
Compactness vs Collusion Resistance in Functional Encryption∗

Baiyu Li† Daniele Micciancio‡

Abstract

We present two general constructions that can be used to combine any two functional encryption
(FE) schemes (supporting a bounded number of key queries) into a new functional encryption scheme
supporting a larger number of key queries. By using these constructions iteratively, we transform any
primitive FE scheme supporting a single functional key query (from a sufficiently general class of func-
tions) and has certain weak compactness properties to a collusion-resistant FE scheme with the same
or slightly weaker compactness properties. Together with previously known reductions, this shows that
the compact, weakly compact, collusion-resistant, and weakly collusion-resistant versions of FE are all
equivalent under polynomial time reductions. These are all FE variants known to imply the existence
of indistinguishability obfuscation, and were previously thought to offer slightly different avenues toward
the realization of obfuscation from general assumptions. Our results show that they are indeed all equiv-
alent, improving our understanding of the minimal assumptions on functional encryption required to
instantiate indistinguishability obfuscation.

1 Introduction

Indistinguishability obfuscation (iO), first formalized in [7] and further investigated in [25], is currently one
of the most intriguing notions on the cryptographic landscape, and it has attracted a tremendous amount of
attention in the last few years. Since Garg et al. [21] put forward a plausible candidate obfuscation algorithm,
iO has been successfully used to solve a wide range of complex cryptographic problems, including functional
encryption [21], deniable encryption [30], and much more (e.g., see [16, 8].) However, the problem of building
an obfuscator with a solid proof of security is still far from being solved. The multilinear-map problems
[20, 18, 22, 19] underlying most known candidate iO constructions [21, 11, 6, 5, 29, 23] have recently been
subject to attacks [15, 17], and basing iO on a solid, well-understood standard complexity assumption, has
rapidly emerged as perhaps the single most important open problem in the area of cryptographic obfuscation.

An alternative path towards the construction of iO from standard assumptions has recently been opened
by Bitansky and Vaikuntanathan [9] and Ananth and Jain [3], who independently showed that iO can be built
from any (subexponentially secure) public key functional encryption scheme satisfying certain compactness
requirements. While general constructions of compact functional encryption (for arbitrary functions) are
only known using iO, functional encryption is typically considered a weaker primitive than general iO, or,
at very least, a more manageable one, closer to what cryptographers know how to build. In fact, several
functional encryption schemes (for restricted, but still rather broad classes of functions) are known achieving
various notions of security [24, 14, 32, 2, 12]. We recall that a (public key) functional encryption scheme
[10, 28, 31, 1] is an encryption scheme with a special type of functional secret decryption keys skf (indexed
by functions f) such that encrypting a message m (using the public key) and then decrypting the resulting
ciphertext using skf produces the output of the function f(m), without revealing any other information
about the message. Parameters of interest in the study of functional encryption (in relation to obfuscation)

∗This work was sponsored in part by the Defense Advanced Research Projects Agency (DARPA) and the U.S. Army Research
Office under contract number W911NF-15-C-0226.
†University of California, San Diego, USA. E-mail: bal007@cs.ucsd.edu
‡University of California, San Diego, USA. E-mail: daniele@cs.ucsd.edu. Research supported in part by DARPA Safeware

grant, and NSF grant CNS-1528068.

1



are the time (or circuit) complexity of the encryption function tEnc and the number of functional keys skf
that can be released without compromising the security of the scheme. (See Section 2 for formal definitions
and details about security.) Ideally, we would like the encryption time tEnc to depend (polynomially) only
on the message size |m| (irrespective of the complexity of the functions f computed during decryption),
and the scheme support an arbitrary polynomial number q of functional decryption keys skf . Schemes
satisfying these two properties are usually called compact (when tEnc is independent of the size |f | of the
circuit computing the function), and collusion-resistant (when q can be an arbitrary polynomial).

The class of functions f supported by the scheme is also an important parameter, but for simplicity
here we will focus on schemes for which f can be any polynomial sized circuit. Interestingly, [24] gives a
functional encryption scheme (based on standard lattice assumptions) which supports arbitrary functions f .
However, the scheme allows to release only q = 1 decryption keys (i.e., it is not collusion resistant) and the
complexity of encryption depends polynomially on the output size and circuit depth of f (i.e., the scheme
is not compact.) It is easy to see that any number q of functional decryption keys can always be supported
simply by picking q independent public keys. But this makes the complexity of encryption grow linearly
with q. So, technically, the constraint that a scheme is collusion-resistant can be reformulated by requiring
that the complexity of encryption tEnc is independent of q. One can also consider weaker versions of both
compactness and collusion resistance where the complexity of encryption tEnc is required to be just sublinear
in |f | or q.

Using this terminology, the main result of [9, 3] states that any (weakly) compact (but not necessarily
collusion-resistant) functional encryption scheme can be used to build an iO obfuscator.1 In an effort to
further reduce (or better understand) the minimal assumptions on functional encryption required to imply
obfuscation, the full version of [9] also gives a polynomial reduction from weakly compact functional encryp-
tion to (non-compact) weakly collusion-resistant functional encryption. A similar polynomial reduction from
compact functional encryption to (non-compact) collusion-resistant functional encryption is also given in [4],
where it is suggested that non-compact functional encryption may be easier to achieve, and the reduction
is presented as a further step towards basing obfuscation on standard assumptions. In summary, the rela-
tion between these four variants of functional encryption (all known to imply iO by the results of [9, 3]) is
summarized by the solid arrows in the following diagram:

Weakly Compact Compact

Weak Collusion-Resistant Collusion-Resistant

where the horizontal implications are trivial (from stronger to weaker constraints on the tEnc) and the vertical
implications are from [9, 3].

1.1 Our results and techniques.

In this paper we further investigate the relation between these four variants of functional encryption, and
prove (among other things) the following result:

1The reduction incurs a loss in security that is exponential in the input size, which can be accounted for by assuming the
functional encryption scheme is exponentially hard to break.

2



Theorem 1. (Informal) There is a polynomial time reduction from collusion-resistant functional encryption
to weakly compact functional encryption.

This adds precisely the (dotted) diagonal arrow to the previous diagram, showing (by transitivity) that
all four variants are equivalent under polynomial time reductions. Technically, proving the above theorem
requires showing that any single key (q = 1) functional encryption scheme satisfying some weak compactness
requirement can be turned into a scheme supporting an arbitrary large polynomial number Q of functional
key queries. We do so in a modular way, analyzing two general constructions that can be used to combine
two arbitrary functional encryption schemes, which we call the SUM construction and the PRODUCT
construction.

• The SUM construction takes two functional encryption schemes FE1, FE2 supporting q1 and q2 func-
tional key queries, and combines them into a new scheme FE1 + FE2 supporting q1 + q2 key queries.

• The PRODUCT construction takes two functional encryption schemes FE1, FE2 supporting q1 and
q2 functional key queries, and combines them into a new scheme FE1 × FE2 supporting q1 · q2 key
queries.

The two constructions can be recursively combined in a number of different ways, exhibiting various effi-
ciency/security tradeoffs. For example, Theorem 1 corresponds to starting from a scheme FE1 supporting
a single key (q1 = 1), using the SUM construction FE2 = (FE1 + FE1) to support q2 = 2 keys, and then
iterating the PRODUCT construction (FE2 × · · · × FE2) precisely log(Q) times, where Q is the desired
number of key queries in the final scheme. (Here for simplicity Q is chosen in advance, but our operations
are flexible enough to design a scheme where Q is chosen dynamically by the adversary, and the public key
does not depend on Q.)

Another possible instantiation is given by repeatedly squaring the scheme FE2, i.e., defining FE4 =
FE2 × FE2, FE16 = FE4 × FE4, etc. The squaring operation is repeated log(log((Q)) times, to yield
a scheme supporting Q queries. (Again, we are assuming Q is fixed in advance for simplicity, and our
results are easily extended to dynamically chosen Q.) Interestingly (and perhaps surprisingly) this produces
a different scheme than the iterated product described before, offering different trade-offs. Specifically,
the iterated squaring scheme is no longer compact, and the complexity of encryption now depends on Q.
However, the dependence is pretty mild, just logarithmic log(Q), as opposed to linear O(Q) as in the trivial
construction. This mild dependence on Q results in much better security: while the security of the iterated
product construction degrades linearly with Q, the security of the iterated squaring construction degrades
only logarithmically in Q.

