
Simple Key Enumeration (and Rank Estimation)
using Histograms: an Integrated Approach

Romain Poussier1, François-Xavier Standaert1, Vincent Grosso1,2.

1 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium.
2 Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany.

Abstract. The main contribution of this paper, is a new key enumera-
tion algorithm that combines the conceptual simplicity of the rank esti-
mation algorithm of Glowacz et al. (from FSE 2015) and the paralleliz-
ability of the enumeration algorithm of Bogdanov et al. (SAC 2015) and
Martin et al. (from ASIACRYPT 2015). Our new algorithm is based on
histograms. It allows obtaining simple bounds on the (small) rounding
errors that it introduces and leads to straightforward parallelization. We
further show that it can minimize the bandwidth of distributed key test-
ing by selecting parameters that maximize the factorization of the lists of
key candidates produced by the enumeration, which can be highly bene-
ficial, e.g. if these tests are performed by a hardware coprocessor. We also
put forward that the conceptual simplicity of our algorithm translates
into efficient implementations (that slightly improve the state-of-the-art).
As an additional consolidating effort, we finally describe an open source
implementation of this new enumeration algorithm, combined with the
FSE 2015 rank estimation one, that we make available with the paper.

1 Introduction

Key enumeration and rank estimation algorithms have recently emerged as an
important part of the security evaluation of cryptographic implementations,
which allows post-processing the side-channel attack outcomes and determine
the computational security of an implementation after some leakage has been
observed. In this respect, key enumeration can be seen as an adversarial tool,
since it allows testing key candidates without knowledge of the master key [10, 4,
8] (for example, it was an important ingredient of the best attack submitted to
the DPA Contest v2 [5]). By contrast, rank estimation as an evaluation tool since
it requires the knowledge of the master key. Its main advantage is that it allows
efficiently gauging the security level of implementations for which enumeration
is beyond reach (and therefore are not trivially insecure) [11, 12, 3, 7, 8].

Concretely, state-of-the-art solutions for key rank estimation are essentially
sufficient to analyze any (symmetric) cryptographic primitive. Algorithms such
as [3, 7, 8] typically allow estimating the rank of a 128- or 256-bit key with
an accuracy of less than one bit, within seconds of computation. By contrast,
efficiency remained a concern for key enumeration algorithms for some time,



in particular due to the inherently serial nature of the optimal algorithm of
Veryat et al. [10]. This situation evolved with the recent (heuristic) work of
Bogdanov et al. [4] and the more formal solution of Martin et al. [8]. In these
papers, the authors exploit the useful observation that by relaxing (a little bit)
the optimality requirements of enumeration algorithms (as one actually does in
rank estimation), it is possible to significantly improve their efficiency, and to
make them parallelizable. Since this relaxation is done by rounding the key (log)
probabilities (or scores) output by a side-channel attack, it directly suggests to
try adapting the histogram-based rank estimation algorithm from Glowacz et al.
to the case of key enumeration based on similar principles.

In this paper, we follow this track, and describe a new enumeration algorithm
based on histogram convolutions. As for rank estimation, using such simple tools
brings conceptual simplicity as an important advantage. Interestingly, we show
next that this simplicity also leads to several convenient features and natural op-
timizations of the enumeration problem. First, it directly leads to simple bounds
on the rounding errors introduced by our histograms (hence on the additional
workload needed to guarantee optimal enumeration up to a certain rank). Sec-
ond, it allows straightforward parallelization between cores, since the workload
of each core is directly available as the number of elements in each bin of our his-
tograms. Third, it outputs the keys as factorized lists, such that by adequately
tuning the enumeration parameters (i.e. the number of bins, essentially), we are
able to use our enumeration algorithm for distributed key testing with minimum
bandwidth (which is typically desirable if hardware/FPGA implementations are
used). In this respect, our experiments show that the best strategy is not always
to maximize the accuracy of the enumeration (especially when enumerating up
to large key ranks). We note that such features could also be integrated to other
recent enumeration algorithms (i.e. [8], and to some extent [4]). Yet, this would
require some adaptations while it naturally comes for free in our histogram-based
case. Eventually, the same observation essentially holds for the performances of
our algorithm, which slightly improve the state-of-the-art.

In view of the consolidating nature of this work, an important additional
contribution is an open source implementation of our key enumeration algorithm,
combined with the histogram-based rank estimation algorithm of FSE 2015, that
we make available with this paper in order to facilitate the dissemination of these
tools for evaluation laboratories [1].

2 Background

2.1 Algorithms inputs

Details on how a side-channel attack extracts information from leakage traces are
not necessary to understand the following analysis. We only assume that for a n-
bit master key k, an attacker recovers information on Ns subkeys k0, ..., kNs−1 of
length a = n

Ns
bits (for simplicity, we assume that a divides n). The side-channel

adversary uses the leakages corresponding to a set of q inputs Xq leading to a set

2



of q leakages Lq. As a result of the attack, he obtains Ns lists of 2a probabilities
Pi = Pr[k∗i |Xq,Lq], where i ∈ [0, Ns − 1] and k∗i denotes a subkey candidate
among the 2a possible ones. TA (Template Attacks) and LR (Linear Regression)-
based attacks directly output such probabilities. For other attacks such as DPA
(Differential Power Analysis) or CPA (Correlation Power Analysis), one can use
Bayesian extensions [10] or perform the enumeration directly based on the scores.
Note that in this last case, the enumeration result will be correct with respect
to the scores, but the corresponding side-channel attack is not guaranteed to be
optimal [9]. For simplicity, our following analyses are based only on the optimal
case where we enumerate based on probabilities. We leave the investigation of
the overheads due to score-based enumeration as an interesting scope for further
investigation. Eventually, the lists of probabilities are turned into lists of log
probabilities, denoted as LPi = log(Pi). This final step is used to get an additive
relation between probabilities instead of a multiplicative one.

