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Abstract

We initiate the study of multi-user (mu) security of authenticated encryption (AE) schemes as
a way to rigorously formulate, and answer, questions about the “randomized nonce” mechanism
proposed for the use of the AE scheme GCM in TLS 1.3. We (1) Give definitions of mu ind
(indistinguishability) and mu kr (key recovery) security for AE (2) Characterize the intent of
nonce randomization as being improved mu security as a defense against mass surveillance (3)
Cast the method as a (new) AE scheme RGCM (4) Analyze and compare the mu security of
both GCM and RGCM in the model where the underlying block cipher is ideal, showing that
the mu security of the latter is indeed superior in many practical contexts to that of the former,
and (5) Propose an alternative AE scheme XGCM having the same efficiency as RGCM but
better mu security and a more simple and modular design.
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1 Introduction

Traditionally, security definitions were single-user, meaning there was a single target key. Consid-
eration of the multi-user setting began with public-key encryption [3]. In this setting, there are
many users, each with their own key, and the target is to violate security under some key. This
is, first, simply more realistic, reflecting real usage, but is now even more relevant from the mass-
surveillance perspective. This paper initiates a study of the multi-user security of authenticated
encryption. Our motivation comes from TLS 1.3.

AE. The form of authenticated encryption (AE) we consider is nonce-based [28]. The encryption
algorithm AE.Enc takes key K , nonce N , message M and header H to deterministically return a
ciphertext C ← AE.Enc(K , N,M,H). The requirement formalized in [28] is to provide privacy of
M , and authenticity of both M and H, as long as a nonce is not re-used. The formalization refers
to only one target key, meaning is in the single user (su) setting.

There are many AE schemes (provably) meeting this security requirement. One simple way
to obtain them is via generic composition of privacy-only encryption schemes with MACs [5, 26].
There are also dedicated schemes such as OCB [31, 29, 22], CCM [11] and GCM [24, 12]. The last,
with AES, is used in TLS 1.3.

Multi-User Security of AE. We formalize multi-user (mu) security of an authenticated-
encryption scheme AE. The game picks an adversary-determined number u of independent target
keys K1, . . . ,Ku. The adversary gets an encryption oracle that takes an index i ∈ [1..u], a message,
nonce and header, and returns either an encryption of these under Ki or a random string of the
same length. It also gets a verification oracle that takes i, a ciphertext, nonce and header, and
indicates whether or not decryption is valid. Security is required as long as the adversary does not
re-use a nonce for a particular user. That is, it is fine to obtain encryptions under the same nonce
for different keys, just not under the same key. When u = 1, we get a definition equivalent to (but
formulated slightly differently from) the (single-user) definition of [28].

Besides this usual goal (which we call indistinguishability), we also formalize a mu key-recovery
goal. Again the game picks target keys K1, . . . ,Ku and gives the adversary an encryption oracle.
This time time the latter is always true, meaning it takes an index i ∈ [1..u], a message, nonce and
header, and returns an encryption of these under Ki. The adversary also gets a verification oracle,
and, to win, must find one of the target keys. A key-recovery attack is much more damaging than
a distinguishing attack, and is the threat of greatest concern to practioners. Key recovery security
is usually dismissed by theoreticians as being implied by indistinguishability, but this view misses
the fact that the quantitative security of a scheme, in terms of bounds on adversary advantage,
can be very different for the two metrics, making it worthwhile to consider key recovery security
separately and additionally.

We give our definitions in the ideal-cipher model. (Standard-model definitions follow because
this is just the special case where scheme algorithms and adversaries make no queries to the ideal
cipher.) For all the schemes we consider, the assumption that the underlying blockcipher is a PRP
suffices to prove security. The reason we use the ideal-cipher model is that adversary queries to the
ideal cipher give a clear and rigorous way to measure the offline computation being performed in
an attack. Also in some cases we get better bounds.

Multi-user security is not qualitatively different from single-user security. A hybrid argument
shows that the latter implies the former. But the two could be quantitatively quite different, and
this has important practical implications. In the hybrid reduction, there is a loss of a factor u in
adversary advantage. Thus, the mu advantage of an adversary could be as much as u times its su
advantage. This is the worst case. But it could be a lot less, degrading much more slowly with u.
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This would be better.

AE in TLS 1.3. As the protocol underlying https, TLS is the basis for secure communication on
the Internet, used millions of times a day. The existing versions up to TLS 1.2 have however been
subject to many attacks. The effort to create a new and (hopefully) better version, TLS 1.3, is
currently underway. TLS (of whatever version) begins with a handshake. This is an authenticated
key exchange that establishes a shared session key, called the traffic secret, between client and server.
This step will not be our concern. After the handshake, data is authenticated and encrypted within
the so-called record layer, using an authenticated encryption scheme AE that is keyed by a key K
derived from the traffic secret. The currently proposed choice of AE is AES-GCM.

The most natural way to use AE in the record layer is directly, meaning the data message M is
simply encrypted via C ← AE.Enc(K , N,M,H), where N is a nonce (in TLS 1.3 this is a sequence
number that is known to the receiver) and H is the header. This is not what TLS 1.3 proposes.
Instead, they randomize the nonce, computing C ← AE.Enc(K , N⊕L,M,H), where the randomizer
L is also derived from the traffic secret. (It is thus known to the receiver, enabling decryption.)
Why do this? Brian Smith gave the following motivation on the TLS 1.3 mailing list [33]:

... massively parallel attacks on many keys at once seem like the most promising way to break

AES-128. It seems bad to have popular endpoints encrypting the same plaintext block with

the same nonce with different keys. That seems like exactly the recipe for making such attacks

succeed. It seems like it would be better, instead, to require that the initial nonces to be

calculated from the key block established during key agreement ... This ... should prevent any

such massively-parallel attack from working.

In this paper, we aim to understand and formalize the threat alluded to here, and then assess
to what extent one can prove that nonce-randomization guarantees security. In particular, we
suggest that the formal cryptographic goal underlying nonce randomization and Smith’s comment
is improved multi-user security. In our model, the “massively parallel attack” is a key-search attack
that finds the GCM key of some user out of u target users —here we are referring to the basic GCM
scheme, in the absence of nonce randomization— in time 2κ/u where κ is the key length of the
underlying block cipher, κ = 128 for AES. The attack picks some N,M,H and for each i ∈ [1..u]
obtains from its encryption oracle the encryption Ci of these quantities under Ki. Now, it goes
through all possible κ-bit keys L, for each computing CL ← AE.Enc(L,N,M,H), and returning
L if CL = Ci for some i. Note that the attack needs a single computation of AE.Enc for each L,
not one per user, which is why the running time is 2κ/u. Given NSA computing capabilities, the
fear of the TLS 1.3 designers is that this attack may be feasible for them for large u, and thus a
mass-surveillance threat. Nonce randomization is a candidate way to circumvent the attack. The
question this raises is whether nonce randomization works. To answer this in a rigorous way, we
abstract out a (new) AE scheme and then use our definitions of mu security.

RGCM. In TLS 1.3, nonce randomization is viewed as a way to use GCM in the record layer. We
take a different perspective. We view the method as defining a new AE scheme that we call RGCM.
In this scheme, the randomizer is part of the key. This view is appropriate because the randomizer
was derived from the traffic secret just like the base key, and has the security necessary to be used
as a key, and the randomizer is also static across the session, just like the base key. While GCM has
a key whose length is the key length κ of the underlying block cipher (κ = 128 for AES), RGCM
has a key of length κ + ν, where ν is the length of the randomizer (ν = 96 for GCM in TLS 1.3).
Nonces are assumed to also have length ν so that xoring the nonce with the randomizer makes
sense.
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Scheme Key length kr security bound

GCM/CAU κ
u(p+ 1)

2κ

RGCM/RCAU κ+ ν
pi + u

2κ
+
upm

2κ+ν
+ . . .

XGCM/XCAU κ+ λ
u

2κ
+

upm

2κ+λ+1

Table 1: Comparison between the schemes, where λ is the block length of the block cipher, ν is the
nonce length, u is the number of users, p is the number of adversary block cipher evaluations (pi
the number of inversion queries), and m is the number of bits encrypted in total, i.e., the sum of
the lengths of all messages in the queries.

Results. With this perspective, we are looking at two AE schemes, GCM and RGCM. We can now
divorce ourselves of TLS details and analyze them as AE schemes to determine the quantitative mu
security of both. The number p of adversary queries to the ideal cipher is the central parameter,
capturing the offline computational effort of the adversary. As before u is the number of users, and
we let m denote the total number of bits encrypted, meaning the sum of the lengths of all messages
in queries.

Let us first discuss mu security under key recovery. Roughly, we show that key recovery for
GCM needs p = 2κ/u while for RGCM, in the case of passive attacks, where the adversary does
not query its verification oracle, it needs p = 2κ+ν/um. We expect m to be quite a bit less than 2ν

—in the current schemes, ν = 96— so the effort to recover a key is significantly higher for RGCM
than for GCM. This says that nonce randomization works, meaning it does increase mu security as
targeted by the TLS 1.3 designers, at least for key recovery.

For mu-ind security, our bounds are complex, and interesting terms get swamped by collision
terms. We stress that the bounds here may not be tight, so the picture we are seeing could reflect
limitations of our analysis techniques rather than the inherent security of the schemes. Obtaining
better (and ideally tight) bounds is an interesting open question.

XGCM. Even if under some metrics superior to GCM, RGCM performs considerably worse than
expected from an AE with key length κ+ν, and the natural question is, why not use some standard
scheme or construction paradigm rather than “roll your own” with RGCM? The most obvious choice
is AES256-GCM. Our analysis of GCM shows that AES256-GCM has good enough mu security,
simply due to the larger key size. However, AES256-GCM is slower than AES-RGCM, and a scheme
using AES itself would be preferable. We suggest and analyze XGCM, derived simply as GCM
with the blockcipher E: {0, 1}κ × {0, 1}λ → {0, 1}λ replaced by EX: {0, 1}κ+λ × {0, 1}λ → {0, 1}λ,
defined by EX(K‖L,X) = L⊕E(K,L⊕X). This transform of a blockcipher uses the Even-Mansour
technique [13]. It was suggested by Rivest as a key-extension method for DES and first analyzed
by Kilian and Rogaway [19]. Our analysis implies that, with AES parameters, the mu security of
XGCM is better than that of RGCM. Its performance is however essentially the same as that of
GCM or RGCM. While it would be a viable alternative for AES-RGCM in TLS 1.3, it does require
non-black-box changes to the implementation of AES-GCM, whereas for AES-RGCM the change
is only the randomization of the nonce input. A comparison between all three discussed schemes
is given in Table 1.

Related Work. GCM was proposed by McGrew and Viega (MV) [24] and standardized by NIST
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as [12]. MV [24] prove single-user security assuming PRP-security of the underlying blockcipher.
While the original scheme allows variable-length nonces [24], IOM [18] showed that the security
proof of MV was flawed in this case and the claimed security bounds did not hold. They provide a
corrected proof, which was later improved by NOMI [27]. In this paper we only consider fixed-length
nonces. We prove security in the mu setting in the ideal cipher model.

Key-recovery security of symmetric encryption schemes was defined in [30] for the single-user,
privacy-only setting. We extend their definition to the mu, authenticated encryption setting.

BMMRT [1] and FGMP [14] analyze the record layer of TLS 1.3 relative to the goal of providing
a secure channel, under an appropriate formalization of the latter. These works assume that AES-
GCM is a secure AE scheme. Our work is not attempting to analyze the record layer. It is analyzing
the security of GCM and RGCM as stand-alone AE schemes, with emphasis on their mu security.

We are seeing increased interest in multi-user security, further reflected in this paper. BCK [4]
considered mu security for PRFs as an intermediate step in the analysis of the cascade construction.
Multi-user security of PRFs and PRPs (blockciphers) has been further considered in [25, 34, 2]. The
first work that highlighted mu security as a goal and targeted quantitative security improvements
seems to have been BBM [3], the primitive here being public-key encryption. Multi-user security
for signatures was considered by GMS [16] and has been the subject of renewed interest in [20, 8].
Further works involving multi-user security include [9, 10, 17], and, in the cryptanalytic context,
[15].

2 Preliminaries

We let ε denote the empty string. If Z is a string then |Z| denotes its length and Z[1..i] denotes
bits 1 through i of Z. If X is a finite set, we let x←$ X denote picking an element of X uniformly at
random and assigning it to x. Algorithms may be randomized unless otherwise indicated. Running
time is worst case. If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A with random
coins r on inputs x1, . . . and assigning the output to y. We let y←$A(x1, . . .) be the result of
picking r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all possible
outputs of A when invoked with inputs x1, . . ..

We use the code-based game-playing framework of BR [6]. (See Fig. 1 for an example.) By
Pr[G] we denote the probability that the execution of game G results in the game returning true. In
games, integer variables, set variables and boolean variables are assumed initialized, respectively,
to 0, the empty set, and false.

A family of functions F: F.Keys× F.Dom→ F.Rng is a two-argument function that takes a key
K in the key space F.Keys, an input x in the domain F.Dom and returns an output F(K,x) in the
range F.Rng. In the ROM, F takes an oracle RO. We say F has key length F.kl if F.Keys = {0, 1}F.kl;
output length F.ol if F.Rng = {0, 1}F.ol; and input length F.il if F.Dom = {0, 1}F.il.

