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Abstract. We describe a new technique for improving the efficiency of the masking countermeasure
against side-channel attacks. Our technique is based on using common shares between secret variables,
in order to reduce the number of finite field multiplications. Our algorithms are proven secure in the
ISW probing model with n > t + 1 shares against t probes. For AES, we get an equivalent of 2.8 non-
linear multiplications for every SBox evaluation, instead of 4 in the Rivain-Prouff countermeasure. We
obtain similar improvements for other block-ciphers. Our technique is easy to implement and performs
relatively well in practice, with roughly a 20% speed-up compared to existing algorithms.

1 Introduction

Side-Channel Attacks. Side-channel analysis is a class of cryptanalytic attacks that exploit the
physical environment of a cryptosystem to recover some leakage about its secrets. It is often more
efficient than a cryptanalysis mounted in the so-called black-box model where no leakage occurs.
In particular, continuous side-channel attacks in which the adversary gets information at each
invocation of the cryptosystem are especially threatening. Common attacks as those exploiting
the running-time, the power consumption or the electromagnetic radiations of a cryptographic
computation fall into this class. Many implementations of block ciphers have been practically
broken by continuous side-channel analysis — see for instance [KJJ99, BCO04, Mes00, MPO05]
—and securing them has been a longstanding issue for the embedded systems industry.

The Masking Countermeasure. A sound approach to counteract side-channel attacks is to
use secret sharing [Bla79,Sha79], often called masking in the context of side-channel attacks. This
approach consists in splitting each sensitive variable x of the implementation into n shares such
that x = x1⊕· · ·⊕xn, where n is called the sharing order, such that x can be recovered from these
shares but no information can be recovered from fewer than n shares. It has been shown that the
complexity of mounting a successful side-channel attack against a masked implementation increases
exponentially with the order [CJRR99,PR13,DDF14]. Starting from this observation, the design of
efficient secure schemes for different ciphers has become a foreground issue. When specified at order
n, such a scheme aims at specifying how to update the sharing of the internal state throughout the
processing while ensuring that (1) the final sharing corresponds to the expected ciphertext, and (2)
the n-th order security property is satisfied.
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The ISW Probing Model. Ishai, Sahai and Wagner [ISW03] initiated the theoretical study of
securing circuits against an adversary who can probe a fraction of its wires. They showed how to
transform any circuit of size |C| into a circuit of size O(|C| · t2) secure against any adversary who
can probe at most t wires. The ISW constructions consists in secret-sharing every variable x into
x = x1 ⊕ x2 ⊕ · · · ⊕ xn where x2, . . . , xn are uniformly and independently distributed bits, with
n > 2t+ 1 to get security against t probes. Processing a XOR gate is straightforward as the shares
can be xored separately. The processing of a AND gate z = xy is based on writing:

z = xy =

(
n

⊕
i=1

xi

)
·
(

n

⊕
i=1

yi

)
= ⊕

16i,j6n
xiyj (1)

where the cross-products xiyj are first computed and then randomly recombined to get a n-sharing
of the output z. This construction, called ISW gadget in the rest of this paper, enables, in its general
form, to securely evaluate a multiplication at the cost of n2 multiplications, 2n(n − 1) additions
and n(n−1)/2 random values. Its complexity is therefore O(n2), which implies that the new circuit
with security against t probes has O(|C| · t2) gates.

A proof of security in the ISW framework is usually simulation based: one must show that any
set of t probes can be perfectly simulated without the knowledge of the original variables of the
circuit. In [ISW03] and subsequent work this is done by progressively generating a subset I of input
shares such that the knowledge of those input shares is sufficient to simulate all the t probes. For
example, in the above AND gate, if the adversary would probe xi · yj , one would put both indices i
and j in I, so that the simulator would get the input shares xi and yj , and therefore could simulate
the product xi ·yj . More generally in the ISW construction every probe adds at most two indices in
I, which implies |I| 6 2t. Therefore if the number of shares n is such that n > 2t+ 1, then |I| < n,
which implies that only a proper subset of the input shares is required for the simulation; those
input shares can in turn be generated as independently uniformly distributed bits. Therefore, the
knowledge of the original circuit variables is not required to generate a perfect simulation of the t
probes, hence these probes do not bring any additional information to the attacker (since he could
perform that simulation by himself).

Existing work. In the last decade, several masking countermeasures have been proposed for
block-ciphers together with security proofs in the ISW probing model (see e.g. [CGP+12a, Cor14,
CPRR13,GPQ11, ISW03,RP10,RV13]), based on the original notion of private circuits introduced
in [ISW03]. Except [Cor14] which extends the original idea of [KJJ99] to any order, the other
proposals are based on the ISW gadget recalled above. The core idea of the latter works is to split
the processing into a short sequence of field multiplications and F2-linear operations, and then to
secure these operations independently, while ensuring that the local security proofs can be combined
to prove the security of the entire processing. When parametrized at order n, as recalled above the
complexity of the ISW gadget for the field multiplication is O(n2), but only O(n) for F2-linear
operations.1 Therefore, an interesting problem is to minimize the number of field multiplications
required to evaluate an SBox.

In the Rivain-Prouff countermeasure [RP10], the authors showed how to adapt the ISW circuit
construction to a software implementation of AES, by working in F28 instead of F2. Namely as

1 A function f is F2-linear if it satisfies f(x ⊕ y) = f(x) ⊕ f(y) for any pair (x, y) of elements in its domain. This
property must not be confused with F2m -linearity of a function, where m divides n and is larger than 1, which is
defined such that f(ax ⊕ by) = af(x) ⊕ bf(y), for every a, b ∈ F2m . An F2m -linear function is F2-linear but the
converse is false in general.
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illustrated in Fig. 1, the non-linear part S(x) = x254 of the AES SBox can be evaluated with only
4 non-linear multiplications over F28 , and a few linear squarings. Each of those 4 multiplications
can in turn be evaluated with the previous ISW gadget based on Equation (1), by working over
F28 instead of F2.

x x3 x12

x2 x15 x240 x252 x254

x15 x240 x254

x x3 x12

x2 x14

Fig. 1. a) Sequential computation of x254 as used in [RP10, BBD+15a]. b) Alternative computation of x254; the
multiplications x14 = x12 · x2 and x15 = x12 · x3 can be computed in parallel [GHS12].

The Rivain-Prouff countermeasure was later extended by Carlet et al. to any look-up table

[CGP+12a]. Namely any given k-bit SBox can be represented by a polynomial
∑2k−1

i=0 ai x
i over F2k

using Lagrange’s interpolation theorem. Therefore one can mask any SBox by securely evaluating
this polynomial using n-shared multiplications as in the Rivain-Prouff countermeasure. To improve
efficiency, one must look for operations sequences (e.g. SBox representations) that minimize the
number of field multiplications which are not F2-linear 2 (this kind of multiplication shall be called
non-linear in this paper). This problematic has been tackled out in [CGP+12a], [RV13] and [CRV14]
and led to significantly reduce the number of multiplications needed to evaluate any function defined
over F2k for k 6 10 (e.g. the AES SBox can be evaluated with only 4 multiplications, and only 4
multiplications are needed for the DES SBoxes).

Recently, a sequence of works continued to improve the original work [ISW03] and led, in
particular, to exhibit a new scheme enabling to securely evaluate any function of algebraic degree
2 at the cost of a single multiplication (with the ISW gadget). The application of this work to the
AES SBox led the authors of [GPS14] to describe a scheme which can be secure at any order n and
is a valuable alternative to the scheme proposed in [RP10]. In parallel, some schemes [BGN+14,
NRS11, PR11] have been proposed which remain secure in the probing model even in presence of
so-called glitches [MS06] and the recent work [RBN+15] has investigated relations between these
schemes and the ISW construction.

Refined Security Model: t-SNI Security. Since in this paper we are interested in efficiency
improvements, we would like to use the optimal n = t + 1 number of shares instead of n = 2t + 1
as in the original ISW countermeasure. For n > 2t+ 1 shares the security proof for the single ISW
multiplication gadget easily extends to the full circuit [ISW03]; however for n > t + 1 shares only
one must be extra careful. For example, for the Rivain-Prouff countermeasure, it was originally

2 A multiplication over a field of characteristic 2 is F2-linear if it corresponds to a Frobenius automorphism, i.e. to
a series of squarings.
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claimed in [RP10] that only n > t+ 1 shares were required, but an attack of order d(n− 1)/2e+ 1
was later described in [CPRR13]; the security proof in [RP10] with n > t+1 shares actually applies
only when the ISW multiplication is used in isolation, but not for the full block-cipher.

To prove security with n > t+ 1 shares only for the full block-cipher, a refined security model
against probing attacks was recently introduced in [BBD+15a], called t-SNI security. As showed
in [BBD+15a], this stronger definition of t-SNI security enables to prove that a gadget can be used
in a full construction with n > t + 1 shares, instead of n > 2t + 1 for the weaker definition of
t-NI security (corresponding to the original ISW security proof). The authors show that the ISW
multiplication gadget does satisfy this stronger t-SNI security definition. They also show that with
some additional mask refreshing, the Rivain-Prouff countermeasure for the full AES can be made
secure with n > t + 1 shares. Due to its power and simplicity, the t-SNI notion appears to be the
“right” security definition against probing attacks. Therefore, in this paper, we always prove the
security of our algorithms under this stronger t-SNI notion, so that our algorithms can be used
within a larger construction (typically a full block-cipher) with n > t+ 1 shares only.

Our Contribution. Our goal in this paper is to further improve the efficiency of the masking
countermeasure. As recalled above, until now the strategy followed by the community has been to
reduce the number of calls to the ISW multiplication gadget. In this paper, we follow a comple-
mentary approach consisting in reducing the complexity of the ISW multiplication gadget itself.
Our core idea is to use common shares between the inputs of multiple ISW multiplication gadgets,
up to the first n/2 shares; in that case, a given processing performed in the first ISW gadget can
be re-used in subsequent gadgets.

Consider for example the alternative evaluation circuit for x254 in AES used in [GHS12], as
illustrated in Fig. 1. It still has 4 non-linear multiplications as in the original circuit [RP10], but
now the two multiplications x14 ← x12 ·x2 and x15 ← x12 ·x3 can be evaluated in parallel, moreover
with a common operand x12. Let denote by d← c · a and e← c · b those two multiplications with
common operand c. In the ISW multiplication gadget, one must compute all cross-products ci · aj
and ci · bj for all 1 6 i, j 6 n. Now if we can ensure that half of the shares of a and b are the same,
that is aj = bj for all 1 6 j 6 n/2, then the products ci · aj and ci · bj for 1 6 j 6 n/2 are the same
and can be computed only once; see Fig. 2 for an illustration. This implies that when processing the
second multiplication gadget for e← c · b, we only have to compute n2/2 finite field multiplications
instead of n2. For two multiplications as above, this saves the equivalent of 0.5 multiplication.

c

a

d← c · a

c

b

e← c · b

Fig. 2. When half of the shares in a and b are the same, the multiplications corresponding to the left-hand blocks
are the same. This saves the equivalent of 0.5 multiplications out of 2.

To ensure that the two inputs have half of their shares in common, we introduce a new gadget
called CommonShares with complexity O(n), taking as input two independent n-sharings of data
and outputting two new n-sharings, but with their first n/2 shares in common. Obviously this must
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be achieved without degrading the security level; we show that this is indeed the case by proving the
security of the full SBox evaluation in the previous t-SNI model, with n > t+1 shares. Note that we
cannot have more than n/2 shares in common between two variables a and b, since otherwise there
would be a straightforward attack with fewer than n probes: namely if ai = bi for all 1 6 i 6 k,
then we can probe the 2(n− k) remaining shares ai and bi for k + 1 6 i 6 n; if k > n/2 this gives
strictly less than n shares, whose xor gives the secret variable a⊕ b. Hence having half of the shares
in common is optimal.

More generally, the 16 SBoxes of AES can be processed in parallel, and therefore each of the
4 non-linear multiplications in x254 can be processed in parallel. As opposed to the previous case
those multiplications do not share any operand, but we show that by using a generalization of
the CommonShares algorithm between m operands instead of 2, for every multiplication in the
original circuit one can still save the equivalent of roughly 1/4 multiplication. This also applies to
other block-ciphers as well, since in most block-ciphers the SBoxes are applied in parallel. One can
therefore apply the technique from [CRV14] based on fast polynomial evaluation, and using our
CommonShares algorithm between the inputs of the evaluated polynomials, we again save roughly
1/4 of the number of finite field multiplications. Our results for various block-ciphers are summarized
in Table 1, in which we give the equivalent number of non-linear multiplications for a single SBox
evaluation, for various block-ciphers; we refer to Section 5 for a detailed description. Finally, we
show in Appendix G how to apply our common shares technique to the Threshold Implementations
(TI) approach for securing implementation against side channel attacks, even in the presence of
glitches.

