outputs from ΠET-prep are used in
ΠET, but there is no data dependency in the other direction). The functionality FET-prep
can be virtually seen as a functionality that does not produce outputs, but only stores
the result of some computation (this storage being represented by secret shares in the real
protocol). The input-privacy of ΠET-prep with respect to FET-prep in the FOT-hybrid model
is straightforward: it is trivial to see that the protocol is correct, and no messages are
exchanged between the players during the protocol, which consists entirely in calls made
to FOT. Therefore, the simulator simply runs a local copy of FOT and answers honestly
to the queries of the players. The view of any environment that ignores the output of the
protocol contains only the responses of FOT to the corrupted player, hence the simulation
is trivially perfect.

By the input-privacy of ΠET-prep, and the ordered composition with predictable output
of Π �ΠET-prep, as Π �FET-prep UC implements FET, the composition theorem mentioned
above (Theorem 2 from [BLLP14, Section 7.2]) allows to conclude that Π � ΠET-prep UC
implements FET in the FOT-hybrid model.

13

3.4 Communication Complexity

We first analyse the complexity of our protocol using any standard oblivious transfer
protocol, which transmits O(κ) bits. The size reduction procedure transmits O(`κ) bits on
input `, and the product sharing procedure transmits O(2nκ) bits on input n. Setting n
to a small constant value (e.g. n = 3), the bit communication of ΠET is dominated by its
first size reduction procedure, which transmits O(κ`) bits in the initialization phase. In the
online phase, where the equality test is performed using the preprocessed material, only
O(`) bits are transmitted.

We now analyse the complexity of our protocol in an amortized setting, where many
equality test protocols are likely to be invoked (not necessarily in parallel). By a classical
observation (see e.g. [LT13]), we can always assume that the inputs of the players are less
than κ-bit long: if this is not the case, each party can hash its input first, preserving the
correctness of the protocol with overwhelming probability. Therefore, as the largest strings
obliviously transferred during the protocol ΠET are |`+ 1| ≤ |κ+ 1| bit long (for κ = 128,
this corresponds to 8-bit strings), we can benefit from the short-string oblivious transfer
extension protocol of [KK13]. Ignoring the computation of the base OTs, which is performed
a single time for an arbitrary number of equality tests, k size reduction procedures on `-bit
inputs transmit O(k`(κ/ log x+x · |`|)) bits, where x is a parameter that can be arbitrarily
set so as to minimize this cost. This minimizes to O(k`κ/ log κ), up to some log log term.
As a consequence, when performing many equality tests, the (amortized) cost of a single
equality test is O(κ`/ log κ) bits in the preprocessing phase (and still O(`) bits in the online
phase). For inputs of size ` > κ, where the players can hash their input first, the complexity
becomes O(κ2/ log κ) in the preprocessing phase, and O(κ) in the online phase.

3.5 Concrete Efficiency

We now analyze the efficiency of our protocol for various input-lengths. In all our numerical
applications, we set the security parameter κ to 128. We estimate the efficiency in an
amortized setting, where we can use oblivious transfer extension.

Comparison with Equality Test from Garbled Circuit and from 2PC. We compare
our protocol to the garbled-circuit-based protocol of [KSS09], and to the solution based on
generic 2PC, using the optimized circuit of [GSV07]. We apply all possible optimizations
to these two alternative approaches, using random OTs in the offline phase to precompute
the online OTs, as well as oblivious transfer extensions. We use optimized OT extensions
of short strings for [GSV07], but not for [KSS09], as it involves OT on large keys.

Note that the pairs of keys in [KSS09] satisfy some correlation, hence the optimization
of [ALSZ13] for correlated oblivious transfer extensions can be applied. However, this
prevents Alice from constructing and sending the garbled circuit during the preprocessing
phase, as the values of the keys will be determined by the correlated oblivious transfers
(in which one of the outputs is a random value). In our estimations, we chose not to
use this optimization, which results in a slight loss in overall communication, but almost
cuts in half the communication during the online phase. We use random OTs [ALSZ13]
to push the cost of executing oblivious transfers to the offline phase, at the (mild) cost of
adding ` bits to the total communication. Observe also that the method of [AIKW13] could
be applied to reduce the communication of online phase of [KSS09]; however, this would
require sending O(`2) group elements in the preprocessing phase (or O(`) using the RSA
based instantiation) and computing O(`2) (resp. O(`)) modular multiplications online. In
an amortized setting where [KSS09] requires only cheap symmetric operations, this would
strongly affect both the computation and the communication of the protocol.

14

Non-Amortized Setting. We now evaluate the concrete efficiency of our protocol. We
first focus on the simpler setting, the non-amortized setting, in which a single ET will be
performed. We stop the size reduction protocol as soon as n ≤ 4 (stopping at n ≤ 3 or
n ≤ 2 saves a few hundreds of bits for some sizes of `, at the cost of additional rounds).
For the oblivious transfer, we use the scheme of Naor and Pinkas [NP01], whose security
in the random oracle model relies on the decisional Diffie-Hellman (DDH) assumption (we
use an elliptic curve of prime order p, which can be taken of bit-size log p = 2κ according
to recommended parameters). The protocols of [NP01] have the following communication:

– t executions of a
(
2
1

)
-OT` on strings of size ` ≤ κ transmit κ4t bits. The initialization

phase consists of two group elements sent by the sender which amounts to 4κ bits.
– t executions of a

(
N
1

)
-OT` on strings of size ` ≤ κ transmit κ(N + 2)t bits. The

initialization phase consists of N+1 group elements sent by the sender which amounts
to 2(N + 1)κ bits.

We will use this
(
N
1

)
-OT` in a crucial way. One of the constructions described in [NP01]

gives a trade-off between communication (which is increased) and computation (which is
decreased). The idea is that to perform logN oblivious transfers on `-bit strings, it suffices
to perform a single

(
N
1

)
-OT` logN , in which the N inputs are all the 2logN possible concate-

nations of one input from each of the logN input pairs. But recall that the communication
of the protocol of [NP01] is always the same for any ` ≤ κ (for larger values, the oblivious
transfer are performed on keys, which are used to encrypt the values, adding 2` bits of
overhead to the protocol). Our equality test protocol involves only oblivious transfers on
very small strings, of size smaller than |κ+ 1|. Hence, by picking a sufficiently small N so
that ` logN ≤ κ, the trade-off protocol of Naor and Pinkas does in fact reduce the commu-
nication. Indeed, performing logN oblivious transfers on short strings transmits 4κ logN
bits, while using instead a single

(
N
1

)
-OT` logN transmits (N +2)κ bits if ` logN ≤ κ. This

amounts to (N + 2)κ/ logN bits per
(
2
1

)
-OT, which is minimized for N = 4 and transmits

3κ bits. Hence, performing the
(
2
1

)
-OT by pairs, as a single

(
4
1

)
-OT, reduces the commu-

nication by 25% when the transmitted strings are of size ` ≤ κ/2. We note that, to our
knowledge, this simple observation was not made before and is of independant interest.

Table 3 sums up the costs of our equality test protocol for various values of `, and
compares it to the garbled-circuit-based protocol of [KSS09], and the generic 2PC protocol
of [GSV07]. Note that we use the oblivious transfer of [NP01] in both our ET and the
protocols of [KSS09, GSV07], but while we can use the optimization described above to
reduce the communication in our protocol and in [GSV07] (as they transmit short strings),
this does not hold for garbled circuits, in which the transmitted values are κ-bit keys (and
our optimization does not result in any improvement in this case). Hence, t

(
2
1

)
-OT transmit

3κt bits in our ET and in [GSV07], but 4κt bits in [KSS09]. As one can see from Table 2, our
protocol is approximately 50% more efficient than [KSS09], and about 80% more efficient
than [GSV07]. Furthermore, our protocol strongly improves over both alternatives in the
online phase.