We say that F: {0, 1}F.kl×{0, 1}F.il → {0, 1}F.ol is a block cipher if F.il = F.ol and F(K, ·): {0, 1}F.il →
{0, 1}F.ol is a permutation for each K in {0, 1}F.kl. We denote by F−1(K, ·) the inverse of F(K, ·).

Let H: H.Keys× ({0, 1}∗ × {0, 1}∗)→ {0, 1}H.ol be a family of functions with domain H.Dom =
{0, 1}∗ × {0, 1}∗. Let ε: N × N → [0, 1] be a function. Somewhat extending [21], we say that H is
ε-almost XOR-universal if for all distinct (M1, H1), (M2, H2) ∈ H.Dom and all s ∈ {0, 1}H.ol, we
have

Pr[H(hk, (M1, H1))⊕ H(hk, (M2, H2)) = s : hk←$ H.Keys]

≤ ε(max(|M1|, |M2|),max(|H1|, |H2|)) .
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Game Gmu-ind
AE (A)

b←$ {0, 1} ; b′←$ANew,Enc,Vf,E,E−1

Return (b′ = b)

New()

v ← v + 1 ; Kv←$ {0, 1}AE.kl

Enc(i,N,M,H)

If not (1 ≤ i ≤ v) then return ⊥
If ((i,N) ∈ U) then return ⊥
C1 ← AE.EncE,E

−1

(Ki, N,M,H)

C0←$ {0, 1}AE.cl(|M |)
U ← U ∪ {(i,N)} ; V ← V ∪ {(i,N,Cb, H)}
Return Cb

Vf(i,N,C,H)

If not (1 ≤ i ≤ v) then return ⊥
If ((i,N,C,H) ∈ V ) then return true

If (b = 0) then return false

M ← AE.DecE,E
−1

(Ki, N,C,H)

Return (M 6= ⊥)

E(L, x)

If T [L, x] = ⊥ then

T [L, x]←$ imT [L, ·]
T−1[L, T [L, x]]← x

Return T [L, x]

E−1(L, y)

If T−1[L, y] = ⊥ then

T−1[L, y]←$ imT−1[L, ·]
T [L, T−1[L, y]]← y

Return T−1[L, y]

Figure 1: Game defining multi-user indistinguishability security of symmetric encryption scheme
AE in the ideal-cipher model.

3 Multi-User Security of Symmetric Encryption

We consider symmetric encryption in a multi-user setting. We give two definitions of security.
The first, an indistinguishability-style definition, extends Rogaway’s single-user definition [28] to
the multi-user setting, and represents a very strong requirement. We also define security against
key recovery, representing the goal the attacker would most like to achieve and the most common
target of cryptanalysis. We will see that the security bounds for these notions can differ. Since our
analyses will be in the ideal-cipher model, the definitions are given directly in that model.

Syntax. A symmetric encryption scheme AE specifies a deterministic encryption algorithm AE.Enc
: {0, 1}AE.kl × AE.NS × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ that takes a key K ∈ {0, 1}AE.kl, a nonce
N ∈ AE.NS, a message M ∈ {0, 1}∗ and a header H ∈ {0, 1}∗ to return a ciphertext C ←
AE.EncE,E

−1
(K , N,M,H) ∈ {0, 1}AE.cl(|M |). Here AE.kl ∈ N is the key length of the scheme, AE.NS

is the nonce space and AE.cl: N → N is the ciphertext length function. The oracles represent a
cipher E: {0, 1}AE.ckl × {0, 1}AE.bl → {0, 1}AE.bl and its inverse E−1. In the security games this
cipher will be chosen at random, meaning be ideal. We view the key length AE.ckl and block
length AE.bl of the cipher as further parameters of AE itself. Also specified is a deterministic
decryption algorithm AE.Dec: {0, 1}AE.kl × AE.NS × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⊥} that takes

K , N,C,H and returns M ← AE.DecE,E
−1

(K , N,C,H) ∈ {0, 1}∗ ∪ {⊥}. Correctness requires
that AE.Dec(K , N,AE.Enc(K , N,M,H), H) = M for all M,H ∈ {0, 1}∗, all N ∈ AE.NS and all
K ∈ {0, 1}AE.kl.

Indistinguishability Security. We extend Rogaway’s definition of indistinguishability security
for authenticated encryption [28], which is in the single-user setting, to the multi-user setting. The
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formalization is based on game Gmu-ind
AE (A) of Fig. 1, associated to encryption scheme AE and

adversary A. The game initially samples a random bit challenge b, with b = 1 indicating it is in
“real” mode and b = 0 that it is in “ideal” mode. As per our conventions noted in Section 2, the
sets U, V are assumed initialized to the empty set, and the integer v is assumed initialized to 0. Now
the adversary A has access to an oracle New that creates new user instances. A also has access
to an encryption oracle Enc that takes a user instance identifier i, a nonce N ∈ AE.NS, a message
M , and a header H. The oracle either returns a uniformly random bit string of length AE.cl that
depends only on the length of M (for b = 0), or an encryption under AE.Enc using the key of user
i (for b = 1). The oracle checks that A does not re-use nonces for a user instance, and that it
is invoked only for user instances that exist. Analogously, there is a verification oracle Vf that
takes user instance i, nonce N ∈ AE.NS, ciphertext C, and header H. Oracle Vf always accepts
ciphertexts generated by Enc for the same i, N , and H, rejects all other ciphertexts for b = 0, and
uses the decryption algorithm AE.Dec to check the validity of the ciphertext for b = 1. As a last
step, the adversary outputs a bit b′ that can be viewed as a guess for b. The advantage of adversary
A in breaking the mu-ind security of AE is defined as Advmu-ind

AE (A) = 2 Pr[Gmu-ind
AE (A)]− 1.

The ideal-cipher oracles E and E−1 are given to the adversary, the encryption algorithm and
the decryption algorithm, where the inputs are L ∈ {0, 1}AE.ckl and x, y ∈ {0, 1}AE.bl. The oracles
are defined using lazy sampling. The description of game Gmu-ind

AE in Fig. 1 uses some notation that
we introduce here and use also elsewhere. First of all, T [·, ·] describes a map {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ that is initially ⊥ everywhere, with new values defined during the game. By imT [·, ·]
we denote the set {z ∈ {0, 1}∗ : ∃x, y ∈ {0, 1}∗ with T [x, y] = z} and by suppT [·, ·] the set
{(x, y) ∈ {0, 1}∗ × {0, 1}∗ : T [x, y] 6= ⊥}. Both terms are also used in the obvious sense in settings
where one of the inputs is fixed. (In Fig. 1, this input is L.) Finally, for a subset A ⊂ B, the
notation A refers to the complement B \A in B. We use this notation in places when the superset
B is clear from the context. (In Fig. 1, the set B is {0, 1}AE.bl.)

Definitions of mu security for authenticated encryption in the standard model are obtained as
a special case, namely by restricting attention to schemes and adversaries that do not make use of
the E and E−1 oracles.

One can further strengthen the security of the above ind definition by considering nonce-misuse
resistance as defined by Rogaway and Shrimpton [32]. This requires changing the condition (i,N) ∈
U in oracle Enc to only prevent queries where nonce and message (or even nonce, message, and
header) are repeated. We do not use such a stronger definition in this work because GCM does not
achieve it.

We say that an adversary is passive if it makes no queries to its Vf oracle. In some cases we
will get better bounds for passive adversaries.

Rogaway’s definition of indistinguishability security for authenticated encryption (in the su
setting) [28] gives the adversary a decryption oracle, while we give it a verification oracle. The
latter is simpler and our definition can be shown equivalent to one with a decryption oracle by the
technique of BN [5].

Key-Recovery Security. The qualitatively weaker requirement of key-recovery security can
sometimes be established with better bounds than ind, which is of practical importance since
violating key recovery is much more damaging that violating ind. The formalization is based on
game Gmu-kr

AE (A) of Fig. 2, associated to encryption scheme AE and adversary A. The goal of
the adversary A is simply to output the key of any honest user. It again has access to oracles
New, Enc, Vf, E, and E−1. Oracles Enc and Vf are defined to always return the values as
determined by the scheme AE. Adversary A wins if it outputs any one of the keys that was
generated using the New oracle. The advantage of A in breaking the mu-kr security of AE is
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Game Gmu-kr
AE (A)

K̄ ←$ANew,Enc,Vf,E,E−1

Return (K̄ ∈ {K1, . . . ,Kv})

New()

v ← v + 1 ; Kv←$ {0, 1}AE.kl

Enc(i,N,M,H)

If not (1 ≤ i ≤ v) then return ⊥
If ((i,N) ∈ U) then return ⊥
C ← AE.EncE,E

−1

(Ki, N,M,H)

U ← U ∪ {(i,N)}
Return C

Vf(i,N,C,H)

If not (1 ≤ i ≤ v) then return ⊥
M ← AE.DecE,E

−1

(Ki, N,C,H)

Return (M 6= ⊥)

E(L, x)

If T [L, x] = ⊥ then

T [L, x]←$ imT [L, ·]
T−1[L, T [L, x]]← x

Return T [L, x]

E−1(L, y)

If T−1[L, y] = ⊥ then

T−1[L, y]←$ imT−1[L, ·]
T [L, T−1[L, y]]← y

Return T−1[L, y]

Figure 2: Game defining multi-user key-recovery security of symmetric encryption scheme AE in
the ideal-cipher model.

defined as Advmu-kr
AE (A) = Pr[Gmu-kr

AE (A)].

4 The Schemes

We present a symmetric encryption scheme we call CAU, for Counter-Mode with a AXU hash
function. GCM is a special case. This allows us to divorce our results and analyses from some
details of GCM (namely, the particular, polynomial-evaluation based hash function) making them
both simpler and more general.

The TLS Working Group introduced a specific usage mode of GCM in recent draft versions of
TLS 1.3 in which material, obtained in the handshake key derivation phase, is used to mask the
nonce. We take a different perspective and view this as a new symmetric encryption scheme whose
generalized version we specify here as RCAU. Finally we specify XCAU, our own variant that better
achieves the same goals.

CAU. Let κ, λ, ν ≥ 1 be integers such that ν ≤ λ − 2, where κ is referred to as the cipher key
length, λ as the block length and ν as the nonce length. Let H: {0, 1}λ× ({0, 1}∗×{0, 1}∗)→ {0, 1}λ
be an ε-XOR universal hash function. We associate to these the symmetric encryption scheme
CAU = CAU[H, κ, λ, ν] —here CAU is a transform taking H, κ, λ, ν and returning a symmetric
encryption scheme that we are denoting CAU— whose encryption and decryption algorithms are
specified in Fig. 3. The scheme has key length CAU.kl = κ, cipher key length CAU.ckl = κ and
block length CAU.bl = λ. It has nonce space CAU.NS = {0, 1}ν and ciphertext length function
CAU.cl(·) defined by CAU.cl(m) = m+ λ. Explanations follow.

The algorithms CAU.Enc and CAU.Dec are given access to oracles that represent a cipher
E: {0, 1}κ × {0, 1}λ → {0, 1}λ and its inverse E−1. In the security games the cipher will be chosen
at random, meaning be ideal. In practice, it will be instantiated by a block cipher, usually AES.

CAU is an encrypt-then-mac scheme [5]. Encryption is counter-mode of the block cipher. The
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CAU.EncE,E
−1

(K , N,M,H)

`← d |M |/λ e
M1‖ . . . ‖M` ←M // block length λ

r ← |M`| // last block length

G← E(K , 0λ) ; Y ← N‖0λ−ν−11

For i = 1 to `− 1

Ci ←Mi ⊕E(K , Y + i)

C` ←M` ⊕msbr(E(K , Y + `))

C ← C1‖ . . . ‖C`
T ← H(G,H,C)⊕E(K , Y )

Return T‖C

CAU.DecE,E
−1

(K , N, T‖C,H)

`← d |M |/λ e − 1

C1‖ . . . ‖C` ← C // block length λ

r ← |C`| // last block length

G← E(K , 0λ) ; Y ← N‖0λ−ν−11

T ′ ← H(G,H,C)⊕E(K , Y )

If T 6= T ′ then return ⊥
For i = 1 to `− 1

Mi ← Ci ⊕E(K , Y + i)

M` ← C` ⊕msbr(E(K , Y + `))

Return M1‖ . . . ‖M`

Figure 3: Encryption scheme CAU = CAU[H, κ, λ, ν]. Left: Encryption algorithm CAU.Enc.
Right: Decryption algorithm CAU.Dec.

RCAU.EncE,E
−1

(K‖L,N,M,H)

`← d |M |/λ e
M1‖ . . . ‖M` ←M // block length λ

r ← |M`| // last block length

G← E(K , 0λ) ; Y ← (N ⊕ L)‖0λ−ν−11

For i = 1 to `− 1

Ci ←Mi ⊕E(K , Y + i)

C` ←M` ⊕msbr(E(K , Y + `))

C ← C1‖ . . . ‖C`
T ← H(G,H,C)⊕E(K , Y )

Return T‖C

RCAU.DecE,E
−1

(K‖L,N, T‖C,H)

`← d |M |/λ e − 1

C1‖ . . . ‖C` ← C // block length λ

r ← |C`| // last block length

G← E(K , 0λ) ; Y ← (N ⊕ L)‖0λ−ν−11

T ′ ← H(G,H,C)⊕E(K , Y )

If T 6= T ′ then return ⊥
For i = 1 to `− 1

Mi ← Ci ⊕E(K , Y + i)

M` ← C` ⊕msbr(E(K , Y + `))

Return M1‖ . . . ‖M`

Figure 4: Encryption scheme RCAU = RCAU[H, κ, λ, ν]. Left: Encryption algorithm RCAU.Enc.
Right: Decryption algorithm RCAU.Dec.