The methods used by the SUM and PRODUCT constructions are relatively standard: the SUM con-
struction is essentially a formalization and generalization of the trivial “repetition” construction to turn a
single-key scheme into one supporting q key queries by picking q public keys. The PRODUCT construction
is based on the same type of “chaining” techniques used in many bootstrapping theorems before this work.
The main technical novelty of this work is the general modular framework to combine the operations, and
the detailed analysis of the efficiency and security of the SUM and PRODUCT construction. We remark
that, even for the trivial construction, a detailed analysis is needed in order to evaluate the parameters
growth when the constructions are applied iteratively an arbitrary (non-constant) number of times. The
details of our SUM and PRODUCT constructions are also particularly simple: both constructions combine
the component FE schemes making a simple use of just a length doubling pseudorandom generator. Sim-
ilar constructions in the literature typically make use of more complex building blocks, like puncturable
pseudorandom function. We consider the simplicity of the constructions in this work as a positive feature.

1.2 Other related work

Our definition of a SUM and PRODUCT construction, and their combined use to build different schemes
exhibiting a variety of efficiency/security tradeoffs is somehow similar to the work [26], where sum and
product constructions are used to build forward secure signature schemes supporting an arbitrary number of

3



updates, starting from regular signatures (i.e., supporting no updates) and hash functions. However, beside
this high level similarity, we deal with completely different cryptographic primitives. The chaining technique
used in our product construction has been used many times before in previous bootstrapping theorems for
functional encryption, but it is most closely related to the work of [13] where chaining is used in a tree fashion
to achieve a hierarchical functional encryption scheme. Our composition approach can be easily adapted to
that setting to make the construction and analysis of [13] more modular.

2 Background

We first set up the notation and terminology used in our work.

2.1 Functional Encryption

For notational simplicity, we assume that all randomized algorithms (e.g., key generation and encryption
procedure of a cryptosystem) all use precisely κ bits of randomness, where κ is the security parameter. This is
without loss of generality, as κ bits of randomness can be used to generate polynomially many pseudorandom
bits using a pseudorandom generator.

We consider only public key functional encryption schemes in our work, so from now on we omit “public
key” and just say functional encryption. We use the following syntax for functional encryption schemes,
where R = {0, 1}κ.

Definition 1. A Functional Encryption scheme is specified by four sets M,R, I, F (the message, randomness,
index and function spaces) and four algorithms (PKey, Enc, Dec, Fun) where

• PKey(sk) = pk is a public key generation algorithm that on input a random secret key sk ∈ R, produces
a corresponding public key pk.

• Enc(pk ,m; r) = c is an encryption algorithm that on input a public key pk, message m ∈ M and
randomness r ∈ R, produces a ciphertext c

• Fun(sk , f, i) = fk is a functional key derivation algorithm that on input a secret key sk, a function
f ∈ F , and an index i, produces a functional decryption key fk associated to f .

• Dec(fk , c) = m′ is a decryption algorithm that on input a functional decryption key fk and ciphertext
c, outputs a plaintext message m′.

The scheme is correct if with overwhelming probability (over the choice of sk , r ∈ R), for any message
m ∈M , function f ∈ F and index i ∈ I, it holds that

Dec(Fun(sk , f, i),Enc(PKey(sk),m; r)) = f(m).

Our syntax for functional encryption schemes slightly differs from the standard one is two respects. First,
we identify the randomness used by the key generation procedure with the secret key of the scheme. This
is without loss of generality, but provides a more convenient definition for our constructions. The other is
that the functional key derivation algorithm Fun takes an index i as an additional parameter. The only
requirement on this index is that different calls to Fun(sk , ·, i) use different values of i. The role of i is simply
to put a bound on the number of calls to the key derivation algorithm. (In particular, the indexes i ∈ I
can be used in any order.) For example, a functional encryption scheme supporting the release of a single
functional key fk will have an index space I = {1} of size 1.

4



Security Since our work is primarily motivated by the application of FE to indistinguishability obfus-
cation [9, 3], we will use an indistinguishability security definition for FE, which is the most relevant one
in this context. We follow the indistinguishability security notions as defined in [10], expressed in the
functional/equational style of [27]. Security for functional encryption is defined by a game between a
challenger and an adversary. Both the challenger and the adversary are reactive programs, modeled by
monotone functions: the challenger is a function HFE((m0,m1), {fi}i∈I) = (pk , c, {fk i}i∈I) that receives
as input a pair of message (m0,m1) ∈ M2 and collection of function queries fi ∈ F , and outputs a
public key pk , ciphertext c and collection of functional keys fk i for i ∈ I. The adversary is a function
A(pk , c, {fk i}i∈I) = ((m0,m1), {fi}i∈I , b′) that on input a public key pk , ciphertext c and functional keys
{fk i}i∈I outputs a pair of messages (m0,m1), function queries {fi}i∈I and decision bit b′. We recall that,
as reactive programs, H and A can produce some outputs before receiving all the inputs. (Formally, each
of the input or output variable can take a special undefined value ⊥, subject to the natural monotonicity
requirements. See [27] for details.)

Security for an FE scheme FE is defined using the following challenger HFE
b , parameterized by a bit

b ∈ {0, 1}:

HFE
b ((m0,m1), {fi}i∈I) = (pk , c, {fk i}i∈I)
where sk ← R, r ← R

pk = PKey(sk)
c = Enc(pk ,mb; r)
For all i ∈ I:

if fk i = (fi(m0) = fi(m1) 6= ⊥) then Fun(sk , fi, i) else ⊥

By the notation x ← R we mean the operation of selecting an element uniformly at random from R.
Note that, if fi = ⊥ or mj = ⊥, then fi(mj) = ⊥. So, this challenger corresponds to a non-adaptive
security definition where the adversary cannot get any functional key before choosing the challenge messages
(m0,m1). On the other hand, the public key pk is computed (and given to the adversary) right away, so the
(distribution of the) messages (m0,m1) may depend on the value of the public key. Alternative definitions
can be obtained by setting

• pk = if ((m0,m1) 6= ⊥) then PKey(sk) else ⊥, which corresponds to the selective (i.e., fully non-
adaptive) attack where the adversary has to choose the messages before seeing the public key.

• fk i = Fun(sk , fi, i) and c = if (∀i.fi(m0) = fi(m1)) then Enc(pk ,mb; r) else ⊥, which corresponds to
allowing function queries (only) before choosing the messages (m0,m1).

All our results and constructions are easily adapted to all these different definitional variants, as well as fully
adaptive settings where message and function queries can be specified in any order, subject to the natural
non-triviality requirements.

A FE game ExpFE [HFE
(·),A] is defined by the following system of equations:

ExpFE [HFE
(·),A] = (b

?
= b′)

where b← {0, 1}
(pk , c, {fk i}i∈I) = HFE

b ((m0,m1), {fi}i∈I)
((m0,m1), {fi}i∈I , b′) = A(pk , c, {fk i}i∈I)

The output of the game can be obtained by finding the least fixed point of [HFE
b ,A], which describes the

output when the computation stabilizes. We say that the adversary A wins the game ExpFE [HFE
(·),A] if the

game outputs >, and we define the advantage of A in breaking the FE scheme FE as

AdvFE[A] =
∣∣∣2 Pr{ExpFE [HFE

(·),A] = >} − 1
∣∣∣ .

Alternatively, we can let the FE game be parameterized by b and output a bit b′:

5



[HFE
(b),A] = b′

where (pk , c, {fk i}i∈I) = HFE
b ((m0,m1), {fi}i∈I , b′)

((m0,m1), {fi}i∈I , b′) = A(pk , c, {fk i}i∈I)

Then the advantage of A in breaking the FE scheme FE can be defined as

AdvFE[A] =
∣∣Pr{[HFE

0 ,A] = 1} − Pr{[HFE
1 ,A] = 1}

∣∣ .
The two formulations are easily seen to be perfectly equivalent.