2.2 Preprocessing

Key enumeration (and rank estimation) algorithms generally benefit from the
preprocessing which consists of merging m lists of probabilities Pi of size 2a

in order to generate a larger list P ′i = merge(P0, P1, . . . , Pm−1), such that P ′i
contains the 2m·a product of probabilities of the lists P0, P1, . . . , Pm−1. Taking
again the previous notations where the n bits of master key are split in Ns

subkeys of a bits, it allows to split them into N ′s = Ns/m subkeys of m · a bits
(or close to it when m does not divide Ns). We denote the preprocessing merging
m lists as mergem, with merge1 meaning no merging. In the following, we assume
that such a preprocessing is performed by default and therefore always use the
notation N ′s for the number of subkeys.

2.3 Toolbox

We now introduce a couple of tools that we use to describe our algorithms, using
the following notations: H will denote an histogram, Nb will denote a number
of bins, b will denote a bin and x a bin index.

Linear histograms. The function H = hist lin(LP,Nb) creates a standard his-
togram from a list of (e.g.) log probabilities LP and Nb linearly-spaced bins.
This is the same function as introduced in [9].

Convolution. This is the usual convolution algorithm which from two histograms
H1 and H2 of sizes n1 and n2 computes H1,2 = conv(H1, H2) where H1,2[k] =∑k

i=0 H1[i]×H2[k−i]. It is efficiently implemented with a FFT in timeO(n log n).
In the rest of the paper we consider that the indexes start at 0.

Getting the size of a histogram. We defined by size of(H) the function that
returns the number of bins of an histograms H.

Getting subkey candidates from a bin. We define K = get(H,x) as a function that
outputs the set of all subkeys contained in the bin of index x of an histogram
H. Such a set can contain up to 2m·a elements depending on the merging value.

3



3 Enumeration algorithm

In this section, we describe our new key enumeration algorithm. Since we join an
open source code of this algorithm to the paper, our primary goal is to explain
its main intuition. For this purpose, we combine a specification of the different
enumeration steps with simple examples to help their understanding.

Concretely, our new key enumeration algorithm is an adaptation of the rank
estimation algorithm of Glowacz et al. [7]. As in this previous work, we use
histograms to efficiently represent the key log probabilities, and the first step
of the key enumeration is a convolution of histograms modeling the distribution
of our N ′s lists of log probabilities. This step is detailed in Algorithm 1. In the
rest of the paper we will denote the initial histograms H0, ...,HN ′

s−1 and the
convoluted histograms H0:1, ...,H0:N ′

s−1 as written in the output of Algorithm 1.
For illustration, Figure 1 shows an example of its application in the case of two
4-bit subkeys of which the log probabilities are represented by a 7-bin histogram,
which are convoluted in the lower part of the figure.

Algorithm 1 Convolution.

Input. N ′s lists of log probabilities LPi’s, and number of bins Nb.
Output. Histograms of the log probabilities of each sub-key: H0, . . . , HN′

s−1,
and their convolutions H0:1, . . . , H0:N′

s−1.

H0 ← hist lin(LP0, Nb);
H1 ← hist lin(LP1, Nb);
H0:1 ← conv(H0, H1);
for i = 2 to N ′s − 1 do

Hi ← hist lin(LPi, Nb);
H0:i ← conv(Hi, H0,i−1);

end forreturn H = [H0, . . . , HN′
s−1, H0:1, . . . , H0:N′

s−1].

Based on this first step, our algorithm allows to enumerate keys that are
ranked between two bounds Bstart and Bstop. In the standard situation where
the adversary wants to enumerate starting from the most likely key, we set
Bstart = 0. However, there are at least two cases where other starting bounds
can be useful. First, it is possible that one wishes to continue an enumeration
that has been started previously. Second, and more importantly, the selection of
these bounds directly allows efficient parallel key enumeration, where the amount
of computation performed by each core is well balanced.

In order to enumerate all keys ranked between the bounds Bstart and Bstop,
the corresponding indexes of H0:N ′

s−1 have to be computed, as described in
Algorithm 2. It simply sums the number of keys contained in the bins starting
from the most likely one, until we exceed Bstart and Bstop, and returns the
corresponding indexes xstart and xstop. That is, xstart (resp. xstop) refers to the
index of the bin where Bmin (resp. Bmax) is achieved (thus xstart ≥ xstop).

4



Fig. 1. Histograms representing the log probabilities of two 4-bit subkeys and their
convolution. Upper left: H0 = [0, 3, 2, 1, 7, 2, 1]. Upper right: H1 = [3, 0, 4, 5, 0, 3, 1].
Bottom: H0:1 = [0, 9, 6, 15, 44, 20, 45, 52, 19, 27, 13, 5, 1].