MAC is a Carter-Wegman MAC based on the AXU function family H. Some optimizations are
performed over and above generic encrypt-then-mac to use the same key for both parts. The name
stands for “Counter Almost Universal.”

In the description of Fig. 3, the plaintext M is first partitioned into ` = d|M |/λe plaintext
blocks M1, . . . ,M`. The first `− 1 blocks have length λ. The final block M` has length 1 ≤ r ≤ λ.
The value G defined as E(K , 0λ) is later used as a key for the hash function H. The loop then
computes the counter mode encryption. Here and in the rest of the paper we use the following
notation. If Z is a λ bit string and j ≥ 0 is an integer then we let

Z + j = Z[1..ν]‖〈1 + j〉 (1)

where 〈1 + j〉 is the representation of the integer (1 + j) mod 2λ−ν as a (λ− ν)-bit string. Thus, in
the scheme, Y + i = N‖〈1 + i〉. Function msbn, which is needed to compute the final and possibly
incomplete ciphertext block C`, maps a string of length ≥ n to its n-bit prefix. The final step in
the scheme is then to compute the function H on H and C = C1‖ . . . ‖C` and xor it to the output
of the block cipher on input Y . To simplify the technical descriptions in our proofs, we define the
ciphertext as consisting of the tag prepended to the output of the counter-mode encryption.

10



XCAU.EncE,E
−1

(K‖L,N,M,H)

`← d |M |/λ e
M1‖ . . . ‖M` ←M // block length λ

r ← |M`| // last block length

G← L⊕E(K , L) ; Y ← N‖0λ−ν−11

For i = 1 to `− 1

Ci = Mi ⊕ L⊕E(K , L⊕ (Y + i))

C` ←M` ⊕msbr(L⊕E(K , L⊕ (Y + `)))

C ← C1‖ . . . ‖C`
T ← H(G,H,C)⊕ L⊕E(K , L⊕ Y )

Return T‖C

XCAU.DecE,E
−1

(K‖L,N, T‖C,H)

`← d |M |/λ e − 1

C1‖ . . . ‖C` ← C // block length λ

r ← |C`| // last block length

G← L⊕E(K , L) ; Y ← N‖0λ−ν−11

T ′ ← H(G,H,C)⊕ L⊕E(K , L⊕ Y )

If T 6= T ′ then return ⊥
For i = 1 to `− 1

Mi ← Ci ⊕ L⊕E(K , L⊕ (Y + i))

M` ← C` ⊕msbr(L⊕E(K , L⊕ (Y + `)))

Return M1‖ . . . ‖M`

Figure 5: Encryption scheme XCAU = XCAU[H, κ, λ, ν]. Left: Encryption algorithm XCAU.Enc.
Right: Decryption algorithm XCAU.Dec.

GCM, as proposed by McGrew and Viega [24] and standardized by NIST [12], is obtained by
instantiating the block cipher with AES, so that λ = κ = 128. The nonce length (in the standardized
version) is ν = 96. The hash function H is based on polynomial evaluation. The specifics do not
matter for us. For our security analysis, all we need is that H is an ε-almost XOR-universal hash
function (according to our definition of Section 2) for some ε: N×N→ [0, 1]. McGrew and Viega [24,
Lemma 2] show that H has this property for ε(m,n) = (dm/λe+ dn/λe+ 1)/2λ.

CAU has fixed-length nonces, reflecting the standardized version of GCM in which ν = 96.
While the original scheme allows variable-length nonces [24], IOM [18] showed that the original
security proof was flawed for variable-length nonces and the claimed security bounds did not hold.

RCAU. The TLS Working Group introduced a specific usage mode of GCM in recent draft
versions of TLS 1.3 to prevent the scheme from evaluating the block cipher on the same inputs in
each session. This countermeasure is described as computing an additional ν bits of key material
in the key derivation phase, and using these to mask the ν-bit nonce given to GCM.

In order to analyze the effectiveness of this countermeasure, we take a different perspective,
casting the method as specifying a new symmetric encryption scheme in which the mask becomes
part of the key. Formally, as before, let κ, λ, ν ≥ 1 be integers representing the cipher key length,
block length and nonce length, where ν ≤ λ − 2. Let H: {0, 1}λ × ({0, 1}∗ × {0, 1}∗) → {0, 1}λ
be an ε-XOR universal hash function. We associate to these the symmetric encryption scheme
RCAU = RCAU[H, κ, λ, ν] whose encryption and decryption algorithms are specified in Fig. 4.
The scheme has key length RCAU.kl = κ + ν, cipher key length RCAU.ckl = κ and block length
RCAU.bl = λ. It has nonce space RCAU.NS = {0, 1}ν and ciphertext length function RCAU.cl(·)
defined by RCAU.cl(m) = m+ λ. Note that the key length is κ+ ν, while that of CAU was κ. The
definition of Y + i is as per Equation (1), so Y + i = (N ⊕ L)‖〈1 + i〉.

XCAU. We suggest a different scheme to achieve the multi-user security goal targeted by RCAU.
Recall that if E: {0, 1}κ×{0, 1}λ → {0, 1}λ is a block cipher than EX: {0, 1}κ+λ×{0, 1}λ → {0, 1}λ
is the block cipher defined by EX(K‖L,X) = L⊕E(K,L⊕X). This can be viewed as strengthening
E using an Even-Mansour technique [13]. This was suggested by Rivest as a key-extension method
for DES and first analyzed by Kilian and Rogaway [19]. We then simply use EX in place of E in
the basic CAU. Formally, as before, let κ, λ, ν ≥ 1 be integers representing the cipher key length,
block length and nonce length, where ν ≤ λ − 2. Let H: {0, 1}λ × ({0, 1}∗ × {0, 1}∗) → {0, 1}λ
be an ε-XOR universal hash function. We associate to these the symmetric encryption scheme
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XCAU = XCAU[H, κ, λ, ν] whose encryption and decryption algorithms are specified in Fig. 5.
The scheme has key length XCAU.kl = κ + λ, cipher key length XCAU.ckl = κ and block length
XCAU.bl = λ. It has nonce space XCAU.NS = {0, 1}ν and ciphertext length function XCAU.cl(·)
defined by XCAU.cl(m) = m+ λ. Note that the key length is κ+ λ, while that of RCAU was κ+ ν.
The definition of Y + i is as per Equation (1), so Y + i = N‖〈1 + i〉.

Our analysis of this scheme builds on the work of Kilian and Rogaway, but analyzes the con-
struction directly in the multi-user setting. We believe that the bounds can be further improved
along the lines of Mouha and Luykx’s work [25], but this does not affect the terms we are most
interested in.

5 Key-Recovery Security

The multi-user security differences between the schemes are most easily seen in the case of security
against key recovery, so we start there.

5.1 Security of CAU

We show that the multi-user kr advantage scales linearly in the number of adversarial evaluations of
the ideal cipher (corresponding to offline evaluations of the blockcipher in practice) and the number
of user instances. We give both an upper bound (security proof) and lower bound (attack) on the
kr-advantage to show this, beginning with the former.

Theorem 5.1 Let κ, λ, ν ≥ 1 be such that ν ≤ λ− 2. Let H: {0, 1}λ× ({0, 1}∗×{0, 1}∗)→ {0, 1}λ
be a family of functions. Let CAU = CAU[H, κ, λ, ν]. Let A be an adversary that makes at most u
queries to its New oracle and p queries to its E and E−1 oracles. Then

Advmu-kr
CAU (A) ≤ u(p+ 1)

2κ
.

Proof: We use the code-based game-playing technique of BR [6]. Without loss of generality, we
assume that the adversary A does not input invalid user identifiers i /∈ {1, . . . , v} to Enc or Vf,
and does not re-use nonces in encryption queries. We also assume that A does not verify correct
ciphertexts they obtained from Enc at its Vf oracle. These restrictions allow us to simplify the
descriptions of the games, and any arbitrary adversary A can be translated into an adversary A′

that adheres to these restrictions and makes at most the same number of queries as A. Our proof
proceeds in a sequence of games.

The first step in the proof is to rewrite game Gmu-kr
CAU (A) syntactically by introducing an additional

oracle RF that implements the forward evaluation of the ideal cipher for the algorithms CAU.Enc
and CAU.Dec. This is sufficient as encryption and decryption in CAU never query E−1. We call
this game G0, but do not explicitly describe as it is obtained easily from Gmu-kr

CAU (A).

We then rewrite the game in the form of G1, which is described in Fig. 6 and basically obtained
by a syntactic modification of the oracles E, E−1, and RF. In more detail, oracle RF samples the
ideal cipher for the keys used in the encryption using the map U [·, ·]. The oracles E and E−1 are
adapted such that, for keys used in the game, they sample the map T [·, ·] consistently with U [·, ·].
We introduce a flag bad that is set when the adversary A queries one of the oracles E or E−1 with
a key that is also used in the oracle RF.

The next game G2 modifies the way in which the responses for the E, E−1, and RF oracles are
determined. In particular, we break the consistency between E and E−1 on the one hand, and
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Game G1 G2

K̄ ←$ANew,Enc,Vf,E,E−1

Return (K̄ ∈ {K1, . . . ,Kv})

New()

v ← v + 1 ; Kv←$ {0, 1}AE.kl

Enc(i,N,M,H)

C ← AE.EncRF(Ki, N,M,H)

Return C

Vf(i,N,C,H)

M ← AE.DecRF(Ki, N,C,H)

Return (M 6= ⊥)

E(L, x)

If L ∈ {K1, . . . ,Kv} then

bad← true ; T [L, x]← RF(L, x)

If T [L, x] = ⊥ then

T [L, x]←$ imT [L, ·]
Return T [L, x]

E−1(L, y)

If L ∈ {K1, . . . ,Kv} then bad← true

If U−1[L, y] = ⊥ then

x←$ suppU [L, ·]
T [L, x]← U [L, x]← y

If T−1[L, y] = ⊥ then

T−1[L, y]←$ suppT [L, ·]
Return T−1[L, y]

RF(K , x)

If imU [K , ·] = ∅ ∧ imT [K , ·] 6= ∅ then

bad← true ; U [K , ·]← T [K , ·]
If U [K , x] = ⊥ then

U [K , x]←$ imU [K , ·]
Return U [K , x]

Figure 6: Intermediate games for decoupling the oracles E/E−1 and RF in the proof of Theorem 5.1.

RF on the other hand, by sampling the oracle responses independently. Since all changes appear
only after bad has been set, we can relate the games using the Fundamental Lemma from Bellare
and Rogaway [6] and proceed by bounding the probability of setting bad. This probability is in
fact bounded by up/2κ. As all computations while bad is not set are independent of the values
K1, . . . ,Ku, the maximal probability of the adversary to guess one of these uniformly random values
is u/2κ in each of its p queries to E and E−1.

The keys in G2 only serve as labels, the game is independent of their actual values. The only
remaining step is to compute the probability of guessing any one of the u keys that are chosen at
random without collision, which is also incorporated into the advantage. In more detail:

Advmu-kr
CAU (A) = Pr

[
Gmu-kr

CAU (A)
]

= Pr [G0] = Pr [G1]

≤ Pr [G2] +
up

2κ
≤ u

2κ
+
up

2κ
=

u(p+ 1)

2κ
,

which concludes the proof.

Next we show that the security bound proven in Theorem 5.1 is (almost) tight. We describe an
attack (adversary) that achieves the described bound up to a (for realistic parameters small) factor.
The adversary is shown in Fig. 7. It is parameterized by a number u of users and an (even) number
pe of queries to E. It first encrypts a short message 02λ for each of the u users. Next, it queries
the E oracle on the value 0λ−210, the first block that is used for masking actual plaintext, for up
to pe different keys. As soon as it finds a matching key L for the first block, it simply evaluates
E(L, 0λ−211) and checks for consistency with the second block. If the check succeeds, the adversary
outputs the key L, otherwise it tries further keys.
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Adversary Au,pe
For i = 1 to u do

New ; Ci ← Enc(i, 0ν , 02λ, ε)

For j = 1 to pe/2 do

y ← E([j]λ, 0
ν‖0λ−ν−2‖10) // [j]λ is the encoding of integer j as a λ-bit string

y′ ← E([j]λ, 0
ν‖0λ−ν−2‖11)

If (∃i : Ci[(λ+ 1)..2λ] = y and Ci[(2λ+ 1)..3λ] = y′) then return [j]λ

Figure 7: Adversary Au,pe used in Theorem 5.2.

The described attack strategy extends to any application of CAU in which the nonces used in
the scheme are the same in each session. As TLS 1.3 uses the sequence number to compute the
nonces, a version without the nonce randomization technique would be susceptible to this attack.