Definition 2. A functional encryption scheme FE is (q, ε)-non-adaptively (or selectively/adaptively) secure
if |I| = q and for any efficient adversary A there exists a negligible function ε(κ) such that the advantage of
A in the non-adaptive (or selective/adaptive) FE game is bounded by AdvFE[A] ≤ ε(κ).

When ε(κ) is negligible, for simplicity we sometimes omit it and just say a FE scheme is q-secure, where
q = |I| as in the definition above.

Efficiency For a FE scheme to be useful in the real world applications or in building other cryptographic
constructs, we need to measure its efficiency. Several notions have been considered in the literature, and
here we mention those that are used in our work. Let FE be a FE scheme with security parameter κ, and
let n be the length of messages to be encrypted. Then we say

• FE is compact2 if the running time tEnc of the encryption procedure Enc is polynomial in n and κ, and
it is independent of other parameters.

• FE is weakly compact3 if tEnc is sub-linear in |I| and the maximal circuit size s of functions in F , and
it is polynomial in n and κ.

• FE is ciphertext-succinct or simply succinct if tEnc is polynomials in n, κ, and the maximal circuit
depth d of functions in F .

• FE is weakly ciphertext-succinct or simply weakly succinct if tEnc is sub-linear in |I| but is polynomials
in n, κ, and d.

The notion of compact FE has been considered in [3, 4], and also in [9] under the name fully circuit
succinct. Here we choose the name “compact” to distinguish other variants of succinctness notions. It
was shown in [3, 9] that a 1-secure compact FE with sub-exponential security for all circuits implies an
indistinguishability obfuscation for all circuits.

Succinct FE scheme, a weaker notion, was considered in [24], where their definition was based on cipher-
text length. They constructed a succinct FE scheme based on standard sub-exponential lattice assumptions.
We note that, although our definition is stronger due to using the complexity of encryption, the [24] FE
scheme is still ciphertext-succinct with our definition.

Furthermore, one may naturally require a FE scheme to be secure even when a large number of functional
keys are released. We say a FE scheme is collusion-resistant if it is secure when |I| is any polynomial in κ.
When we also allow sub-linear dependence on |I|, the FE scheme is called weakly collusion-resistant.

2.2 Pseudorandom Generators

Our construction assumes the existence of pseudorandom generators that can stretch a short random seed to
a polynomially long pseudorandom bit-string. In the following we give its definition and some conventions
in using it.

2Also known as fully (circuit) succinct in [9].
3Also known as weakly (circuit) succinct in [9].

6



Definition 3. Let G : R → S be a deterministic function that can be computed in polynomial time. We
say that G is a µ(κ)-secure pseudorandom generator of stretch `(κ) if for all x ∈ R we have |G(x)| = `(|x|),
where `(κ) is a polynominal in κ, and for any efficient adversary A we have

AdvG[A] =
∣∣∣ Pr
s←S
{A(s) = 1} − Pr

r←R
{A(G(r)) = 1}

∣∣∣ ≤ µ(κ).

The quantity AdvG[A] is the advantage of A in breaking the PRG G.

We write G(r) to denote the output of a pseudorandom generator on input a (randomly chosen) seed r,
with the domain and range of G usually defined implicitly by the context. We write Gi(r) to denote a specific
part of the output, i.e., G(r) = G0(r)G1(r) . . .Gk(r), where the blocks Gi(r) usually have all the same length.
The assumption is that G(r) is computationally indistinguishable from a random string of length |G(r)|, i.e.,
G is µ-secure for some negligible function µ(κ).

3 The SUM construction

We describe a simple method to combine two functional encryption schemes FE0 and FE1 with index spaces
I0 and I1, into a new scheme FE = FE0 + FE1 with index space I = I0 + I1 = {(b, i) | b ∈ {0, 1}, i ∈ Ib}
given by the disjoint union of I0 and I1. Let FEb = (PKeyb,Encb,Decb,Funb) for b ∈ {0, 1}. Then, FE =
(PKey,Enc,Dec,Fun) is defined as

• PKey(sk) = (PKey0(G0(sk)),PKey1(G1(sk)))

• Enc((pk0, pk1),m; r) = (Enc0(pk0,m;G0(r)),Enc1(pk1,m;G1(r)))

• Dec((b, fk), (c0, c1)) = Decb(fk , cb)

• Fun(sk , f, (b, i)) = (b,Funb(Gb(sk), f, i))

for all sk , r ∈ R, m ∈M , b ∈ {0, 1} and i ∈ Ib. Informally, the SUM scheme works by generating two public
keys (one for each component scheme FEb), and encrypting each message under both public keys. When
applied to two copies of the same scheme FE0 = FE1, this doubles the size of the index space |I| = 2|Ib|
(allowing twice as many functional decryption keys,) but at the cost of doubling also the public key and
ciphertext size. The complexity of decryption and functional key generation stays essentially the same as
that of the component schemes (no doubling, only a small additive increase for multiplexing), as only one of
the two ciphertexts gets decrypted.

The correctness of the scheme is easily verified by substitution. Security (proved in the next theorem)
is not entirely trivial, as it requires a careful use of the pseudorandom generator, but it still follows by a
fairly standard hybrid argument. The construction preserves the non-adaptive/selective/adaptive security
properties. We prove the non-adaptive version, which can be easily adapted to the other models.

Theorem 2 (SUM construction). If FEi for i ∈ {0, 1} is a succinct (qi, εi)-non-adaptively secure FE scheme
for functions in the class F , with public key size `ki and ciphertext length `ci , and if G is a µ-secure pseudo-
random generator, then FE = FE0 +FE1 is a succinct (q0 + q1, ε0 + ε1 +4µ)-non-adaptively secure FE scheme
for F with public-key size `k0 + `k1 and ciphertext length `c0 + `c1.

Moreover, if the algorithms PKeyi,Deci,Funi and Enci of FEi run in time tPKeyi ,tDec
i ,tFuni and tEnci (n, κ, di),

respectively, where di is the maximum depth of functions in F , and if G runs in time tG, then the running
times of the algorithms in FE = FE0 + FE1 are:

• PKey: tPKey0 + tPKey1 + tG

• Enc : tEnc0 + tEnc1 + tG

• Dec : max{tDec
0 , tDec

1 }

7



• Fun : max{tFun0 , tFun1 }+ tG

Proof. We build 6 hybrids to reduce the security of the SUM construction FE0 + FE1 to the security of the

PRG G and the security of the FE schemes FE0 and FE1. We denote a hybrid by H(j)
b for b ∈ {0, 1} and an

index j. Like the challenger in a FE game, a hybrid is a monotone function H(j)
b ((m0,m1), {f(h,i)}(h,i)∈I) =

(pk , c, {fk (h,i)}(h,i)∈I), where I = I0 + I1.

H(0)
b : This hybrid is the same as the original challenger HFE

b in the FE game for the FE scheme FE0 +FE1.

For a fixed b ∈ {0, 1}, by expanding the SUM construction, we get the following definition of H(0)
b :

H(0)
b ((m0,m1), {f(h,i)}) = (pk , c, {fk (h,i)})
where sk ← R, r ← R

sk0 = G0(sk), sk1 = G1(sk)
pk0 = PKey0(sk0), pk1 = PKey1(sk1), pk = (pk0, pk1)
c0 = Enc0(pk0,mb;G0(r)), c1 = Enc1(pk1,mb;G1(r)), c = (c0, c1)
For all (h, i) ∈ I0 + I1:

fk (h,i) = if (f(h,i)(m0) = f(h,i)(m1) 6= ⊥) then (h,Funh(skh, f ; i))

H(1)
b : In this hybrid we replace the PRG outputs by truly random strings. So sk and r are no longer needed

and hence we remove them from the hybrid.

H(1)
b ((m0,m1), {f(h,i)}) = (pk , c, {fk (h,i)})
where sk0 ← R, sk1 ← R, r0, r1 ← R

pk0 = PKey0(sk0), pk1 = PKey1(sk1), pk = (pk0, pk1)
c0 = Enc0(pk0,mb; r0), c1 = Enc1(pk1,mb; r1), c = (c0, c1)
For all (h, i) ∈ I0 + I1:

fk (h,i) = if (f(h,i)(m0) = f(h,i)(m1) 6= ⊥) then (h,Funh(skh, f ; i))

Lemma 1. If G is a µ-secure pseudorandom generator, then for any b ∈ {0, 1} and adversary A we have

|Pr{[H(0)
b ,A] = 1} − Pr{[H(1)

b ,A] = 1}| ≤ 2µ(κ).