As in [7], a convenient feature of the histograms we use to represent the
key log probabilities is that they lead to simple bounds on the “enumeration
error” that is due to their rounding, hence on the additional workload needed
to compensate this error. Namely, if one wants to be sure to enumerate all the

keys of which the rank is between the bounds, then he should add dN
′
s

2 e to xstart

and substract it to xstop.1

Figure 2 illustrates the computation of these indexes using the same example
as in Figure 1. In this case, the user wants to find the bins where the keys are
ranked between 10 and 100. By summing up the number of keys contained in
the bins of H0:1 from the right to the left, we find that the bin indexed 10 starts
with the rank 7 and the bin indexed 7 ends with the rank 117. Since the bin
indexes 11 and 6 are out of the bounds (10 and 100), we know that the dark
grey bins approximately contains the keys we want to enumerate, up to rounding
errors. Furthermore, by adding the light grey bins, we are sure that all the keys

1 The authors of [7] had a slightly worst bound of N ′s instead of dN
′
s
2
e. Indeed, they

rounded the sum of all the subkeys’ log probabilities, instead of summing the rounded
subkeys’ log probabilities.

5



Algorithm 2 Computation of the indexes’ bounds.

Input. Lower and upper bounds on the key rank Bstart, Bstop.
Output. Indexes of the bins between the bounds xstart, xstop.

xstart ← size of(H0:N′
s−1)− 1;

cntstart ← 0;
while cntstart < Bstart do

cntstart ← cntstart + H0:N′
s−1(xstart);

xstart ← xstart − 1;
end while
cntstop ← cntstart;
xstop ← xstart;
while cntstop < Bstop do

cntstop ← cntstop + HN′
s−1(xstop);

xstop ← xstop − 1;
end whilereturn xstart, xstop.

between the ranks 10 and 100, as would be produced by an optimal enumeration
algorithm (like [10]), are covered by the bins.

Fig. 2. Computation of the indexes’ bounds for Bmin = 10 and Bmax = 100.

Given the histogram of the key log probabilities and the indexes of the bounds
between which we want to enumerate, the enumeration simply consists in per-
forming a backtracking over all the bins between xstart and xstop. More precisely,
during this phase we recover the bins of the initial histograms (i.e. before con-
volution) that we used to build a bin of the convoluted histogram H0:N ′

s−1. For
a given bin b with index x of H0:N ′

s−1 corresponding to a certain log probability,
we have to run through all the non-empty bins b0, ...bN ′

s−1 of indexes x0, ...xN ′
s−1

of H0, ...,HN ′
s−1 such that x0 + ... + xN ′

s−1 = x. Each bi will then contain at
least one and at most 2m·a subkey(s) that we must enumerate. This leads to a
keyfactorization which is a table containing N ′s subkey lists, such that each of
these lists contains up to 2m·a subkeys associated to the bin bi of the histogram

6



Hi. Any combination of N ′s subkeys, each one being picked in a different list,
results in a master key having the same rounded probability. Eventually, each
time a factorization is completed, we call a fictive function process key which
takes as input the result of this factorization. This function could test the keys
on-the-fly or send them to a third party for testing (this function is essentially
independent of the enumeration process).

Algorithm 3 describes more precisely this bin decomposition process. From
a bin index x0:i of H0:i, we find all the non empty bins of indexes xi of Hi such
that the corresponding bin of index x0:i − xi of H0:i−1 is non empty as well.
All the bins bi following this property will lead to valid subkeys for ki that we
add to the key factorization using the function get(Hi, bi). This is done for all
convolution results from the last histogram H0:N ′

s−1 to the first H0:1, which then
leads to a full key factorization.

Algorithm 3 Bin decomposition.

Input. H: the structure containing all the histograms output by Algorithm 1;
csh (current small hist): the index i of the current histogram Hi we target;
xbin: The bin index of H0:i we want to decompose.

Output. kf (key factorization): the array of N ′s subkey lists containing factorized
keys.
Inline comments are given in Table 1

if csh == 1 then
x← size of(H0)− 1;
while (x ≥ 0) & (x + size of(H1)) ≥ xbin) do . (1) and (2)

if H0(x) > 0 & H1(xbin − x) > 0 then . (3)
kf(1)← get(H0, x);
kf(0)← get(H1, xbin − x);
process key(kf);

end if
x← x− 1;

end while
else

x← size of(Hcsh)− 1;
while (x ≥ 0) & (x + size of(H0:csh−1) ≥ xbin) do . (4) and (5)

if Hcsh(x) > 0 & H0:csh−1(xbin − x) > 0 then . (6)
kf(csh)← get(Hi, x);
Decompose bin(csh− 1, xbin − x,H, kf);

end if
x← x− 1;

end while
end if

In order to help the understanding of Algorithm 3, we provide an example
of bin decomposition in Figure 3. In this example, we want to enumerate all the
keys having their log probability in the 7th bin of H0:1 (represented with black

7



Table 1. Comments for Algorithm 3.

(1) If x < 0 we looked at all the bins of H0.

(2) If x > xbin − size of(H1) we looked at all the bins of H1.

(3) If H0(x) > 0 & H1(xbin − x) > 0 we have two non-zero bins such that the
sum of the indexes matches, thus we found valid subkeys lists for k0 and k1.

(4) If x < 0 we looked at all the bins of Hcsh.

(5) If x > xbin − size of(H0:csh) we looked at all the bins of H0:csh.

(6) If Hcsh(x) > 0 & H0:csh−1(xbin − x) > 0 we have two non-zero bins such
that the sum of the indexes matches, thus we found a valid subkeys list for
kcsh.

stripes in the bottom part of the figure). Since this bin is not empty, we know
that such keys exist. Hence, in order to enumerate all of them, we iterate over
all the bins b0 with indexes x0 of H0 and look if the corresponding bins b1 with
indexes 7− x0 of H1 are non-zero (i.e. contain at least one key). Whenever this
happens, we found a key factorization which corresponds to all the combinations
of the subkeys contained in the bin b0 of H0 and the bin b1 of H1. These possible
bin combinations are represented in the same color for H0 (resp. H1) in the top
left (resp. top right) part of the figure. The bins in white are those for which no
such combination is possible. For example, subkeys with log probability in the
fourth bin of H0 would require subkeys with log probability in the fifth bin of
H1 (so that 3+4=7), but this fifth bin of H1 is empty.