Theorem 5.2 Let κ, λ, ν ≥ 1 be such that ν ≤ λ− 2. Let H: {0, 1}λ× ({0, 1}∗×{0, 1}∗)→ {0, 1}λ
be a family of functions. Let CAU = CAU[H, κ, λ, ν]. Let u ≥ 1 be an integer and pe ≥ 2 an even
integer. Associate to them the adversary Au,pe described in Fig. 7, which makes u queries to New,
qe = u queries to Enc of length 2λ bits, no queries to Vf, pe queries to E, and no queries to E−1.
Then

Advmu-kr
CAU (Au,pe) ≥ µ ·

(
1− e−

peu

2κ+1

)
where

µ =

(
1− u(u− 1)

2κ+1

)
·
(

1− u(2κ − u)

2λ(2λ − 1)

)
.

This means that the advantage of Au,pe scales (almost) linearly with the number of users, and in
fact, for values u, pe such that upe/2

κ+1 ≤ 1, the advantage is lower bounded by µ · (1− 1/e) · peu
2κ+1 .

The proof we give can be improved in terms of tightness, for instance, we allow the attack to
completely fail if only a single collision occurs between honest users’ keys. In particular the factor
(1− u(u− 1)/2κ+1) could be improved especially for large u.

Proof of Theorem 5.2: The probability for any of the u = qe keys to collide is at most u(u −
1)/2κ+1. In the subsequent steps we compute the probabilities based on the assumption that no user
keys generated within New collide, which is correct with probability at least 1−u(u− 1)/2κ+1. In
more detail, given that we have no collisions of user keys, the adversary uses at least pe/2 attempts
to guess any one of u = qe (uniformly random, without collision) keys from a set of size 2κ. The
probability for each honest user’s key to be among the adversary’s guesses is pe/2

κ+1, and so the
overall probability for any one of the adversary’s attempts to succeed is

1−
(

1− pe
2κ+1

)u
≥ 1− e−

peu

2κ+1 .

We still need to bound the probability of false positives, that is, keys that were not sampled in
a New oracle but coincide with the block cipher outputs, and therefore lead to a wrong guess:
The probability that the ideal cipher for a specific “wrong” key (out of 2κ − u) coincides with
the ideal cipher for each of the u “correct” keys on both inputs 0ν‖0λ−ν−2‖10 and 0ν‖0λ−ν−2‖11
is 2−λ(2λ − 1)−1. The existence of such a colliding key can be bounded using the Union Bound
to be at most u(2κ − u)/(2λ(2λ − 1)), so the probability that no such collision exists is at least
1− u(2κ − u)/(2λ(2λ − 1)). Overall, we obtain the stated bound.
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Evaluating the formula for realistic values for GCM in TLS 1.3, we set κ = 128. We allow the
adversary to make pe = 264 evaluations of the block cipher. We estimate the number of TLS
sessions per day as 240, which leaves us a security margin of roughly 224. While this means that
on expectation the attack still needs 224 days to recover a single key, it is important to recall that
this estimate is obtained under the strong assumption that AES behaves like an ideal cipher.

5.2 Passive Security of RCAU

RCAU aims to avoid the attack strategy described in Section 5.1 by randomizing the nonce before
it is used in the block cipher. Here we assess whether the measure succeeds, again first upper
bounding adversary advantage via a proof, then lower bounding it via an attack.

In contrast to the bound for CAU, the bound for RCAU depends on more parameters, and we
only prove the result for “passive” adversaries that do not use the verification oracle. The more
complicated proof and bounds stem from the more intricate “decoupling” of the E/E−1 and RF
oracles.

The proof in the proceedings version of this paper [7] is incomplete. Moreover, even the extended
proof given here applies only to passive adversaries, not to active adversaries as claimed there.

Theorem 5.3 Let κ, λ, ν ≥ 1 be such that ν ≤ λ− 2. Let H: {0, 1}λ× ({0, 1}∗×{0, 1}∗)→ {0, 1}λ
be a family of functions. Let RCAU = RCAU[H, κ, λ, ν]. Let A be an adversary that makes at most
u queries to its New oracle, qe queries to its Enc oracle with messages of length at most `bit bits,
no queries to its Vf oracle, pe queries to its E oracle, and pi queries to its E−1 oracle. Then

Advmu-kr
RCAU (A) ≤ u(u− 1)

2κ+1
+

2up(`blkqe + 1)

2κ+ν
+
up(`blkqe + 1)

2κ(2λ − p)

+
up(`blkqe + 1)

2κ(2λ − qe)
+

1

2cλ

(
u(qe + qv)`blk

c+ 1

)
+
cpi + u

2κ
+
uq2e`blk

2λ
, (2)

where `blk = d`bit/λe+ 1, for any fixed c ∈ N.

Proof: As in Theorem 5.1, we restrict our attention to adversaries A that do not use invalid user
identifiers, that do not re-use nonces, and that do not verify ciphertexts obtained from the Enc
oracle. As in the proof of Theorem 5.1, we now aim at “decoupling” the oracles E/E−1 and RF,
but this time we have to be cautious: we cannot just “give up” when the adversary “guesses” one of
the users keys in calls to E/E−1; this would ruin our bound. The first step is as above to introduce
an auxiliary map U [·, ·] in addition to T [·, ·], but keep the maps synchronized. The change from
Gmu-kr

RCAU (A) to G0 is therefore only syntactic. Intuitively, the lazy sampling of the block cipher is
now performed using both maps, where T [·, ·] is filled in calls to E and E−1, and U [·, ·] is filled in
RF. The oracles make sure that the maps stay consistent.

In game G1, described in detail in Fig. 8, we only add the flag bad and set it to true if for any
two user instances, the first κ bits of the keys, that is, the parts that are used as a the key of the
block cipher, coincide. In G2, we additionally re-sample the key bits so that such a collision does
not happen. As G1 and G2 differ only after bad is set, we can use the Fundamental Lemma to
bound the difference of the adversary’s advantage. Since at most u user instances are created, the
probability of bad being set can be bounded by u(u− 1)/2κ+1.

In game G3, described in detail in Fig. 9, we first change the way in which the responses are
sampled, but still in an equivalent way, namely we first attempt to sample consistently only for
T [·, ·] and then check for consistency with U [·, ·]. If this fails, we set bad ← true and re-sample
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Game G1 G2

K̄ ←$ANew,Enc,Vf,E,E−1

Return (K̄ ∈ {K1, . . . ,Kv})

New()

v ← v + 1 ; Kv←$ {0, 1}AE.kl
If ∃w < v : Kv[1..κ] = Kw[1..κ] then

bad← true

Kv←$ {K1[1..κ], . . . ,Kv−1[1..κ]} × {0, 1}ν

Enc(i,N,M,H)

C ← RCAU.EncE(Ki, N,M,H)

Return C

Vf(i,N,C,H)

M ← RCAU.DecE(Ki, N,C,H)

Return (M 6= ⊥)

E(L, x)

If T [L, x] = ⊥ then

T [L, x]←$ imT [L, ·]
T−1[L, T [L, x]]← x

Return T [L, x]

E−1(L, y)

If T−1[L, y] = ⊥ then

T−1[L, y]←$ imT−1[L, ·]
T [L, T−1[L, y]]← y

Return T−1[L, y]

Figure 8: Intermediate games for decoupling the oracles E/E−1 and RF in the proof of Theorem 5.3.

with the correct distribution. Additionally, we set bad ← true whenever we need to answer for
either T [·, ·] or U [·, ·] and the answer is already defined by the respective other map. Game G3 is
equivalent to G2. The proof is further complicated by the fact that RCAU derives the key for H
as E(K , 0λ) and this query is therefore not randomized. As a consequence, we have to treat the
queries with value 0λ independently of the other queries, and keep the maps T [·, 0λ] and U [·, 0λ]
consistent for the next proof steps.

In game G4 we modify the behavior of the oracles E, E−1, and RF to not re-sample to avoid
inconsistencies with the other oracles. Also, we do not enforce consistency between T [K , ·] and
U [K , ·] for values that are defined already in one of the maps; we sample a fresh value in a map
independently of whether the point is already defined in the other map. As both modifications occur
only after the flag bad has been set, we can use the Fundamental Lemma to relate the advantages
of an adversary in games G3 and G4.

To bound the probability for the flag bad to be set in games G3 or G4, respectively, we begin with
the following observation: As long as bad is not set, each row T [K , ·] or U [K , ·] for a specific key K is
sampled without collisions within this row, but independently of any other row, and also mutually
independent between T [K , ·] and U [K , ·]. This is the case because the only other way of defining
a value for those maps is either re-sampling or copying from the other map; in both cases we set
the flag bad. Furthermore, we observe that all operations that occur before the flag bad is set are
independent of the actual values of the keys K1, . . . ,Ku. Given these insights, we now analyze the
probabilities for setting the bad flag at the different code points, first for E and E−1:

• The probability of enforcing re-sampling in E or E−1 is analyzed as follows: For a particular
key K̄ ∈ {K1, . . . ,Ku} for which m blocks have been defined through queries to RF, the
probability of sampling a value that collides is at most m/(2λ−p), as we choose uniformly from
2λ−p values. The expected number of blocks for the key L in the query is u(`blk(qe+qv)+1)/2κ,
which leads to an overall probability of u(`blk(qe + qv) + 1)/(2κ(2λ − p)) for each query.

• The probability of enforcing that a value be copied (that is, the final “Else” statement becomes
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Game G3 G4

K̄ ←$ANew,Enc,Vf,E,E−1

Return (K̄ ∈ {K1, . . . ,Kv})

New()

v ← v + 1

Kv←$ {K1[1..κ], . . . ,Kv−1[1..κ]} × {0, 1}ν

Enc(i,N,M,H)

C ← RCAU.EncRF(Ki, N,M,H)

Return C

Vf(i,N,C,H)

M ← RCAU.DecRF(Ki, N,C,H)

Return (M 6= ⊥)

E(L, x)

If T [L, x] = ⊥ then

If x = 0λ then T [L, x]←$ imT [L, ·]
Else If U [L, x] = ⊥ then

T [L, x]←$ imT [L, ·]
If T [L, x] ∈ imU [L, ·] then

bad← true

T [L, x]←$ imT [L, ·] ∪ imU [L, ·]
Else

T [L, x]← U [L, x] ; bad← true

T [L, x]←$ imT [L, ·]
Return T [L, x]

E−1(L, y)

If T−1[L, y] = ⊥ then

If U−1[L, y] = ⊥ then

x←$ suppT [L, ·]
If x ∈ suppU [L, ·] then

bad← true

x←$ suppT [L, ·] ∪ suppU [L, ·]
T [L, x]← y

Else

T [L,U−1[L, y]]← y ; bad← true

x←$ suppT [L, ·] ; T [L, x]←$ y

Return T−1[L, y]

RF(K , x)

If U [K , x] = ⊥ then

If x = 0λ then U [K , x]← E(K , x)

Else if T [K , x] = ⊥ then

U [K , x]←$ imU [K , ·]
If U [K , x] ∈ imT [K , ·] then

bad← true

U [K , x]←$ imT [K , ·] ∪ imU [K , ·]
Else

U [K , x]← T [K , x] ; bad← true

U [K , x]←$ imU [K , ·]
Return U [K , x]

Figure 9: Intermediate games for decoupling the oracles E/E−1 and RF in the proof of Theorem 5.3.

active) in E is bounded by u(`blk(qe+qv)+1)/2κ+ν for each of the p queries. This is computed
analogously to above: executing the “Else” statement means that the adversary guessed a
combination of a κ-bit key and a ν-bit mask value.

• Finally, for a constant c ∈ N, the probability of at least c+ 1 outputs of RF colliding can be
bounded by 2−cλ

(
u(qe+qv)`blk

c+1

)
. Given that no such multi-collision occurs, the probability for

copying a value in E−1 is bounded by the term c/2−κ. The reason is that it corresponds to
guessing a key for one out of c users.

We obtain the bounds up(`blk(qe+qv)+1)/(2κ(2λ−p)), upe(`blk(qe+qv)+1)/2κ+ν , and cpi/2
−κ as

the adversary makes at most pe queries to E, pi queries to E−1, and p = pe+pi queries accumulated.

We proceed by analyzing the probabilities for RF analogously:

• With respect to enforcing re-sampling in RF, for a key L for which m blocks have been
defined, the probability of sampling a colliding value is m/(2λ − qe − qv). This leads to an
overall probability of at most p/(2κ(2λ − qe − qv)).

• The probability of enforcing that a value be copied (that is, the final “Else” statement becomes
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Game G5 G6

K̄ ←$ANew,Enc,Vf,E,E−1

Return (K̄ ∈ {K1, . . . ,Kv})

New()

v ← v + 1

Kv←$ {K1[1..κ], . . . ,Kv−1[1..κ]} × {0, 1}ν

Enc(i,N,M,H)

C ← RCAU.EncRF(Ki, N,M,H)

Return C

Vf(i,N,C,H)

M ← RCAU.DecRF(Ki, N,C,H)

Return (M 6= ⊥)

E(L, x)

If T [L, x] = ⊥ then

T [L, x]←$ imT [L, ·]
Return T [L, x]

E−1(L, y)

If T−1[L, y] = ⊥ then

x←$ suppT [L, ·]
T [L, x]← y

Return T−1[L, y]

RF(K , x)

If U [K , x] = ⊥ then

If x = 0λ then U [K , x]← E(K , x)

Else if x = x′‖0λ−ν−11 with x′ ∈ {0, 1}ν then

y←$ {0, 1}λ

If y ∈ imU [K , ·] then bad← true ; y←$ imU [K , ·]
U [K , x]← y

Else

U [K , x]←$ imU [K , ·]
Return U [K , x]

Figure 10: Switching to uniform sampling of the MAC masking in Theorem 5.3.

active) in RF is bounded by u(`blk(qe + qv) + 1)p/2κ+ν . The reason is that for a particular
key L for which m blocks have been defined through queries to E and E−1, the probability
that an query to RF as done by CAU.EncRF uses the same input is bounded by m/2ν . This
leads to a probability of p/2κ+ν .