Amortized Setting. We now provide a concrete efficiency analysis of the protocol in an
amortized setting, using oblivious transfer extensions. We do not take into account the
cost of the base oblivious transfers for the OT extension scheme, as this is a constant
independent of the number of equality tests performed, which is the same for both our
protocol and the protocol of [KSS09]. Adapting the construction of [KK13] to the case of
correlated short inputs, the exact cost of reducing m oblivious transfers of t-bit strings
to κ oblivious transfers of κ-bit strings is m(2κ/ log x+ (x− 1)t) (this takes into account

15

Table 2: Communication of `-bit ETs in the Non-
Amortized Setting

Our ET [KSS09] [GSV07]

` comm.1 rounds comm. rounds comm. rounds

Preprocessing Phase
4 5376 2 1810 1 6144 3
8 8448 3 3856 1 14592 4
16 10365 4 7968 1 32256 5
32 16896 4 16192 1 68352 6
64 29568 4 32640 1 141312 7
128 57600 4 65536 1 288000 8

Online Phase
4 28 1 1540 2 96 3
8 44 2 3080 2 228 4
16 54 3 6160 2 504 5
32 88 3 12320 2 1068 6
64 154 3 24640 2 2208 7
128 300 3 49280 2 4500 8

1 Comm. denotes the number of bits exchanged during a pro-
tocol run.

an optimization described in [KK13, Appendix A] and the optimization for correlated in-
puts of [ALSZ13]).Therefore, the amortized cost of a size reduction protocol on input k
is k(2κ/ log x + (x − 1)k), where x can be chosen so as to minimize this cost. Table 3
sums up the amortized costs of our equality test protocol for various values of `; oblivious
transfers for the garbled circuit approach of [KSS09] are performed using the OT exten-
sion protocol of [ALSZ13] on κ-bit inputs, which transmits 3κ bits per OT. As shown in
Table 3, our protocol improves over the communication of [KSS09] by up to 80% overall.
During the online phase, our protocol is extremely efficient, two orders of magnitude faster
than [KSS09]. Our protocol also improves over [GSV07] by about 70% overall, and by 95%
in the online phase. Furthermore, it is considerably less interactive, although it remains
more interactive than the garbled-circuit-based approach.

Amortized Computational Complexity. The computational complexity of [KSS09,
GSV07] and our protocol are directly proportional to their communication in the amortized
setting (and it is dominated by the evaluation of hash functions in both, which are required
for (extended) OTs and garbled gates), hence our constructions improve upo these protocols
regarding computation by factors similar to those listed in Table 3.

4 Secure Comparison from Equality Test

In this section, we design a secure comparison protocol (SC) to securely evaluate shares
(over Z2) of the greater-than predicate on inputs held by Alice and Bob. The high level
intuition of our construction is close in spirit to the construction of equality test in the
previous section: the two parties will play several rounds of a size-reduction procedure, that
will shrink the size of their inputs while preserving their ordering. When the input size
has been skrinked below some threshold, the parties compute the output using a protocol

16

Table 3: Communication of `-bit ETs in the Amor-
tized Setting

Our ET [KSS09] [GSV07]

` comm.1 rounds comm. rounds comm. rounds

Preprocessing Phase
4 1106 2 1288 1 1264 3
8 2018 3 2832 1 3002 4
16 2945 4 5920 1 6636 5
32 5212 4 12096 1 14062 6
64 9863 4 24448 1 29072 7
128 20194 4 49152 1 59250 8

Online Phase
4 28 1 1540 2 96 3
8 44 2 3080 2 228 4
16 54 3 6160 2 504 5
32 88 3 12320 2 1068 6
64 154 3 24640 2 2208 7
128 300 3 49280 2 4500 8

1 Comm. denotes the number of bits exchanged during a
protocol run.

tailored to secure comparison on small inputs. However, the actual construction differs
significantly from the protocol of the previous section, and is considerably more involved.
We detail below the main steps of our construction.

– The size reduction protocol takes as input two bitstrings (x, y) of length k, one known
to Alice and one known to Bob. It divides the string into

√
k blocks of

√
k bits. Then,

it relies on equality tests to obliviously identify the first block of both x and y on which
they differ, and on oblivious transfers to obliviously extract these two blocks. At the
end of the protocol, the parties hold shares of two

√
k-bit blocks (x′, y′) satisfying

[x′ ≤ y′] = [x ≤ y].
– From there, the two parties would like to recursively invoke the above procedure, until

they end up with small strings to be compared. However, this cannot be done right
away: the size reduction protocol takes as inputs values known to Alice and Bob, but
outputs shares of values to be compared. Nevertheless, we show that Alice and Bob can
non-interactively reduce the task of comparing shared values to the task of comparing
values that they know. More specifically, we show an equality of the form

[x′ ≤ y′] = bA ⊕ bB ⊕ [vA ≤ vB] (1)

where (bA, vA) (resp. (bB, vB)) are values that Alice (resp. Bob) can compute locally
from her shares of (x′, y′) ((bA, bB) ar bits). Therefore, the parties will invoke the size
reduction procedure on the values (vA, vB) of the above equality, and store the values
(bA, bB).

– The equality 1 will crucially relies on the assumption that x 6= y. Observe that if the
initial inputs (x, y) are not equal, then the reduced values (x′, y′) are also different
(they are the first block of x and y on which the inputs differ). From the proof of 1, it
will follow that in this case, it also holds that vA 6= vB. Therefore, to ensure that the

17

Functionality FSC

The functionality runs with two parties, Alice and Bob. Upon receiving (SC, x) from Alice and (SC, y)
from Bob, set β ← 1 if x ≤ y, and β ← 0 else. Set (a, b)←R 〈β〉2. Return a to Alice and b to Bob.

Functionality Fshrink

The functionality runs with two parties, Alice and Bob. Upon receiving (shrink, `, λ, x) from Alice
and (shrink, `, λ, y) from Bob, where λ divides ` and (x, y) are `-bit long, it divides the bits of x and
y into `/λ consecutive blocks of λ bit, and computes x̂ ∈ {0, 1}λ (resp. ŷ ∈ {0, 1}λ) as the first block
of x (resp. y) on which x and y differ. Then, it computes (x̂A, x̂B)←R 〈x̂〉2λ+1 , (ŷA, ŷB)←R 〈ŷ〉2λ+1 ,
and returns (x̂A, ŷA) to Alice and (x̂B , ŷB) to Bob.

Functionality FSC-prep

The functionality runs with two parties, Alice and Bob.

Size Reduction: Upon receiving (SR, λ, µ) from both players, the functionality picks
(s0, s1, t0, t1,u0,u1)←R (Zµµ+1)

2 × (Zµ
2λ+1)

4 and (c, d, e)←R (Zµ2)
3. FSC-prep sets

(s, t,u)←
((

sc[i][i]
)
i≤µ ,

(
td[i][i]

)
i≤µ ,

(
ue[i][i]

)
i≤µ

)
It outputs (e, s0, s1, t0, t1,u) to Alice and (c, d, s, t,u0,u1) to Bob.

Product Sharing: Upon receiving (PS, n) from both players, the functionality picks (ρ, σ) ←R

(Z2n−1
2)2 and sets (a, b)←R 〈ρ ∗ σ〉2. FET-prep outputs (ρ, a) to Alice and (σ, b) to Bob.

Fig. 4: Ideal Functionalities for Secure Comparison and Preprocessing

inputs to be compared remain different throughout the entire computation, it suffices
to ensure that the initial inputs are not equal. This can be ensure very easily as follows:
Alice will append a 0 to her initial input, and Bob will append a 1 to his initial input.
This ensures that x 6= y, while preserving the value of the predicate [x ≤ y].

– After log ` such size reduction and non-interactive conversion steps (for initial inputs
of length `), the parties end up with small inputs to be compared, and bits locally
computed during the non-interactive conversions. They invoke an OT-based small-
input secure comparison protocol (similar to the OT-based small-input equality test
protocol used in the previous section), and xor their outputs with all their locally
computed bits.

Ideal Functionalities. The ideal functionality FSC for our SC protocol is represented
on Figure 4. To simplify the exposition, we describe an intermediate functionality Fshrink,
which performs the size reduction procedure. We will implement this functionality in the
(FET,FSC-prep)-hybrid model afterward. Both Fshrink and FSC-prep are represented on Fig-
ure 4.