The generalization of this algorithm simply follows a recursive decomposition.
That is, in order to enumerate all the keys within a bin b of index x in H0:N ′

s−1,
we find two indexes xN ′

s−1 and x − xN ′
s−1 of HN ′

s−1 and H0:N ′
s−2 such that

the corresponding bins are not empty. All the keys in the bin index xN ′
s−1 of

HN ′
s−1 will be added to the key factorization. We then continue the recursion

with the bin x− xN ′
s−1 of H0:N ′

s−2 by finding two non-empty bin indexes xN ′
s−2

and x− xN ′
s−1 − xN ′

s−2 of H0:N ′
s−3, etc.

Finally, the main loop of our new enumeration is given in Algorithm 4. It
simply calls Algorithm 3 for all the bins of H0:N ′

s−1 which are between the
enumeration bounds.

Algorithm 4 Histogram-based enumeration.

Input. H: the structure containing all the histograms output by Algorithm 1;
xstart: the bin index of H0:N′

s−1 from which we start the enumeration;
xstop: the bin index of H0:N′

s−1 from which we end the enumeration.
Output. kf (key factorization) :the array of N ′s subkey lists containing the factorized
keys.

for x = xstart to xstop do
Decompose bin(N ′s − 1, x,H, kf);

end for

8



Fig. 3. Enumeration with histogram for a (shifted) log probability of 7.

4 Open source code

For usability, we join an open source implementation of our key enumeration
algorithm to this paper. For completeness and in view of the similarity of the
techniques they exploit, we also include the key rank estimation algorithm of [7]
in this tool. The corresponding program is compiled using G++ and uses the
NTL library [2] in order to compute the histogram convolutions. It works on
Windows and Linux operating systems (and probably on MAC). In this section,
we describe the inputs and outputs that have to be set before running key enu-
meration and rank estimation. The code is provided as supplementary material
to the paper, with an example of utilization.

Note that while the previous section only describes the general idea of the
algorithm, its implementation contains a couple of additional optimizations,
typically involving precomputations, iterating only over non-zero bins of the
histograms and ordering the convolution, which allows significant performance
improvements.

9



Inputs of the rank estimation algorithm.

– log proba: the Ns × 2a matrix encoded in double precision containing the
subkey log probabilities obtained during thanks to the attack.

– real key: the Ns-element vector containing the real subkeys values.

– nb bin : the number of bins for the initial histograms Hi.

– merge: the value of merging. A value of 1 will not do any merging. A value of
2 will merge lists by two, this gives us N ′s = dNs

2 e lists of 22a elements. The
current version supports only a maximum merging value of 3, which means
N ′s = dNs

3 e lists of 23a subkeys.

Inputs of the key enumeration algorithm.

– All the inputs of the rank estimation algorithm (with real key being optional).

– bound start: the starting bound of the enumeration. If this is e.g. set to 210,
the enumeration will start from the closest bin of H0:N ′

s
such that at most

210 keys are contained in the next bins.

– bound stop: the ending bound of the enumeration. If this is e.g. set to 232,
the enumeration will start from the closest bin of H0:N ′

s
such that at least

232 keys are contained in the next bins.

– test key: this is a boolean value. If set to 1, the enumeration algorithm will
test the keys on-the-fly using an AES implementation, by recombining them
from the factorizations (and stop when the key is found); if set to 0, it will
keep the keys factorized, and the user should implement himself the way he
wants to test the keys in the process key function.

– texts: a 4 × Ns matrix containing two plaintexts and their associated ci-
phertexts. These two plaintexts/ciphertexts are used to test on-the-fly if the
correct key is found. This parameter does not have to be initialized if test key
is set to 0.

– to bound: This is a boolean value. If set to 1, the enumeration algorithm

will remove (resp. add)
N ′

s

2 to index max (resp. index min) as described
in the previous section, to ensure that we enumerate all the keys between
bound start and bound stop.

– to real key: additional parameter for comparisons with previous works, that
can take 4 values in [0, 4]. If set to 0, this parameter is ignored. If set to
to 1, 2, 3, it allows the user to measure the timing of enumerating up to the
real key in different settings, ignore the value of bound start and test key and
enumerate up to the bin that contains the real key. It then requires real key
to be initialized. If set to 1, the keys will neither be recombined nor tested.
If set to 2, the keys are recombined but not tested with AES (it simply tests
if the key is equal to the real one provided by the user). If set to 3, the keys
are recombined and tested with the AES. If the real key rank is bigger than
bound end, the enumeration is aborted.

10



Algorithms outputs.

– Rank estimation informations: returns the rank of the real key accord-
ing to its rounded log probabilities and the min and max bounds on the
actual rank of the real key. Also returns the time needed for rank estimation
(including the preprocessing time).

– Enumeration informations. If the key has been found, returns the rank
of the real key according to its rounded log probabilities and the min and
max bounds on the actual rank of the real key. Also returns the time needed
for preprocessing and the time needed for enumeration.