SBox
Methods AES DES PRESENT SERPENT CAMELLIA CLEFIA

Parity-Split [CGP+12a] 4 10 3 3 22 22

Roy-Vivek [RV13] 4 7 3 3 15 15,16

[CRV14] 4 4 2 2 10 10

Our Method 2.8 3.1 1.5 1.5 7.8 7.8

Table 1. Equivalent number of non-linear multiplications for a single SBox evaluation, for various block-ciphers.

Practical Implementation. A practical implementation of our common shares technique is de-
scribed in Section 7, for the n-shared evaluation of x254 in AES, on ATmega1284P (8-bit AVR
microcontroller) and ARM Cortex M0 (32-bit CPU). We obtain that our technique is relatively
practical: for a large number of shares, we get roughly a 20% speed improvement compared to the
Rivain-Prouff countermeasure (but only roughly 5% compared to the quadratic evaluation technique
in [GPS14]).

2 Security Definitions

Given a variable x ∈ F2k and an integer n, we say that the vector (x1, . . . , xn) ∈ (F2k)n is a n-
sharing of x if x =

⊕n
i=1 xi. We recall the security definitions from [BBD+15a], which we make

slightly more explicit. For simplicity we only provide the definitions for a simple gadget taking as
input a single variable x (given by n shares xi) and outputting a single variable y (given by n shares
yi). We provide the generalization to multiple inputs and outputs in Appendix A. Given a vector
(xi)16i6n, we denote by x|I := (xi)i∈I the sub-vector of shares xi with i ∈ I.
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Definition 1 (t-NI security). Let G be a gadget taking as input (xi)16i6n and outputting (yi)16i6n.
The gadget G is said t-NI secure if for any set of t1 intermediate variables and any subset O of out-
put indices, there exists a subset I of input indices with |I| 6 t1 + |O|, such that the t1 intermediate
variables and the output variables y|O can be perfectly simulated from x|I .

Definition 2 (t-SNI security). Let G be a gadget taking as input (xi)16i6n and outputting
(yi)16i6n. The gadget G is said t-SNI secure if for any set of t1 intermediate variables and any
subset O of output indices such that t1 + |O| 6 t, there exists a subset I of input indices with
|I| 6 t1, such that the t1 intermediate variables and the output variables y|O can be perfectly simu-
lated from x|I .

The t-NI security notion corresponds to the original security definition in the ISW probing
model; it allows to prove the security of a full construction with n > 2t+ 1 shares. The stronger t-
SNI notion allows to prove the security of a full construction with n > t+1 shares only [BBD+15a].
The difference is that in the stronger t-SNI notion, the size of the input shares subset I can only
depend on the number of internal probes t1, and must be independent of the number of output
variables |O| that must be simulated (as long as the condition t1 + |O| 6 t is satisfied). Intuitively,
this provides an “isolation” between the output shares and the input shares of a given gadget, and
for composed constructions this enables to easily prove that a full construction is t-SNI secure,
based on the t-SNI security of its components.

3 The Rivain-Prouff Countermeasure

In this section we recall the Rivain-Prouff countermeasure [RP10] for securing AES against high-
order attacks. It can be seen as an extension to F2k of the original ISW countermeasure [ISW03]
described in F2. The Rivain-Prouff countermeasure is proved t-SNI secure in [BBD+15a]; therefore
it can be used to protect a full block-cipher against t probes with n > t + 1 shares, instead of
n > 2t+ 1 shares in the original ISW probing model.

3.1 The Rivain-Prouff Multiplication

The Rivain-Prouff countermeasure is based on the SecMult operation below, which is similar to the
ISW multiplication gadget but over F2k instead of F2. The SecMult algorithm enables to securely
compute a product c = a · b over F2k , from a n-sharing of a and b, and outputs a n-sharing of c.
Here we use the linear memory version from [Cor14], using similar notations as in [BBD+15a].

It is shown in [BBD+15a] that the SecMult algorithm is t-SNI secure with n > t+ 1 shares. For
completeness we provide a proof of Lemma 1 in Appendix B.1; our proof is essentially the same as
in [BBD+15a]. In Appendix B.2, we also provide a slightly different, more modular proof in which
we separate the computation of the matrix elements vij = ai · bj from the derivation of the output
shares ci.

Lemma 1 (t-SNI of SecMult). Let (ai)16i6n and (bi)16i6n be the input shares of the SecMult
operation, and let (ci)16i<n be the output shares. For any set of t1 intermediate variables and any
subset |O| 6 t2 of output shares such that t1 + t2 < n, there exists two subsets I and J of indices
with |I| 6 t1 and |J | 6 t1, such that those t1 intermediate variables as well as the output shares c|O
can be perfectly simulated from a|I and b|J .
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Algorithm 1 SecMult
Require: shares ai satisfying

⊕n
i=1 ai = a, shares bi satisfying

⊕n
i=1 bi = b

Ensure: shares ci satisfying
⊕n

i=1 ci = a · b
1: for i = 1 to n do
2: ci ← ai · bi
3: end for
4: for i = 1 to n do
5: for j = i + 1 to n do
6: r ← F2k . referred by ri,j
7: ci ← ci ⊕ r . referred by ci,j
8: r ← (ai · bj ⊕ r)⊕ aj · bi . referred by rj,i
9: cj ← cj ⊕ r . referred by cj,i

10: end for
11: end for
12: return (c1, . . . , cn)

3.2 Mask Refreshings

To obtain security against t probes with n > t+1 shares instead of n > 2t+1, the previous SecMult
algorithm is usually not sufficient; one must also use a mask refreshing algorithm. The following
RefreshMask operation is used in [BBD+15a] to get the t-SNI security of a full construction.

Algorithm 2 RefreshMask
Input: a1, . . . , an

Output: c1, . . . , cn such that
⊕n

i=1 ci =
⊕n

i=1 ai

1: For i = 1 to n do ci ← ai

2: for i = 1 to n do do
3: for j = i + 1 to n do do
4: r ← {0, 1}k
5: ci ← ci ⊕ r
6: cj ← cj ⊕ r
7: end for
8: end for
9: return c1, . . . , cn

The following lemma is proven in [BBD+15a], showing the t-SNI security of RefreshMask. In
Appendix B.3 we also provide a modular proof, using the same approach as in Lemma 1; namely
the above RefreshMask algorithm can be viewed as a SecMult with multiplication by 1, with shares
(1, 0, . . . , 0); therefore the same proof technique applies.

Lemma 2 (t-SNI of RefreshMask). Let (ai)16i6n be the input shares of the RefreshMask operation,
and let (ci)16i6n be the output shares. For any set of t1 intermediate variables and any subset
|O| 6 t2 of output shares such that t1 + t2 < n, there exists a subset I of indices with |I| 6 t1, such
that the t1 intermediate variables as well as the output shares c|O can be perfectly simulated from
a|I .

3.3 Application to the Computation of x254 in F28

To compute y = x254 over F28 with 4 multiplications, the following sequence of operation is used
in [RP10], including two RefreshMask operations.
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Algorithm 3 SecExp254
Input: shares x1, . . . , xn satisfying x =

⊕n
i=1 xi

Output: shares y1, . . . , yn such that
⊕n

i=1 yi = x254

1: For i = 1 to n do zi ← x2
i .

⊕
i zi = x2

2: (zi)16i6n ← RefreshMask((zi)16i6n)
3: (yi)16i6n ← SecMult((zi)16i6n, (xi)16i6n) .

⊕
i yi = x3

4: For i = 1 to n do wi ← y4
i .

⊕
i wi = x12

5: (wi)16i6n ← RefreshMask((wi)16i6n)
6: (yi)16i6n ← SecMult((yi)16i6n, (wi)16i6n) .

⊕
i yi = x15

7: For i = 1 to n do yi ← y16
i .

⊕
i yi = x240

8: (yi)16i6n ← SecMult((yi)16i6n, (wi)16i6n) .
⊕

i yi = x252

9: (yi)16i6n ← SecMult((yi)16i6n, (zi)16i6n) .
⊕

i yi = x254

10: return y1, . . . , yn

Using the two previous lemmas, one can prove the t-SNI security of SecExp254; we refer to
[BBD+15a] for the proof.

Lemma 3 (t-SNI of x254). Let (xi)16i6n be the input shares of ExpSec254, and let (yi)16i6n be
the output shares. For any set of t1 intermediate variables and any subset |O| 6 t2 of output shares
such that t1 + t2 < n, there exists a subset I of indices with |I| 6 t1, such that those t1 intermediate
variables as well as the output shares y|O can be perfectly simulated from x|I .

As explained in [BBD+15a], since the SecExp254 operation has the t-SNI property, it can be
used to secure a full AES against t probes with n > t+ 1 shares.

4 Secure Computation of 2 Parallel Multiplications with Common Operand,
and Application to AES

In this section we show a first efficiency improvement of the Rivain-Prouff countermeasure for AES
recalled in the previous section. Namely, we show that when two finite-field multiplications d← c ·a
and e← c · b have the same operand c, we can save n2/2 field multiplications in SecMult by making
sure that the inputs a and b have half of their shares in common; we then show how to apply this
technique to the evaluation of the AES SBox, by using an alternative evaluation circuit for x254.

Arithmetic Circuit with Depth 3 for x254. The original arithmetic circuit for computing
y = x254 over F28 from [RP10] and recalled in Section 3.3 has 4 multiplicative levels, with a total of
4 non-linear multiplications. Below we use an alternative circuit with only 3 multiplicative levels,
still with 4 multiplications, as described in [GHS12]; see Fig. 1 for an illustration.

• Level 1: compute x3 = x · x2 (1 mult) and then x12 = (x3)4.

• Level 2: compute x14 = x12 · x2 (1 mult) and x15 = x12 · x3 (1 mult), and then x240 = (x15)16.

• Level 3: compute x254 = x240 · x14 (1 mult).

Multiplications with Common Shares. In the arithmetic circuit above, the multiplications
x14 ← x12 · x2 and x15 ← x12 · x3 can be computed in parallel; moreover they have one operand
x12 in common. More generally, assume that we must compute two multiplications with a common
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operand c:

d← c · a
e← c · b

The SecMult algorithm will compute the cross-products ci · aj and ci · bj for all 1 6 i, j 6 n. Now
assume that half of the shares of a and b are the same, that is aj = bj for all 1 6 j 6 n/2. In
that case the products ci · aj for 1 6 j 6 n/2 have to be computed only once, and therefore when
processing e← c · b, we only have to compute n2/2 multiplications instead of n2; see Fig. 2 for an
illustration. For an arithmetic circuit with 4 multiplications as above, this saves the equivalent of
0.5 multiplication.

4.1 The CommonShares Algorithm

The CommonShares algorithm below ensures that the output shares a′i and b′i corresponding to a
and b are the same on the first half, that is a′i = b′i for all 1 6 i 6 n/2. In the rest of the paper, for
simplicity we assume that n is even.

Algorithm 4 CommonShares
Require: shares ai satisfying

⊕n
i=1 ai = a, shares bi satisfying

⊕n
i=1 bi = b

Ensure: shares a′i and b′i satisfying
⊕n

i=1 a
′
i = a and

⊕n
i=1 b

′
i = b, with a′i = b′i for all 1 6 i 6 n/2

1: for i = 1 to n/2 do
2: ri ←$ F2k

3: a′i ← ri, a′n/2+i ← (an/2+i ⊕ ri)⊕ ai . a′i ⊕ a′n/2+i = ai ⊕ an/2+i

4: b′i ← ri, b′n/2+i ← (bn/2+i ⊕ ri)⊕ bi . b′i ⊕ b′n/2+i = bi ⊕ bn/2+i

5: end for
6: return (a′i)16i6n and (b′i)16i6n

It is easy to see that we still get as output an n-sharing of the same variables a and b, since for
each 1 6 i 6 n/2 we have a′i ⊕ a′n/2+i = ai ⊕ an/2+i, and similarly for b. As explained previously,

we cannot have more than n/2 shares in common between a and b, since otherwise there would be
a straightforward attack with fewer than n probes: namely if ai = bi for all 1 6 i 6 k, then we can
probe the 2(n− k) remaining shares ai and bi for k + 1 6 i 6 n; if k > n/2 this gives strictly less
than n shares, whose xor gives the secret variable a⊕ b. Hence having half of the shares in common
is optimal.

The following Lemma shows the security of the CommonShares algorithm; as will be showed
later, for this algorithm we only need the weaker t-NI security property (instead of t-SNI).