Since the encryption and decryption algorithms overall make u(`blk(qe + qv) + 1) queries to RF, we
obtain the bounds up(`blk(qe + qv) + 1)/(2κ(2λ − qe − qv)) and up(`blk(qe + qv) + 1)/2κ+ν .

Game G5 is then obtained from G4 by syntactically simplifying the oracles E, E−1, and RF.
Additionally, the oracle RF is modified for input values ending with 0311 so that the outputs are
first sampled uniformly, but in case they collide with previously sampled values, G5 sets the flag
bad and re-samples the value without collisions. Game G6 is almost the same as G5 but does not
resample in the event of a collision.

Since G5 and G6 again only differ after the flag bad is set to true, the Fundamental Lemma allows
us to relate the advantages of the adversary in these games. The probability for the flag to be set
can be bounded by uq2e`blk/2

λ since for each i ≤ u there are qe`blk values defined in U [Ki[1..κ], ·]
that can be hit in qe attempts.

Game G7 is only a syntactic modification of G6. In G8, the outputs are distributed exactly as in
G7, as the modification only affects the values returned by RF on input x = 0λ, and the values
computed based on the result is masked by outputs of RF that are chosen uniformly at random.

Finally, as in G8 the oracles E and E−1 are independent of the oracle RF that is used in RCAU,
the probability of guessing a key is bounded by u/2κ. All these terms together comprise the bound
in the theorem statement.

For realistic parameters, the bound in Theorem 5.3 means that the “best” attack for passive
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Game G7 G8

K̄ ←$ANew,Enc,Vf,E,E−1

Return (K̄ ∈ {K1, . . . ,Kv})

New()

v ← v + 1

Kv←$ {K1[1..κ], . . . ,Kv−1[1..κ]} × {0, 1}ν

Enc(i,N,M,H)

C ← RCAU.EncRF(Ki, N,M,H)

Return C

Vf(i,N,C,H)

M ← RCAU.DecRF(Ki, N,C,H)

Return (M 6= ⊥)

E(L, x)

If T [L, x] = ⊥ then

T [L, x]←$ imT [L, ·]
Return T [L, x]

E−1(L, y)

If T−1[L, y] = ⊥ then

x←$ suppT [L, ·]
T [L, x]← y

Return T−1[L, y]

RF(K , x)

If U [K , x] = ⊥ then

If x = 0λ then U [K , x]← E(K , x) U [K , x]← 0λ

Else if x = x′‖0λ−ν−11 with x′ ∈ {0, 1}ν then

If U [K , x] = ⊥ then U [K , x]←$ {0, 1}λ
Else U [K , x]←$ imU [K , ·]

Return U [K , x]

Figure 11: Switching to uniform sampling of the MAC masking in Theorem 5.3.

Adversary Api
New ; C ← Enc(1, 0ν , 02λ, ε)

For j = 1 to pi/2 do

y ← E−1([j]λ, C[(λ+ 1)..2λ]) // [j]λ means encoding as λ-bit string

If ∃N ∈ {0, 1}ν : y = N‖0λ−ν−210 then

If E−1([j]λ, C[(2λ+ 1)..3λ]) = N‖0λ−ν−210 then

Return [j]λ

Figure 12: Adversary Api used in Theorem 5.4.

adversaries is now the inversion of a block observed while eavesdropping. In contrast to the attack
analyzed in Section 5.1, this attack does not scale in the mass surveillance scenario, because the
adversary has to target one specific ciphertext block.

In more detail, the adversary strategy A analyzed in the below lemma and specified in detail in
Fig. 12 proceeds as follows. First obtain an encryption of 02λ from an honest user. Then brute-force
the key by decrypting the first ciphertext block using E−1, checking whether the output satisfies
the structure N‖0λ−ν−210. In case this structure is observed, verify the key by checking if the next
block is consistent with an evaluation of E with the same key and plaintext N‖0λ−ν−211.

Since the described attack strategy applies independently of how the nonces are chosen (prior to
the randomization) as long as the value is predictable, the lower bound also applies to the scheme
as used in the latest draft of TLS 1.3.

Theorem 5.4 Let κ, λ, ν ≥ 1 be such that ν ≤ λ− 2. Let H: {0, 1}λ× ({0, 1}∗×{0, 1}∗)→ {0, 1}λ
be a family of functions. Let RCAU = RCAU[H, κ, λ, ν]. Let pi ≥ 2 an even integer and the
adversary Api as described in Fig. 12, which makes 1 query to each New and Enc (the latter of
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length 2λ bits), no queries to Vf, pi queries to E−1, and no queries to E. Then

Advmu-kr
RCAU (Api) ≥ µ · pi · 2−κ−1,

with

µ = 1− (2κ − 1)2ν

2λ(2λ − 1)
.

Proof: Let K1 be the key sampled during the invocation of New in the game. The probability for
the block cipher on a key K 6= K1 to satisfy the first condition is 2ν−λ, since in the first invocation of
E−1 the value is sampled uniformly at random and λ−ν bits have to match. The second invocation
of E−1 has to lead to the correct outcome N‖0λ−ν−211, the value is drawn uniformly at random
from the remaining 2λ − 1 values not equal to the outcome of the first query. There are 2κ keys,
so by the Union Bound the probability of any key K 6= K1 to lead to an admissible pattern on the
first two blocks is bounded by (2κ − 1)2ν/(2λ(2λ − 1)).

In the event that no key K 6= K1 satisfies the above condition, this advantage of adversary Api is
simply the probability of guessing a uniformly random key of κ bits in pi/2 attempts, as for each
key Api spends at most 2 queries. This completes the proof.

The attack analyzed in Theorem 5.4 is considerably harder to mount than the one analyzed in
Theorem 5.2, because the queries in the Theorem 5.2 attack can be preprocessed and apply to all
observed communication sessions equally, whereas in the Theorem 5.4 attack the queries have to
be made for a particular session under attack. Still, in the following Section 5.3, we show that at
low computational cost for the honest parties, the Theorem 5.4 attack can be made considerably
harder.

5.3 Security of XCAU

The term pi/2
κ in the bound for RCAU originates in the fact that only the input of the block

cipher is masked, and inversion queries by the adversaries are not hindered. In the scheme XCAU,
an advantage beyond the randomization of the input to derive the hash function key is that the
output of the block cipher is masked, which restricts the power of inversion queries to the block
cipher considerably.

Our analysis of XCAU is based on combining the analysis of DESX-like input and output
whitening in a multi-user setting, and then prove the security of XCAU along the lines of Theo-
rem 6.2. We first prove a multi-user bound for the DESX-like construction. The security goal is
described by the games in Fig. 13.

Theorem 5.5 Let A be an adversary that makes at most u queries to its New, q queries to its
RF oracle per user, p queries to its E oracle and E−1 oracles. Then

|Pr[R(A)]− Pr[S(A)]| ≤ u · q · p
2λ+κ+1

.

Proof: We introduce two intermediate games G0 and G1 in Fig. 14. Game G0 is equivalent to game
R(A); the introduction of the additional map U [·, ·] is only syntactic as we make sure that it stays
consistent with T [·, ·] throughout. We also modify the procedures for sampling new values for the
maps U [·, ·] and T [·, ·] such that first we sample a new value such that it is consistent only with the
respective map, then check whether it is consistent with the other map, and re-sample consistently
if we determine that it is not. In G1, the map U [·, ·] is completely independent of the map T [·, ·].
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Game R(A)

v ← 0 ; b←$ANew,E,E−1,RF

Return b

New()

v ← v + 1

(Kv,K
′
v)←$ {0, 1}κ × {0, 1}λ

RF(i, x)

If T [Ki, x⊕K ′i ] = ⊥ then

T [Ki, x⊕K ′i ]←$ imT [Ki, ·]
Return T [Ki, x⊕K ′i ]⊕K ′i

E(L, x)

If T [L, x] = ⊥ then

T [L, x]←$ imT [L, ·]
Return T [L, x]

E−1(L, y)

If T−1[L, y] = ⊥ then

x←$ suppT [L, ·]
T [L, x]← y

Return T−1[L, y]

Game S(A)

v ← 0 ; b←$ANew,E,E−1,RF

Return b

New()

v ← v + 1

Kv←$ {0, 1}κ

RF(i, x)

If i ≤ v and U [Ki, x] = ⊥ then

U [Ki, x]←$ imU [Ki, ·]
Return U [Ki, x]

E(L, x)

If T [L, x] = ⊥ then

T [L, x]←$ imT [L, ·]
Return T [L, x]

E−1(L, y)

If T−1[L, y] = ⊥ then

x←$ suppT [L, ·]
T [L, x]← y

Return T−1[L, y]

Figure 13: Multi-user security for block-cipher key extension. Left: Game giving the adversary
access to the actual construction. Right: Game giving the adversary access to an independent
ideal cipher.

Both G0 and G1 set the flag bad on occasions where the sampling creates inconsistencies between
U [·, ·] and T [·, ·].

The probability of setting the bad flag in G2 and G3 can be bounded as follows. We first observe
that besides the bad flag, G3 is equivalent to S. For both G2 and G3, as long as bad is not set,
all outputs are uniformly distributed among the values that are valid for the respective oracle and
key. Moreover, xoring K ′i to all inputs or outputs modifies each concrete permutation; however, the
distribution of a uniformly random permutation remains unchanged by this operation. Following
the definition of Maurer [23], this means that both games G2 and G3 with the respective flags bad
are conditionally equivalent to the game S. (In other words, conditioned on bad = false, the outputs
of the games are distributed exactly as in S.)

Subsequently, we can employ Maurer’s result [23, Theorem 1] to bound the distinguishing advantage
between G2 and G3 by the advantage of the best non-adaptive distinguisher. As the adversary
makes at most p queries to its E and E−1 oracles, and uq queries to its RF oracle, there are u · q · p
possible combinations of queries that may provoke the flag bad to be set, and each case appears
with probability 2−λ−κ−1. We conclude the proof via the Union Bound.

Analogously to the previous results on CAU and RCAU, we now analyze the key-recovery security
of XCAU.

Theorem 5.6 Let κ, λ, ν ≥ 1 be such that ν ≤ λ− 2. Let H: {0, 1}λ× ({0, 1}∗×{0, 1}∗)→ {0, 1}λ
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Game G0 G1

v ← 0 ; b←$ANew,E,E−1,RF

Return b

New

v ← v + 1

(Kv,K
′
v)←$ {0, 1}κ × {0, 1}λ

RF(i, x)

If U [Ki, x⊕K ′i ] = ⊥ then

If T [Ki, x⊕K ′i ] = ⊥ then

U [Ki, x⊕K ′i ]←$ imU [Ki, ·]
If U [Ki, x⊕K ′i ] ∈ imT [Ki, ·] then

bad← true ; U [Ki, x⊕K ′i ]←$ imU [Ki, ·] ∪ imT [Ki, ·]
Else

U [Ki, x⊕K ′i ]← T [Ki, x⊕K ′i ] ; bad← true

U [Ki, x⊕K ′i ]←$ imU [Ki, ·]
Return U [Ki, x⊕K ′i ]⊕K ′i

E(L, x)

If T [L, x] = ⊥ then

If U [L, x] = ⊥ then

T [L, x]←$ imT [L, ·]
If T [L, x] ∈ U [L, ·] then

bad← true ; T [L, x]←$ imT [L, ·] ∪ imU [L, ·]
Else T [L, x]← U [L, x] ; bad← true ; T [L, x]←$ imT [L, ·]

Return T [L, x]

E−1(L, y)

If T−1[L, y] = ⊥ then

If U−1[L, y] = ⊥ then

x←$ suppT [L, ·]
If x ∈ suppU [L, ·] then

bad← true ; x←$ suppT [L, ·] ∪ suppU [L, ·]
Else x← U−1[L, y] ; bad← true ; x←$ suppT [L, ·]
T [L, x]← y

Return T−1[L, y]

Figure 14: Modification of the sampling algorithm. In G0, the values are sampled to keep con-
sistency between U [·, ·] and T [·, ·], with the flag bad set if attempted independent sampling leads
to inconsistencies. In G1, the maps U [·, ·] and T [·, ·] are sampled independently, making RF an
independent ideal cipher.
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be a family of functions. Let XCAU = XCAU[H, κ, λ, ν]. Let A be an adversary that makes at
most u queries to its New oracle, qe queries to its Enc oracle with messages of length at most
`bit bits, qv queries to its Vf oracle with messages of length at most `bit + λ bits, and p queries
to its E and E−1 oracles. Assume furthermore that qe ≤ 2ν , and `bit ≤ λ(2λ−ν − 2). Then, with
`blk = d`bit/λe+ 1,

Advmu-kr
XCAU (A) ≤ up(`blk(qe + qv) + 1)

2λ+κ+1
+

u

2κ
.

Proof: As in Theorem 5.1 and 5.3, we restrict our attention to adversaries A that do not use
invalid user identifiers, that do not re-use nonces, and that do not verify ciphertexts obtained from
the Enc oracle. The first step in this proof is to rewrite the game as G0 in the same way as in the
previous proofs; the scheme is changed to use the oracle RF that is, however, kept consistent with
E and E−1. The game is described in Fig. 15.