Examples. Together with our code, we provide different examples of key enu-
meration which are written in a file main example.cpp and listed in Table 2. The
first example (first line in the table) enumerates all the keys of rounded rank
between 210 and 240 (taking the rounding bounds into account) and tests them
using a reference AES-128 software implementation. The second example enu-
merates all the keys of rounded rank between 20 and 240 without testing them.
A user would then have to define the way he wants to implement the process key
function (e.g. by sending the factorized lists to a powerful third testing party).
The last three examples enumerate all the keys up to the real one if its rounded
rank is lower than 232. For the third one, the recorded timing will correspond
to the enumeration time with factorization. For the fourth one, the recorded
timing will correspond to the enumeration time including the recombination of
the factorized lists. For the last one, the recorded timing will correspond to the
enumeration time with key testing (with our reference AES-128 implementation)
and thus with recombination.

Table 2. Running examples for key enumeration

to real key real key test key to bound texts bound start bound stop

0 optional 1 1 given 210 240 (1)

0 optional 0 0 − 20 240 (2)

1 needed − − − − 232 (3)

2 needed − − − − 232 (4)

3 needed − − − − 232 (5)

5 Performance evaluations

In this section we evaluate the performances of our enumeration algorithm and
discuss its pros and cons compared to previous proposals. For this purpose, we
consider a setting of simulated leakages for an AES-128 implementation, which

11



has been previously used for comparison of other enumeration algorithms [4, 8,
10]. Namely, we target the output of an AES S-box, leading to 16 leakages of the
form li = HW(S(xi, ki))+N for i ∈ [0, 15], with HW the Hamming weight leakage
function and N a random noise following a Gaussian distribution. We stress that
the main experimental criteria influencing the complexity of an enumeration is
the rank of the key (that we can control thanks to the noise variance). So other
experimental settings would not lead to significantly different conclusions with
respect to the performances of the enumeration algorithm.

Besides, the two main parameters of our algorithm are the number of bins
and the amount of merging. Intuitively, a smaller number of bins leads to a
faster execution time at the cost of an increased quantization error, and merging
accelerates the enumeration at the cost of more memory requirements and pre-
processing time. All the following experiments were performed with 256, 2048
and 65536 bins, and for an amount of merging of 1, 2 and 3. These values were
chosen to allow comparisons with the results of [8]. That is, 256 (resp. 2048 and
65536) bins is similar to choosing a precision of 8 (resp. 11 and 16) bits for
their algorithm. We limited the amount of merging to 3 because the memory
requirements of this preprocessing then becomes too large for our AES-128 case
study (a merging of 4 would require to store 4× 232× 8 bytes for the lists of log
probabilities in double precision).

5.1 Enumeration accuracy

One convenient feature of our algorithm is its ability to compute easily the quan-
tization bounds related to the mapping from floating to integers. Since accuracy
is usually the main concern when enumerating keys, we start our evaluations
by analyzing the impact of the number of bins on these quantization bounds.
For this purpose, we first recall that these quantization errors are related to the
rounding, which was the key idea to improve the performance and parallelism of
recent works on enumeration. Hence, our goal is to find the level of quantization
errors that are acceptable from the enumeration accuracy point-of-view.

Figure 4 illustrates this impact for a precision of 256, 2048 and 65536 bins.
Since the impact of merging is minor for such experiments, we only report the
results with a merge1 preprocessing. The Y-coordinate represents the number of
keys one has to enumerate in order to guarantee an enumeration up to an exact
key rank given by the X-coordinate. Optimal enumeration is shown in black
(for which X = Y ) and corresponds to the application of the algorithm in [10].
The red, blue and green curves respectively represent the maximum, average and
minimum results we found based on a sampling of 1000 enumeration experiments.
These experiments lead to two interesting observations. First, a lower precision
(e.g. 256 bins) leads to larger enumeration overheads for small key ranks, but
these overheads generally vanish as the key ranks increase. Second, increasing the
number of bins rapidly makes the enumeration (rounding) error low enough (e.g.
less than one bit) which is typically observed for the 2048- and 65536-bin cases,
especially for representative ranks (e.g. beyond 232) where the enumeration cost

12



becomes significant. This is in line with the observations made with histogram-
based rank estimation [7].

Note that other algorithms such as [4, 8] lead to similar accuracies with sim-
ilar parameters (e.g. our 2048-bin case roughly corresponds to their 11-bit pre-
cision case). Besides, finding bounds on the rounding error should be feasible
for [8] too, despite probably more involved than with histograms for which such
bounds come for free.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

key rank (log2)

n
u
m

b
er

o
f

k
ey

to
en

u
m

er
a
te

(l
o
g
2
)

0 10 20 30 40 50 60

key rank (log2)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

key rank (log2)

n
u
m

b
er

o
f

k
ey

to
en

u
m

er
a
te

(l
o
g
2
)

max bound

mean bound

min bound

optimal (x=y)

Fig. 4. Enumeration overheads due to rounding errors with merge1 (i.e. no merging).
Upper left: 256 bins. Upper right: 2048 bins. Bottom: 65536 bins.

5.2 Factorization

Another important feature of our method is its intrinsic ability to output fac-
torized keys instead of a single key at a time. Studying why and how this factor-
ization evolves with our main parameters is important for two reasons. Firstly,
it allows a better understanding of how our main parameters affect the per-
formances of histogram-based enumeration, since a better factorization always

13



reduces its amount of processing. Secondly, the number of keys per factorization
may be important for the key testing phase, e.g. in case one wants to distribute
the lists of key candidates to multiple (hardware) devices and therefore minimize
the bandwidth of this distributed part of the computations. This second point
will be discussed in Section 6.

Intuitively, increasing the amount of merging or decreasing the number of
bins essentially creates more collisions in the initial histograms, thus increases
the size of the factorized keys, and thus accelerates the enumeration process.
Interestingly, increasing the merging does not decrease the accuracy (by contrast
with decreasing of the number of bins). Hence, this type of preprocessing should
(almost) always be privileged up to the memory limits of the device on which
the enumeration algorithms is running.