Lemma 4 (t-NI of CommonShares). Let (ai)16i6n and (bi)16i6n be the input shares of the al-
gorithm CommonShares, and let (a′i)16i6n and (b′i)16i6n be the output shares. For any set of t1
intermediate variables and any subsets of indices I, J ⊂ [1, n], there exists a subset S ⊂ [1, n] with
|S | 6 |I| + |J | + t1, such that those t1 variables as well as the output shares a′|I and b′|J can be
perfectly simulated from a|S and b|S .

Proof. The proof intuition is as follows. If for a given i with 1 6 i 6 n/2 the adversary requests only
one of the variables ri, an/2+i⊕ ri, bn/2+i⊕ ri, a′n/2+i or b′n/2+i, then such variable can be perfectly
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simulated without knowing any of the input shares ai, bi, an/2+i and bn/2+i, thanks to the mask
ri. On the other hand, if two such variables (or more) are requested, then we can provide a perfect
simulation from the 4 previous input shares, whose knowledge is obtained by adding the two indices
i and n/2 + i in S . Therefore we never add more than one index in S per probe (or per output
index in I or J), which implies that the size of the subset S of input shares is upper-bounded by
|I|+ |J |+ t1, as required.3

More precisely, we describe hereafter the construction of the set S ⊂ [1, n] of input shares,
initially empty. For every probed input variable ai and bi (for any i), we add i to S . For all
1 6 i 6 n/2, we let ti be the number of probed variables among an/2+i⊕ ri and bn/2+i⊕ ri. We let:

λi := ti + |{i, n/2 + i} ∩ I| + |{i, n/2 + i} ∩ J | ,

We then add {i, n/2 + i} to S if λi > 2. This terminates the construction of S . By construction of
S , we must have |S | 6 |I|+ |J |+ t as required.

We now show that the output shares a′|I and b′|J and the t1 intermediate variables of Algorithm
CommonShares can be perfectly simulated from a|S and b|S . This is clear for the probed input
variables ai and bi. For all 1 6 i 6 n/2, we distinguish two cases. If λi > 2, then {i, n/2 + i} ∈ S ,
so we can let ri ← F2k as in the real algorithm and simulate all output and intermediate variables
from the knowledge of ai, an/2+i, bi and bn/2+i. If λi = 1, then if ti = 0, then only a single output
variable among a′i, b

′
i, a
′
n/2+i and b′n/2+i must be simulated. Since each of those variables is masked

by ri, we can simulate this single output variable by generating a random value in F2k . Similarly, if
ti = 1, then only one of the two intermediate variables among an/2+i ⊕ ri and bn/2+i ⊕ ri is probed
(while no output variable must be simulated), and therefore we can also simulate such variable by
generating a random value in F2k . This terminates the proof of Lemma 4. ut

4.2 The CommonMult Algorithm

To perform the two multiplications with the same operand d← c · a and e← c · b, instead of doing
two independent SecMult, we define the following CommonMult algorithm below.

Algorithm 5 CommonMult
Input: shares satisfying c =

⊕n
i=1 ci, a =

⊕n
i=1 ai and b =

⊕n
i=1 bi.

Output: di such that
⊕n

i=1 di = c · a, and ei such that
⊕n

i=1 ei = c · b
1: (a′i)16i6n, (b

′
i)16i6n ← CommonShares((ai)16i6n, (bi)16i6n)

2: (di)16i6n ← SecMult((ci)16i6n, (a
′
i)16i6n)

3: (ei)16i6n ← SecMult((ci)16i6n, (b
′
i)16i6n)

4: return (di)16i6n and (ei)16i6n.

The algorithm first calls the previous CommonShares subroutine, to ensure that half of the shares
of a and b are the same. It then applies the previous SecMult algorithm twice to securely compute
the two multiplications. Then the multiplications ci · aj for 1 6 j 6 n/2 performed in the first
SecMult can be re-used in the second SecMult, so this saves n2/2 multiplications. More precisely,
for the SecMult computation performed at Line 3, we don’t have to compute again the products

3 Note that the proof would not work without the masks ri; namely with ri = 0 we would need to know both ai

and an/2+i to simulate a′n/2+i; hence with t probes we would need at least n > 2t + 1 shares, which would make
CommonShares useless.

10



ci · b′j for 1 6 j 6 n/2, since those products have already been computed at Line 2 with ci ·a′j , since
a′j = b′j for all 1 6 j 6 n/2. However reusing at Line 3 the products already computed at Line 2

requires to store O(n2) values. In Appendix C we describe a different version of the CommonMult
algorithm above, where the matrix elements ci · aj are computed on the fly and then used in both
SecMult, with memory complexity O(n) instead of O(n2).

The following Lemma shows that the CommonMult algorithm is t-SNI secure in the ISW model,
with n > t+ 1 shares.

Lemma 5 (t-SNI of CommonMult). Let (ai)16i6n, (bi)16i6n and (ci)16i6n be the input shares
of the CommonMult operation, and let (di)16i6n and (ei)16i6n be the output shares. For any set
of t1 intermediate variables and any subsets |O1| 6 t2 and |O2| 6 t2 of output shares such that
t1 + t2 < n, there exist two subsets I and J of indices such that |I| 6 t1 and |J | 6 t1, and those
t1 intermediate variables as well as the output shares d|O1

and e|O2
can be perfectly simulated from

a|J , b|J and c|I .

⊗

CS ⊗

I3

I2

I1S3

S3

S22

S21

S12

S11
O1

O2c

b

a e

d

Fig. 3. The CommonMult algorithm as composition of gadgets. Each variable a, b and c contains actually n shares
ai, bi and ci.

Proof. The proof is relatively straightforward, following the process in [BBD+15a, Sect. 4.1]. We
use Lemmas 1 and 4 to prove that the composition of the CommonShares gadget with both SecMult
⊗ allows the entire circuit to be t-SNI. We label the gadgets from 1 to 3 starting from right to left
(see Figure 3).

Let I = I1 ∪ I2 ∪ I3 be a set of indices such that |I | 6 t1, corresponding to observations of
intermediate variables done by the attacker in the three gadgets, and let O1 and O2 be two sets of
indices such that

∣∣O1
∣∣ 6 t2 and

∣∣O2
∣∣ 6 t2, corresponding to observations on the outputs made by

the attacker.

Gadget 1 By assumption,
∣∣I1∣∣+ ∣∣O1

∣∣ 6 t1 + t2 < n. Since from Lemma 1, the multiplication ⊗ is
t-SNI, this means that there exists two sets of indices S11 ,S12 such that

∣∣S11 ∣∣ 6 ∣∣I1∣∣, ∣∣S12 ∣∣ 6 ∣∣I1∣∣
and the gadget can be perfectly simulated from its input shares corresponding to indices in S11
and S12 .

Gadget 2 Similarly, there exist two sets of indices S21 ,S22 such that
∣∣S21 ∣∣ 6 ∣∣I2∣∣ and

∣∣S22 ∣∣ 6 ∣∣I2∣∣,
and the gadget can be perfectly simulated from its input shares corresponding to indices in S21
and S22 .
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Gadget 3 From Lemma 4 there exists a set of indices S3 such that
∣∣S3∣∣ 6 ∣∣I3∣∣+

∣∣S11 ∣∣+
∣∣S21 ∣∣ and

Gadget 3 can be perfectly simulated from its input shares corresponding to indices in S3. From
gadgets 1 and 2, it follows that

∣∣S3∣∣ 6 ∣∣I3∣∣+
∣∣I1∣∣+

∣∣I2∣∣.
Each of the previous steps ensures the existence of a simulator for each gadget. Let I = S12 ∪S22

and J = S3. We can then compose these simulators to perfectly simulate the computation of
CommonMult from c|I , a|J and b|J . Furthermore, from gadgets 1 and 2, we have |I| =

∣∣S12 ∣∣+ ∣∣S22 ∣∣ 6∣∣I1∣∣ +
∣∣I2∣∣ 6 t1 and from Gadget 3 we have |J | =

∣∣S3∣∣ 6 ∣∣I3∣∣ +
∣∣I2∣∣ +

∣∣I1∣∣ 6 t1. This concludes
the proof. ut

4.3 Application to AES SBoxes

We are now ready to describe the full computation of y = x254 based on the CommonShares
algorithm; the algorithm SecExp254’ is described below; it is a variant of Algorithm 3.

Algorithm 6 SecExp254’
Input: shares x1, . . . , xn satisfying x =

⊕n
i=1 xi

Output: shares y1, . . . , yn such that
⊕n

i=1 yi = x254

1: For i = 1 to n do zi ← x2
i .

⊕
i zi = x2

2: (xi)16i6n ← RefreshMask((xi)16i6n)
3: (yi)16i6n ← SecMult((zi)16i6n, (xi)16i6n) .

⊕
i yi = x3

4: For i = 1 to n do wi ← y4
i .

⊕
i wi = x12

5: (wi)16i6n ← RefreshMask((wi)16i6n)
6: (zi)16i6n, (yi)16i6n ← CommonMult((wi)16i6n, (zi)16i6n, (yi)16i6n) .

⊕
i zi = x14,

⊕
i yi = x15

7: For i = 1 to n do yi ← y16
i .

⊕
i yi = x240

8: (yi)16i6n ← SecMult((yi)16i6n, (zi)16i6n) .
⊕

i yi = x254

9: return y1, . . . , yn

The following Lemma proves the t-SNI security of our new algorithm; therefore our new al-
gorithm achieves exactly the same security level as Algorithm 3. That is, it can be used in the
computation of a full block-cipher, with n > t+ 1 shares against t probes. We provide the proof in
Appendix D.

Lemma 6 (t-SNI of x254). Let (xi)16i6n be the input shares of the x254 operation, and let (yi)16i6n
be the output shares. For any set of t1 intermediate variables and any subset |O| 6 t2 of output
shares such that t1 + t2 < n, there exists a subset I of indices with |I| 6 t1, such that those t1
intermediate variables as well as the output shares y|O can be perfectly simulated from x|I .

Finally, we summarize in Table 2 the complexities of the above algorithms. Table 2 shows that
our new algorithm for x254 saves n2/2 multiplications, with the same security level as in the original
algorithm.

5 Parallel Multiplications with Common Shares

5.1 Secure Evaluation of Parallel Multiplications.

In the previous section, we have shown that by using a different arithmetic circuit for x254, two
multiplications in F28 could be processed in parallel, moreover with a common operand, and then
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# add # mult # rand

SecMult (Alg. 1) 2n2 n2 n2/2

RefreshMask (Alg. 2) n2 - n2/2

SecMult × 2 4n2 2n2 n2

CommonMult (Alg. 5) 4n2 3n2/2 n2

SecExp254 (Alg. 3) 10n2 4n2 3n2

SecExp254’ (Alg. 6) 10n2 7n2/2 3n2

Table 2. Complexity of CommonMult and SecExp254’; for simplicity we omit the O(n) terms.

by using half common shares we could save the equivalent of 1/2 multiplication out of 4 in the
evaluation of an AES SBox.

We now consider the case of parallel multiplications that do not necessarily share an operand.
Previously we have focused on a single evaluation of an AES SBox, but in AES the 16 SBoxes can
actually be processed in parallel, and therefore each of the 4 multiplications in x254 can be processed
in parallel. As opposed to the previous case those multiplications do not share any operand, but we
show that by using a generalization of the CommonShares algorithm between m operands instead
of 2, for every multiplication one can still save the equivalent of roughly 1/4 multiplication.

Namely as illustrated in Fig. 4, when performing a sequence of m parallel SecMult with z(`) ←
x(`) · y(`) for 1 6 ` 6 m, if the variables x(1), . . . x(m) have the same first half shares in common,
and similarly for the y(1), . . . y(m) variables, then all the left-upper blocks of the corresponding
multiplication matrices will be the same. This implies that such block has to be processed only
once (instead of m times), and therefore asymptotically for large m for each multiplication we can
save the equivalent of 1/4 multiplication.

y(1)

x(1)

z(1) ← x(1) · y(1)

y(2)

x(2)

z(2) ← x(2) · y(2)

y(m)

x(m)

z(m) ← x(m) · y(m)

Fig. 4. A sequence of m parallel SecMult, where the operands x(i) have the same first half shares in common, and
similarly for y(i).