H(2)
b : In this hybrid the ciphertext c encrypts both m0 and m1:

H(2)
b ((m0,m1), {f(h,i)}) = (pk , c, {fk (h,i)})
where sk0 ← R, sk1 ← R, r0, r1 ← R,

pk0 = PKey0(sk0), pk1 = PKey1(sk1), pk = (pk0, pk1)
c0 = Enc0(pk0,m0; r0), c1 = Enc1(pk1,m1; r1), c = (c0, c1)
For all (h, i) ∈ I0 + I1:

fk (h,i) = if (f(h,i)(m0) = f(h,i)(m1) 6= ⊥) then (h,Funh(skh, f ; i))

Lemma 2. If FE1 is a (q1, ε1)-non-adaptively secure FE scheme, then for any adversary A we have |Pr{[H(1)
0 ,A] =

1} − Pr{[H(2)
0 ,A] = 1}| ≤ ε1(κ).

By symmetric argument, we can also obtain the following lemma.

Lemma 3. f FE0 is a (q0, ε0)-non-adaptively secure FE scheme, then for any adversary A we have |Pr{[H(1)
1 ,A] =

1} − Pr{[H(2)
1 ,A] = 1}| ≤ ε0(κ).

8



Finally, we observe that the last hybrid H(2)
b does not depend on the bit b, and therefore Pr{[H(2)

0 ,A] =

1} = Pr{[H(2)
1 ,A] = 1}. It follows by triangle inequality that the advantage of adversary A in breaking the

SUM FE scheme is at most AdvFE[A] = |Pr{[H(0)
0 ,A] = 1} − Pr{[H(0)

1 ,A] = 1}| ≤ 2µ + ε1 + 0 + ε0 + 2µ =
4µ+ ε0 + ε1.

4 The PRODUCT construction

We now define a different method to combine FE0 and FE1 into a new scheme FE = FE0 × FE1 with
index space I0 × I1 equal to the cartesian product of the index spaces I0, I1 of FE0 and FE1. Let FEb =
(PKeyb,Encb,Decb,Funb) for b ∈ {0, 1}. First, for each i ∈ I0, we define a “re-encryption” function ei[c, pk ] :
M ×R→M , parameterized by c ∈M and pk ∈ K:

ei[c, pk ](m, r̃) =

{
Gi(r̃)⊕ c if m = ⊥
Enc1(pk ,m;Gi(r̃)) otherwise

Then, FE = (PKey,Enc,Dec,Fun) is defined as follows:

• PKey(sk) = PKey0(G0(sk))

• Enc(pk ,m; r) = Enc0(pk , (m,G0(r));G1(r))

• Dec((fk0, fk1), c) = Dec1(fk1,Dec0(fk0, c))

• Fun(sk , f, (i, j)) = (fk i0, fk
i,j
1 ) where

sk0 = G0(sk)

sk i1 = Gi(G1(sk))

pk i1 = PKey1(sk i1)
ci = Gi(G2(sk))

fk i0 = Fun0(sk0, ei[ci, pk i1], i)

fk i,j1 = Fun1(sk i1, f, j)

The re-encryption function can work in two modes: in the regular mode where a message m is given, it
computes the FE1 ciphertext of m under a hard-wired public key pk with pseudo-randomness supplied by
a random seed from input; in the special mode where m is not given (denoted by the special symbol ⊥),
it pads a hard-wired ciphertext c with pseudo-randomness derived from the random seed from input. Note
that the special mode is never invoked in a real world execution of the scheme, but it is only used in security
proofs.

Let REFE be the class of functions that include ei[ci, pk i1](·, ·) defined using Enc of the FE scheme FE.
Then we state the security of our PRODUCT construction as follows. Again, the analysis can be easily
adapted to other (e.g., selective/adaptive) models.

Theorem 3 (PRODUCT construction). Assume FE0 and FE1 are succinct public-key FE which are (q0, ε0)-
and (q1, ε1)-non-adaptively secure for functions in the classes REFE0 and F respectively, whose key sizes are
`k0 and `k1 , ciphertext lengths `c0(n, κ, d0) and `c1(n, κ, d1), where n is the message length and d0, d1 are the
maximum depth of functions in REFE0

, F , respectively. Also assume G is a µ-secure pseudorandom generator.
Then FE0 × FE1 is a (q0q1, ε1 + 2ε0 + 12µ)-non-adaptively secure succinct public-key FE scheme for F with
public-key sizes `k0 + `k1 and ciphertext length `c0(n+ κ, κ, d0).

Moreover, for i ∈ {0, 1}, let tPKeyi ,tEnci ,tDec
i ,tFuni be the running times of algorithms PKeyi,Enci,Deci,Funi

of FEi, where tEnci = tEnci (n, κ, di), and let tG be the running time of G. Then the running times of FE are:

• PKey: tPKey0 + tG

9



• Enc : tEnc1 (n+ κ, κ, d0) + tG

• Dec : tDec
0 + tDec

1

• Fun : tPKey1 + tFun0 + tFun1 + 3tG

Proof. We build a series of hybrids to reduce the security of FE0 × FE1 to the security of the PRG and the

security of FE schemes FE0 and FE1. We denote our hybrids by H(h)
b for b ∈ {0, 1} and h an index. Let

I = I0×I1. A hybrid is a monotone functionH(h)
b ((m0,m1), {fi}i∈I) = (pk , c, {fk i}i∈I). An adversaryA wins

the game against H(h)
b if b′ = [H(h)

b ,A] = 1, and its advantage over H(h)
b is Adv[A]

(h)
b = Pr{[H(h)

b ,A] = 1}.

H(0)
b : This is the same as the original challenger HFE0×FE1

b in the FE game for the scheme FE0 × FE1. By

expanding the PRODUCT construction, we get the following definition of H(0)
b :

H(0)
b ((m0,m1), {f(i,j)}(i,j)∈I) = (pk , c, {fk (i,j)}(i,j)∈I)
where sk ← K, r ← R

sk0 = G0(sk), pk = PKey0(sk0)
c = Enc0(pk , (mb,G0(r));G1(r))
For all i ∈ I0, j ∈ I1:

fk i,j = if (fi,j(m0) = fi,j(m1) 6= ⊥) then (fk i0, fk
i,j
1 )

where sk i1 = Gi(G1(sk)), pk i1 = PKey1(ski1), ci = Gi(G2(sk))

fk i0 = Fun0(sk0, ei[ci, pk i1], i)

fk i,j1 = Fun1(sk i1, fi,j , j)

H(1)
b : In this hybrid some uses of the PRG G are replaced by truly random strings. In addition, sk is no

longer needed so we remove it from the hybrid.

H(1)
b ((m0,m1), {fi,j}(i,j)∈I) = (pk , c, {fk i,j}(i,j)∈I)
where sk0 ← K, r ← R

pk = PKey0(sk0)
r′ ← K, r′′ ← K, c = Enc0(pk , (mb, r

′); r′′)
For all i ∈ I0, j ∈ I1:

fk i,j = if (fi,j(m0) = fi,j(m1) 6= ⊥) then (fk i0, fk
i,j
1 )

where sk i1 ← K, pk i1 = PKey1(ski1), ci ← K

fk i0 = Fun0(sk0, ei[ci, pk i1], i)

fk i,j1 = Fun1(sk i1, fi,j , j)

Lemma 4. If G is a µ-secure pseudorandom generator, then for any b ∈ {0, 1} and any efficient adversary

A, we have |Adv[A]
(0)
b − Adv[A]

(1)
b | ≤ 4µ(κ).

H(2)
b : In this hybrid we slightly modify how ci is generated without changing its distribution.