To confirm this intuition, Figure 5 illustrates an evaluation of the factoriza-
tion results for 256 (left) and 2048 (right) bins, and merging values from 1 to 3.
The top figures represent the number of keys per factorization (Y-coordinate).
The bottom figures represent the memory cost of the corresponding lists in bytes
(Y-coordinate). The dashed curves represent the average value (over 1000 ex-
periments) and the plain curves represent the maximum that occurred on our
1000 experiments. As we can see, using 256 bins leads to a lot of collisions and
the merging value always amplifies the number of collisions. This increases the
number of keys per factorization along with the memory size of the correspond-
ing lists. The memory cost is anyway bounded by N ′s × 2m·a, and the number
of keys per factorization by 2n = 2N

′
s·m·a (this extreme case would occur if all

the subkeys have the same rounded probability and thus are within the same
bins for all histograms Hi). We did not plot the results for 65536 bins since few
collisions appear (and thus not many of factorizations).

Note that the algorithm in [8] has a similar behavior as it stores the keys
having the same probabilities within a tree. So although the open source imple-
mentation joined to this previous work recombines the keys, it could also convert
this tree representation into a factorized representation that is more convenient
for distributed key testing with limited bandwidth.

5.3 Time complexity

We finally discuss the performances of our algorithm in terms of timing. For
this purpose, all our experiments were performed using i7-3770 CPU running at
3.40 GHz with 16 GB of RAM on Ubuntu. We start by comparing our results
to the C++ implementation of the optimal key enumeration algorithm of Veyrat
et al. [10], and consider the costs of enumeration only (i.e. we exclude the key
testing and measure the time it takes to output factorized lists of keys). We then
discuss the comparison with the work of Martin et al. at the end of the section.

Results for 256 and 65536 bins are given in Figure 6. The Y-coordinate
represents the time (in seconds) taken to enumerate keys until finding the correct
one, for different ranks represented in the X-coordinate (in log2). As expected,
the enumeration time without key testing is extremely fast for a (low) precision

14



0 5 10 15 20 25

100

101

102

103

104

105

106

n
b

k
ey

p
er

fa
ct

o
ri

za
ti

o
n

0 5 10 15 20 25

0 5 10 15 20 25

101

102

103

104

105

key rank (log2)

m
em

o
ry

co
st

(b
y
te

)

0 5 10 15 20 25

key rank (log2)

max merge3
max merge2
max merge1
mean merge3
mean merge2
mean merge1

Fig. 5. Key factorization for different levels of merging and number of bins. Left:
number of keys per factorization (top) and memory cost of the associated list in bytes
(bottom) for 256 bins. Right: same plots for 2048 bins.

of 256 bins (in the upper part of the figure). For a merge1 preprocessing, it
takes less than 10 seconds to enumerate up to 235 on average. For a merge2
preprocessing, it does not even take a second. The bottom part of the figure
then shows the results for 65536 bins with merge1 and merge2 preprocessings.
Interestingly (and exceptionally), using the merge2 preprocessing is worst than
using merge1 in this case. This is due to the fact that the 65536 bins do not bring
enough collisions. Hence, we loose more by iterating over all the non-empty bins
than what we win from the collisions. Additional results for 2048 bins and other
merging values are given in Appendix A.

We next discuss a number of additional issues related to these performances.

Preprocessing and memory. The preprocessing time and the memory re-
quirements of the algorithm are almost null for merge1 and merge2 preprocessings
(i.e. less than a second and less than 30 Mb). However, merge3 is more expensive
in time and memory. Indeed, the algorithm has to keep the merged scores and

15



0 5 10 15 20 25 30
10−2

10−1

100

101

102

103

ti
m

e
in

se
co

n
d
s

(l
o
g
)

Veyrat et al.

Our’s samples.

Our’s mean

0 5 10 15 20 25 30

0 5 10 15 20 25 30
10−2

10−1

100

101

102

103

104

key rank (log2)

ti
m

e
in

se
co

n
d
s

(l
o
g
)

0 5 10 15 20 25 30

key rank (log2)

Fig. 6. Execution time for 256 and 65536 bins with factorized lists. The blue stars are
the samples for our algorithm, the red curve is the corresponding mean, and the black
curve is for the optimal enumeration algorithm in [10]. Upper left: 256 bins / merge1.
Upper right: 256 bins / merge2. Bottom left: 65536 bins / merge1. Bottom right: 65536
bins / merge2.

the subkeys lists that fall into each bins in memory. In our experiments done
for an AES-128 implementation, we have to process 5 lists of 224 elements and
one of 28. This requires approximatively 3.5 Gb of memory and 45 seconds of
preprocessing. As for the other key enumeration algorithm based on rounded
log probabilities (i.e. [4, 8]), the memory requirements are independent of the
enumeration depth.

Parallelization. Our algorithm allows a very natural parallelization with min-
imum communication. Namely, after H0:N ′

s−1 has been computed, if the user
wants to parallelize the enumeration among c cores, he simply has to split the
bins into c sets which will contain approximatively the same amount of keys, so
that each core will have approximatively the same workload. From our prelim-
inary experiments, the gain of such a parallelization is linear in the number of
threads, as expected.