More precisely, using a generalization of the CommonShares algorithm we can ensure that all

operands x(`) for 1 6 ` 6 m have the same first half shares, that is x
(1)
i = x

(2)
i = . . . = x

(`)
i for all

1 6 i 6 n/2; similarly we can ensure that all operands y(`) for 1 6 ` 6 m have the same first half

shares, that is y
(1)
j = y

(2)
j = . . . = y

(`)
j for all 1 6 j 6 n/2. This implies that for the m SecMult

operations, we have to compute each product x
(`)
i · y

(`)
j for 1 6 i, j 6 n/2 only once, since it is

the same for all `; as illustrated in Fig. 4, this corresponds to the same upper-left 1/4-block of the
multiplication matrices. Therefore for m parallel multiplications, we must process 3m + 1 blocks
instead of 4m, which gives a relative saving of (m− 1)/(4m), hence asymptotically 1/4.
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For Two Parallel Multiplications. For simplicity we first illustrate our approach with only
m = 2 parallel multiplications over F2k :

e← a · b
f ← c · d

Instead of processing those two multiplications with two separate SecMult, we first ensure that
the operands a and c, respectively the operands b and d, have their first half shares in common,
using the previous CommonShares algorithm from Section 4.2. We obtain the following TwoParaMult
algorithm.

Algorithm 7 TwoParaMult
Require: four n-sharings (ai)16i6n, (bi)16i6n, (ci)16i6n and (di)16i6n of a, b, c and d respectively.
Ensure: two n-sharings (ei)i and (fi)i of e = a · b and f = c · d respectively.
1: (a′i)16i6n, (c

′
i)16i6n ← CommonShares((ai)16i6n, (ci)16i6n)

2: (b′i)16i6n, (d
′
i)16i6n ← CommonShares((bi)16i6n, (di)16i6n)

3: (ei)16i6n ← SecMult((a′i)16i6n, (b
′
i)16i6n)

4: (fi)16i6n ← SecMult((c′i)16i6n, (d
′
i)16i6n)

5: return (ei)16i6n and (fi)16i6n

For m = 2 parallel multiplications, as illustrated in Fig. 4 we must process 7 blocks instead of 8,
so the relative saving is 1/8. Namely after the CommonShares algorithm we have a′i = c′i and b′j = d′j
for all 1 6 i, j 6 n/2, and therefore the products a′i · c′j corresponding to the upper-left block of the
multiplication matrix can be computed only once between the two SecMult. The following Lemma
proves the security of the TwoParaMult algorithm.

Lemma 7 (t-SNI of TwoParaMult). Let (ai)16i6n, (bi)16i6n, (ci)16i6n and (di)16i6n be the input
shares of the TwoParaMult operation, and let (ei)16i6n and (fi)16i6n be the output shares. For any
set of t1 intermediate variables and any subsets |O| 6 t2 and |O′ | 6 t2 of output shares such that
t1 + t2 < n, there exists two subsets |I| 6 t1 and |J | 6 t1 of indices such that the t1 intermediate
variables as well as the output shares e|O and f|O′ can be perfectly simulated from a|I , b|J , c|I and
d|J .

Proof. The proof is relatively straightforward. As illustrated in Fig. 5, any probe within the two
SecMult gadgets can generate an index i in S32 or S42 , and an index j in S31 or S41 , which in turn will
generate a single index i′ ∈ I = S1 and a single index j′ ∈ J = S2, thanks to the CommonShares
Lemma. This implies that the size of the input subsets I and J is upper bounded by the number
of internal probes t1 within the TwoParaMult algorithm, as required. ut

Generalization to m Parallel Multiplications. We refer to Appendix E.1 for a formal descrip-
tion of the algorithm (including a generalization of the CommonShares algorithm to m operands
instead of 2), as well as the proof of its t-SNI security.
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I3

I4

I2

S3
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S3
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S4
2

O

O
′

S1

S1
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Fig. 5. The TwoParaMult algorithm as composition of gadgets.

5.2 Parallel Multiplications with Common Operand

When evaluating y = x254 the previous technique can be combined with the technique from Section
4, in which within the evaluation of x254 two parallel multiplications have the same operand; in that
case, for m SBoxes we get m such pairs of multiplications (with m = 16 for AES). As illustrated in
Fig. 6, if the common operands x(`) all have the same first half shares in common, and if additionally
y(`) and z(`) all have the same first half shares, then not only the 2m SecMult have their upper-left
block in common (as previously), but for a given ` the two SecMult operations x(`) ·y(`) and x(`) ·z(`)
also have the same upper-right block (since they have the same operand x(`), and y(`) and z(`) have
the same first half shares). Therefore we must process only 1 upper-left block (instead of 2m), and
m upper-right blocks (instead of 2m). In total, the number of 1/4-blocks to be processed is therefore
1 +m+ 2 · 2m = 5m+ 1, instead of 8m.

y(1)

x(1)

y(2)

x(2)

y(m)

x(m)

z(1)

x(1)

z(2)

x(2)

z(m)

x(m)

Fig. 6. A sequence of m parallel pairs of SecMult, where the operands x(i) have the same first half shares in common,
and similarly for y(i) and z(i).

We summarize our results in Table 3; asymptotically for large m the relative cost per multipli-
cation is 3/4 for a single multiplication, and 5/8 for two multiplications with a common operand.
We refer to Appendix E.2 for a formal description of the algorithm, as well as the proof of its t-SNI
security.

15



Cost per mult.

Single multiplication
3m + 1

4m

Two multiplications, common operand
5m + 1

8m

Table 3. Relative cost for the total number of finite field multiplications, for a single multiplication and for two
multiplications with a common operand, when m multiplications can be performed in parallel (m = 16 for AES).

5.3 Application to AES

To compute an AES SBox, the previous combined technique illustrated in Fig. 6 only applies to 2
out of the 4 multiplications required to compute x254; for the other 2 multiplications we can still
apply the technique illustrated in Fig. 4. Therefore the total number of 1/4-block computation for
the full AES SBox becomes 2 · (3m + 1) + (5m + 1) = 11m + 3, instead of 16m. Therefore the
speed-up ratio becomes

11m+ 3

16m

which gives 70% for m = 16. Therefore instead of 4 multiplications for x254 we have an equivalent
number of multiplications of

4 · 11m+ 3

16m
which gives an equivalent of 2.8 multiplications for m = 16, instead of 4 in the original Rivain-Prouff
countermeasure; see Table 1 for a summary.

5.4 Application to other Block-Ciphers

Fast Polynomial Evaluation. In [CRV14] a generic technique for fast polynomial evaluation in
F2k is described, with heuristic complexity O(2k/2/

√
k) for any arbitrary k-bit SBox, compared to

the O(2k/2) proven complexity for the Parity-Split method from [CGP+12a].
As in [CGP+12a], the technique consists in first interpolating the SBox S(x) with a polynomial

P (x) over F2k ; since the corresponding Vandermonde matrix is invertible, this is done by solving a
linear system with 2k equations and 2k unknowns. To evaluate the polynomial P (x) efficiently, the
technique consists in first generating a set L of monomials xα, including all the monomials from
a given cyclotomic class. Secondly a fixed set of polynomials qi(x) is randomly generated, whose
monomials are all in the precomputed set L. Then one tries to write P (x) as:

P (x) =
t−1∑
i=1

pi(x) · qi(x) + pt(x) (mod x2
k

+ x), (2)

where the pi(x) also have all their monomials in the set L, for some parameter t; since the polyno-
mials qi(x) are fixed, this can done by solving a linear system over the coefficients of pi(x).

For a given x, the value P (x) can then be evaluated by first evaluating all the monomials in
the set L; this enables to evaluate the polynomials pi(x) and qi(x) without any further non-linear
multiplication. Eventually P (x) is evaluated from (2) with t−1 additional non-linear multiplications.
Denoting by ` the number of cyclotomic classes in L, the monomials in L can be evaluated with
`− 2 non-linear multiplications; the total number of non-linear multiplications is then:

Nmult = `+ t− 3
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With Common Shares. For block-cipher computation, we have that Equation (2) is evaluated
independently for every SBox interpolated by P (x). When m SBoxes are evaluated in parallel, we
can again apply our common shares technique from Section 5 with parameter m. From Table 3 the
equivalent number of multiplication becomes:

N ′mult = Nmult ·
3m+ 1

4m

where Nmult is the number of non-linear multiplications in [CRV14]. We summarize our results in
Table 4 for various block-ciphers, using the same (`, t) decompositions as in [CRV14]. In all cases
this enables to improve the number of multiplications compared to [CRV14].

k m ` t Nmult N ′mult

DES 6 8 4 3 4 3.1

PRESENT 4 16 3 2 2 1.5

SERPENT 4 32 3 2 2 1.5

CAMELLIA 8 8 7 6 10 7.8

CLEFIA 8 8 7 6 10 7.8

Table 4. Equivalent number of multiplications N ′mult for various block-ciphers, with k-bit SBoxes.

6 Parallel Computation of Quadratic Functions

6.1 Secure Evaluation of Quadratic Functions

In [CPRR15], the authors propose a generalization of an idea originally published in [CPRR13] to
securely process any function h of algebraic degree4 2, with application to the secure evaluation of
SBoxes. The algorithm is based on the following equation:

h

(
n∑
i=1

xi

)
=

∑
16i<j6n

(
h(xi + xj + sij) + h(xi + sij) + h(xj + sij) + h(sij)

)
+

n∑
i=1

h(xi) + ((n+ 1) mod 2) · h(0) (3)

which holds for any sij ∈ F2k . From the above equation, any function h of algebraic degree 2 can be
securely processed with n-th order security. Equation (3) is a consequence of the following theorem
proved in [CPRR15].

Theorem 1. Let n and m be two positive integers such that m 6 n. Let h be a function from Fn2
into Fm2 with algebraic degree at most s. Then, for every d > s we have:

h
( d∑
i=1

ai

)
=

∑
16i1<···<is6d

ϕ
(s)
h (ai1 , . . . , ais) +

s−1∑
j=0

ηd,s(j)
∑

I⊆[[1,d]]
|I|=j

h
(∑
i∈I

ai

)
,

4 The algebraic degree of a function h is the integer value maxai 6=0(HW(i)) where the ai’s are the coefficients of the
polynomial representation of h and where HW(i) denotes the Hamming weight of i.
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where ηd,s(j) =
(
d−j−1
s−j−1

)
mod 2 for every j 6 s− 1, and ϕ

(s)
h (a1, . . . , as) :=

∑
I⊆[1,t] h(

∑
i∈I ai).

We prove the theorem above for the particular case of quadratic functions. For s = 2 we must
show:

h

(
n∑
i=1

xi

)
=

∑
16i<j6n

(
h(xi + xj) + h(xi) + h(xj) + h(0)

)
+

n∑
i=1

h(xi) + ((n+ 1) mod 2) · h(0) (4)

A quadratic function h(x) over F2k can be written as a sum of quadratic terms, linear terms
and constant term:

h(x) =
∑
a,b

αab · x2
a+2b +

∑
a

βa · x2
a

+ c

for some coefficients αab, βa and c ∈ F2k . We show that Equation (4) is satisfied by the quadratic
terms, the linear terms and the constant term. For the quadratic term we can take a = 0 without
loss of generality. We have:

(x+ y)1+2b = (x+ y) · (x+ y)2
b

= (x+ y) ·
(
x2

b
+ y2

b
)

= x1+2b + y1+2b + x · y2b + y · x2b

which gives:(
n∑
i=1

xi

)1+2b

=
∑

16i6n,16j6n

xi · x2
b

j =
∑

16i<j6n

(
xi · x2

b

j + xj · x2
b

i

)
+

n∑
i=1

x1+2b

i

=
∑

16i<j6n

(
(xi + xj)

1+2b + x1+2b

i + x1+2b

j

)
+

n∑
i=1

x1+2b

i

so Equation (4) holds for the quadratic terms. It clearly holds for the linear terms and the constant
term, so it holds for any quadratic function.

Moreover, we obtain with n = 3:

h(r + x+ y) = h(r) + h(r + x) + h(r + y) + h(x+ y) + h(x) + h(y) + h(0)

which enables to randomize (4) to obtain (3).

6.2 The QuadraticEval Algorithm

We recall the QuadraticEval algorithm from [CPRR15] derived from Equation (3). We use a slight
variant of the algorithm in [CPRR15], so that we can latter apply our common shares technique
from Section 5; the only difference is that instead of letting

rji ← rij + h(xi + sij) + h(xj + sij) + h((xi + sij) + xj) + h(sij)

we change the order of processing in Line 9 of Algorithm 8. We also use a variant with memory
O(n) instead of O(n2).