The next game G1 is again a syntactic modification from G0. The change is that we replace XCAU,
which uses the original block cipher and applies the input and output whitening for the block cipher
as a part of the encryption and decryption procedures, by CAU instantiated with a block cipher
with key length λ + κ. Consequently, we rewrite the oracle RF to perform the input and output
whitening.

In the next game G2, the oracles E and E−1, and the oracle RF are based on different maps T [·, ·]
(for E and E−1) and U [·, ·] (for RF), but the oracles are defined to keep them consistent. This
is achieved by first sampling them independently, but then re-sampling in case an inconsistency
occurs. Should that be the case, the flag bad is set. Apart from this flag, games G1 and G2 are
equivalent. We do not describe the game G2 explicitly, but remark that it is obtained by verbatim
replacement of the oracles E, E−1, and RF in game G1 by the ones described in game G0 in Fig. 14.
In the next game G3, the re-sampling procedure keeping the oracles consistent is abandoned, which
means that the oracles RF and E together with E−1 are independent. Like G2, game G3 is obtained
by replacing the oracles E, E−1, and RF by the ones in game G1 in Fig. 14.

The probability of setting the bad flag in G2 and G3 can be bounded using Theorem 5.5. More
technically, we describe an adversary B = B(A) that emulates oracles to A as follows: Queries
New, E, and E−1 by B are responded by B performing the same query in its game. Queries Enc
and Dec are responded by B emulating the respective oracles using the oracle RF in its game to
evaluate CAU.Enc and CAU.Dec. The view of A is the same in G2 and in the game R(B(A)), and
in G3 and the game S(B(A)), respectively. The numbers of queries u to the New oracle and p to
the E and E−1 oracles are preserved by B. At most qe queries of length at most `bit to Enc and
at most qv queries of length at most `bit + λ to Vf translate into at most `blk(qe + qv) + 1 queries
to RF in the game played by B. Using Theorem 5.5, this means that the probability of setting bad
can be bounded by up(`blk(qe + qv) + 1)/2λ+κ+1.

All that remains to be done is bounding the probability of A guessing any key in G3. As in this
game, similarly to the previous proofs, the keys used to reference values in U [·, ·] is only used as
an index to the table and is unrelated to all values that A observes in the game, the guessing
probability is at most u/2κ. This concludes the proof.
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Game G0 G1

U ← ∅ ; K̄ ←$ANew,Enc,Vf,E,E−1

Return (K̄ ∈ {K1, . . . ,Kv})

New()

v ← v + 1 ; Kv←$ {0, 1}AE.kl

Kv←$ {0, 1}κ+λ

Enc(i,N,M,H)

If not (1 ≤ i ≤ v) then return ⊥
If ((i,N) ∈ U) then return ⊥
C ← XCAU.EncRF(Ki, N,M,H)

C ← CAU.EncRF(Ki, N,M,H)

U ← U ∪ {(i,N)}
Return C

Vf(i,N,C,H)

If not (1 ≤ i ≤ v) then return ⊥
M ← XCAU.DecRF(Ki, N,C,H)

M ← CAU.DecRF(Ki, N,C,H)

Return (M 6= ⊥)

E(L, x)

If T [L, x] = ⊥ then

T [L, x]←$ imT [L, ·]
Return T [L, x]

E−1(L, y)

If T−1[L, y] = ⊥ then

x←$ suppT [L, ·]
T [L, x]← y

Return T−1[L, y]

RF(K , x)

If T [K , x] = ⊥ then

T [K , x]←$ imT [K , ·]
Return T [K , x]

K ′‖K ′′ ← K

If T [K ′, x⊕K ′′] = ⊥ then

T [K ′, x⊕K ′′]←$ imT [K ′, ·]
Return T [K ′, x⊕K ′′]⊕K ′′

Figure 15: Games that intuitively correspond to the security of AES-XCAU (G0) as well as AESX-
CAU (G1).

6 Indistinguishability Security

In this section we prove the multi-user indistinguishability security bounds for CAU, RCAU, and
XCAU, all in the ideal cipher model.

6.1 Preparation: A Lemma on CAU

We begin with a multi-user analysis of CAU which models the block cipher as a uniform random
permutation and is useful in the subsequent proofs. The analysis is related to the ones of MV [24],
IOM [18], and NOMI [27], with the main difference that they proved single-user security, while we
directly prove multi-user security. We formalize the random-permutation model using our game
Gmu-ind

CAU while considering only adversaries that do not make use of the oracles E and E−1.

Lemma 6.1 Let κ, λ, ν ≥ 1 be such that ν ≤ λ−2. Let H: {0, 1}λ× ({0, 1}∗×{0, 1}∗)→ {0, 1}λ be
an ε-almost XOR-universal hash function, for some ε: N×N→ [0, 1]. Let CAU = CAU[H, κ, λ, ν].
Let A be an adversary that makes at most u queries to its New oracle, qe queries to its Enc oracle
with messages of length at most `bit bits, and qv queries to its Vf oracle with messages of length
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Game G0 G1

b←$ {0, 1} ; b′←$ANew,Enc,Vf

Return (b′ = b)

New()

v ← v + 1 ; Kv←$ {0, 1}CAU.kl
If Kv ∈ {K1, . . . ,Kv−1} then

bad← true

Kv←$ {K1, . . . ,Kv−1}

Enc(i,N,M,H)

C1←$ CAU.EncE(Ki, N,M,H)

C0←$ {0, 1}CAU.cl(|M |)
Return Cb

Vf(i,N,C,H)

If (b = 0) then return false

M ← CAU.DecE(Ki, N,C,H)

Return (M 6= ⊥)

E(K , x)

If U [K , x] = ⊥ then

y←$ imU [K , ·]
Return U [K , x]

Game G3 G2

b←$ {0, 1} ; b′←$ANew,Enc,Vf

Return (b′ = b)

New()

v ← v + 1 ; Kv←$ {K1, . . . ,Kv−1}

Enc(i,N,M,H)

C1←$ CAU.EncE(Ki, N,M,H)

C0←$ {0, 1}CAU.cl(|M |)
Return Cb

Vf(i,N,C,H)

If (b = 0) then return false

M ← CAU.DecE(Ki, N,C,H)

Return (M 6= ⊥)

E(K , x)

If U [K , x] = ⊥ then

y←$ {0, 1}λ
If y ∈ imU [K , ·] then

bad← true ; y←$ imU [K , ·]
U [K , x]← y

Return U [K , x]

Figure 16: Left: Changing the game to prevent collisions among user keys. Right: Using a random
function instead of a random permutation.

at most `bit + λ bits,1. In particular, A does not use the E and E−1 oracles. Assume furthermore
that qe ≤ 2ν and `bit ≤ λ(2λ−ν − 2). Then

Advmu-ind
CAU (A) ≤ u(u− 1)

2κ+1
+
u(`blk(qe + qv) + 1)2·

2λ+1
+ uqv · ε(`bit, `head),

for `blk = d`bit/λe+ 1 and where the AEAD headers are restricted to `head bits.

Proof: We make the same assumptions about the validity of the queries made by adversary A as in
Theorem 5.1. We describe a game G0 in Fig. 16 that deviates from game Gmu-ind

AE (A) in the New
oracle, where we introduce a new flag bad that is set to true if a collision among the keys of the
honest parties occurs. Game G1 is almost the same, but we re-sample the key from the set of so-far
unused keys if a freshly sampled key collides with one that was sampled before. The probability of
bad to be set can easily be bounded by the collision probability u(u− 1)/2κ+1.

In game G2 we first simplify the description of the oracle New in comparison with G1. The next
proof step is instrumental for establishing the secrecy of the scheme, the goal is to replace the ideal
cipher used in CAU by an ideal random function with the same range and domain. This will allow
us later to prove that the ciphertexts are uniformly distributed. We rewrite the game G1 to the
form of game G2. The sampling procedure of the value U [K , x] in E is an equivalent formulation
that will allow the next proof step. The idea is, similar to proofs in [6], to first sample the output

1The ciphertext contains an λ-bit MAC tag, so the length of the contained plaintext is `bit bits.
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Game G4 G5

b←$ {0, 1} ; b′←$ANew,Enc,Vf

Return (b′ = b)

New()

v ← v + 1

Kv←$ {K1, . . . ,Kv−1}

Enc(i,N,M,H)

C1←$ CAU.EncE(Ki, N,M,H)

C0←$ {0, 1}CAU.cl(|M |)
Return Cb

Vf(i,N,C,H)

If (b = 0) then return false

M ← CAU.DecE(Ki, N,C,H)

If M 6= ⊥ then bad← true

Return false; Return (M 6= ⊥)

E(K , x)

If U [K , x] = ⊥ then

U [K , x]←$ {0, 1}λ
Return U [K , x]

Figure 17: Between the games G4 and G5, we change the behavior of the Vf oracle to reject forgery
attempts also for b = 1.

of the ideal cipher uniformly at random. In case a collision with previously sampled values occurrs,
we sample uniformly from the set not containing the previous values. This does not change the
distribution, since, intuitively, the probability mass associated to invalid responses is distributed
uniformly over the valid responses. We additionally introduce a new flag bad that does not change
the behavior of the game but detects when the re-sampling strategy is invoked.

The next step is then to switch to game G3 in which the oracle E samples without collisions.
The games G2 and G3 differ only for after bad has been set, and the Fundamental Lemma then
allows to bound the difference in advantage by the probability of provoking bad, where each block
sampled initially in E is uniformly random. Since the collisions are checked for each key K ∈
{K1, . . . ,Ku} individually, and the invocations of CAU lead to at most `blk(qe + qv) + 1 queries per
user, the Union Bound and the standard collision probability let us bound the overall probability
by u · (`blk(qe + qv) + 1)2/2λ+1.

In game G4 in Fig. 17, we introduce a new flag bad in the verification oracle Vf. The flag is set if
the decryption algorithm CAU.Dec returns a valid result but the ciphertext has not been obtained
through Enc; in other words, the flag bad is set when the adversary successfully forges a ciphertext.
In game G5 we then modify what happens after the flag has been set: the oracle rejects anyway.

To bound the probability of bad to be set in G4 and G5, we use that H is an ε-almost XOR-universal
hash function. For each query Vf(i,N,C,H), the probability for bad to be set is bounded by
ε(`bit, `head). In more detail, we distinguish two cases:

• If N was not used in a query to Enc before, the event occurs with probability at most
ε(`bit, `head), as

Pr
[
H(G,H,C∗)⊕ H(G, ε, ε) = T ⊕ U [Ki, N‖0311]

]
≤ ε(`bit, `head)

holds by the ε-almost XOR-universality of H, for C = T‖C∗, so C∗ is the part of the ciphertext
corresponding to the counter-mode encryption. (The function H fulfills H(G, ε, ε) = 0λ.)

• If N was used in a query to Enc before with header H ′ and leading to ciphertext C̄ = T̄‖C̄∗,
then

Pr
[
H(G,H,C)⊕ H(G,H, C̄∗) = T ⊕ T̄

]
≤ ε(`bit, `head),
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where C = T‖C∗ is the ciphertext output by Enc in the query with nonce N . We can use the
AXU property here because, while the tag T is known to the adversary prior to the choice of
C̄, the output of H is masked by a uniformly random value obtained from E. Therefore, we
can equivalently view the adversary as inputting the mask T ⊕ T̄ without any knowledge of
the output of H.

Adversary A makes at most uqv queries to the Vf oracle, which means that we can bound the
overall probability that bad is set by uqv · ε(`bit, `head).

Given that A makes at most qe ≤ 2ν queries to Enc per user instance, and the length of each
message is bounded by `blk ≤ 2λ−ν − 2 blocks, and because by assumption A does not repeat
nonces, then in game G5, the ciphertexts C0 and C1 are both uniformly random bit strings of
the same length. The game is therefore independent of the challenge bit b, which means that the
adversary cannot have any advantage in guessing b.

We combine all bounds shown in the above paragraphs:

Advmu-ind
CAU (A) = 2 Pr[Gmu-ind

CAU (A)]− 1 = 2 Pr[G0]− 1

≤ 2 Pr[G1]− 1 +
u(u− 1)

2κ+1

≤ 2 Pr[G3]− 1 +
u(u− 1)

2κ+1
+
u((qe + qv) · `blk)2

2λ+1

≤ 2 Pr[G5]− 1 +
u(u− 1)

2κ+1

+
u((qe + qv) · `blk)2

2λ+1
+ uqv · ε(`bit, `head),

which concludes the proof

6.2 Security of CAU

We now prove the multi-user indistinguishability security of plain CAU in the ideal-cipher model.

Theorem 6.2 Let κ, λ, ν ≥ 1 be such that ν ≤ λ−2. Let H: {0, 1}λ×({0, 1}∗×{0, 1}∗)→ {0, 1}λ be
an ε-almost XOR-universal hash function, for some ε: N×N→ [0, 1]. Let CAU = CAU[H, κ, λ, ν].
Let A be an adversary that makes at most u queries to its New oracle, qe queries to its Enc oracle
with messages of length at most `bit bits, qv queries to its Vf oracle with messages of length at
most `bit + λ bits, and p queries to its E and E−1 oracles. Assume furthermore that qe ≤ 2ν and
`bit ≤ λ(2λ−ν − 2). Then

Advmu-ind
CAU (A) ≤ up

2κ
+
u(`blk(qe + qv) + 1)2·

2λ+1
+
u(u− 1)

2κ+1
+ uqv · ε(`bit, `head),

for `blk = d`bit/λe+ 1 and where the AEAD headers are restricted to `head bits.