Reduction Lemma. Let (x, y) be two bitstrings of length k. Let t← 2k+1. Let (xA, xB)←R

〈x〉t and (yA, yB)←R 〈y〉t; that is, (xA, xB) (resp. (y1, yB)) are random shares of x (resp.
y) over Zt. Let (zA, zB)← (yA−xA mod t, yB−xB mod t). We prove the following lemma:

Lemma 3. If x 6= y, then it holds that [x ≤ y] = bA ⊕ bB ⊕ [wA ≤ t/2 − wB], where
bA = [zA < t/2], bB = [zB < t/2], wA = zA mod t/2, and wB = zB mod t/2.

Suppose that Alice and Bob are given shares of two k-bit values (x, y) to be compared;
that is, Alice knows (xA, yA), Bob knows (xB, yB), and the parties want to compute shares
of [x ≤ y]. Lemma 3 shows that (if x 6= y) the parties can non-interactively reduce this task

18

to the task of comparing two values, one known to Alice and one known to Bob. Indeed,
given (xA, yA), Alice (resp. Bob) can locally compute bA and wA (resp. bB and wB) as in
Lemma 3. Hence, to compute shares of [x ≤ y], Alice and Bob can simply compute shares
of [wA ≤ t/2−wB] (where Alice knows wA and Bob knows t/2−wB), and locally xor their
outputs with bA and bB.

4.1 Proof of Lemma 3

We recall below the Lemma 3, introduced in Section 4, and prove it. Let (x, y) be two
bitstrings of length k. Let t ← 2k+1. Let (xA, xB) ←R 〈x〉t and (yA, yB) ←R 〈y〉t; that
is, (xA, xB) (resp. (y1, yB)) are random shares of x (resp. y) over Zt. Let (zA, zB) ←
(yA − xA mod t, yB − xB mod t).

Lemma 4. If x 6= y, then it holds that [x ≤ y] = bA ⊕ bB ⊕ [wA ≤ t/2 − wB], where
bA = [zA < t/2], bB = [zB < t/2], wA = zA mod t/2, and wB = zB mod t/2.

Proof. To prove Lemma 3, we first observe that [x ≤ y] = [(y − x mod t) ≤ t/2]. Indeed,
(x, y) are k-bit strings, hence x < 2k = t/2, and y < t/2. Therefore, if x ≤ y, then
(y−x mod t) = y−x belongs to [0, t/2], which implies that (y−x mod t) ≤ t/2; conversely,
if x > y, then [y−x mod t] = y−x+t belongs to [t/2, t], which implies that [y−x mod t] >
t/2. By this observation, to prove Lemma 3, it suffices to show that, when x 6= y,

[(y − x mod t) ≤ t/2] = bA ⊕ bB ⊕ [wA ≤ t/2− wB].

Toward proving Lemma 3, we distinguish four complementary cases.

Case 1: zA < t/2, and zB < t/2 (therefore, bA = bB = 1). In this situation, it holds that
(zA + zB mod t) = zA + zB (that is, no modulo reduction occurs when summing zA
and zB modulo t), and that zA = wA, zB = wB. Therefore,

[(y − x mod t) ≤ t/2] = [(zA + zB mod t) ≤ t/2]
= [zA + zB ≤ t/2] = [wA ≤ t/2− wB]
= [wA ≤ t/2− wB]⊕ bA ⊕ bB.

Case 2: zA ≥ t/2, and zB ≥ t/2 (therefore, bA = bB = 0). In this situation, it holds that
(zA + zB mod t) = zA + zB − t (a modulo reduction occurs when summing zA and zB
modulo t), and that zA = wA + t/2, zB = wB + t/2. Therefore,

[(y − x mod t) ≤ t/2] = [(zA + zB mod t) ≤ t/2] = [zA + zB − t ≤ t/2]
= [wA + t/2 + wB + t/2− t ≤ t/2− wB]
= [wA ≤ t/2− wB] = [wA ≤ t/2− wB]⊕ bA ⊕ bB.

Case 3: zA < t/2, and zB ≥ t/2 (therefore, bA = 0 and bB = 1). Let us show that in this
situation,

[(y − x mod t) ≤ t/2] = [(zA + zB mod t) ≤ t/2] = [zA + zB > t].

Indeed, observe that as zA < t/2 and zB ≥ t/2, it holds that (zA + zB mod t) ≤ t/2
if and only if a modulo reduction occurs when computing zA + zB mod p – that is,
if and only if [zA + zB ≥ p]. In addition, observe that zA + zB = t if and only if
yA−xA+ yB−xB = t, if and only if x− y = 0 mod t. Therefore, as we assumed x 6= y

19

(which implies x 6= y mod t as x < t/2 and y < t/2), this situation cannot happen, so
[zA + zB ≥ p] = [zA + zB > p]. From this, we get

[(y − x mod t) ≤ t/2] = [(zA + zB mod t) ≤ t/2] = [zA + zB > t]

= 1⊕ [zA + zB ≤ t] as 1⊕ b is the negation of b
= 1⊕ [wA + (wB + t/2) ≤ t] = 1⊕ [wA ≤ t/2− wB]
= [wA ≤ t/2− wB]⊕ bA ⊕ bB.

Case 4: By applying the same demonstration as in Case 3 symmetrically, we get [(y −
x mod t) ≤ t/2] = [wA ≤ t/2− wB]⊕ bA ⊕ bB.

This concludes the proof of Lemma 3. We make a last observation: straightforward calcu-
lations show that, as x < t/2 and y < t/2, x 6= y if and only if wA 6= wB. This implies that
it is sufficient to guarantee that the initial inputs are different to ensure that all inputs will
remain different through recursive calls to the recursion lemma.

4.2 Main Protocol

We now describe our implementation of FSC, in the (FSC-prep,Fshrink)-hybrid model, with
respect to passive corruption. The protocol runs with two players, Alice and Bob. It is
parametrized by two integers (`, n), where n is the threshold of the protocol. The players
recursively perform size reduction steps Fshrink and the reduction lemma. Each step reduces
inputs of size ` to inputs of size roughly

√
` while preserving the comparison predicate.

The players stop the reduction when the bitsize of their inputs becomes smaller than the
threshold n (taken equal to 3 or 4 in our concrete estimations). The comparison predicate is
computed on the small inputs with the material produced by the product sharing procedure
(PS) of FSC-prep. The protocol is represented on Figure 5. For simplicity, we assume from
now that the inputs (x, y) satisfy x 6= y; as previously outlined, this can be ensured by
letting Alice append a 0 and Bob a 1 to their initial inputs.

Theorem 5. The protocol ΠSC securely implements FSC in the (FSC-prep,Fshrink)-hybrid
model, with respect to passive corruption.

4.3 Proof of Theorem 5

Let Adv be an adversary that interacts with Alice and Bob, running the protocol ΠSC.
We will construct a simulator Sim which interacts with FSC, so that no environment Z
can distinguish an interaction with Adv in ΠSC from an interaction with Sim in the ideal
world. Sim starts by invoking a copy of Adv. Each time Sim receives from Z an input
value, he writes it on Adv’s input tape as if coming from Z. Each time Adv writes on its
output tape, Sim writes the same thing on his output tape.

One Player is Corrupted. We focus here on the case of a corrupted Bob; as the protocol
is essentially symmetrical, the simulation is similar for a corrupted Alice.

Initialize: Sim runs local copies of (Fshrink,FSC-prep). He honestly answers to the call
to the PS command, and stores the output. (This step does not require the input of
Alice)

Secure Comparison:

20

Protocol ΠSC

Initialize: Both players call FSC-prep on input (PS, n) to get (ρ, a) and (σ, b).
Secure Comparison: On input two `-bit integers, x from Alice and y from Bob, let i← 1, x′1 ← x, and

y′1 ← y.
1. The players agree on an integer λi which divides ` (the optimal parameters for this block de-

composition will depend on the actual implementation of Fshrink). Alice calls Fshrink on input
(shrink, `, λi, xi), and Bob on input (shrink, `, λi, yi). Let (xi+1, yi+1) denote the first blocks where
xi differs from yi. We denote (xAi+1, y

A
i+1) and (xBi+1, y

B
i+1) the outputs of Fshrink to Alice and Bob,

which form shares of (xi+1, yi+1).
2. From these shares, the parties locally compute bits (bAi+1, b

B
i+1) and values (x′i+1, y

′
i+1) satisfying

[x′i+1 ≤ y′i+1]⊕ bAi+1 ⊕ bBi+1 = [xi+1 ≤ yi+1],

where (bAi+1, x
′
i+1) is known to Alice and (bBi+1, y

′
i+1) is known to Bob.