As explained in [CPRR15], the advantage of the h(x) function is that it can be entirely tabulated.
Namely for some values of k in F2k , a lookup table of 2k entries might be affordable while a lookup
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Algorithm 8 QuadraticEval
Input: x1, . . . , xn and a quadratic function h
Output: c1, . . . , cn such that ⊕ici = h(⊕ixi)
1: for i = 1 to n do
2: ci ← h(xi)
3: end for
4: for i = 1 to n do
5: for j = i + 1 to n do
6: r ←$ F2k . referred by rij
7: ci ← ci + r . referred by cij
8: s←$ F2k . referred by sij
9: r ←

[
r +

(
h(xi + s) + h((xi + s) + xj)

)]
+
(
h(xj + s) + h(s)

)
. referred by rji

10: cj ← cj + r . referred by cji
11: end for
12: end for
13: if n is even then
14: c1 = c1 + h(0)
15: end if
16: return (c1, c2, . . . , cn)

table of 22k entries for the multiplication is not (typically for k = 8 giving 256 bytes vs. 64 kilobytes).
In such a situation, the cost of a secure evaluation of h is expected to be significantly lower than
the cost of a secure multiplication. We hence expect Algorithm 8 to be more efficient than the ISW
scheme. We refer to Appendix F.1 for the proof of t-SNI security, using the same modular approach
as in our proof of the original SecMult.

6.3 Application to AES

The evaluation of x254 based on the quadratic function h(x) = x5 is illustrated in Fig. 7. The
evaluation of x254 then takes 3 evaluations of h, and 1 regular multiplication (instead of 4 regular
multiplications).

.2

⊗ .2

.5 .5 .5

x254x

x2

x5 x25

x125

x127

Fig. 7. Evaluation of x254

6.4 Quadratic Evaluation with Common Shares

We now provide a formal description of the algorithm for two parallel evaluations of h(x) with
commons shares; the generalization to m parallel evaluations is straightforward. We also prove its
t-SNI security.
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Namely, we show that our technique from Section 5 can be applied to the previous QuadraticEval
algorithm (Alg. 8). Namely Algorithm 8 has the same structure as the original ISW multiplication
(Alg. 1): the only difference is that the product ai · bj is replaced by

vij = h(xi + sij) + h((xi + sij) + xj)

and symmetrically the product aj · bi is replaced by

vji = h(xj + sij) + h(sij)

We can make this explicit by using a modular approach, in which we first construct the matrix
elements vij (which gives a n2-sharing of h(x)), and then “compress” the n2-sharing to get a
regular n-sharing of h(x), as in the original ISW multiplication. The two steps can then be analysed
separately from a security standpoint, and since the second step is exactly the same as in the original
ISW multiplication, only the matrix construction step must be analysed. We refer to Appendix F.1
for the proof of t-SNI security of Alg. 8 using this approach.

Using this modular approach, it is then easy to apply our common shares technique from
Section 5. Namely if two inputs x and x′ have the same half common shares, that is xi = x′i for all
1 6 i 6 n/2, then we can use the same matrix elements vij for both x and x′, for all 1 6 i, j 6 n/2.
As in Section 5, for a large number m of parallel evaluation this saves roughly 1/4 of the total
computation. We stress that only the randoms sij for 1 6 i 6 j 6 n/2 are shared between the two
evaluations of h(x) and h(x′); the randoms rij are not shared. Moreover the vij elements can be
computed on the fly so that the memory complexity is O(n) instead of O(n2). Below we provide
a formal description of the algorithm TwoQuadraticEval for two parallel evaluations of h(x); the
generalization to m parallel evaluations is straightforward. We summarize the complexities in Table
5, for two parallel evaluations of QuadraticEval.

# add # evalh # mult # rand

SecMult (Alg. 1) 2n2 - n2 n2/2

QuadraticEval (Alg. 8) 9n2/2 2n2 - n2

QuadraticEval × 2 9n2 4n2 - 2n2

TwoQuadraticEval (Alg. 9) 67n2/8 7n2/2 - 15n2/8

Table 5. Complexity of QuadraticEval and TwoQuadraticEval algorithms. For simplicity we omit the O(n) terms.

The following lemma proves the t-SNI security of TwoQuadraticEval; we refer to Appendix F.2
for the proof.

Lemma 8 (t-SNI of TwoQuadraticEval). Let (ai)16i6n and (a′i)16i6n be the input shares of the
TwoQuadraticEval algorithm, and let (ci)16i6n and (c′i)16i6n be the output shares. For any set of t1
intermediate variables and any subsets |O| 6 t2 and |O′ | 6 t2 of output shares such that t1+t2 < n,
there exists a subset I of indices with |I| 6 t1 such that the t1 intermediate variables as well as the
output shares c|O and c′|O′ can be perfectly simulated from a|I and a′|I .
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Algorithm 9 TwoQuadraticEval
Input: a quadratic function h and (ai)16i6n, (a′i)16i6n

Output: (ci)16i6n and (c′i)16i6n such that ⊕ici = h(⊕iai) and ⊕ic
′
i = h(⊕ia

′
i)

1: xi, x
′
i ← CommonShares(ai, a

′
i) . Ensures that x′i = xi for all 1 6 i 6 n/2

2: for i = 1 to n do
3: ci ← h(xi), c

′
i ← h(x′i)

4: end for
5: for i = 1 to n do
6: for j = i + 1 to n do
7: r ←$ F2k , r′ ←$ F2k . referred by rij and r′ij
8: ci ← ci ⊕ r, c′i ← c′i ⊕ r′ . referred by cij and c′ij
9: s←$ F2k , v ← h(xi ⊕ s)⊕ h((xi ⊕ s)⊕ xj), w ← h(xj ⊕ s)⊕ h(s) . referred by sij , vij and vji

10: if i 6 n/2 and j 6 n/2 then
11: v′ ← v, w′ ← w
12: else
13: s′ ←$ F2k , v′ ← h(x′i ⊕ s′)⊕ h((x′i ⊕ s′)⊕ x′j), w

′ ← h(x′j ⊕ s′)⊕ h(s′). . referred by s′ij , v
′
ij and v′ji

14: end if
15: r ← (r ⊕ v)⊕ w, r′ ← (r′ ⊕ v′)⊕ w′ . referred by rji and r′ji
16: cj ← cj ⊕ r, c′j ← c′j ⊕ r′ . referred by cji and c′ji
17: end for
18: end for
19: if n is even then
20: c1 = c1 ⊕ h(0), c′1 = c′1 ⊕ h(0)
21: end if
22: return (ci)16i6n and (c′i)16i6n

7 Implementation

We have done a practical implementation of our algorithms for the AES SBox. More precisely we
have implemented the n-shared evaluation of x254 in four different ways:

• RP10: using the Rivain-Prouff algorithm, as described in Alg. 3;

• CM: using our common shares technique, as described in Alg. 6;

• GPS14: using quadratic functions, as described in Alg. 8;

• GPS14CS: using quadratic functions and common shares, as explained in Section 6.4.

8 shares 16 shares
RP10 CM GPS14 GPS14CS RP10 CM GPS14 GPS14CS

ATmega 20360 18244 11076 12447 70966 57644 39554 40086
ARM 20333 18156 14708 14765 77264 65556 58109 55967

32 shares Ratio for 8,16 and 32 shares
RP10 CM GPS14 GPS14CS CM/RP10 GPS14CS/GPS14

ATmega 268.103 209.103 152.103 147.103 0.9, 0.81, 0.78 1.1, 1, 0.97
ARM 303.103 251.103 232.103 219.103 0.89, 0.85, 0.83 1, 0.96, 0.94

Table 6. Performances comparison of the RP10, CM, GPS14 and GPS14CS algorithms, on the ATmega and ARM
platforms.
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For portability, the code is written in C, except the field multiplication in F28 which is written
in assembly for ATmega1284P (8-bit AVR microcontroller) and for ARM Cortex M0 (32-bit CPU).
Performance is evaluated using simulators (AVR Studio for ATmega, Keil uVision for ARM). We
assume that the random generation of one byte takes 1 cycle. This assumption is reasonable:
there are at least several dozens of cycles between two 1-byte random number requests; on chips
embedding hardware RNG, this is often enough to get a random value by a single memory access,
without waiting. We give the average number of cycles to compute one AES SBox among 16 SBoxes
in Table 6; see also Fig. 8.

Those implementation results show that our common shares technique is relatively practical: for
a large number of shares, we get roughly a 20% speed improvement compared to the Rivain-Prouff
countermeasure (but only roughly 5% compared to the quadratic evaluation technique in [GPS14]).
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Fig. 8. AES SBox secure computation on ARM
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A Security Definitions

We recall the security definitions from [BBD+15a], which we make more explicit.

Definition 3 (t-NI Gadget). Let G be a gadget taking m inputs x(1), . . . , x(m), each input being
given by n shares, and returning ` outputs y(1), . . . , y(`), each output being given by n shares. Then
the gadget G is t-NI if for all set of t1 intermediate variables, and for all set of output indices
O1, . . . ,O` such that t1 +

∑`
i=1 |Oi| 6 t, there exists m subsets I1, . . . , Im with |Ij | 6 t1 +

∑`
i=1 |Oi|

for all j, such that the t1 intermediate variables and the output variables y
(1)
|O1
, . . . , y

(`)
|O`

can be

perfectly simulated from x
(1)
|I1 , . . . , x

(m)
|Im .

Definition 4 (t-SNI Gadget). Let G be a gadget taking m inputs x(1), . . . , x(m), each input being
given by n shares, and returning ` outputs y(1), . . . , y(`), each output being given by n shares. Then
the gadget G is t-SNI if for all set of t1 intermediate variables, and for all set of output indices
O1, . . . ,O` such that each |Oi| 6 t2 with t1 + t2 6 t, there exists m subsets I1, . . . , Im with |Ij | 6 t1

for all j, such that the t1 intermediate variables and the output variables y
(1)
|O1
, . . . , y

(`)
|O`

can be

perfectly simulated from x
(1)
|I1 , . . . , x

(m)
|Im .
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B Security Proof of the SecMult Algorithm

B.1 A Direct Proof of Lemma 1

Our proof is essentially the same as in [BBD+15a]. We construct two sets I and J corresponding
to the input shares of a and b respectively. We divide the internal probes in 4 groups. The four
groups are processed separately and sequentially, that is we start with all probes in Group 1, and
finish with all probes in Group 4.

• Group 1: If ai, bi or ai · bi is probed, add i to I and J .

• Group 2: If ri,j or ci,j is probed (for any i 6= j), add i to I and J .

Note that after the processing of Group 1 and 2 probes, we have I = J ; we denote by U the common
value of I and J after the processing of Group 1 and 2 probes.

• Group 3: If ai · bj ⊕ ri,j is probed: if i ∈ U or j ∈ U , add {i, j} to both I and J .

• Group 4: If ai · bj is probed (for any i 6= j), then add i to I and j to J .

We have |I| 6 t1 and |J | 6 t1, since for every probe we add at most one index in I and J .
The simulation of probed variables in groups 1 and 4 is straightforward. Note that for i < j, the
variable rij is used in all partial sums cik for k > j; moreover rij is used in rij ⊕ aibj , which is used
in rji, which is used in all partial sums cjk for k > i. Therefore if i /∈ U , then rij is not probed and
does not enter in the computation of any probed cik; symmetrically if j /∈ U , then rji is not probed
and does not enter in the computation of any probed cjk.

For any pair i < j, we can now distinguish 4 cases:

• Case 1: {i, j} ∈ U . In that case, we can perfectly simulate all variables rij , ai · bj , ai · bj ⊕ rij ,
aj · bi and rji. In particular, we let rij ← F2k , as in the real circuit.

• Case 2: i ∈ U and j /∈ U . In that case we simulate rij ← F2k , as in the real circuit. If ai · bj⊕ ri,j
is probed (Group 3), we can also simulate it since i ∈ U and j ∈ J by definition of the processing
of Group 3 variables.

• Case 3: i /∈ U and j ∈ U . In that case rij has not been probed, nor any variable cik, since
otherwise i ∈ U . Therefore rij is not used in the computation of any probed variable (except
rji, and possibly ai · bj ⊕ ri,j). Therefore we can simulate rji ← F2k ; moreover if ai · bj ⊕ rij is
probed, we can perfectly simulate it using ai · bj ⊕ rij = aj · bi ⊕ rji, since j ∈ U and i ∈ J by
definition of the processing of Group 3 variables.

• Case 4: i /∈ U and j /∈ U . If aibj ⊕ ri,j is probed, since rij is not probed and does not enter
into the computation of any other probed variable, we can perfectly simulate such probe with
a random value.

From cases 1, 2 and 3, we obtain that for any i 6= j, we can perfectly simulate any variable rij
such that i ∈ U . This implies that we can also perfectly simulate all partial sums cik when i ∈ U ,
including the output variables ci. Finally, all probed variables are perfectly simulated.