10



H(1)
b ((m0,m1), {fi,j}(i,j)∈I) = (pk , c, {fk i,j}(i,j)∈I)
where sk0 ← K, r ← R

pk = PKey0(sk0)
r′ ← K, r′′ ← K, c = Enc0(pk , (mb, r

′); r′′)
For all i ∈ I0, j ∈ I1:

fk i,j = if (fi,j(m0) = fi,j(m1) 6= ⊥) then (fk i0, fk
i,j
1 )

where sk i1 ← K, pk i1 = PKey1(ski1)

si ← K, c̃i1 = Enc1(pk i1,mb;Gi(r
′)), ci = si ⊕ c̃i1

fk i0 = Fun0(sk0, ei[ci, pk i1], i)

fk i,j1 = Fun1(sk i1, fi,j , j)

Lemma 5. For any b ∈ {0, 1} and adversary A, we have Adv[A]
(1)
b = Adv[A]

(2)
b .

H(3)
b : In this hybrid we replace the truly random si with a pseudorandom string.

H(3)
b ((m0,m1), {fi,j}(i,j)∈I) = (pk , c, {fk i,j}(i,j)∈I)
where sk0 ← K, r ← R, s← K

pk = PKey0(sk0)
r′ ← K, r′′ ← K, c = Enc(pk ,mb; r) = Enc0(pk , (mb, r

′); r′′)
For all i ∈ I0, j ∈ I1:

fk i,j = if (fi,j(m0) = fi,j(m1) 6= ⊥) then (fk i0, fk
i,j
1 )

where sk i1 ← K, pk i1 = PKey1(ski1)

si = Gi(s), c̃
i
1 = Enc1(pk i1,mb;Gi(r

′)), ci = si ⊕ c̃i1
fk i0 = Fun0(sk0, ei[ci, pk i1], i)

fk i,j1 = Fun1(sk i1, fi,j , j)

Lemma 6. If G is a µ-secure pseudorandom generator, then for any b ∈ {0, 1} and adversary A, we have

|Adv[A]
(2)
b − Adv[A]

(3)
b | ≤ µ(κ).

H(4)
b : In this hybrid we modify c to encrypt (⊥, s) instead of (mb, r).

H(4)
b ((m0,m1), {fi,j}(i,j)∈I) = (pk , c, {fk i,j}(i,j)∈I)
where sk0 ← K, r ← R, s← K

pk = PKey0(sk0)
r′ ← K, r′′ ← K, c = Enc0(pk , (⊥, s); r′′)
For all i ∈ I0, j ∈ I1:

fk i,j = if (fi,j(m0) = fi,j(m1) 6= ⊥) then (fk i0, fk
i,j
1 )

where sk i1 ← K, pk i1 = PKey1(ski1)

si = Gi(s), c̃
i
1 = Enc1(pk i1,mb;Gi(r

′)), ci = si ⊕ c̃i1
fk i0 = Fun0(sk0, ei[ci, pk i1], i)

fk i,j1 = Fun1(sk i1, fi,j , j)

Lemma 7. If FE0 is a (q0, ε0)-non-adaptive secure FE scheme for functions in the class REFE0
, then for

any b ∈ {0, 1} and any efficient adversary A, we have |Adv[A]
(3)
b − Adv[A]

(4)
b | ≤ ε0(κ).

11



H(5)
b : Now we use fresh randomness to generate c̃i instead of sharing a pseudorandom string.

H(5)
b ((m0,m1), {fi,j}(i,j)∈I) = (pk , c, {fk i,j}(i,j)∈I)
where sk0 ← K, r ← R, s← K

pk = PKey0(sk0)
r′′ ← K, c = Enc0(pk , (⊥, s); r′′)
For all fi,j where i ∈ I0, j ∈ I1:

fk i,j = if (fi,j(m0) = fi,j(m1) 6= ⊥) then (fk i0, fk
i,j
1 )

where sk i1 ← K

pk i1 = PKey1(ski1)

si = Gi(s), ri ← K, c̃i1 = Enc1(pk i1,mb; ri), ci = si ⊕ c̃i1
fk i0 = Fun0(sk0, ei[ci, pk i1], i)

fk i,j1 = Fun1(sk i1, fi,j , j)

Lemma 8. If G is a µ-secure pseudorandom generator, then for any b ∈ {0, 1} and any adversary A we

have |Adv[A]
(4)
b − Adv[A]

(5)
b | ≤ µ(κ).

Lemma 9. If FE1 is a (q1, ε1)-non-adaptive secure FE scheme, then for any efficient adversary A we have

|Adv[A]
(5)
0 − Adv[A]

(5)
1 | ≤ ε1(κ).

Finally, by applying previous lemmas, we see that the advantage of any adversary A to the PRODUCT

scheme FE can be bounded by AdvFE[A] = |Pr{[H(0)
0 ,A] = 1} − Pr{[H(0)

1 ,A] = 1}| ≤ 2(4µ + 0 + µ + ε0 +
µ) + ε1 = ε1 + 2ε0 + 12µ.

5 Compositions using SUM and PRODUCT Constructions

SUM and PRODUCT constructions provide ways to build new FE schemes with larger function spaces. They
also have nice efficiency preserving properties. Using them as building blocks, we propose two composition
methods to define transformations from a FE scheme supporting only one functional key query to a new
FE scheme that supports any polynomially many functional key queries without losing much security and
efficiency guarantees.

Throughout this section, we assume FE0 is a (1, ε0)-secure FE scheme, where ε0(κ) is negligible, for
functions in a class F with some minimal efficiency guarantees, for example, succinct. FE0 can be either
selective-, non-adaptive-, or adaptive-secure, and our transformations preserve these security notions. We
also assume G is a µ-secure PRG, for negligible µ(κ). Let tPKey0 ,tEnc0 ,tDec

0 ,tFun0 be the running times of the four

algorithms in FE0, and let `k0 , `c0, `fk0 be the lengths of public key, ciphertext, and functional keys of FE0.
Since FE0 is succinct, tEnc0 = tEnc0 (n, κ, d) and `c0 = `c0(n, κ, d) are both polynomials in the message length n,
security parameter κ, and the maximal depth d of functions in F . Let tG be the running time of the PRG
G. Our main results are two reductions from collusion-resistant (weakly) compact FE schemes for F to FE0

assuming F meets some requirements (more details later.)

5.1 Iterated Squaring Composition

Our first transformation can be obtained by repeatedly squaring the previously composed FE scheme. At
the beginning, we use the SUM construction to obtain FE schemes supporting 2 functional key queries. Then
PRODUCT construction is used on the FE schemes of the previous iteration.

Formally, we can define the iterated squaring composition method by:

FE1 = FE0 + FE0, and for p ≥ 1,FEp+1 = FEp × FEp. (1)

12



So FE1 supports 2 functional queries, and for p ≥ 1, the FE scheme FEp+1 supports 22
p

functional queries.
For any polynomial Q(κ), when p ≥ log logQ, the FE scheme FEp+1 supports Q(κ) functional queries, and
its security and performance can be characterized as follows.

Security : The advantage of FEp+1 over any efficient adversary A is

AdvFEp+1
[A] = 2 · 3pε0 + 8 · 3pµ = logQ · ε0 + logQ · µ.

Running times and output lengths :

• PKey: 2tPKey0 + (p+ 1)tG = 2tPKey0 + log logQ · tG

• Enc : 2tEnc0 (n+ pκ, κ, d) + (p+ 1)tG = 2tEnc0 (n+ κ log logQ, κ, d) + log logQ · tG

• Dec : 2ptDec
0 = logQ · tDec

0

• Fun : 2(2p−1)tPKey0 +2ptFun0 +(
∑p
i=0(p+2− i)2i+2p+1−1)tG = 2 logQ · tPKey0 +logQ · tFun0 +6 logQ · tG

• `kp+1 = 2`k0

• `cp+1 = `c0(n+ pκ, κ, d) = `c0(n+ κ log logQ, κ, d)

• `fkp+1 = 2p`fk0 = logQ · `fk0

Clearly FEp+1 is a secure FE scheme, and the transformation incurs only logarithmic (in terms of Q)
security lost. Since FE0 is succinct, tEnc0 is a polynomial in n, κ, and d. So tEncp+1 can be bounded by
poly(logQ,n, κ, d) for some fixed polynomial poly, and hence FEp+1 is weakly succinct.