16



Note that other key enumeration algorithms such as [4, 8] can also be easily
parallelized, but balancing the effort done by each core may be slightly more
involved. This difference is again due to our treatment with histograms. That
is, while we can directly select the ranks between which we want to enumerate
with our starting and ending bounds, the solution in [8] rather has to select
the minimum and maximum probabilities of the keys between which we want to
enumerate, without a priori knowledge of the amount of keys it represents. So
good balance between the cores requires an (admittedly light) preprocessing to
estimate the workload of the different cores. Besides, the heuristic nature of [4]
(which is not aimed at optimal enumeration) also makes it difficult to compare
from this point of view.

Comparison with the enumeration algorithm of Martin et al. To con-
clude this section, we add a comparison with the work in [8] and produce perfor-
mance evaluations using their Java open source (using their “shift to 1 trick” to
speed up the enumeration). We insist that this comparison is informal, since com-
paring implementations with different programming languages and optimization
efforts, and therefore is only aimed to highlight that the simplicity of our enumer-
ation algorithm reasonably translates into efficient implementations compared
to the best state-of-the-art enumeration algorithms.

Figure 7 shows our comparison results for both 8 and 11 bits of precision (cor-
responding to 256 and 2048 bins for our algorithm). Since the implementation
of Martin et al. measures the time to output the keys one by one (represented
by the red curve in the figure), we consider a similar scenario for our algorithm
(represented by the green curve in the figure). After some (quite irrelevant) time
overheads of the implementation from [8] for low key ranks, we see that both
algorithms reach a similar slope when the key ranks increase – yet with a sight
constant gain for our implementation. Furthermore, increasing the precision and
number of bins amplifies the initial overheads of the implementation from [8]
while making the performances of both algorithms more similar for larger ranks.
The additional black curve corresponds to the Java adaptation of the algorithm
in [10], which allows us to check consistency with the previous comparisons from
Martin et al. Since our algorithm allows to output factorized keys, we plotted in
blue the associated timing. Eventually, we have no timing comparison with the
work of [4] since the authors did not release their implementation. Extending
the comparing enumeration algorithms in a more systematic manner is anyway
an interesting scope for further research.

6 Application scenarios

In this section we finally discuss the impact of our findings for an adversary
willing to exploit enumeration in concrete application scenarios, which comple-
ments the similar discussion that can be found in [4]. Without loss of generality
we focus on the case of the AES. We separate this discussion in the cases of

17



0 5 10 15 20 25 30 35
10−2

10−1

100

101

102

103

104

key depth (log2)

ti
m

e
in

se
co

n
d
s

(l
o
g
)

Martin et al.

Veyrat et al.

Our’s recombined merge1
Our’s factorized merge1

0 5 10 15 20 25 30 35

key depth (log2)

Fig. 7. Execution time for the java implementation of Veyrat et al., Martin et al. and
ours with 8 bits of precision (left) and 11 bits of precision (right).

adversaries having either a small or big computing infrastructure to mount an
attack.

In the first case we assume a local attacker with only one “standard” com-
puter. Roughly, his computing power will be bounded by 240. In that case, he
will simply use all his available cores to launch the key enumeration with key
testing on-the-fly. Since it is likely that it will take more time to compute an AES
encryption than to output a key candidate, this adversary will prefer a higher
precision than a higher number of collisions. In that respect, and depending on
the AES implementation’s throughput, using 2048 bins could be a good tradeoff.
Indeed, as the adversary’s computing power is bounded and as the AES com-
putation is the costly part, he should minimize the bounds overhead as seen in
Section 5.1. Since the merging value has no impact on the accuracy, this value
should always be maximized (ensuring we do not fall in a case where it slows
down the enumeration process as shown in Section 5.3).

By contrast, the strategy will be quite different if we assume the adversary
is an organization having access to a big computing infrastructure. For exam-
ple, let assume that this organization has powerful computer(s) to launch the
key enumeration along with many hardware AES implementations with limited
memory. The adversary’s computing power is now bounded by a much higher
capability (e.g. 264). As we saw in Section 5.1, the gap between the optimal enu-
meration and the efficient one (using less bins) vanishes as we consider deeper
key ranks. In that case, the attacker should maximize the enumeration through-
put and minimize the bandwidth requirement (per single key), which he can
achieve by decreasing the number of bins and increasing the merging value as
much as possible (e.g. 256 bins with merge3). All the key factorizations would
then be sent to the hardware devices for efficient key testing. This could be done
easily since a factorized key can be seen as a small effort distributor as in [9, 12].

18



7 Related work

A recent work from David et al. available on ePrint [6] allows one to enumerate
keys from real probabilities without the memory issue of the original optimal
algorithm from [10]. This gain comes at the cost of a loss of optimality which is
different from the one introduced by the rounded log-probabilities.

8 Conclusion

This paper provides a simple key enumeration algorithm based on histograms
along with an open source code implementing both the new enumeration method
and the rank estimation algorithm from FSE 2015. In addition to its simplicity,
this construction allows a sound understanding of the parameters influencing
the performances of enumeration based on rounded probabilities. Additional
convenient features include the easy computation of bounds for the rounding
errors, and easy to balance parallelization. Our experiments also illustrate how
to tune the enumeration for big distributed computing efforts with hardware
co-processors and limited bandwidth. We believe the combination of efficient
key enumeration and rank estimation algorithms are a tool of choice to help
evaluators to understand the actual security level of concrete devices, and the
actual capabilities of computationally enhanced adversaries.

Acknowledgements. François-Xavier Standaert is a research associate of the
Belgian Fund for Scientific Research. This work has been funded in parts by
the ERC project 280141 (acronym CRASH), the ERA-Net CHIST-ERA project
SECODE and the DFG Research Training Group GRK 1817 Ubicrypt.