We now consider the simulation of the output variables ci. We must show how to simulate ci for
all i ∈ O, where O is an arbitrary subset of [1, n] such that t1 + |O| < n. For i ∈ U , such variables
are already perfectly simulated, as explained above. We now consider the output variables ci with
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i /∈ U . We construct a subset of indices V as follows: for any probed Group 3 variable aibj ⊕ rij
such that i /∈ U and j /∈ U (this corresponds to Case 4), we put j in V if i ∈ O, otherwise we put
i in V . Since we have only considered Group 3 probes, we must have |U |+ |V | 6 t1, which implies
|U |+ |V |+ |O| < n. Therefore there exists an index j? ∈ [1, n] such that j? /∈ U ∪ V ∪ O. For any
i ∈ O, we can write:

ci = aibi ⊕
⊕
j 6=i

rij = ri,j? ⊕

aibi ⊕ ⊕
j 6=i,j?

rij


We claim that neither ri,j? nor rj?,i do enter into the computation of any probed variable or

other ci′ for i′ ∈ O. Namely i /∈ U so neither ri,j? nor any partial sum cik was probed; similarly
j? /∈ U so neither rj?,i nor any partial sum cj?,k was probed, and the output cj? does not have to
be simulated since by definition j? /∈ O. Finally if i < j? then aibj? ⊕ ri,j? was not probed since
otherwise j? ∈ V (since i ∈ O); similarly if j? < i then aj?bi ⊕ rj?,i was not probed since otherwise
we would have j? ∈ V since j? /∈ O. Therefore, since neither ri,j? nor rj?,i are used elsewhere, we
can perfectly simulate ci by generating a random value. This proves the Lemma.

B.2 A Modular Proof of Lemma 1

In this section we provide an alternative proof of Lemma 1, based on a modular approach. Namely
in SecMult (Algorithm 1) we can separate the computation of the matrix elements ai · bj (forming
a n2-sharing of a · b), from the derivation of a n-sharing of a · b. We obtain two separate algorithms
MatrixMult and MatrixRows below, whose security properties can be analyzed separately. For the
SecMult algorithm such modular approach is relatively straightforward, but it will be especially
useful when analyzing the more complex QuadraticEval algorithm from Section 6.

Algorithm 10 MatrixMult
Require: shares ai satisfying

⊕n
i=1 ai = a, shares bi satisfying

⊕n
i=1 bi = b

Ensure: shares vij = ai · bj for 1 6 i, j 6 n
1: for i = 1 to n do
2: for j = 1 to n do
3: vij ← ai · bj
4: end for
5: end for
6: return (vij)16i,j6n

The following Lemma shows the t-NI property of MatrixMult. The output shares of the algorithm
are indexed by (i, j) for 1 6 i, j 6 n. Since there are n2 output shares, we cannot hope to simulate
any proper subset O of output shares with always strictly fewer than n shares. Therefore we restrict
ourselves to subsets O of the form:

O = (E × E) ∪ O2

where |E| + |O2| 6 t2, instead of |O| 6 t2. We will see that this special structure is “compatible”
with the set of input shares required for the next MatrixRows layer.

Lemma 9 (t-NI of MatrixMult). Let (ai)16i<n and (bi)16i<n be the input shares of the MatrixMult
operation. Let O be a subset of the output shares such that O = (E×E)∪O2 where |E|+ |O2| 6 t2.
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Algorithm 11 MatrixRows
Require: shares vij for 1 6 i, j 6 n
Ensure: shares ci such that

⊕n
i=1 ci =

⊕
16i,j6n vij

1: for i = 1 to n do
2: ci ← vii
3: end for
4: for i = 1 to n do
5: for j = i + 1 to n do
6: r ← F2k . referred by ri,j
7: ci ← ci ⊕ r . referred by ci,j
8: r ← (r ⊕ vij)⊕ vji . referred by rj,i
9: cj ← cj ⊕ r . referred by cj,i

10: end for
11: end for
12: return (c1, . . . , cn)

Then for any set of t1 intermediate variables, there exist two subsets I and J of indices such that
|I| 6 t1 + t2 and |J | 6 t1 + t2, and the t1 intermediate variables as well as the output shares
(vij)(i,j)∈O can be perfectly simulated from a|I and b|J .

Proof. The proof is relatively straightforward. Using O = (E×E)∪O2, we initially let I = J = E,
and we then proceed as follows:

• For every probed variable ai, add i in I, and for every bi, add i in J .
• For every probed vij , add i to I and j to J .
• For every pair (i, j) ∈ O2, add i to I and j to J .

Since |E|+ |O2| 6 t2, we have |I| 6 t1 + t2 and |J | 6 t1 + t2 as required. It is easy to see that the t1
intermediate variables and the output shares (vij)(i,j)∈O can then be perfectly simulated from a|I
and b|J . ut

Lemma 10 (t-SNI of MatrixRows). Let (vij)16i,j6n be the matrix of input shares of MatrixRows,
and let (ci)16i6n be the output shares. For any set of t1 intermediate variables and any subset
|O| 6 t2 of output shares such that t1 + t2 < n, there exists a subset I = (E×E)∪I2 of indices with
|E| + |I2| 6 t1, and the t1 intermediate variables as well as the output shares c|O can be perfectly
simulated from (vij)(i,j)∈I .

Proof. The proof is very similar to the proof of Lemma 1 in Appendix B.1. We first describe the
construction of the subsets E and I2. We divide the internal probes into 3 groups. Those groups
are processed separately and sequentially.

• Group 1: For every probed variable cij and rij , add i to E.

We let U = E after the processing of Group 1 variables.

• Group 2: For every probed variable rij ⊕ vij , if i ∈ U or j ∈ U , add i and j to E.
• Group 3: For each probed input variable vij , add (i, j) to I2.

Now that the subsets E and I2 have been determined, we set I = (E×E)∪I2 and we show that
the t1 intermediate variables and the t2 output shares (vij)(i,j)∈O of Algorithm MatrixRows can be
perfectly simulated from (vij)(i,j)∈I . Note that we have |E|+ |I2| 6 t1 as required.

27



The simulation of variables in Group 3 is straightforward since by construction we have (i, j) ∈
I2 ⊂ I. Therefore, it remains to simulate the variables from groups 1 and 2. Four cases arise
depending on whether i and/or j (with i < j) belong to U or not.

• Case 1: {i, j} ∈ U . This implies {(i, j), (j, i)} ∈ I, and therefore we can perfectly simulate all
variables from Groups 1 and 2 from vij and vji. In particular, we let rij ← F2k as in the real
circuit.
• Case 2: i ∈ U and j /∈ U . In that case, we can simulate rij ← F2k as in the real circuit.

Furthermore, if the variable rij ⊕ vij is probed, then since i ∈ U , by construction we must have
i and j in E (from processing of Group 2 variables) and therefore (i, j) ∈ E×E ⊂ I. Thus, the
variable rij ⊕ vij can be perfectly simulated from vij .
• Case 3: i /∈ U and j ∈ U . In that case, the variable rij is not probed, nor any variable ci`.

Therefore, we can simulate rji ← F2k . Moreover, if rij ⊕ vij is probed, then it can be perfectly
simulated from rij⊕vij = rji⊕vji; namely by definition j ∈ U , and by construction, both indices
i and j must belong to E (from processing of Group 2 variables) and therefore (j, i) ∈ E×E ⊂ I.
• Case 4: i /∈ U and j /∈ U . In that case, variables from Group 1 are not probed, and variables

from Group 2 can perfectly be simulated with a random value since ri,j is not probed and does
not enter in the computation of any other probed variable.

From cases 1, 2 and 3, we obtain that for any i 6= j, we can perfectly simulate any variable rij
such that i ∈ U . This implies that we can also perfectly simulate all partial sums ci` when i ∈ U ,
including the output variables ci. Finally, all probed variables are perfectly simulated. Finally, the
output variables ci for i ∈ O are simulated exactly as in the proof of Lemma 1. ut

It remains to show that by combining Lemmas 9 and 10, the composition of the MatrixRows
and MatrixMult algorithms allows Algorithm SecMult to be t-SNI, which proves Lemma 1.

Let I = I1 ∪ I2 be the set of intermediate variables with |I | 6 t1, such that I1 corresponds to
the observations of intermediate variables done by the attacker in MatrixRows, and I2 corresponds
to the observations in MatrixMult. Let O be a set of indices such that |O| 6 t2 corresponds to the
observations on the outputs made by the attacker.

Gadget MatrixRows. By assumption, we have
∣∣I1∣∣ + |O| 6 t1 + t2 < n. Therefore, Lemma 10

ensures the existence of a set of indices S1 = (E × E) ∪ A such that |E|+ |A| 6
∣∣I1∣∣, and this

gadget can be perfectly simulated from its input shares corresponding to indices in S1.
Gadget MatrixMult. From Step 1, we have |E| + |A| 6

∣∣I1∣∣, which gives |E| + |A| +
∣∣I2∣∣ 6∣∣I1∣∣ +

∣∣I2∣∣ 6 t1 < n. Therefore, Lemma 9 ensures the existence of two sets of indices I and
J such that |I| 6

∣∣I2∣∣ + |E| + |A| and |J | 6
∣∣I2∣∣ + |E| + |A|, and Gadget MatrixMult can be

perfectly simulated from its input shares corresponding to indices in I and J .

From Steps 1 and 2, it follows that |I| 6
∣∣I2∣∣+∣∣I1∣∣ 6 |I | 6 t1 and similarly |J | 6 t1. This concludes

the proof of Lemma 1.

B.3 Proof of Lemma 2

We can use the same modular approach of Section B.2. For RefreshMask the matrix step simply
consists in letting vii = ai for all 1 6 i 6 n and vij = 0 for all i 6= j. The proof of Lemma 2 then
follows from Lemma 10.
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C A CommonMult Algorithm with Memory O(n)

We describe in Algorithm 12 a version of the CommonMult algorithm with memory complexity
O(n) instead of O(n2).

Algorithm 12 CommonMult
Input: shares satisfying c =

⊕n
i=1 ci, a =

⊕n
i=1 ai, b =

⊕n
i=1 bi

Output: di such that
⊕n

i=1 di = c · a, and ei such that
⊕n

i=1 ei = c · b
1: (ai)16i6n, (bi)16i6n ← CommonShares((ai)16i6n, (bi)16i6n) . Ensures that ai = bi for all 1 6 i 6 n/2
2: for i = 1 to n do
3: di ← ci · ai, ei ← ci · bi
4: end for
5: for i = 1 to n do
6: for j = i + 1 to n do
7: r ←$ F2k , r′ ←$ F2k . referred by rij and r′ij
8: di ← di ⊕ r, ei ← ei ⊕ r′ . referred by dij and eij
9: v ← ci · aj , w ← cj · ai . referred by vij and vji

10: if j 6 n/2 then
11: v′ ← v, w′ ← w
12: else if i 6 n/2 then
13: v′ ← ci · bj , w′ ← w
14: else
15: v′ ← ci · bj , w′ ← cj · bi . referred by v′ij and v′ji
16: end if
17: r ← (r ⊕ v)⊕ w, r′ ← (r′ ⊕ v′)⊕ w′ . referred by rji and r′ji
18: cj ← cj ⊕ r, c′j ← c′j ⊕ r′ . referred by cji and c′ji
19: end for
20: end for
21: return (di)16i6n and (ei)16i6n

D Proof of Lemma 6 (t-SNI of SecExp254’)

The proof is easily deduced from the security of SecMult (Lemma 1), RefreshMask (Lemma 2) and
CommonShares (Lemma 4). As illustrated in Fig. 9, thanks to the t-SNI property of the SecMult and
the RefreshMask algorithms, although a single probe within a SecMult can generate two different
indices i and j on its two inputs, those 2 indices will never merge into the same variable, which
means that we get security with n > t+1 shares instead of n > 2t+1 shares (as in the original ISW
countermeasure). For example a single probe in the I8 SecMult gadget can generate two indices
i ∈ S81 and j ∈ S82 , but the index j is “blocked” by the I10 RefreshMask and therefore only i will
appear in the input shares of x.

We follow the process described in [BBD+15a, Sec 4.1]. Note that except for CommonShares,
all the gadgets involved in the computation of x254 are either t-SNI or linear. In addition, we use
Lemma 4 to prove that the composition with the CommonShares gadget allows the entire circuit to
be t-SNI. We label the gadgets from 1 to 10 starting from the last multiplication and progressing
from right to left (see Figure 9).

Let I be a set of indices such that |I | 6 t1 (corresponding to observations of intermediate
variables done by the attacker) and let O be a set of indices such that |O| 6 t2 (corresponding to
observations on the outputs made by the attacker).
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Fig. 9. x254 as composition of subgadgets

Consider a partition of I =
10⋃
i=1

Ii, depending on the subgadget in which observation occurs (see

Figure 9).