3. The players set `← λi and i← i+1. If |`| > n−1, the players iterate the steps 1 to 3. Otherwise,
they go to step 4.

4. Let f : (j, l) 7→ l − 1 + 2j−1. For j = 1 to n − 1, let (Ijl)1≤l≤2j denote the list of subsets
of {1, · · · , j} (in any arbitrary fixed order). For j = 1 to n, for l = 1 to 2j−1, Alice picks
α←R {0, 1} and sets αjl ← ρ[f(j, l)]⊕xi[j] ·

∏
k∈Ij−1

l
(1⊕xi[k]), and Bob picks β ←R {0, 1} and

sets βjl ← σ[f(j, l)]⊕ (1⊕yi[j]) ·
∏
k/∈Ij−1

l
yi[k]. Alice sends (α, (αjl)jl) and Bob sends (β, (βjl)jl)

(this amounts to 2n+1 bits exchanged).
5. Alice outputs (

i⊕
k=1

bAi

)
⊕

 ⊕
j≤n

l≤2j−1

ρ[f(j, l)]βjl ⊕ a[f(j, l)]

⊕ α⊕ β
Bob outputs (

i⊕
k=1

bBk

)
⊕

 ⊕
j≤n

l≤2j−1

(σ[f(j, l)]⊕ βjl)αjl ⊕ b[f(j, l)]

⊕ α⊕ β

Fig. 5: Protocol for Secure Comparison

1. When Sim receives (shrink, `, λ1, y1) from Bob, he stores y = y1 and sends (SC, y)
to FSC on behalf of Bob in the ideal world. Sim receives an output bit T . For
each compression round i, Sim simulates Fshrink by returning two random shares
of the appropriate size to Bob, and computes and stores the corresponding value
bBi+1.

2. When Sim receives (β, (βjl)jl), he retrieves Bob’s output (σ, b) to the PS com-
mand, and picks uniformly random bits (αjl)j≤n−1,l≤2j−1 . Sim sets

α←

(
i⊕

k=1

bBk

)
⊕

 ⊕
j≤n

l≤2j−1

(σ[f(j, l)]⊕ βjl)αjl ⊕ b[f(j, l)]

⊕ T ⊕ β
and sends (α, (αjl)jl) to Bob.

Remaining Cases. When both parties are corrupted, Sim simply runs Adv internally.
When neither party is corrupted, Sim internally runs Alice and Bob honestly, with inputs
(0, 0), and forwards the messages exchanged to Adv.

Indistinguishability. We focus on the case where Bob is corrupted; the argument fol-
lows symmetrically for a corrupted Alice, and is straightforward when both players are
corrupted, or no player is corrupted. We show that the joint view of Z and Adv in the real

21

world is indistinguishable from the view of Z and the simulated Adv in the ideal world. In
steps 1 to 3, Sim perfectly simulates the answers of the functionality Fshrink, and stores
all the corresponding bits bBi+1 computed by Bob. During an execution of the real protocol,
in addition to Bob’s interaction with Fshrink, the environment sees (α, (αjl)jl), as well as
the outputs (oA, oB) of the players. In the ideal world, on input (x, y), the outputs of FSC

are random shares of [x ≤ y]; let us first show that this also holds for the outputs (oA, oB)
in the real world.

Claim (Correctness of ΠSC). oA ⊕ oB = [x ≤ y].

Let t be the number of repetitions of step 1. By definition of Fshrink, and by using the
recursion lemma (Lemma 3) at each step, it holds that [xt < yt] = [xt ≤ yt] = [x ≤ y] ⊕⊕t

k=1 b
B
k (recall that xt 6= yt). We now show that oA⊕oB⊕

⊕t
k=1 b

B
k = [xt < yt]. Replacing

(αjl, βjl)jl by their corresponding expression, and using the fact that ρ[l]σ[l] = a[l] ⊕ b[l],
we get

oA ⊕ oB ⊕
t⊕

k=1

bBk =
⊕
j≤n

xt[j](1⊕ yt[j])

 ⊕
l≤2j−1

∏
k∈Ij−1

l

(1⊕ xt[k]) ·
∏

k/∈Ij−1
l

yt[k]

The term between the parenthesis is simply the product

∏
k≤j−1(1 ⊕ xt[k] ⊕ yt[t])

developed. This product evaluates to 1 if and only if it holds for each k ≤ j − 1 that
xt[k] = yt[k] (which is equivalent to 1⊕ xt[k]⊕ yt[k] = 1). Observe now that [xt < yt] can
be computed recursively using the following formula:

[xt < yt] = [xt[1] < yt[1]]⊕ [xt[1] = yt[1]] · [xt[2] · · ·xt[n] < yt[2] · · · yt[n]]

As for any j ≤ n, [xt[j] < yt[j]] = (1⊕ xt[j])yt[j] and [xt[j] = yt[j]] = 1⊕ xt[j]⊕ yt[j],
recursively applying the above formula gives

[xt < yt] =
⊕
j≤n

xt[j](1⊕ yt[j])

(
j−1∏
k=1

(1⊕ xt[k]⊕ yt[k])

)

Which concludes the proof of the claim. Moreover, each value αjl sent during the
protocol is perfectly masked by ρ[f(j, l)], hence all the αjl are perfectly indistinguishable
from uniformly random values, and all the simulated αjl are uniformly random bits. α
is random in the real protocol, and is masked by the output T of FSC in the simulated
protocol, which is a uniformly random bit by definition of FSC. It is straightforward to see
that the semi-honest Bob will indeed obtain the bit T as output in the simulated protocol.
Therefore, the joint view of Z and Adv in the real protocol is perfectly indistinguishable
from their joint view in the simulated protocol.

4.4 Compression Functionality

We now implement the functionality Fshrink, in the (FSC-prep,FET)-hybrid model. The
protocol is represented on Figure 6.

Theorem 6. The protocol ΠSC securely implements the functionality FSC when calls to
Fshrink in ΠSC are replaced by executions of Πshrink in the (FET,FSC-prep)-hybrid model,
with respect to passive corruption.

22

Protocol Πshrink

Let (`, λ) be two integers such that λ ≤ `. Let µ be the smallest integer such that λµ ≥ `. On input x from
Alice and y from Bob, both of size `-bit,

Initialize: The players call FSC-prep on input (SR, λ, µ) to get outputs (e, s0, s1, t0, t1,u) for Alice and
(c, d, s, t,u0,u1) for Bob.

Compression: Let (xj)j≤µ ∈ Z2λ (resp. (yj)j≤µ ∈ Z2λ) be the decomposition of x (resp. y) into µ
blocks of size λ (i.e., x =

∑µ
j=1 xj2

λ(j−1) and y =
∑µ
j=1 yj2

λ(j−1)). The players perform the following
operations:
1. (Equality Tests.) For j = 1 to µ, the players call FET on inputs (ET, xj) and (ET, yj). Let

(αj , 1⊕βj)j≤µ ∈ Z2µ
2 denote their respective outputs (that is, (αj , βj) form shares of 0 if xj = yj ,

and of 1 otherwise). This step allows Alice and Bob to (obliviously) identify the blocks of x and
y which are not equal.

2. (Modulus Change.) Alice picks r ←R Zµµ+1. For j = 1 to µ, Bob sends dj ← βj ⊕ c[j] to Alice.
For j = 1 to µ, Alice sends the pair

(aj,0, aj,1)← (sdj [j] + αj + r[j], s1−dj [j] + (1− αj) + r[j]) mod µ+ 1

to Bob. For j = 1 to µ, Bob computes y′j ←
∑j
k=1 ak,c[k] − s[k] mod µ + 1 and Alice computes

x′j ←
∑j
k=1 r[k] mod µ + 1. This steps converts Alice and Bob’s shares of the [xj 6= yj] from

shares modulo 2 to shares modulo µ + 1, and computes all partial sums (from 1 to j) of these
shares.