Besides, for the iterated squaring composition to be viable, we must be careful about the function classes
supported in each iteration of the composition. Let Fh be the class of functions supported by Funh of the
FE scheme FEh, for h ≥ 0. First we have F1 = F0. In the steps using PRODUCT construction on FEp to
derive FEp+1, a functional key fk = (fk0, fk1) for any function f consists of two keys under FEp: fk0 is for a

“re-encryption” function e
(p)
i [c, pk ](·, ·), and fk1 is for f . Hence for the composition to go through, FEp must

be capable of generating functional keys for these two classes of functions, namely

Fp+1 ∪ {e(p)i [c, pk ] | c ∈M, pk ∈ R} ⊆ Fp.

Recall from Section 4 that REFEp is the class containing e
(p)
i [c, pk ] for all c ∈ M, pk ∈ R. Let REpFE0

=
∪ph=1REFEh

. By expanding the above recursion, we see that to support function class Fp+1 the FE scheme
FE0 must be capable of functional keys for the functions in Fp+1 ∪ REpFE0

and the PRG G.

Theorem 4. Fix any polynomial Q(κ), and let p(κ) = ω(log logQ(κ)). Assume FE0 is a succinct (1, ε0)-
non-adaptive (or selective/adaptive) secure FE scheme for the function class F such that REpFE0

⊆ F and
G ∈ F , where ε0(κ) is some negligible function; and assume G is a secure PRG. Then FEp+1 defined in
Equation 1 is a weakly succinct (Q, ε)-non-adaptive (or selective/adaptive, respectively) secure FE scheme
for F , where ε(κ) is some negligible function.

5.2 Iterated Linear Composition

A drawback of the iterated squaring composition is that the base scheme FE0 must be capable of generating
functional keys for the re-encryption functions of all iteration steps. It is usually hard to check if this
condition holds for a concrete FE scheme. We now present another composition method that only requires
the base scheme is capable of functionals keys for its own encryption function.

The iterated linear composition is defined recursively by

FE1 = FE0 + FE0, and for p ≥ 1,FEp+1 = FE1 × FEp. (2)

13



Under this composition, FE1 supports 2 functional keys, and for p ≥ 1, FEp+1 supports 2p+1 functional keys.
For FEp to achieve Q(κ) functional keys, we need p ≥ logQ. Then it is straightforward to get the following
characteristics of FEp:

Security : The advantage of FEp over any efficient adversary is

AdvFEp [A] = (2p + 2)ε0 + (2p+2 + 2)µ = Qε0 +Qµ.

Running times and output lengths :

• PKey: 2tPKey0 + 2tG

• Enc : 2tEnc0 (n+ κ, κ, d) + 2tG

• Dec : ptDec
0 = logQ · tDec

0

• Fun : ptFun0 + 2(p− 1)tPKey0 + (6p− 5)tG = 2 logQ · tPKey0 + logQ · tFun0 + 6 logQ · tG

• `kp = 2`k0

• `cp = `c0(n+ κ, κ, d) = 2`c0(n+ κ, κ, d)

• `fkp = p`fk0 = logQ · `fk0

The FE scheme FEp is also secure, and this transformation incurs linear (in terms of Q) security lost.
This time, the running time of the encryption procedure no longer depends on Q, so FEp is fully succinct.

Again, for this composition method to be viable, we should consider the functions can be handled at each
iteration. Let Fh denote the function class supported by FEh, for h ≥ 0. As in the squaring composition,
we have F1 = F0. For h ≥ 1, to derive a functional key for any function f in FEh+1, the scheme FE1

must generate functional keys for the re-encryption function ei[pk , c], and FEh must be capable of generating
functional keys of f . This implies that

Fp ∪ {ei[pk , c] | pk ∈ R, c ∈M} ⊆ F0.

Since ei[pk , c](·, ·) can be easily built using basic operations on Enc1(pk , ·; ·) and G(·), it is sufficient to require
that FE0 can generate functional keys for these two classes of functions.

Theorem 5. Assume FE0 is a succinct (1, ε0)-non-adaptive (or selective/adaptive) secure FE scheme for
the class F of functions such that Enc0(pk , ·; ·),G(·) ∈ F for any pk ∈ R, where ε0(κ) is some negligible
function, and assume G is a secure PRG. Then, for any polynomial Q(κ), the FE scheme FEp defined in
Equation 2 for p = ω(logQ) is a succinct (Q, ε)-non-adaptive (or selective/adaptive, respectively) secure FE
scheme for F , for some negligible function ε(κ).

Comparing with the iterated squaring composition to support Q functional key queries, one can see that
the running times and key lengths of PKey and Fun are about the same, and the iterated linear composition
gives better encryption performance: Enc runs slightly faster and the ciphertext is shorter, as they are
independent of Q. The trade-off is that the security loss is worse with our linear composition: Although the
advantage against any efficient adversary is still negligible with linear composition, it grows linearly in Q
rather than in logQ as achieved with the iterated squaring composition.

14



5.3 On the implications of our reductions

So far we have obtained two transformations from a 1-secure succinct FE scheme to a (weakly) succinct
FE scheme that supports polynomially many functional key queries. In this subsection we explore the
implications of our reductions.

A (Q, ε)-secure FE scheme for F is called weakly collusion-succinct if tEnc grows sub-linearly in Q but
polynomially in n, κ, and the maximum circuit size of functions in F . If the sub-linear dependence on Q
is removed, then the FE scheme is called collusion-succinct. For succinct FE0, let us consider the following
two cases about the encryption time tEncp+1 of FEp+1 obtained by our transformations on FE0:

1. If FEp+1 is as in the iterated squaring composition, then p = ω(log logQ) and tEncp+1 = tEnc0 (n + κ ·
log logQ, κ, d) + log logQ · tG(κ). Clearly tEncp+1 is sub-linear in Q, and thus FEp+1 is weakly collusion-
succinct.

2. If FEp+1 is as in the iterated linear composition, then p = ω(logQ) and tEncp+1 = 2tEnc0 (n+κ, κ, d)+2tG(κ),
which is independent of Q. So FEp+1 is succinct (hence collusion-succinct).

Bitansky and Vaikuntanathan [9] described a reduction from any (weakly) compact Q-secure FE scheme
to a (weakly) collusion-succinct Q-secure FE scheme for the same class of functions. We note that, although
in [9] the notion of collusion-succinct was defined in terms of ciphertext length, their reduction still holds
with our encryption time based definition. By applying their reduction together with our transformations,
we get the following new reductions:

Theorem 6. For any polynomial Q(κ):

1. If there exists a succinct 1-secure FE scheme FE0 for a class F of functions such that REpFE0
⊆ F for

p = ω(log logQ) and that G ∈ F , then there exists a weakly compact FE scheme for F supporting Q(κ)
functional key queries;

2. If there exists a succinct 1-secure FE scheme FE0 for a class F of functions such that its encryption
function Enc0 satisfies Enc0(pk , ·; ·) ∈ F for any pk ∈ R and that G ∈ F , then there exists a compact
FE scheme for F supporting Q(κ) functional key queries.

Notice that a (weakly) compact FE scheme is necessarily (weakly) succinct. Our results show that
weakly compact (non-collusion-resistant) FE schemes (supporting a sufficiently general class of functions,)
imply collusion-resistant FE schemes. As shown in [9, 3], (non-compact) collusion-resistant FE schemes
imply compact FE schemes. So now we can see these variants as equivalent notions under polynomial time
reductions.

One may attempt to instantiate a compact collusion-resistant FE scheme using our transformations on
a succinct 1-secure FE scheme. Based on sub-exponential lattice assumption, Goldwasser et al. [24] showed
that, for any polynomial d(n), there exists a succinct 1-secure FE scheme for the class of functions with
1-bit output and depth d circuits. However, it is not clear how to efficiently “upgrade” this FE scheme
to be capable of generating a functional key of its own encryption function so that the assumptions of our
transformations can be met. This is not surprising because any instantiation would immediately give an
indistinguishability obfuscator. We find it very interesting to answer such question and we leave it for future
work.