The first term originates from the advantage of the adversary in guessing a user’s key in a query
to the ideal cipher. This term grows linearly in the number of honest sessions, and it also grows
linearly in the number of adversary calls to the ideal cipher. We show below in Theorem 5.2 that
a term of this size is inevitable by proving the effectiveness of an attack. The second term stems
from a PRF/PRP-switching in the proof of counter mode. The third term stems from a potential
collision of honest-user keys, and the final term from the authentication using the AUH-based MAC.
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Game G1 G0

b←$ {0, 1} ; b′←$ANew,Enc,Vf,E,E−1

Return (b′ = b)

New()

v ← v + 1 ; Kv←$ {0, 1}CAU.kl

Enc(i,N,M,H)

C1←$ CAU.EncRF(Ki, N,M,H)

C0←$ {0, 1}CAU.cl(|M |)
Return Cb

Vf(i,N,C,H)

If (b = 0) then return false

M ← CAU.DecRF(Ki, N,C,H)

Return (M 6= ⊥)

E(L, x)

If L ∈ {K1, . . . ,Kv} then

bad← true ; T [L, x]← RF(L, x)

If T [L, x] = ⊥ then

T [L, x]←$ imT [L, ·]
Return T [L, x]

E−1(L, y)

If L ∈ {K1, . . . ,Kv} then bad← true

If U−1[L, y] = ⊥ then

x←$ suppU [L, ·]
T [L, x]← U [L, x]← y

If T−1[L, y] = ⊥ then

T−1[L, y]←$ suppT [L, ·]
Return T−1[L, y]

RF(K , x)

If imU [K , ·] = ∅ ∧ imT [K , ·] 6= ∅ then

bad← true ; U [K , ·]← T [K , ·]
If U [K , x] = ⊥ then

U [K , x]←$ imU [K , ·]
Return U [K , x]

Figure 18: In game G0 the oracles RF and E/E−1 are consistent, in game G1 they are independent.

Proof: We make the same assumptions about the validity of the queries made by adversary A
as in Theorem 5.1. The first game G0 we consider is described in Fig. 18 and is only a syntactic
modification of game Gmu-ind

CAU (A). We introduce an additional oracle RF that implements the
forward evaluation of the ideal cipher for the algorithms CAU.Enc and CAU.Dec. This is sufficient
as encryption and decryption in GCM never query E−1. In more detail, oracle RF samples the
ideal cipher for the keys used in the encryption using the map U [·, ·]. The oracles E and E−1 are
adapted such that, for keys used in the game, they sample the map T [·, ·] consistently with U [·, ·].
We introduce a flag bad that is set when the adversary A queries one of the oracles E or E−1 with a
key that is also used in the oracle RF. Apart from this flag, game G0 is equivalent to Gmu-ind

CAU (A).

We then rewrite the game in the form of G1 analogously to the modifications in Theorem 5.1,
which modifies the way in which the responses for the E, E−1, and RF oracles are determined. In
particular, we break the consistency between E and E−1 on the one hand, and RF on the other
hand, by sampling the oracle responses independently. Since all changes appear only after bad has
been set, we can relate the games using the Fundamental Lemma from Bellare and Rogaway [6] and
proceed by bounding the probability of setting bad. This probability is in fact bounded by up/2κ.
As all computations while bad is not set are independent of the values K1, . . . ,Ku, the maximal
probability of the adversary to guess one of these uniformly random values is u/2κ in each of its p
queries to E and E−1.

We now observe that winning game G1 is almost equivalent to winning Gmu-ind
CAU without access to

the oracles E and E−1, but these oracles are independent of all other oracles in the game, and so
they are easy to simulate. We therefore consider the adversary B = B(A) in the game Gmu-ind

CAU
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that simulates the oracles E and E−1 to the adversary A and forwards all other queries to its
own oracles. Adversary B therefore never uses the oracles E and E−1, therefore we can apply
Lemma 6.1. Clearly, Pr[G1] = Pr[Gmu-ind

CAU (B(A))], and therefore

Advmu-ind
CAU (A) = 2 Pr[Gmu-ind

CAU (A)]− 1 = 2 Pr[G0]− 1

≤ 2 Pr[Gmu-ind
CAU (B(A))]− 1 +

up

2κ

≤ u(u− 1)

2κ+1
+
u((qe + qv) · `blk)2

2λ+1
+ uqv · ε(`bit, `head) +

up

2κ
,

which concludes the proof.

6.3 Security of RCAU

In terms of bounds for RCAU, we first show a simple corollary proving that the same bounds as for
CAU also apply for RCAU. This follows immediately by a reduction that randomizes the nonces.

Corollary 6.3 Let κ, λ, ν ≥ 1 be such that ν ≤ λ − 2. Let H: {0, 1}λ × ({0, 1}∗ × {0, 1}∗) →
{0, 1}λ be an ε-almost XOR-universal hash function, for some ε: N × N → [0, 1]. Let RCAU =
RCAU[H, κ, λ, ν]. Let A be an adversary that makes at most u queries to its New oracle, qe
queries to its Enc oracle with messages of length at most `bit bits, qv queries to its Vf oracle
with messages of length `bit + λ bits, pe queries to its E oracle, pi queries to its E−1 oracle, and
p = pe + pi. Assume furthermore that qe ≤ 2ν , and `bit ≤ λ(2λ−ν − 2). (For brevity we write
q = qe + qv.) Then

Advmu-ind
RCAU (A) ≤ up

2κ
+
u(`blk(qe + qv) + 1)2·

2λ+1
+
u(u− 1)

2κ+1
+ uqv · ε(`bit, `head), (3)

for `blk = d`bit/λe+ 1 and where the AEAD headers are restricted to `head bits.

Proof: We prove this via a reduction as follows: adversary B within game Gmu-ind
CAU emulates

the oracles of game Gmu-ind
RCAU toward the assumed adversary A as follows: queries to oracles E

and E−1 are simply forwarded to the same oracles in game Gmu-ind
CAU . Queries to oracle New are

handled by calling the same oracle in Gmu-ind
CAU , and for the ith user sampling a random masking key

K ′←$ {0, 1}ν . Queries Enc(i,N,M,H) and Dec(i,N,C,H) are handled by calling the respective
oracle in Gmu-ind

CAU , but replacing N by N ⊕K ′i. The view of A in Gmu-ind
RCAU (A) and in Gmu-ind

CAU (B(A))
is the same. As B makes exactly the same number of queries as A, the claimed bound follows.

We prove a stronger bound for the advantage of a passive adversary that does not use its Vf
oracle in a non-trivial way. The bound differs from the one proven above significantly: we show
that for passive adversaries we can replace the term up/2κ in the bound for CAU by terms that
are smaller for realistic parameters. The proof does, however, not extend to active adversaries that
make use of the Vf oracle: In fact, RCAU evaluates the block cipher, in each session, on the fixed
value 0λ to obtain the key for H, and our analysis of the authenticity guarantee requires that this
key be uniformly random. This requirement is of course not fulfilled if the adversary evaluated the
block cipher on the value 0λ for the respective key.

In the result for RCAU, we explicitly distinguish between the numbers for evaluation pe and
inversion pi queries for the block cipher, with p = pe + pi.

Theorem 6.4 Let κ, λ, ν ≥ 1 be such that ν ≤ λ− 2. Let H: {0, 1}λ× ({0, 1}∗×{0, 1}∗)→ {0, 1}λ
be a family of functions. Let RCAU = RCAU[H, κ, λ, ν]. Let A be an adversary that makes at most
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u queries to its New oracle, qe queries to its Enc oracle with messages of length at most `bit bits,
qv queries to its Vf oracle with messages of length `bit+λ bits, pe queries to its E oracle, pi queries
to its E−1 oracle, and p = pe + pi. Assume furthermore that qe ≤ 2ν , and `bit ≤ λ(2λ−ν − 2). (For
brevity we write q = qe + qv.) Then

Advmu-ind
RCAU (A) ≤ u(`blkqe + 1)2

2λ+1
+
up(`blkqe + 1)

2κ+ν−1
+
up(`blkqe + 1)

2κ(2λ − p)

+
up(`blkqe + 1)

2κ(2λ − qe)
+

1

2cλ

(
u(qe + qv)`blk

c+ 1

)
+
cpi + u

2κ
+
u(u− 1)

2κ+1
, (4)

for `blk = d`bit/λe+ 1, for an adversary A making qv = 0 verification queries, and for any constant
c ∈ N.

In comparison with the bound proven in Theorem 6.2, the major difference in Equation (4) is
that the term up/2κ is replaced by the four terms up(`blk(qe + qv) + 1)/2κ+ν , up(`blk(qe + qv) +
1)/2κ(2λ − u), up(`blk(qe + qv) + 1)/2κ(2cλ − qe − qv), 1/2λ

(
u(qe+qv)`blk

c+1

)
, and cpi/2

κ. This is an

improvement because for the values used in TLS 1.3 it is reasonable to assume `blk(qe+qv)+1� 296

as well as qe+qv, p� 296, c can be chosen such that 1/2cλ
(
u(qe+qv)`blk

c+1

)
is small, and the term cpi/2

κ

does not scale with u. Unfortunately, our proof does not support a similar statement for active
attacks.

Proof: The proof starts along the same lines as the proof of Theorem 6.2, which means that we
describe a game G0 in which the calls of RCAU.Enc and RCAU.Dec to E are replaced by calls to
a different oracle RF that performs exactly the same computation as E. This is an equivalent
formulation of Gmu-ind

RCAU (A), since the oracles E and RF are equivalent. Additionally, we introduce
a flag bad that is set when a key sampled in the New oracle for a new user collides with a key
chosen previously for another user. Game G0 is described in Fig. 19.

In game G1, we change the New oracle for the case that a collision between the keys of honest
users occurs. The oracle re-samples the key in a way that avoids a collisions. The modification
occurs after the flag bad is set, and analogously to the proof of Theorem 6.2, we conclude that the
probability for the flag to be set is bounded by u(u− 1)/2κ+1.

As in the proof of Theorem 6.2, we now aim at “decoupling” the oracles E/E−1 and RF, but this
time we have to be cautious: we cannot just “give up” when the adversary “guesses” one of the
users keys in calls to E/E−1; this would ruin our bound. The first step is as above to introduce an
auxiliary map U [·, ·] in addition to T [·, ·], but keep the maps synchronized. The change from G1 to
G2 is therefore only syntactic. Intuitively, the lazy sampling of the block cipher is now performed
using both maps, where T [·, ·] is filled in calls to E and E−1, and U [·, ·] is filled in RF. The oracles
make sure that the maps stay consistent.

In game G3, we first change the way in which the responses are sampled, but still in an equivalent
way, namely we first attempt to sample consistently only for T [·, ·] and then check for consistency
with U [·, ·]. If this fails, we set bad← true and re-sample with the correct distribution. Additionally,
we set bad← true whenever we need to answer for either T [·, ·] or U [·, ·] and the answer is already
defined by the respective other map. Game G3 is equivalent to G2. The proof is further complicated
by the fact that RCAU derives the key for H as E(K , 0λ) and this query is therefore not randomized.
As a consequence, we have to treat the queries with value 0λ independently of the other queries,
and keep the maps T [·, 0λ] and U [·, 0λ] consistent for the next proof steps.

In game G4 we modify the behavior of the oracles E, E−1, and RF to not re-sample to avoid
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Game G0 G1

b←$ {0, 1}
b′←$ANew,Enc,Vf,E,E−1

Return (b′ = b)

New()

v ← v + 1 ; Kv←$ {0, 1}RCAU.kl
If Kv ∈ {K1, . . . ,Kv−1} then

bad← true

Kv←$ {K1, . . . ,Kv−1}

Enc(i,N,M,H)

C1←$ RCAU.EncRF(Ki, N,M)

C0←$ {0, 1}RCAU.cl(|M |)
Return Cb

Vf(i,N,C,H)

If (b = 0) then return false

M ← RCAU.DecRF(Ki, N,C,H)

Return (M 6= ⊥)

E(L, x)

If T [L, x] = ⊥ then

T [L, x]←$ imT [L, ·]
Return T [L, x]

E−1(L, y)

If T−1[L, y] = ⊥ then

x←$ suppT [L, ·]
T [L, x]← y

Return T−1[L, y]

RF(K , x)

If T [K , x] = ⊥ then

T [K , x]←$ imT [K , ·]
Return T [K , x]

Game G2

Initialization, New, Enc, and Vf unmodified from G1.