3. (Identiying the First Different Block.) For j = 1 to µ, the players call FET on inputs (ET, x′j)
and (ET, y′j). Let (α′j , 1 ⊕ β′j)j≤µ ∈ Z2µ

2 denote their respective outputs (that is, (α′j , β′j) form
shares of 0 if x′j = y′j , and of 1 otherwise) and (α′0, β

′
0) ← (0, 0). For j = 1 to µi, Alice sets

γj ← αj−1 ⊕ αj and Bob sets δj ← βj−1 ⊕ βj . The following steps 4 and 5 are executed in
parrallel:

4. (Selecting the First Different Block – Alice’s Step.) Alice picks rA ←R Zµ
2λ+1 . For j = 1 to µ,

Bob sends dBj ← δj ⊕ d[j] to Alice, and Alice sends the pair

(a′j,0, a
′
j,1)← (tdB

j
[j] + γjxj + rA[j], t1−dB

j
[j] + (1− γj)xj + rA[j]) mod 2λ+1

to Bob. Bob computes ŷB ←
∑µ
j=1 a

′
j,c[j]−t[j] mod 2λ+1, and Alice sets ŷA ← −

∑µ
j=1 rA[j] mod

2λ+1.
5. (Selecting the First Different Block – Bob’s Step.) Bob picks rB ←R Zµ

2λ+1 . For j = 1 to µ, Alice
sends dAj ← γj ⊕ e[j] to Bob, and Bob sends the pair

(bj,0, bj,1)← (udA
j
[j] + δjyj + rB [j],u1−dA

j
[j] + (1− δj)yj + rB [j]) mod 2λ+1

to Alice. Alice computes x̂A ←
∑µ
j=1 bj,c[j] − u[j] mod 2λ+1, and Bob sets ŷA ←

−
∑µ
j=1 rB [j] mod 2λ+1.

Output: Alice outputs (x̂A, ŷA) and Bob outputs (x̂B , ŷB).

Fig. 6: Compression Protocol for Secure Comparison

4.5 Security Analysis of Πshrink

The general idea of the protocol is that to compare two strings, it suffices to divide these
strings in blocs, and to compare the first block on which they differ. The purpose of the
compression step is for the players to obliviously select this block. The inputs (x, y) are
first divided into µ blocks of size λ. At the end of step 1, the players obtain shares (αj , βj)
(over Z2) of all the bits [xj 6= yj]. During step 2, the players compute values (x′j , y

′
j) whose

difference modulo µ+1 is
∑j

k=1[xk 6= yk]. This requires to use some preprocessed material.
Let j∗ be the first block on which x differs from y. Observe that

∑j
k=1[xk 6= yk] = 0 for

j < j∗, and
∑j

k=1[xk 6= yk] > 0 afterward. The players perform in step 3 equality tests on

23

the values (x′j , y
′
j). Therefore, they obtain shares of the bits [x′i − y′j = 0]. Observe that

these bits are 1 for j ≤ j∗, and 0 afterward. From these shares, the players can locally
compute shares (γj , δj) of bits which are 0 for every j 6= j∗, and 1 only for j = j∗, by xoring
pairs of consecutive bits. In step 4 and 5, using preprocessed material again, the players
compute shares of

∑µ
j=1(γj ⊕ δj)xj = xj∗ and

∑µ
j=1(γj ⊕ δj)yj = yj∗ , which correspond to

the target outputs.
With the correctness argument in mind, as the protocolsΠshrink andΠSC satisfy ordered

composition with predictable outputs, we can apply the same argument as for FET-prep, and
show thatΠSC UC-securely implements FSC when calls to Fshrink are replaced by executions
of Πshrink, by proving that Πshrink satisfies input-privacy. The simulation is straightforward
(as before, we focus on the case of a corrupted Bob): the simulator Sim runs local copies
of FET and FSC-prep and perform honestly the initialization phase, storing the outputs. In
steps 1 and 3, Sim simulates FET by outputting random values of the appropriate size.
In steps 2 and 4, Sim sends random pairs (aj,0, aj,1) and (a′j,0, a

′
j,1) on behalf of Alice; as

all element of the pairs in step 2 are either masked by a value sb[j] unknown to Bob (for
some bit b) or by a random mask r[j], and all element of the pairs in step 2 are either
masked by a value tb[j] unknown to Bob (for some bit b) or by a random mask rA[j], this
is perfectly indistinguishable from an honest run of the protocol. In step 5, Sim sends µ
random bits on behalf of Alice; as each bit is masked by a random bit e[j] unknown to Bob
in the real protocol, the simulation is again perfect. Therefore, the simulated protocol is
perfectly indistinguishable from the real protocol from the viewpoint of any environment
corrupting Bob that ignores the output of the protocol, which concludes the proof of input
privacy.

4.6 Implementing the Preprocessing Functionality

The implementation of the functionality FSC-prep, in the (FOT,FROT)-hybrid model, is
represented on Figure 7, and the security claim is given in Theorem 7.. The proof of this
theorem is essentially identical to the proof of Theorem 2.

Protocol ΠSC-prep

Size-Reduction(`): The players perform the following operations:
1. The players call Fµ,µ+1

ROT , with Alice acting as sender and Bob as receiver. Let (s0, s1) denote
Alice’s output, and let e ∈ Zµ+1

2 and s←
(
se[i][i]

)
i≤µ denote Bob’s output.

2. The players call Fµ,2λ+1

ROT , with Alice acting as sender and Bob as receiver. Let (t0, t1) denote
Alice’s output, and let d ∈ Z2λ+1

2 and t←
(
td[i][i]

)
i≤µ denote Bob’s output.

3. The players call Fµ,2λ+1

ROT , with Alice acting as receiver and Bob as sender. Let (u0,u1) denote
Bob’s output, and let e ∈ Z2λ+1

2 and u←
(
ue[i][i]

)
i≤µ denote Alice’s output.

Product-Sharing(n): Alice picks (x, a) ←R (Z2n−2
2)2, and Bob picks y ←R Z2n−1

2 . The players call
F 2n−2,1

OT on input (a[i], a[i] ⊕ x[i])i≤n for Alice and y for Bob. Let b denote Bob’s output. Alice
outputs (x, a) and Bob outputs (y, b).

Fig. 7: Preprocessing Protocol for Secure Comparison

Theorem 7. The protocol ΠSC securely implements FSC when calls to FSC-prep in ΠSC

are replaced by executions of ΠSC-prep in the (FROT,FOT)-hybrid model.

24

4.7 Efficiency Analysis

We estimate both the asymptotic complexity and the concrete efficiency of our protocols;
however, we focus only on the amortized setting here, which is more meaningful in most
applications. In all our numerical applications, we set the security parameter κ to 128.
We consider two protocols in our estimations: the protocol ΠSC described above, which
performs a doubly-logarithmic number of size reduction steps (log log `), and constant-
round variant of ΠSC where a constant number c of size reduction steps are performed,
and the final comparison is done with [KSS09].

Communication Complexity. For any integer t, let Πt
ET be the protocol ΠET for t-bit

inputs. The full protocol involves µ executions of Πλ
ET, Π

|µ+1|
ET , OT|µ+1|, 2µ executions of

OTλ+1, and a secure comparison on (λ + 1)-bit inputs. For small values `(κ) = o(κ2) of
`, this transmits O(κ`

log κ) bits. Asymptotically, when ` � κ2, an equality test transmits
O(κ2/ log κ) bits independently of the size of `, as the size of the strings to be compared
can be reduced to κ bits while statistically preserving their equality. In the constant-round
setting, this gives a O(c · log∗ κ)-round protocol, and in the logarithmic-round setting, set-
ting c = O(log log `/ log log κ), the round complexity becomes O(log log ` · log∗ κ/ log log κ).
This leads to protocols with respective asymptotic communication

O

(
c

(
` log κ

κ

) 1
c+1 κ2

log κ
+ `

)
= O(`), O

(
κ2 log `

log κ log log κ
+ `

)
= O(`).