Gadget 1 By assumption,
∣∣I1 ∪ O∣∣ 6 t1 + t2 6 t. Since from Lemma 1, the multiplication ⊗ is

t-SNI, this means that there exist two sets of indices S11 ,S12 such that
∣∣S11 ∣∣ 6 ∣∣I1∣∣, ∣∣S12 ∣∣ 6 ∣∣I1∣∣

and ⊗ is
((
S11 ,S12

)
,
(
I1,O

))
-NI. In particular, this means that this gadget can be perfectly

simulated from its input shares corresponding to indices in S11 and S12 .
Gadget 2 As composition of squarings over a field of characteristic 2, the gadget .16 is affine. Hence

from [BBD+15a, Theorem 1], there exists a set of indices S2 such that
∣∣S2∣∣ 6 ∣∣I2∣∣ +

∣∣S11 ∣∣ and
.16 is

(
S2,
(
I2,S11

))
-NI. Note that by the previous step,

∣∣S11 ∣∣ 6 ∣∣I1∣∣, so that
∣∣S2∣∣ 6 ∣∣I2∣∣+ ∣∣I1∣∣.

Gadget 3 From the previous step,
∣∣I3 ∪ S2∣∣ 6 ∣∣I3∣∣ +

∣∣I2∣∣ +
∣∣I1∣∣ 6 t. Since ⊗ is t-SNI, it fol-

lows that there exist two sets of indices S31 ,S32 such that
∣∣S31 ∣∣ 6 ∣∣I3∣∣, ∣∣S32 ∣∣ 6 ∣∣I3∣∣ and ⊗ is((

S31 ,S32
)
,
(
I3,S2

))
-NI.

Gadget 4 From Step 1,
∣∣I4 ∪ S12 ∣∣ 6 ∣∣I4∣∣+ ∣∣I1∣∣ 6 t. Since ⊗ is t-SNI, this implies the existence of

two sets of indices S41 ,S42 such that
∣∣S41 ∣∣ 6 ∣∣I4∣∣, ∣∣S42 ∣∣ 6 ∣∣I4∣∣ and ⊗ is

((
S41 ,S42

)
,
(
I4,S12

))
-NI.

Gadget 5 It follows from Steps 3 and 4 that
∣∣I5 ∪ (S32 ∪ S42)∣∣ 6 ∣∣I5∣∣ +

∣∣I3∣∣ +
∣∣I4∣∣ 6 t. Since

RefreshMask is t-SNI by Lemma 2, there exists a set of indices S5 6 I5 such that gadget R is(
S5,
(
I5,S32 ∪ S42

))
-NI.

Gadget 6 From Steps 3 and 4,
∣∣I6 ∪ S31 ∪ S41 ∣∣ 6 ∣∣I6∣∣ +

∣∣I3∣∣ +
∣∣I4∣∣ 6 t 6 n − 1. Then Lemma 4

applies and ensures the existence of a set of indices S6 such that
∣∣S6∣∣ 6 ∣∣S31 ∣∣+

∣∣S41 ∣∣+
∣∣I6∣∣.

From Steps 3 and 4, it follows that
∣∣S6∣∣ 6 ∣∣I3∣∣+

∣∣I4∣∣+
∣∣I6∣∣.

Gadget 7 Since gadget .4 is affine, there exists a set of indices S7 such that
∣∣S7∣∣ 6 ∣∣I7∣∣ +

∣∣S5∣∣
and .4 is

(
S7,
(
I7,S5

))
-NI. Note that by Step 5,

∣∣S5∣∣ 6 ∣∣I5∣∣, so that
∣∣S7∣∣ 6 ∣∣I7∣∣+

∣∣I5∣∣.
Gadget 8 From Step 6 and 7,

∣∣I8 ∪ (S6 ∪ S7)∣∣ 6 ∣∣I8∣∣+ ∣∣I3∣∣+ ∣∣I4∣∣+ ∣∣I5∣∣+ ∣∣I6∣∣+ ∣∣I7∣∣ 6 t. Since ⊗
is t-SNI, this implies the existence of two sets of indices S81 ,S82 such that

∣∣S81 ∣∣ 6 ∣∣I8∣∣, ∣∣S82 ∣∣ 6 ∣∣I8∣∣
and ⊗ is

((
S81 ,S82

)
,
(
I8,S6 ∪ S7

))
-NI.

Gadget 9 Since gadget .2 is affine, there exists a set of indices S9 such that
∣∣S9∣∣ 6 ∣∣I9∣∣+∣∣S81 ∪ S6∣∣

and .2 is
(
S9,
(
I9,S81 ∪ S6

))
-NI. Note that by Steps 6 and 8,

∣∣S81 ∪ S6∣∣ 6 ∣∣I8∣∣+∣∣I3∣∣+∣∣I4∣∣+∣∣I6∣∣,
so that

∣∣S9∣∣ 6 ∣∣I9∣∣+
∣∣I8∣∣+

∣∣I3∣∣+
∣∣I4∣∣+

∣∣I6∣∣.
Gadget 10 From Step 8,

∣∣I10 ∪ S82 ∣∣ 6 ∣∣I10∣∣+
∣∣I8∣∣ 6 t. Since RefreshMask is t-SNI, there exists a

set of indices S10 such that
∣∣S10∣∣ 6 ∣∣I10∣∣ such that gadget R is

(
S10,

(
I10,S82

))
-NI.

Each of the previous steps ensures the existence of a simulator for each gadget. Let I = S9∪S10.
We can then compose these simulators to simulate perfectly the computation of x254 from a|I .
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Furthermore, from Steps 9 and 10 we know that

|I| =
∣∣S9 ∪ S10∣∣ 6 ∣∣I9∣∣+

∣∣I8∣∣+
∣∣I3∣∣+

∣∣I4∣∣+
∣∣I6∣∣+

∣∣I10∣∣ 6 t1,

which concludes the proof.

E Secure Computation of Parallel Multiplications

E.1 Secure Computation of m Parallel Multiplications

We describe the parallel computation of m multiplications of c(j) = a(j) · b(j), using an n-sharing
of a(j) and b(j). We obtain the ParaMult algorithm (Alg. 13). To ensure that m variables have
the same n/2 shares, we use a geneneralization of the CommonShares algorithm; see Algorithm
GeneralizedCommonShares (Alg. 14).

Algorithm 13 ParaMult

Input: Variables a(j) for 0 6 j 6 m − 1 with shares (a
(j)
i )16i6n satisfying

⊕n
i=1 a

(j)
i = a(j), variables b(j) for

0 6 j 6 m− 1 with shares (b
(j)
i )16i6n satisfying

⊕n
i=1 b

(j)
i = b(j),

Output: Variables c(j) for 0 6 j 6 m− 1 with shares (c
(j)
i )16i6n satisfying

⊕n
i=1 c

(j)
i = a(j) · b(j).

1: (a
(j)
i )← GeneralizedCommonShares(a

(j)
i )

2: (b
(j)
i )← GeneralizedCommonShares(b

(j)
i )

3: for j = 0 to m− 1 do
4: (c

(j)
i )← SecMult(a

(j)
i , b

(j)
i )

5: end for
6: return (c

(j)
i )16i6n for 0 6 j < m

Algorithm 14 GeneralizedCommonShares

Input: Variables a(j) for 0 6 j 6 m− 1 with shares (a
(j)
i )16i6n satisfying

⊕n
i=1 a

(j)
i = a(j)

Output: Variables b(j) for 0 6 j 6 m− 1 with shares (b
(j)
i )16i6n satisfying

⊕n
i=1 b

(j)
i = a(j) and b

(0)
i = b

(1)
i = · · · =

b
(m−1)
i for all 1 6 i 6 n/2

1: for i = 1 to n/2 do
2: ri ←$ F2k

3: for j = 0 to m− 1 do
4: b

(j)
i ← ri

5: b
(j)

n/2+i ← (a
(j)

n/2+i ⊕ ri)⊕ a
(j)
i

6: end for
7: end for
8: return (b

(j)
i )16i6n for 0 6 j < m

The following Lemma shows that the GeneralizedCommonShares algorithm is secure in the ISW
model, with n > t+ 1.

Lemma 11 (t-NI of GeneralizedCommonShares). Let (a
(j)
i )06i<n for 0 6 j < m be the input shares

of the algorithm GeneralizedCommonShares, and let (b
(j)
i )06i<n for 0 6 j < m be the output shares.
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For any set of t intermediate variables and any subsets of indices I0, I1, . . . , Im−1 ⊂ [0, n − 1]
such that t +

∑m−1
j=0 |Ij | 6 n − 1, there exists a subset S ⊂ [0, n − 1] such that those t variables,

the output shares b
(j)

|Ij for 0 6 j < m can be perfectly simulated from a
(j)
|S for 0 6 j < m, with

|S | 6 t+
∑m−1

j=0 |Ij |.

Proof. The proof is very similar to the proof of Lemma 4. The construction of the set S of indices is

done as follows: we add i to S for every probed input variable a
(j)
i (for any i < n and j < m), and for

all the other variables we add indices i and n/2+ i to S if λi > 2, where λi = ti +
∑m−1

j=0 |{i, n/2+

i} ∩ Ij | and ti is the number of probed intermediate variables a
(j)
n/2+i ⊕ ri for 0 6 j < m.

Then the simulation from a
(j)
|S for 0 6 j < m of the intermediate and output variables is

performed as in the proof of Lemma 4. Namely, every probed input variable a
(j)
i (for any i < n

and j < m) is perfectly simulated since by construction we have i ∈ S . Moreover, if λi > 2 then by
construction the indices i and n/2 + i belong to S and we can simulate all output and intermediate
variables as they would have been computed in Algorithm GeneralizedCommonShares, by assigning
to ri a uniformly random value. Eventually, if λi = 1, this means that only one variable is probed

among the intermediate variables a
(j)
n/2+i⊕ri and the output variables b

(j)
i and b

(j)
n/2+i (for all j < m),

and we can treat the probed variable as a uniformly random and independent value.
Therefore, any (t+

∑m−1
j=0 |Ij |)-tuple of variables of GeneralizedCommonShares can be perfectly

simulated from a
(j)
|S for 0 6 j < m. Note that we have |S | 6 t+

∑m−1
j=0 |Ij | for the same reason as

for Lemma 4. ut

Lemma 12 (t-SNI of ParaMult). Let (a
(j)
i )06i<n and (b

(j)
i )06i<n for 0 6 j < m be the input shares

of the ParaMult operation, and let (c
(j)
i )06i<n for 0 6 j < m be the output shares. For any set of t1

intermediate variables and any subsets |Oj | 6 t2 of output shares such that t1 + t2 < n, there exists
two subsets I and J of indices such that both |I| 6 t1 and |J | 6 t1, and the distribution of those t1

intermediate variables can be perfectly simulated from a
(j)
|I and b

(j)
|J for all 0 6 j < m. The output

shares c
(j)

|Oj can also be perfectly simulated from a
(j)
|I and b

(j)
|J for all 0 6 j < m.

Proof. We use Lemmas 1 and 11 to prove that the composition of the GeneralizedCommonShares
gadgets with multiplications ⊗ allows the entire circuit ParaMult to be t-SNI. We label the gadgets
from 0 to m+ 1 (see Figure 10).

Let I =
⋃m+1
i=0 Ii be a set of indices such that |obsI| 6 t1 (corresponding to observations of

intermediate variables done by the attacker in the m+ 2 gadgets) and let Oi for 0 6 i < m be sets
of indices such that

∣∣Oi∣∣ 6 t2 (corresponding to observations on the outputs made by the attacker
in the m gadgets ⊗).

Gadgets i for 0 6 i 6 m− 1 By assumption,
∣∣Ii ∪ Oi∣∣ 6 t1 + t2 6 t. Since from Lemma 1, the

multiplication ⊗ is t-SNI, this means that there exist two sets of indices Si1,Si2 such that
∣∣Si1∣∣ 6∣∣Ii∣∣, ∣∣Si2∣∣ 6 ∣∣Ii∣∣ and ⊗ is

((
Si1,Si2

)
,
(
Ii,Oi

))
-NI. In particular, this means that Gadgets i for

0 6 i 6 m − 1 can be perfectly simulated from their input shares corresponding to indices in
Si1 and Si2.

Gadget m From Step 1, we have
∣∣∣Im ∪⋃m−1

i=0 Si2
∣∣∣ 6∑m

i=0

∣∣Ii∣∣ 6 t1 < n. Then Lemma 11 applies

and ensures the existence of a set of indices Sm such that |Sm| 6 |Im|+
∑m−1

i=0

∣∣Si2∣∣ 6∑m
i=0

∣∣Ii∣∣
and Gadget m can be perfectly simulated from its input shares corresponding to indices in Sm.
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Fig. 10. The ParaMult algorithm as composition of gadgets. Each variable a(j) and b(j) contains actually n shares
a
(j)
i and b

(j)
i .