E(L, x)

If T [L, x] = ⊥ then

If x = 0λ then

T [L, x]←$ imT [L, ·]
Else if U [L, x] = ⊥ then

T [L, x]←$ imT [L, ·] ∪ imU [L, ·]
Else T [L, x]← U [L, x]

Return T [L, x]

E−1(L, y)

If T−1[L, y] = ⊥ then

If U−1[L, y] = ⊥ then

x←$ suppT [L, ·] ∪ suppU [K , ·]
T [L, x]← y

Else T [L,U−1[L, y]]← y

Return T−1[L, y]

RF(K , x)

If U [K , x] = ⊥ then

If x = 0λ then

U [K , x]← E(K , x)

Else if T [K , x] = ⊥ then

U [K , x]←$ imT [K , ·] ∪ imU [K , ·]
Else U [K , x]← T [K , x]

Return U [K , x]

Figure 19: Left: The multi-user game in which the calls from AE.Enc and AE.Dec to E are replaced
by calls to RF, which implements the same function. Right: Equivalent formulation of the same
game, in which the management of the lazy sampling is achieved by different but equivalent code.

inconsistencies with the other oracles. Also, we do not enforce consistency between T [K , ·] and
U [K , ·] for values that are defined already in one of the maps; we sample a fresh value in a map
independently of whether the point is already defined in the other map. As both modifications occur
only after the flag bad has been set, we can use the Fundamental Lemma to relate the advantages
of an adversary in games G3 and G4.

To bound the probability for the flag bad to be set in games G3 or G4, respectively, we begin with
the following observation: As long as bad is not set, each row T [K , ·] or U [K , ·] for a specific key K is
sampled without collisions within this row, but independently of any other row, and also mutually
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Game G3 G4

Initialization, New, Enc, and Vf unmodified from G1.

E(L, x)

If T [L, x] = ⊥ then

If x = 0λ then T [L, x]←$ imT [L, ·]
Else If U [L, x] = ⊥ then

T [L, x]←$ imT [L, ·]
If T [L, x] ∈ imU [L, ·] then

bad← true; T [L, x]←$ imT [L, ·] ∪ imU [L, ·]
Else T [L, x]← U [L, x] ; bad← true ; T [L, x]←$ imT [L, ·]

Return T [L, x]

E−1(L, y)

If T−1[L, y] = ⊥ then

If U−1[L, y] = ⊥ then

x←$ suppT [L, ·]
If x ∈ suppU [L, ·] then

bad← true; x←$ suppT [L, ·] ∪ suppU [L, ·]
T [L, x]← y

Else

T [L,U−1[L, y]]← y ; bad← true ; T [L,U−1[L, y]]←$ suppT [L, ·]
Return T−1[L, y]

RF(K , x)

If U [K , x] = ⊥ then

If x = 0λ then U [K , x]← E(K , x)

Else if T [K , x] = ⊥ then

U [K , x]←$ imU [K , ·]
If U [K , x] ∈ imT [K , ·] then

bad← true; U [K , x]←$ imT [K , ·] ∪ imU [K , ·]
Else U [K , x]← T [K , x] ; bad← true ; U [K , x]←$ imU [K , ·]

Return U [K , x]

Figure 20: Modifying the oracles such that the maps T [·, ·] and U [·, ·] become independent.

independent between T [K , ·] and U [K , ·]. This is the case because the only other way of defining
a value for those maps is either re-sampling or copying from the other map; in both cases we set
the flag bad. Furthermore, we observe that all operations that occur before the flag bad is set are
independent of the actual values of the keys K1, . . . ,Ku. Given these insights, we now analyze the
probabilities for setting the bad flag at the different code points, first for E and E−1:

• The probability of enforcing re-sampling in E or E−1 is analyzed as follows: For a particular
key K̄ ∈ {K1, . . . ,Ku} for which m blocks have been defined through queries to RF, the
probability of sampling a value that collides is at most m/(2λ−p), as we choose uniformly from
2λ−p values. The expected number of blocks for the key L in the query is u(`blk(qe+qv)+1)/2κ,
which leads to an overall probability of u(`blk(qe + qv) + 1)/(2κ(2λ − p)) for each query.
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Game G5 G6

Initialization, New, Enc, and Vf unmodified

from G1.

E(L, x)

If T [L, x] = ⊥ then

T [L, x]←$ imT [L, ·]
Return T [L, x]

E−1(L, y)

If T−1[L, y] = ⊥ then

x←$ suppT [L, ·]
T [L, x]← y

Return T−1[L, y]

RF(K , x)

If U [K , x] = ⊥ then

If x = 0λ then

U [K , x]← E(K , x)

Else

y←$ {0, 1}λ
If y ∈ imU [K , ·] then

bad← true

y←$ imU [K , ·]
U [K , x]← y

Return U [K , x]

Figure 21: Moving to a version of the game where RF is a random function.

• The probability of enforcing that a value be copied (that is, the final “Else” statement becomes
active) in E is bounded by u(`blk(qe+qv)+1)/2κ+ν for each of the p queries. This is computed
analogously to above: executing the “Else” statement means that the adversary guessed a
combination of a κ-bit key and a ν-bit mask value.

• Finally, for a constant c ∈ N, the probability of at least c+ 1 outputs of RF colliding can be
bounded by 2−cλ

(
u(qe+qv)`blk

c+1

)
. Given that no such multi-collision occurs, the probability for

copying a value in E−1 is bounded by the term c/2−κ. The reason is that it corresponds to
guessing a key for one out of c users.

We obtain the bounds u(`blk(qe + qv) + 1) · p/2κ+λ, u(`blk(qe + qv) + 1)pe/2
κ+ν , 2−cλ

(
u(qe+qv)`blk

c+1

)
,

and cpi/2
−κ as the adversary makes at most pe queries to E, pi queries to E−1, and p = pe + pi

queries accumulated.

We proceed by analyzing the probabilities for RF analogously:

• With respect to enforcing re-sampling in RF, for a key L for which m blocks have been
defined, the probability of sampling a colliding value is m/(2λ − qe − qv). This leads to an
overall probability of at most p/(2κ(2λ − qe − qv)).

• The probability of enforcing that a value be copied (that is, the final “Else” statement becomes
active) in RF is bounded by u(`blk(qe + qv) + 1)p/2κ+ν . The reason is that for a particular
key L for which m blocks have been defined through queries to E and E−1, the probability
that an query to RF as done by CAU.EncRF uses the same input is bounded by m/2ν . This
leads to a probability of p/2κ+ν .

Since the encryption and decryption algorithms overall make u(`blk(qe + qv) + 1) queries to RF, we
obtain the bounds up(`blk(qe + qv) + 1)/(2κ(2λ − qe − qv)) and up(`blk(qe + qv) + 1)/2κ+ν .

The next step of the proof modifies the way in which RF samples its outputs and is almost as
in the proof of Lemma 6.1. Game G5 is equivalent to G4, the changes are only syntactic. In
particular, we change all oracles E, E−1, and RF to remove redundant code and unify statements
where the “If” and “Else” branches are equivalent. Additionally, we change the way in which the
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oracle RF samples its outputs to a sample-check-resample strategy. Game G6 behaves similarly,
but does not resample. As in Lemma 6.1, the probability for bad to be set can be bounded by
u(`blk(qe + qv) + 1)2/2λ.

The then proof concludes by combining all the terms to obtain the bound stated in the Theorem.

We stress that the term up/2κ in Equation (3) does, unlike the terms in Theorem 6.2, not
immediately corresponds to a matching attack on the use of the scheme within the TLS protocol.
The reason is that such an attack would require sending a great amount of crafted ciphertexts
within the TLS session, but TLS tears down a session and discards the keys after the first failure
in MAC verification. Therefore, it is conceivable that the scheme as used within TLS achieves
considerably better security against active attacks than our above bound suggests. Moreover, such
an attack would be inherently active and not suitable for mass surveillance.

6.4 Security of XCAU

To analyze the indistinguishability security of XCAU, we combine the results of Theorem 5.5 and
Lemma 6.1. The proof is almost the same as the one for Theorem 6.2, but the step of “decoupling”
the E/E−1 and RF oracles makes use of the results in Theorem 5.5. Most notably and in contrast
to RCAU, the bound does not contain a term of the type pi/2

κ, and applies to active adversaries
as well.

Theorem 6.5 Let κ, λ, ν ≥ 1 be such that ν ≤ λ − 2. Let H: {0, 1}λ × ({0, 1}∗ × {0, 1}∗) →
{0, 1}λ be an ε-almost XOR-universal hash function, for some ε: N × N → [0, 1]. Let XCAU =
XCAU[H, κ, λ, ν]. Let A be an adversary that makes at most u queries to its New oracle, qe
queries to its Enc oracle with messages of length at most `bit bits, qv queries to its Vf oracle with
messages of length at most `bit+λ bits, and p queries to its E and E−1 oracles. Assume furthermore
that qe ≤ 2ν and `bit ≤ λ(2λ−ν − 2). Then

Advmu-ind
XCAU (A) ≤ up(`blk(qe + qv) + 1)

2λ+κ+1
+
up(`blk(qe + qv) + 1)2

2λ+1
+ uqv · ε(`bit, `head) +

u(u− 1)

2κ+1
,

for `blk = d`bit/λe+ 1, and with headers of length at most λ`head bits.

Proof: As in the previous proofs, we restrict ourselves to adversaries A that do not make trivially
invalid queries. The first step, as in the proof of Theorem 5.6, is to change the game Gmu-ind

XCAU (A) in
an equivalent way by introducing an additional oracle RF that implements the same ideal cipher
as E and E−1 and is used in the algorithms XCAU.Enc and XCAU.Dec, call this game G0. The
next step, still as in Theorem 5.6, is to re-write the oracles Enc, Dec, and RF such that the
input and output whitening of the block cipher is performed within RF, this game is called G1 and
the changes are analogous to the modifications in G1 in Theorem 5.6. The next game G2 is then
obtained by replacing RF with an independent instance of an ideal cipher, this is the same as G1

in Theorem 6.2. Both games have a flag bad that is set when the oracles RF and E/E−1 diverge.

The probability of setting the bad flag in G1 and G2 can be bounded using Theorem 5.5. More
technically, we describe an adversary B = B(A) that emulates oracles to A as follows: Queries
New, E, and E−1 by B are responded by B performing the same query in its game. Queries Enc
and Dec are responded by B emulating the respective oracles using the oracle RF in its game to
evaluate CAU.Enc and CAU.Dec. The view of A is the same in G1 and in the game R(B(A)), and
in G2 and the game S(B(A)), respectively. The numbers of queries u to the New oracle and p to
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the E and E−1 oracles are preserved by B. At most qe queries of length at most `bit to Enc and
at most qv queries of length at most `bit + λ to Vf translate into at most `blk(qe + qv) + 1 queries
to RF in the game played by B. Using the claim, this means that the probability of setting bad
can be bounded by up(`blk(qe + qv) + 1)/2λ+κ+1.

We now conclude the proof similarly to the one in Theorem 6.2. We observe that game G2 is
almost equivalent to Gmu-ind

CAU without access to the oracle E and E−1, because these oracles are
independent of all other oracles in the game, which makes them easy to simulate. We therefore
describe an adversary B = B(A) in the game Gmu-ind

CAU that simulates the oracles E and E−1 to the
adversary A and forwards all other queries to its own oracles. Clearly, Pr[G2] = Pr[Gmu-ind

CAU (B(A))],
and therefore

Advmu-ind
XCAU (A) = 2 Pr[Gmu-ind

XCAU (A)]− 1 = 2 Pr[G0]− 1 = 2 Pr[G1]− 1

≤ 2 Pr[Gmu-ind
CAU (B(A))]− 1 +

up(`blk(qe + qv) + 1)

2λ+κ+1

≤ u(u− 1)

2κ+1
+
u((qe + qv) · `blk)2

2λ+1
+ uqv · ε(`bit, `head)

+
up(`blk(qe + qv) + 1)

2λ+κ+1
,

which concludes the proof.

7 Conclusion

TLS 1.2 is the most widely used cryptographic protocol in the Internet, but due to issues with both
performance and security, it will soon be replaced by its successor, TLS 1.3. Given that the bulk
of Internet traffic will likely be protected by TLS 1.3 in the next years, it is extremely important
that the security of the protocol is well-understood. Facing the threat of mass surveillance and
the expected great number of TLS 1.3 sessions, the TLS Working Group has introduced a nonce-
randomization technique to improve the resilience of TLS 1.3 against such attacks.

We show that the proposed technique can be understood as a key-length extension for AE; it
essentially extends the 128-bit key of AES-GCM to a 224-bit key. We first describe the authenticated
encryption CAU (Counter mode Almost Universal) as an abstraction of GCM. We then describe
the scheme with randomized nonces as its variant RCAU and analyze it in the multi-user setting,
where we show that it improves the resilience against (passive) mass surveillance as intended by
the designers. We also show, however, that the AE does not perform as well as one might expect
from an AE with a 224-bit key, especially in presence of active attacks. One alternative would be
to simply increase the key size by, e.g., switching to an AES-256-based mode; this achieves better
security but also impacts performance.

We suggest a new encryption mode that we call XCAU. The mode uses an additional 128-bit
key (256 bits in total) to randomize the inputs and outputs of the block cipher (here AES) as
in DESX. The mode is almost as efficient as the mode RCAU used in TLS 1.3, only adding two
128-bit xor operations for each call to the block cipher over plain CAU, our abstraction for GCM.
We show that, still, its security is improved over RCAU in two ways. The security bounds we
prove for security of XCAU against active attacks scale significantly better in the number u of
users than those for RCAU, this stems mostly from the fact that all inputs to the block cipher
are randomized. Furthermore, the whitening of the block-cipher output allows to remove the (for
realistic parameters largest) term pi/2

κ from the security bound. (It should be noted, however, that
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this term is not worrisome for realistic parameters.) The fact that the implementation of XCAU,
in contrast to that of RCAU, requires non-black-box changes to the libraries implementing CAU,
however, makes adoption in the currently developed standard TLS 1.3 difficult.
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