Concrete Efficiency. We now estimate the efficiency of our secure comparison protocol,
in an amortized setting (using oblivious transfer extension). We use the equality test of the
previous section, with short-string correlated oblivious transfer extension [KK13,ALSZ13].
The results are given in Table 4; they correspond to the results obtained using the optimal
block-decomposition of the inputs. The notes in Table 4 indicate the optimal values of λi, µi
for each value of `. SC1 denotes the protocol obtained by recursively applying the reduction
protocol, until the inputs are small enough so that the small-string secure comparison
protocol becomes efficient. We set the thresholds of both the secure comparison protocol
and the equality-tests subprotocol to 4. If one is willing to reduce the round complexity of
the protocol at the cost of transmitting more bits, the threshold can be increased. SC2 and
SC3 denote the protocols obtained by performing a single reduction step, then using the
garbled circuit approach of [KSS09] for SC2, or the generic approach of [GSV07] for SC3,
to complete the protocol. These approaches are interesting only for ` > 16, as for ` ≤ 32,
the optimal values for λ are equal to 4 or less, hence applying the small-string equality test
directly is more efficient than using garbled circuits or generic 2PC. Note that as for equality
tests, the computational complexity of [KSS09,GSV07] and our protocols are proportional
to their communication, hence our constructions improve upon these protocols regarding
computation by factors similar to those listed in Table 4.

Acknowledgements. We would like to thank Thomas Schneider, for pointing out inac-
curacies in our cost estimations for the garbled circuit-based constructions of equality tests
and secure comparison.

References

ABZS13. M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele. Secure computation on floating point
numbers. In NDSS 2013, February 2013.

25

Table 4: Amortized communication of `-bit SC
SC1 SC2 SC3

` comm. rounds comm. round comm. round

Preprocessing Phase
4 1544 bits 2 rounds - -
81 3572 bits 2 rounds - -
162 8396 bits 2 rounds - -
323 15120 bits 3 rounds 12568 bits 3 rounds 12394 bits 6 round
644 31388 bits 3 rounds 28872 bits 3 rounds 28786 bits 7 round
1285 52121 bits 3 rounds 48031 bits 3 rounds 47963 bits 7 round

Online Phase
4 30 bits 2 rounds - -
8 162 bits 6 rounds - -
16 308 bits 6 rounds - -
32 530 bits 12 rounds 3125 bits 7 rounds 622 bits 9 rounds
64 1120 bits 12 rounds 4138 bits 7 rounds 1286 bits 10 rounds
128 2101 bits 12 rounds 5801 bits 7 rounds 2239 bits 10 rounds

[GSV07] [KSS09]

` comm. rounds comm. round

Preprocessing Phase
4 1264 bits 3 rounds 1032 bits 1 round
81 3002 bits 4 rounds 3088 bits 1 round
162 6636 bits 5 rounds 6176 bits 1 round
323 14062 bits 6 rounds 12352 bits 1 round
644 29072 bits 7 rounds 24704 bits 1 round
1285 59250 bits 8 rounds 49408 bits 1 round

Online Phase
4 96 bits 3 rounds 1540 bits 2 rounds
8 228 bits 4 rounds 3080 bits 2 rounds
16 504 bits 5 rounds 6160 bits 2 rounds
32 1068 bits 6 rounds 12320 bits 2 rounds
64 2208 bits 7 rounds 24640 bits 2 rounds
128 4500 bits 8 rounds 49280 bits 2 rounds

1 µ1 = 4, λ1 = 2
2 µ1 = 6, λ1 = 3 reduces the input size to ` = 5, then µ2 = 3, λ2 = 2
3 µ1 = 6, λ1 = 6 reduces the input size to ` = 7, then µ2 = 4, λ2 = 2
4 µ1 = 10, λ1 = 7 reduces the input size to ` = 8, then µ2 = 4, λ2 = 2
5 µ1 = 15, λ1 = 9 reduces the input size to ` = 10, then µ2 = 4, λ2 = 2

ACM+13. A. Aly, E. Cuvelier, S. Mawet, O. Pereira, and M. V. Vyve. Securely solving simple combinatorial
graph problems. In FC 2013, LNCS 7859, pages 239–257. Springer, April 2013.

AIKW13. B. Applebaum, Y. Ishai, E. Kushilevitz, and B. Waters. Encoding functions with constant
online rate or how to compress garbled circuits keys. In CRYPTO 2013, Part II, LNCS 8043,
pages 166–184. Springer, August 2013.

ALSZ13. G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious transfer and ex-
tensions for faster secure computation. In ACM CCS 13, pages 535–548. ACM Press, November
2013.

26

ARL+13. E. Ayday, J. L. Raisaro, M. Laren, P. Jack, J. Fellay, and J.-P. Hubaux. Privacy-preserving
computation of disease risk by using genomic, clinical, and environmental data. In Proceedings
of USENIX Security Workshop on Health Information Technologies (HealthTech" 13), number
EPFL-CONF-187118, 2013.

Bea96. D. Beaver. Correlated pseudorandomness and the complexity of private computations. In 28th
ACM STOC, pages 479–488. ACM Press, May 1996.

BK04. I. F. Blake and V. Kolesnikov. Strong conditional oblivious transfer and computing on intervals.
In ASIACRYPT 2004, LNCS 3329, pages 515–529. Springer, December 2004.

BLLP14. D. Bogdanov, P. Laud, S. Laur, and P. Pullonen. From input private to universally composable
secure multiparty computation primitives. Cryptology ePrint Archive, Report 2014/201, 2014.
http://eprint.iacr.org/2014/201.

BPTG14. R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine learning classification over encrypted
data. Cryptology ePrint Archive, Report 2014/331, 2014. http://eprint.iacr.org/2014/331.

BS15. M. Blanton and S. Saraph. Oblivious maximum bipartite matching size algorithm with appli-
cations to secure fingerprint identification. LNCS, pages 384–406. Springer, 2015.

Can01. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

CC15. W.-T. Chu and F.-C. Chang. A privacy-preserving bipartite graph matching framework for
multimedia analysis and retrieval. In Proceedings of the 5th ACM on International Conference
on Multimedia Retrieval, pages 243–250. ACM, 2015.

Cd10a. O. Catrina and S. de Hoogh. Improved primitives for secure multiparty integer computation.
In SCN 10, LNCS 6280, pages 182–199. Springer, September 2010.

Cd10b. O. Catrina and S. de Hoogh. Secure multiparty linear programming using fixed-point arithmetic.
In ESORICS 2010, LNCS 6345, pages 134–150. Springer, September 2010.

CDN01. R. Cramer, I. Damgård, and J. B. Nielsen. Multiparty computation from threshold homomor-
phic encryption. In EUROCRYPT 2001, LNCS 2045, pages 280–299. Springer, May 2001.

CKP07. R. Cramer, E. Kiltz, and C. Padró. A note on secure computation of the Moore-Penrose
pseudoinverse and its application to secure linear algebra. In CRYPTO 2007, LNCS 4622,
pages 613–630. Springer, August 2007.

CPP16. G. Couteau, T. Peters, and D. Pointcheval. Encryption switching protocols. to appear in the
proceedings of CRYPTO, 2016. http://eprint.iacr.org/2015/990.

DFK+06. I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft. Unconditionally secure constant-
rounds multi-party computation for equality, comparison, bits and exponentiation. In
TCC 2006, LNCS 3876, pages 285–304. Springer, March 2006.

DGK07. I. Damgård, M. Geisler, and M. Krøigaard. Efficient and secure comparison for on-line auctions.
In ACISP 07, LNCS 4586, pages 416–430. Springer, July 2007.

DGK09. I. Damgard, M. Geisler, and M. Kroigard. A correction to’efficient and secure comparison for
on-line auctions’. International Journal of Applied Cryptography, 1(4):323–324, 2009.

DJ01. I. Damgård and M. Jurik. A generalisation, a simplification and some applications of Paillier’s
probabilistic public-key system. In PKC 2001, LNCS 1992, pages 119–136. Springer, February
2001.

EGL82. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. In
CRYPTO’82, pages 205–210. Plenum Press, New York, USA, 1982.

EVTL12. Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk. Generating private recommendations effi-
ciently using homomorphic encryption and data packing. Information Forensics and Security,
IEEE Transactions on, 7(3):1053–1066, 2012.

GHJR15. C. Gentry, S. Halevi, C. S. Jutla, and M. Raykova. Private database access with HE-over-ORAM
architecture. In ACNS 15, LNCS, pages 172–191. Springer, 2015.