References

[1] Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption: New perspectives and
lower bounds. In: CRYPTO. pp. 500–518 (2013)

[2] Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adaptive security in func-
tional encryption. In: CRYPTO. Lecture Notes in Computer Science, vol. 9216, pp. 657–677. Springer
(2015)

15



[3] Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In:
CRYPTO. Lecture Notes in Computer Science, vol. 9215, pp. 308–326. Springer (2015)

[4] Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation from functional encryption for simple
functions. IACR Cryptology ePrint Archive 2015, 730 (2015), http://eprint.iacr.org/2015/730

[5] Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded encoding. In: Theory
of Cryptography Conference, TCC. pp. 528–556 (2015)

[6] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation against algebraic attacks.
In: EUROCRYPT. pp. 221–238 (2014)

[7] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the
(im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012), prelim. version in CRYPTO 2001

[8] Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters, B.: Time-lock puzzles
from randomized encodings. In: Innovations in Theoretical Computer Science. pp. 345–356 (2016)

[9] Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. In:
Foundations of Computer Science, FOCS. pp. 171–190 (2015)

[10] Boneh, D., Sahai, A., Waters, B.: Functional encryption: a new vision for public-key cryptography.
Commun. ACM 55(11), 56–64 (2012)

[11] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding.
In: Theory of Cryptography Conference, TCC. pp. 1–25 (2014)

[12] Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key setting. In: Theory
of Cryptography Conference, TCC. Lecture Notes in Computer Science, vol. 9015, pp. 306–324. Springer
(2015)

[13] Brakerski, Z., Segev, G.: Hierarchical functional encryption. IACR Cryptology ePrint Archive 2015,
1011 (2015), http://eprint.iacr.org/2015/1011

[14] Chandran, N., Chase, M., Vaikuntanathan, V.: Functional re-encryption and collusion-resistant obfus-
cation. In: Theory of Cryptography Conference, TCC. Lecture Notes in Computer Science, vol. 7194,
pp. 404–421. Springer (2012)

[15] Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the
integers. In: EUROCRYPT. pp. 3–12 (2015)

[16] Chung, K., Lin, H., Pass, R.: Constant-round concurrent zero-knowledge from indistinguishability
obfuscation. In: CRYPTO. pp. 287–307 (2015)

[17] Coron, J., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M., Sahai, A., Tibouchi,
M.: Zeroizing without low-level zeroes: New MMAP attacks and their limitations. In: CRYPTO. pp.
247–266 (2015)

[18] Coron, J., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: CRYPTO. pp.
476–493 (2013)

[19] Coron, J., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. In: CRYPTO. pp.
267–286 (2015)

[20] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: EUROCRYPT. pp.
1–17 (2013)

16



[21] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability
obfuscation and functional encryption for all circuits. In: Foundations of Computer Science, FOCS. pp.
40–49 (2013)

[22] Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices. In: Theory of
Cryptography, TCC. pp. 498–527 (2015)

[23] Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation from the multilinear
subgroup elimination assumption. In: Foundations of Computer Science, FOCS. pp. 151–170 (2015)

[24] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits
and succinct functional encryption. In: Symposium on Theory of Computing Conference, STOC. pp.
555–564 (2013)

[25] Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. J. Cryptology 27(3), 480–505 (2014),
prelim. version in TCC 2007

[26] Malkin, T., Micciancio, D., Miner, S.K.: Efficient generic forward-secure signatures with an unbounded
number of time periods. In: EUROCRYPT. pp. 400–417 (2002)

[27] Micciancio, D., Tessaro, S.: An equational approach to secure multi-party computation. In: Innovations
in Theoretical Computer Science. pp. 355–372. ITCS ’13, ACM, New York, NY, USA (2013)

[28] O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint Archive 2010, 556
(2010), http://eprint.iacr.org/2010/556

[29] Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-secure multilinear
encodings. In: CRYPTO. pp. 500–517 (2014)

[30] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In:
Symposium on Theory of Computing, STOC. pp. 475–484 (2014)

[31] Waters, B.: Functional encryption: Origins and recent developments. In: Public-Key Cryptography -
PKC. pp. 51–54 (2013)

[32] Waters, B.: A punctured programming approach to adaptively secure functional encryption. In:
CRYPTO. Lecture Notes in Computer Science, vol. 9216, pp. 678–697. Springer (2015)

A Proofs of Lemmas

Suppose G : R→ S is a µ(κ)-secure PRG. Recall the following two well-known facts:

• The function G′(r1 · · · rm) = G(r1) · · ·G(rm) defined by concatenating m pseudorandom strings gener-
ated by G on r1, . . . , rm ∈ R is a mµ(κ)-secure pseudorandom generator.

• The function G′′(r) = G(Gi(r)), where |Gi(r)| = |r| = n, is a 2µ(κ)-secure pseudorandom generator.

We will use them to shorten our security proofs.

First we prove lemmas in Sections 3 that are used to establish security of the SUM constructions.

Lemma 1. If G is a µ-secure pseudorandom generator, then for any b ∈ {0, 1} and adversary A we have

|Pr{[H(0)
b ,A] = 1} − Pr{[H(1)

b ,A] = 1}| ≤ 2µ(κ).

Proof of Lemma 1. We define the following adversary B using A as an oracle to attack the PRG G, where

H(1)
b [sk0, sk1, r0, r1] is the hybrid obtained by replacing sk0, sk1, r0, r1 of H(1)

b by the given values. By the
notation sk0‖sk1‖r0‖r1 = x we mean to parse x as a concatenation of four bit-strings sk0, sk1, r0, r1 of
appropriate lengths.

17



B(x) = b′

where sk0‖sk1‖r0‖r1 = x

(pk , c, {fk (h,i)}i∈I) = H(1)
b [sk0, sk1, r0, r1]((m0,m1), {f(h,i)}i∈I)

((m0,m1), {f(h,i)}i∈I , b′) = A(pk , c, {fk (h,i)}i∈I)

Notice that if x is generated by the PRG G then B is running the system [H(0)
b ,A], and if x is uniformly

random then B is running [H(1)
b ,A]. Since in H(1)

b we replaced two calls to G with truly random seeds, we

have |Adv[A]
(0)
b − Adv[A]

(1)
b | = AdvG[BA] ≤ 2µ(κ).

Lemma 2. If FE1 is a (q1, ε1)-non-adaptively secure FE scheme, then for any adversary A we have |Pr{[H(1)
0 ,A] =

1} − Pr{[H(2)
0 ,A] = 1}| ≤ ε1(κ).

Proof of Lemma 2. We define the following adversary B using A as an oracle to attack the FE scheme FE1.

B(pk1, c1, {fk
(1,i)
1 }i∈I1) = ((m0,m1), {f(1,i)}i∈I1)

where (pk , c, {fk (h,i)}(h,i)∈I) = H(2)
0 [pk1, c1, {fk

(1,i)
1 }(h,i)∈I1 ]((m0,m1), {f(h,i)}(h,i)∈I)

((m0,m1), {f(h,i)}(h,i)∈I , b′) = A(pk , c, {fk (h,i)}(h,i)∈I)

Since A is a valid adversary to FE0 + FE1, we must have f(1,i)(m0) = f(1,i)(m1) for all i ∈ I1; and hence
B is valid for FE1. Notice that if the input c1 to B is an encryption of m0, i.e., c1 = Enc1(pk1,m0; r1)

for some random string r1 ∈ R, then B is running [H(1)
0 ,A]; if c1 = Enc1(pk1,m1; r1) for some r1 ∈ R,

then B is running [H(2)
0 ,A]. Hence the advantage of B in winning the FE game for the scheme FE1 is

AdvFE1
[B] = |Adv[A]

(1)
0 − Adv[A]

(2)
0 | ≤ ε1(κ).

Next we prove lemmas in Section 4 that are used to establish security of the PRODUCT constructions.
From now on, hybrids refer to those defined in Section 4.

Lemma 4. If G is a µ-secure pseudorandom generator, then for any b ∈ {0, 1} and any efficient adversary

A, we have |Adv[A]
(0)
b − Adv[A]

(1)
b | ≤ 4µ(κ).