References

1. http://perso.uclouvain.be/fstandae/PUBLIS/172.zip.
2. http://www.shoup.net/ntl/.
3. Daniel J. Bernstein, Tanja Lange, and Christine van Vredendaal. Tighter, faster,

simpler side-channel security evaluations beyond computing power. IACR Cryp-
tology ePrint Archive, 2015:221, 2015.

4. Andrey Bogdanov, Ilya Kizhvatov, Kamran Manzoor, Elmar Tischhauser, and
Marc Witteman. Fast and memory-efficient key recovery in side-channel attacks.
IACR Cryptology ePrint Archive, 2015:795, 2015.

5. Christophe Clavier, Jean-Luc Danger, Guillaume Duc, M. Abdelaziz Elaabid,
Benôıt Gérard, Sylvain Guilley, Annelie Heuser, Michael Kasper, Yang Li, Vic-
tor Lomné, Daisuke Nakatsu, Kazuo Ohta, Kazuo Sakiyama, Laurent Sauvage,
Werner Schindler, Marc Stöttinger, Nicolas Veyrat-Charvillon, Matthieu Walle,
and Antoine Wurcker. Practical improvements of side-channel attacks on AES:
feedback from the 2nd DPA contest. J. Cryptographic Engineering, 4(4):259–274,
2014.

6. Liron David and Avishai Wool. A bounded-space near-optimal key enumeration
algorithm for multi-dimensional side-channel attacks. IACR Cryptology ePrint
Archive, 2015:1236, 2015.

19



7. Cezary Glowacz, Vincent Grosso, Romain Poussier, Joachim Schüth, and François-
Xavier Standaert. Simpler and more efficient rank estimation for side-channel
security assessment. In Gregor Leander, editor, Fast Software Encryption - 22nd
International Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015, Revised
Selected Papers, volume 9054 of Lecture Notes in Computer Science, pages 117–129.
Springer, 2015.

8. Daniel P. Martin, Jonathan F. O’Connell, Elisabeth Oswald, and Martijn Stam.
Counting keys in parallel after a side channel attack. In Tetsu Iwata and Jung Hee
Cheon, editors, Advances in Cryptology - ASIACRYPT 2015 - 21st International
Conference on the Theory and Application of Cryptology and Information Security,
Auckland, New Zealand, November 29 - December 3, 2015, Proceedings, Part II,
volume 9453 of Lecture Notes in Computer Science, pages 313–337. Springer, 2015.

9. Romain Poussier, Vincent Grosso, and François-Xavier Standaert. Comparing ap-
proaches to rank estimation for side-channel security evaluations. In Naofumi
Homma and Marcel Medwed, editors, Smart Card Research and Advanced Applica-
tions - 14th International Conference, CARDIS 2015, Bochum, Germany, Novem-
ber 4-6, 2015. Revised Selected Papers, volume 9514 of Lecture Notes in Computer
Science, pages 125–142. Springer, 2015.

10. Nicolas Veyrat-Charvillon, Benôıt Gérard, Mathieu Renauld, and François-Xavier
Standaert. An optimal key enumeration algorithm and its application to side-
channel attacks. In Lars R. Knudsen and Huapeng Wu, editors, Selected Areas in
Cryptography, 19th International Conference, SAC 2012, Windsor, ON, Canada,
August 15-16, 2012, Revised Selected Papers, volume 7707 of Lecture Notes in
Computer Science, pages 390–406. Springer, 2012.

11. Nicolas Veyrat-Charvillon, Benôıt Gérard, and François-Xavier Standaert. Security
evaluations beyond computing power. In Thomas Johansson and Phong Q. Nguyen,
editors, Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Athens,
Greece, May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes in Computer
Science, pages 126–141. Springer, 2013.

12. Xin Ye, Thomas Eisenbarth, and William Martin. Bounded, yet sufficient? how to
determine whether limited side channel information enables key recovery. In Marc
Joye and Amir Moradi, editors, Smart Card Research and Advanced Applications -
13th International Conference, CARDIS 2014, Paris, France, November 5-7, 2014.
Revised Selected Papers, volume 8968 of Lecture Notes in Computer Science, pages
215–232. Springer, 2014.

A Additional time complexites

Figure 8 shows timing results for different number of bins and amounts of merg-
ing. The two figures on the top are the results for 256 (left) and 65536 (right)
bins with merge3 which are lacking in Figure 6. As for the 65536-bin case, we saw
in Figure 6 that the merging can be detrimental (e.g. using merge1 was better
than using merge2) when not enough collision are occur. However we see that we
still benefit from using merge3 in that case. The 3 other figures show the results
of experiments with 2048 bins and a merge1 preprocessing (middle left), merge2
preprocessing (middle right) and merge3 preproicessing (bottom).

20



0 5 10 15 20 25 30
10−2

10−1

100

101

102

103

104

ti
m

e
in

se
co

n
d
s

(l
o
g
)

Veyrat et al.

Our’s samples

Our’s mean

0 5 10 15 20 25 30

0 5 10 15 20 25 30
10−2

10−1

100

101

102

103

ti
m

e
in

se
co

n
d
s

(l
o
g
)

0 5 10 15 20 25 30

0 5 10 15 20 25 30 35
10−2

10−1

100

101

102

103

key rank (log2)

ti
m

e
in

se
co

n
d
s

(l
o
g
)

Fig. 8. Additional execution times with factorized lists. Upper left: 256 bins / merge3.
Upper right: 65536 bins / merge3. Middle left: 2048 bins / merge1. Middle right: 2048
bins / merge2. Bottom: 2048 bins / merge3.

21