GMW87. O. Goldreich, S. Micali, and A. Wigderson. How to prove all NP-statements in zero-knowledge,
and a methodology of cryptographic protocol design. In CRYPTO’86, LNCS 263, pages 171–
185. Springer, August 1987.

Gol87. O. Goldreich. Towards a theory of software protection and simulation by oblivious RAMs. In
19th ACM STOC, pages 182–194. ACM Press, May 1987.

Goo10. M. T. Goodrich. Randomized shellsort: A simple oblivious sorting algorithm. In 21st SODA,
pages 1262–1277. ACM-SIAM, January 2010.

Goo14. M. T. Goodrich. Zig-zag sort: a simple deterministic data-oblivious sorting algorithm running
in O(n logn) time. In 46th ACM STOC, pages 684–693. ACM Press, 2014.

GSV07. J. A. Garay, B. Schoenmakers, and J. Villegas. Practical and secure solutions for integer
comparison. In PKC 2007, LNCS 4450, pages 330–342. Springer, April 2007.

HEK12. Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits better than
custom protocols? In NDSS 2012, February 2012.

27

http://eprint.iacr.org/2014/201
http://eprint.iacr.org/2014/331
http://eprint.iacr.org/2015/990

HICT14. K. Hamada, D. Ikarashi, K. Chida, and K. Takahashi. Oblivious radix sort: An efficient sorting
algorithm for practical secure multi-party computation. Cryptology ePrint Archive, Report
2014/121, 2014. http://eprint.iacr.org/2014/121.

HT14. C. Hazay and T. Toft. Computationally secure pattern matching in the presence of malicious
adversaries. Journal of Cryptology, 27(2):358–395, April 2014.

IKNP03. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In
CRYPTO 2003, LNCS 2729, pages 145–161. Springer, August 2003.

Kil88. J. Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages 20–31.
ACM Press, May 1988.

KK13. V. Kolesnikov and R. Kumaresan. Improved OT extension for transferring short secrets. In
CRYPTO 2013, Part II, LNCS 8043, pages 54–70. Springer, August 2013.

KS08. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and applications.
In ICALP 2008, Part II, LNCS 5126, pages 486–498. Springer, July 2008.

KSS09. V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Improved garbled circuit building blocks and
applications to auctions and computing minima. In CANS 09, LNCS 5888, pages 1–20. Springer,
December 2009.

Lau15. P. Laud. A private lookup protocol with low online complexity for secure multiparty computa-
tion. In ICICS 14, LNCS, pages 143–157. Springer, 2015.

LLY+16. P. Li, T. Li, Z.-A. Yao, C.-M. Tang, and J. Li. Privacy-preserving outsourcing of image feature
extraction in cloud computing. Soft Computing, pages 1–11, 2016.

LT13. H. Lipmaa and T. Toft. Secure equality and greater-than tests with sublinear online complexity.
In ICALP 2013, Part II, LNCS 7966, pages 645–656. Springer, July 2013.

NIIO14. T. Nishide, M. Iwamoto, A. Iwasaki, and K. Ohta. Secure (m+ 1) st-price auction with auto-
matic tie-break. In Trusted Systems, pages 422–437. Springer, 2014.

NO07. T. Nishide and K. Ohta. Multiparty computation for interval, equality, and comparison without
bit-decomposition protocol. In PKC 2007, LNCS 4450, pages 343–360. Springer, April 2007.

NP01. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In 12th SODA, pages 448–457.
ACM-SIAM, January 2001.

Pai99. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EURO-
CRYPT’99, LNCS 1592, pages 223–238. Springer, May 1999.

Rab81. M. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard
University,, 1981.

RPV+14. Y. Rahulamathavan, R. C.-W. Phan, S. Veluru, K. Cumanan, and M. Rajarajan. Privacy-
preserving multi-class support vector machine for outsourcing the data classification in cloud.
IEEE Transactions on Dependable and Secure Computing, 11(5):467–479, 2014.

SJB14. B. K. Samanthula, W. Jiang, and E. Bertino. Lightweight and secure two-party range queries
over outsourced encrypted databases. arXiv:1401.3768, 2014.

SSW10. A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-preserving face recognition.
In ICISC 09, LNCS 5984, pages 229–244. Springer, December 2010.

Tof09. T. Toft. Solving linear programs using multiparty computation. In FC 2009, LNCS 5628, pages
90–107. Springer, February 2009.

Tof11. T. Toft. Sub-linear, secure comparison with two non-colluding parties. In PKC 2011, LNCS
6571, pages 174–191. Springer, March 2011.

Veu12. T. Veugen. Improving the dgk comparison protocol. In Information Forensics and Security
(WIFS), 2012 IEEE International Workshop on, pages 49–54. IEEE, 2012.

WFNL15. D. J. Wu, T. Feng, M. Naehrig, and K. Lauter. Privately evaluating decision trees and random
forests. Cryptology ePrint Archive, Report 2015/386, 2015. http://eprint.iacr.org/2015/
386.

Yao86. A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages
162–167. IEEE Computer Society Press, October 1986.

YY12. C.-H. Yu and B.-Y. Yang. Probabilistically correct secure arithmetic computation for modular
conversion, zero test, comparison, MOD and exponentiation. In SCN 12, LNCS 7485, pages
426–444. Springer, September 2012.

ZRE15. S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole - reducing data transfer in
garbled circuits using half gates. LNCS, pages 220–250. Springer, 2015.

A Batch ET from Additively Homomorphic Encryption

In this section, we present a batch protocol to efficiently perform simultaneous equality
tests. Unlike the other protocols of this article, this construction assumes an additively

28

http://eprint.iacr.org/2014/121
http://eprint.iacr.org/2015/386
http://eprint.iacr.org/2015/386

homomorphic encryption scheme, with a few additional properties. Our protocol share
some similarities with the equality test protocol of [GHJR15] (which relies on ciphertext
packing to amortize the communication of equality tests), and in fact matches the com-
munication complexity of [GHJR15], which has to our knowledge the best communication
complexity among existing works. However, contrary to [GHJR15], we do not need some-
what homomorphic encryption; our protocol can be instantiated with e.g. factorization-
based additively homomorphic cryptosystems such as the Paillier scheme [Pai99] or the
Damgard-Jurik scheme [DJ01]. For concrete parameters, the amortized communication
strongly improves upon every prior ET protocol we know of, including the protocol de-
scribed Section 3.

A.1 Encryption Scheme

Definition 8. (Encryption Scheme) An IND-CPA encryption scheme is a tuple of algo-
rithms (Setup,Enc,Dec) such that:

– Setup(1κ) outputs a key-pair (pk, sk); pk implicitly defines a plaintext space M and a
ciphertext space C .

– Enc(pk,m), on input pk and a plaintext m ∈M , outputs a ciphertext c ∈ C .
– Dec(sk, c), on input sk and a ciphertext c ∈ C , deterministically outputs a plaintext
m′ ∈M .

In addition, an IND-CPA encryption scheme satisfies the properties of correctness and
IND-CPA security, defined below.

The correctness states that decryption is the reverse operation of encryption: for any
(pk, sk) ←R Setup(1κ), for any m ∈ M and any c ←R Enc(pk,m), Dec(sk, c) = m. The
IND-CPA security is defined by considering the following game between an adversary and
a challenger:

– The challenger picks (pk, sk)←R Setup(1κ) and sends pk to the adversary.
– The adversary sends (m0,m1)←R M 2 to the challenger.
– The challenger picks b←R {0, 1} and sends c←R Enc(pk,mb) to the challenger.
– The challenger outputs a guess b′ and wins the game if b′ = b.

An encryption scheme is IND-CPA secure if no polynomial-time adversary can win the game
with non-negligible advantage over the random guess.

Additively Homomorphic Encryption Scheme. An encryption scheme is additively ho-
momorpic if there is a law � : C 2 7→ C such that for any (m0,m1) ∈ M 2, for any
(c0, c1)←R (Enc(pk,m0),Enc(pk,m1)), Dec(sk, c0� c1) = m0+m1. Note that this trivially
implies than one can add a constant value to a ciphertext (by first encrypting it and then
using �); one can also see that via a square-and-multiply algorithm, given an encryption
of some m and an integer λ, one can compute an encryption of λm. We will denote • this
external multiplication.