Proof of Lemma 4. We build an adversary B using A as an oracle to attack the PRG G. Similar to

previous proofs, by H(1)
b [sk0, r

′, r′′, sk11, . . . , sk
q0
1 , c1, . . . , cq0 ] we mean the hybrid obtained by substituting

sk0, r
′, r′′, sk11, . . . , sk

q0
1 , c1, . . . , cq0 with the given values. The adversary B is defined as:

B(x) = b′

where sk0‖r′‖r′′‖sk1
1‖ · · · ‖sk

q0
1 ‖c1‖ · · · ‖cq0 = x

(pk , c, {fk i,j}(i,j)∈I) = H(1)
b [sk0, r

′, r′′, sk1
1, . . . , skq01 , c1, . . . , cq0 ]((m0,m1), {fi,j}(i,j)∈I)

((m0,m1), {fi,j}(i,j)∈I , b′) = A(pk , c, {fk i,j}(i,j)∈I)

Notice that if x is generated by four calls to G then B is running (H(0)
b | A), and if x is truly random

then B is running (H(1)
b | A). Since G is a µ-secure pseudorandom generator, we have

|Adv[A]
(0)
b − Adv[A]

(1)
b | = |Pr{B(x) = 1 | x = G(y) for some y} − Pr{B(x) = 1 | x← R}| ≤ 4µ(κ).

Lemma 5. For any b ∈ {0, 1} and adversary A, we have Adv[A]
(1)
b = Adv[A]

(2)
b .

Proof of Lemma 5. Since ci is sampled uniformly random from K in H(1)
b and ci = si ⊕ c′i in H(2)

b where si
is sampled uniformly random from K, the distributions of ci in the two experiments are identical. Therefore

Adv[A]
(1)
b = Adv[A]

(2)
b .

18



Lemma 6. If G is a µ-secure pseudorandom generator, then for any b ∈ {0, 1} and adversary A, we have

|Adv[A]
(2)
b − Adv[A]

(3)
b | ≤ µ(κ).

Proof of Lemma 6. We build an adversary B using A as an oracle to attack G:

B(x) = b′

where s1‖ · · · ‖sq0 = x

(pk , c, {fk i,j}(i,j)∈I) = H(1)
b [s1, . . . , sq0 ]((m0,m1), {fi,j}(i,j)∈I)

((m0,m1), {fi,j}(i,j)∈I , b′) = A(pk , c, {fk i,j}(i,j)∈I)

Notice that if x is chosen uniformly random then B is running (H(2)
b | A), and if x is generated by G then

B is running (H(3)
b | A). Thus we have

|Pr{B(x) = 1 | x← K} − Pr{B(x) = 1 | x = Gi(s) for some s ∈ K}| = |Adv[A]
(2)
b − Adv[A]

(3)
b |.

Since G is µ-secure, we get |Adv[A]
(2)
b − Adv[A]

(3)
b | ≤ µ(κ).

Lemma 7. If FE0 is a (q0, ε0)-non-adaptive secure FE scheme for functions in the class REFE0
, then for

any b ∈ {0, 1} and any efficient adversary A, we have |Adv[A]
(3)
b − Adv[A]

(4)
b | ≤ ε0(κ).

Proof of Lemma 7. We build an adversary B using A as an oracle to attack FE0. For b ∈ {0, 1}, we define B
as follows:

B(pk0, c0, {fk
i
0}i∈I0) = ((x0, x1), {ei[ci, pk i1]}i∈I0 , b′)

where pk = pk0, c = c0
r ← R, r′ ← K, s← K
x0 = (mb, r

′), x1 = (⊥, s)
For all i ∈ I0, j ∈ I1:

fk i,j = if (fi,j(m0) = fi,j(m1) 6= ⊥) then (fk i0, fk
i,j
1 )

where sk i1 ← K

pk i1 = PKey1(ski1)

si = Gi(s), c̃
i
1 = Enc1(pk i1,mb;Gi(r

′)), ci = si ⊕ c̃i1
fk i,j1 = Fun1(sk i1, fi,j , j)

((m0,m1), {fi,j}(i,j)∈I , b′) = A(pk , c, {fk i,j}(i,j)∈I)

We need to argue that B is a valid adversary for the FE game, that is, the functions ei[ci, pk i1] appear
in B’s queries satisfy ei[ci, pk i1](x0) = ei[ci, pk i1](x1) for all i ∈ I0. Since x0 = (mb, r

′) and x1 = (⊥, s), by
definition of ei[ci, pk i1] we have

ei[ci, pk i1](x0) = ei[ci, pk i1](mb, r
′) = Enc1(pk i1,mb;Gi(r

′)),

ei[ci, pk i1](x1) = ei[ci, pk i1](⊥, s) = Gi(s)⊕ ci = Enc1(pk i1,mb;Gi(r
′)).

So indeed ei[ci, pk i1](x0) = ei[ci, pk i1](x1).
Notice that if the input ciphertext c0 is an encryption of m0, i.e., c0 = Enc0(pk0, (mb, r

′); r′′) for some

random string r′′, then B is running (H(3)
b |A), and if c0 = Enc0(pk0, (⊥, s); r′′) then B is running (H(4)

b |A).
Thus the advantage of B in the FE game is

|2 Pr{b′0 = b0} − 1| = |Pr{b′0 = 0 | b0 = 0}+ Pr{b′0 = 1 | b0 = 1} − 1|
= |Pr{b′ = 1 | b0 = 0} − Pr{b′ = 1 | b0 = 1}|,

where Pr{b′ = 1 | b0 = 0} = Adv[A]
(3)
b and Pr{b′ = 1 | b0 = 1} = Adv[A]

(4)
b . Since FE0 is (q0, ε0)-non-

adaptively secure, we have that |Adv[A]
(3)
b − Adv[A]

(4)
b | ≤ ε0(κ).

19



Lemma 8. If G is a µ-secure pseudorandom generator, then for any b ∈ {0, 1} and any adversary A we

have |Adv[A]
(4)
b − Adv[A]

(5)
b | ≤ µ(κ).

Proof of Lemma 8. We build an adversary B to attack G using A as an oracle.

B(x) = b′

where r1‖ · · · ‖rq0 = x

(pk , c, {fk i,j}(i,j)∈I) = H(1)
b [r1, . . . , rq0 ]((m0,m1), {fi,j}(i,j)∈I)

((m0,m1), {fi,j}(i,j)∈I , b′) = A(pk , c, {fk i,j}(i,j)∈I)

Notice that if x is truly random then B is running (H(4)
b | A), and if x is generated by G then B is running

(H(5)
b | A). So we have

Pr{B(x) = 1 | x← R} − Pr{B(x) = 1 | x = G(y) for some y} = |Adv[A]
(4)
b − Adv[A]

(5)
b |.

Since G is µ-secure, |Adv[A]
(4)
b − Adv[A]

(5)
b | ≤ µ(κ).

Lemma 9. If FE1 is a (q1, ε1)-non-adaptive secure FE scheme, then for any efficient adversary A we have

|Adv[A]
(5)
0 − Adv[A]

(5)
1 | ≤ ε1(κ).

Proof of Lemma 9. We build an adversary B to attack the FE scheme FE1 using A as an oracle. Let I0 = {0}
be a singleton set. Then B is defined as:

B(pk1, c1, {fk
0,j
1 }j∈I1) = ((m0,m1), {f0,j}j∈I1 , b′)

where pk0
1 = pk1, c̃01 = c1

(pk , c, {fk i,j}(i,j)∈I) = H(5)
b [pk0

1, c̃
0
1]((m0,m1), {fi,j}(i,j)∈I)

((m0,m1), {fi,j}(i,j)∈I , b′) = A(pk , c, {fk i,j}(i,j)∈I)

Notice that if c1 = Enc1(pk1,m0; r̃) for some randomness r̃ then B is running (H(5)
0 | A), and if c1 =

Enc1(pk1,m1; r̃) then B is running (H(5)
1 | A). So the advantage of B in winning the FE game for the FE1

scheme is |Adv[A]
(5)
0 − Adv[A]

(5)
1 |. Since FE1 is (q1, ε1)-non-adaptively secure, we have that |Adv[A]

(5)
0 −

Adv[A]
(5)
1 | ≤ ε1(κ).

20