Randomizable Encryption Scheme. A randomizable encryption scheme is an encryption
scheme with an additional algorithm Rand which, on input pk and an encryption of
some plaintext m, outputs a ciphertext taken uniformly at random in the distribution
{Enc(pk,m)} of encryptions of m.

29

Expendable Plaintext Space. In our protocol, we require the message space to be of the form
ZP , for some integer P = 2poly(κ). In addition the plaintext space must be expendable, in
the sense that one can specify a threshold T when calling Setup(1κ, T), so that the message
space M = ZP it specifies is of size P ≥ T . For example, for the Paillier encryption scheme
and its variants, this would simply correspond to taking the modulus bigger than T .

A.2 Batch Equality Test

We let (Setup,Enc,Dec) denote a randomizable additively homomorphic encryption scheme
with expendable plaintext space. Let n be the number of equality tests to be performed.
As there is no possible confusion, we write Enc(m) for Enc(pk,m).

Inputs: n pairs of `-bit strings (x(i), y(i))i≤n.
Outputs: n bits (bAi)i≤n for Alice, and n bits (bBi)i≤n for Bob, such that for all i ≤ n,

bAi ⊕ bBi = [x(i) ≤ y(i)].
Batch reduction: In this step, Alice and Bob rely on the additively homomorphic en-

cryption scheme to compute shares of the Hamming distances between each x(i), y(i),
modulo coprime integers pi.
– Let (p0, · · · pn−1) be the n smallest pairwise coprime numbers such that p0 > `; let
M ←

∏
i pi. Alice calls Setup(1

κ, 2κ+2|M |+2) and gets (pk, sk); pk implicitely defines
a plaintext space ZP of size P ≥ 2κ+2|M |+2. For j = 0 to `− 1, let xj ∈ ZM (resp.
yj) be the smallest integer satisfying xj = x(i)[j] mod pi (resp. yj = y(i)[j] mod pi)
for every i ≤ n− 1. Alice sends cj ←R Enc(xj) for j = 0 to `− 1 to Bob.

– For j = 0 to ` − 1, Bob picks rj ←R Z2κ+2M2 , computes and sends c′j ←R

Rand(pk, yj • cj � rj) to Alice, who decrypts all the ciphertexts to get some values
sj .

– For j = 0 to `− 1, Alice sets σj ← sj modM and Bob sets ρj ← rj modM . Note
that it holds that for all (i, j) ∈ [n− 1]× [`− 1],

2(ρj − σj) + x(i)[j] + y(i)[j] = x(i)[j]⊕ y(i)[j] mod pi

Hence, (−2σj +x(i)[j] mod pi) and (2ρi+ y
(i)[j] mod pi) form shares of the bits of

x(i) ⊕ y(i) modulo pi.
– Alice computes αi ←

∑`−1
j=0−2σj+x(i)[j] mod pi and Bob computes βi ←

∑`−1
j=0−2ρj+

y(i)[j] mod pi. Note that as pi > ` is greater than the Hamming distance Hd be-
tween x(i) and y(i), it holds that αi + βi = Hd(x

(i), y(i)), which is 0 if and only
if x(i) = y(i). Hence, seeing from now on αi and βi as integers, the problem was
reduced to finding whether αi = pi−βi, which are strings of size O(log ` log log `).

Reduced Equality Test: Alice and Bob perform n ET with respective input size |pi|, on
respective inputs (αi, pi − βi), to get the n outputs of the protocol.

Note that as for our protocol Section 3, this protocol can be executed on random inputs
in a preprocessing phase; the online phase is then essentially the same than our previous
ET protocol.

Intuition of the Protocol. The protocol exploits the following observation: given an index
j < `, computing shares of (x(i)[j]⊕ y(i)[j])i≤n (modulo various coprime numbers) can be
reduced to performing a single multiplication protocol moduloM =

∏
i pi. This protocol is

performed over the integers by using an additively homomorphic scheme of sufficiently large
plaintext space, the resulting shares masking statistically the result over the integer. The
players then get all the shares of the (x(i)[j]⊕ y(i)[j])i≤n by reducing there shares modulo

30

M and using the chinese remainder theorem on there shares. This reduces n equality tests
on `-bit strings to n equality tests on strings of sizes ranging from |p1 + 1| to |pn + 1|. As
this method does not allow to reduce further the size of the inputs, n OT-based equality
tests are then called in parallel on the reduced inputs.

Communication. The batch reduction involves 2` ciphertexts, hence a total of 2`|C |
bits. Under the extended Riemann hypothesis, the nth prime number larger than ` is of
size O(log(` + n log n)), hence M = O(n log(` + n log n)). Under this assumption, the n
reduced equality tests transmit O(nκ log(`+ n log n)/ log κ) bits.

Most additively homomorphic that satisfy our requirements have ciphertexts of size
O(k+ κ) for k-bit inputs with large enough k; taking this condition in account, the amor-
tized communication becomes O(` log κ+ κ) bits.

Table 5: Amortized communication of `-bit ET over n executions
Damgard-Jurik based ET ET of Section 3

n = 1000 n = 100

` length rounds length rounds length rounds

Preprocessing Phase
16 3339 bits 4 rounds 3183 bits 4 rounds 2945 bits 4 rounds
32 4199 bits 4 rounds 4568 bits 4 rounds 5212 bits 4 rounds
64 5913 bits 4 rounds 7275 bits 4 rounds 9863 bits 4 rounds
128 9342 bits 4 rounds 12670 bits 4 rounds 20194 bits 4 rounds

Online Phase
16 96 bits 3 rounds 81 bits 3 rounds 54 bits 3 rounds
32 129 bits 3 rounds 115 bits 3 rounds 88 bits 3 rounds
64 193 bits 3 rounds 181 bits 3 rounds 154 bits 3 rounds
128 321 bits 3 rounds 313 bits 3 rounds 300 bits 3 rounds

Concrete Efficiency. We now estimate the concrete efficiency of our protocol, and com-
pare it to our previous solution. We use the Damgard-Jurik generalization [DJ01] of the
Paillier encryption scheme, which enjoys better ciphertext over plaintext size ratio as the
size of the plaintext space increases. More precisely, the Damgard-Jurik cryptosystem for
an RSA modulus N is parametrized with an integer s, so that its plaintext space is ZNs ,
and its ciphertext space is ZNs+1 . We consider a 2048-bit RSA modulus, as recommended
by the NIST standard, and set arbitrarily the number n of parallel ETs to 100 and 1000
respectively. For the oblivious transfers, we use κ = 128.

For each value of ` in the table, s is taken to be the smallest integer such that s ·2048 ≥
2 logPn(`) + 129, where Pn(`) is the product of the smallest n pairwise coprime numbers,
starting with `+ 1. Each ciphertext is of size (s+ 1) · 2048. Table 5 indicates the average
number of bits transmitted per ET. The actual value of ` has very little influence on s;
in fact, s = 12 is the optimal parameters for all the values of ` that we consider (hence
the ciphertexts are of size 26624 bits). With those parameters, n ET on `-bit strings are
reduced to n ET on strings of bit-size 6 to 13 (as all the pi are different, the reduction
gives different bit-sizes); experimentally, it turns out that this improves over our OT-base
ET for ` > 16.

31

	New Protocols for Secure Equality Test and Comparison
	Introduction
	State of the Art for Secure Equality Test and Comparison
	Our Contribution
	Universal Composability
	Our Method
	Comparison with Existing Works
	Applications
	Organization
	Notations

	Oblivious Transfer
	Oblivious Transfer Extension

	Equality Test
	Proof of Theorem 1
	Implementing the Preprocessing Functionality
	Proof of Theorem 2
	Communication Complexity
	Concrete Efficiency

	Secure Comparison from Equality Test
	Proof of Lemma 3
	Main Protocol
	Proof of Theorem 5
	Compression Functionality
	Security Analysis of shrink
	Implementing the Preprocessing Functionality
	Efficiency Analysis

	Batch ET from Additively Homomorphic Encryption
	Encryption Scheme
	Batch Equality Test