Gadget m + 1 From Step 1, we have
∣∣∣Im+1 ∪

⋃m−1
i=0 Si1

∣∣∣ 6 ∣∣Im+1
∣∣ +

∑m−1
i=0

∣∣Ii∣∣ 6 t1 < n. Then

Lemma 11 applies and ensures the existence of a set of indices Sm+1 such that
∣∣Sm+1

∣∣ 6∣∣Im+1
∣∣+∑m−1

i=0

∣∣Si1∣∣ 6 ∣∣Im+1
∣∣+∑m−1

i=0

∣∣Ii∣∣ and Gadget m+ 1 can be perfectly simulated from
its input shares corresponding to indices in Sm+1.

Each of the previous steps ensures the existence of a simulator for each gadget. Let I = Sm
and J = Sm+1. We can then compose these simulators to perfectly simulate the computation of

GeneralizedCommonShares from a
(j)
|I and b

(j)
|J for all 0 6 j < m. Furthermore, we have |I| = |Sm| 6∑m

i=0

∣∣Ii∣∣ 6 t1 and |J | =
∣∣Sm+1

∣∣ 6 ∣∣Im+1
∣∣+
∑m−1

i=0

∣∣Ii∣∣ 6 t1.

E.2 Parallel Computation of 2m Multiplications with Common Operands

To perform the multiplications with same operand x(j) ← a(j) · b(j) and y(j) ← a(j) · c(j) for all
1 6 j 6 m, instead of doing 2m independent SecMult, we define the following ParaCommonMult
algorithm.

1. Apply GeneralizedCommonShares to the m variables a(j)

2. Apply GeneralizedCommonShares to the 2m variables b(j) and c(j)

3. Apply SecMult to compute x(j) = a(j) · b(j) and y(j) = a(j) · c(j).

Lemma 13 (t-SNI of ParaCommonMult). Let (a
(j)
i )06i<n and (b

(j)
i )06i<n and (c

(j)
i )06i<n for 0 6

j < m be the input shares of the ParaCommonMult operation, and let (d
(j)
i )06i<n and (e

(j)
i )06i<n for

0 6 j < m be the output shares. For any set of t1 intermediate variables and any subsets |Oj1| 6 t2
and |Oj2| 6 t2 of output shares such that t1 + t2 < n, there exists two subsets I and J of indices
such that both |I| 6 t1 and |J | 6 t1, and the distribution of those t1 intermediate variables can be

perfectly simulated from a
(j)
|I , b

(j)
|J and c

(j)
|J for all 0 6 j < m. The output shares d

(j)

|Oj
1

and e
(j)

|Oj
2

can

also be perfectly simulated from a
(j)
|I , b

(j)
|J and c

(j)
|J for all 0 6 j < m.
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Fig. 11. The ParaCommonMult algorithm as composition of gadgets. Each variable a(j), b(j) and c(j) contains actually
n shares a

(j)
i , b

(j)
i and c

(j)
i .
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Proof. We use Lemmas 1 and 11 to prove that the composition of the GeneralizedCommonShares
gadgets with multiplication ⊗ gadgets allows the entire circuit ParaCommonMult to be t-SNI. We
label two sets of gadgets from 0 to m − 1 (one set with index 1 and the other with index 2) for
multiplications, and two other labels m and m+ 1 for both GeneralizedCommonShares gadgets (see
Figure 11).

Let I =
⋃m−1
i=0 (Ii1 ∪ Ii2) ∪ Im ∪ Im+1 be a set of indices such that |I | 6 t1 (corresponding

to observations of intermediate variables done by the attacker in the 2m + 2 gadgets) and let Oi1
and Oi2 for 0 6 i < m be sets of indices such that

∣∣Oi1∣∣ 6 t2 and
∣∣Oi2∣∣ 6 t2 (corresponding to

observations on the outputs made by the attacker in the 2m gadgets ⊗).

Gadgets i for 0 6 i 6 m− 1 with index 1 By assumption,
∣∣Ii1 ∪ Oi1∣∣ 6 t1 + t2 6 t. Since from

Lemma 1, the multiplication ⊗ is t-SNI, this means that there exist two sets of indices Si1,1,
Si1,2 such that

∣∣Si1,1∣∣ 6 ∣∣Ii1∣∣, ∣∣Si1,2∣∣ 6 ∣∣Ii1∣∣ and ⊗ is
((
Si1,1,Si1,2

)
,
(
Ii1,Oi1

))
-NI. In particular, this

means that Gadgets i with index 1, for 0 6 i 6 m − 1 can be perfectly simulated from their
input shares corresponding to indices in Si1,1 and Si1,2.

Gadgets i for 0 6 i 6 m− 1 with index 2 Similarly we have
∣∣Ii2 ∪ Oi2∣∣ 6 t1+t2 6 t. Since from

Lemma 1, the multiplication ⊗ is t-SNI, this means that there exist two sets of indices Si2,1,
Si2,2 such that

∣∣Si2,1∣∣ 6 ∣∣Ii2∣∣, ∣∣Si2,2∣∣ 6 ∣∣Ii2∣∣ and ⊗ is
((
Si2,1,Si2,2

)
,
(
Ii2,Oi2

))
-NI. In particular, this

means that Gadgets i with index 2, for 0 6 i 6 m − 1 can be perfectly simulated from their
input shares corresponding to indices in Si2,1 and Si2,2.

Gadget m From Step 1, we have
∣∣∣Im ∪⋃m−1

i=0 (Si1,2 ∪ Si2,2)
∣∣∣ 6 |Im|+∑m−1

i=0 (
∣∣Ii1∣∣+ ∣∣Ii2∣∣) 6 t1 < n.

Then Lemma 11 applies and ensures the existence of a set of indices Sm such that |Sm| 6
|Im| +

∑m−1
i=0 (

∣∣Si1,2∣∣ +
∣∣Si2,2∣∣) 6 |Im| +

∑m−1
i=0 (

∣∣Ii1∣∣ +
∣∣Ii2∣∣) and Gadget m can be perfectly

simulated from its input shares corresponding to indices in Sm.

Gadget m + 1 From Step 1, we have
∣∣∣Im+1 ∪

⋃m−1
i=0 (Si1,1 ∪ Si2,1)

∣∣∣ 6 ∣∣Im+1
∣∣+∑m−1

i=0 (
∣∣Ii1∣∣+ ∣∣Ii2∣∣) 6

t1 < n. Then Lemma 11 applies and ensures the existence of a set of indices Sm+1 such that∣∣Sm+1
∣∣ 6 ∣∣Im+1

∣∣+∑m−1
i=0 (

∣∣Si1,1∣∣+ ∣∣Si2,1∣∣) 6 ∣∣Im+1
∣∣+∑m−1

i=0 (
∣∣Ii1∣∣+ ∣∣Ii2∣∣) and Gadget m+ 1 can

be perfectly simulated from its input shares corresponding to indices in Sm+1.

Each of the previous steps ensures the existence of a simulator for each gadget. Let I = Sm
and J = Sm+1. We can then compose these simulators to perfectly simulate the computation of

ParaCommonMult from a
(j)
|I , b

(j)
|J and c

(j)
|J for all 0 6 j < m. Furthermore, we have |I| = |Sm| 6

|Im|+
∑m−1

i=0 (
∣∣Ii1∣∣+

∣∣Ii2∣∣) 6 t1 and |J | =
∣∣Sm+1

∣∣ 6 ∣∣Im+1
∣∣+
∑m−1

i=0 (
∣∣Ii1∣∣+

∣∣Ii2∣∣) 6 t1.

ut

F Evaluation of a Quadratic Function

F.1 Security Proof of the QuadraticEval Algorithm

In this section we prove that the previous QuadraticEval algorithm achieves the t-SNI property. As
with our proof of SecMult in Appendix B.2, we use a modular approach, in which we first analyse
the matrix construction algorithm MatrixQuadratic (Alg. 15); one can then apply the t-SNI property
of the second layer, MatrixRows (Alg. 11), which is the same as for SecMult in Appendix B.2.
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Algorithm 15 MatrixQuadratic
Input: x1, . . . , xn and a quadratic function h
Output: vij such that ⊕i,jvij = h(⊕ixi)
1: for i = 1 to n do
2: vii ← h(xi)
3: for j = i + 1 to n do
4: sij ←$ F2k

5: vij ← h(xi + sij) + h((xi + sij) + xj)
6: vji ← h(xj + sij) + h(sij)
7: end for
8: end for
9: if d is even then

10: v11 ← v11 + h(0)
11: end if
12: return (vij)

Lemma 14 (t-NI of MatrixQuadratic). Let (xi)16i6n be the input shares of the MatrixQuadratic
operation. Let O be a subset of the output shares such that O = E ×E ∪O2 where |E|+ |O2| 6 t2.
Then for any set of t1 intermediate variables, there exists a subset I of indices with |I| 6 t1 + t2,
such that the t1 intermediate variables as well as the output shares (vij)(i,j)∈O can be perfectly
simulated from x|I .

Proof. We describe hereafter the construction of the set I of indices, initially empty. We divide the
probed variables into 3 groups. Those groups are processed separately and sequentially, for all pairs
i < j.

– Group 1: For every probed variable sij , xi, xi+ sij , or h applied to these two last variables, add
i in I.

– Group 2: For every probed vij , vji, xj + sij or (xi + sij) + xj , or h applied to these two last
variables, if j ∈ I add i to I, otherwise, add j to I.

– Group 3: For every pair (i, j) ∈ O or (j, i) ∈ O with j > i, if j ∈ I add i to I, otherwise, add j
to I.

Now that the set I has been determined, we show that the t1 intermediate variables and the
output shares (vij)(i,j)∈O of Algorithm MatrixQuadratic can be perfectly simulated from x|I . We
distinguish four cases depending on whether i and/or j (with i < j) belong to I or not.

– {i, j} ∈ I: All variables can straightforwardly be simulated since one has access to xi and xj .

– i ∈ I and j /∈ I: The simulation of variables from Group 1 is straightforward since one has
access to xi (because i ∈ I), by assigning to sij a uniformly random value as in the real circuit.
Furthermore, variables from Group 2 and 3 are not probed, since otherwise we would have j ∈ I.

– i /∈ I and j ∈ I: By construction, this means that none of the variables from Group 1 is probed
and that only one variable from Group 2 and 3 is probed. If it is the output variable vji (probed
or such that (j, i) ∈ O) or xj + sij , it can be perfectly simulated since one has access to xj , and
sij is assigned a random value. If it is vij (probed or such that (i, j) ∈ O), or (h)((xi+sij)+xj)
then it can be simulated since one has access to xj , by treating xi + sij as a random variable
since sij is not probed and not used anywhere else.

– i /∈ I and j /∈ I: No variable among Group 1, 2 and 3 is probed.
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Note that we have |I| 6 t1 + t2 since for each intermediate variable and for each output shares
such that (i, j) ∈ O, by construction at most one index was added to I. This shows that the
t1 intermediate variables and the output shares (vij)(i,j)∈O of Algorithm MatrixQuadratic can be
perfectly simulated from x|I . ut

Combined with Lemma 10, this proves the following lemma:

Lemma 15 (t-SNI of QuadraticEval). Let (ai)16i6n be the input shares of QuadraticEval, and let
(ci)16i6n be the output shares. For any set of t1 intermediate variables and any subset |O| 6 t2 of
output shares such that t1 + t2 < n, there exists a subset I of indices with |I| 6 t1, such that the t1
intermediate variables as well as the output shares c|O can be perfectly simulated from a|I .

Proof. We show that by combining lemmas 14 and 10, the composition of the MatrixRows and
MatrixQuadratic algorithms allows Algorithm QuadraticEval to be t-SNI, which proves Lemma 15.
Let I = I1 ∪ I2 be a set of indices such that |I | 6 t1 corresponds to observations of intermediate
variables done by the attacker in both gadgets MatrixRows (I1) and MatrixQuadratic (I2), and let
O be a set of indices such that |O| 6 t2 corresponds to observations on the outputs made by the
attacker.

Gadget MatrixRows. By assumption, we have
∣∣I1 ∪ O∣∣ 6 t1+t2 < n. Therefore, Lemma 10 ensures

the existence of a set of indices S1 = E×E ∪A such that |E|+ |A| 6
∣∣I1∣∣, and this gadget can

be perfectly simulated from its input shares corresponding to indices in S1.

Gadget MatrixQuadratic. From Step 1, we have |E| + |A| 6
∣∣I1∣∣, which gives |E| + |A| +

∣∣I2∣∣ 6∣∣I1∣∣ +
∣∣I2∣∣ 6 t1 < n. Therefore, Lemma 14 ensures the existence of one set of indices I such

that |I| 6
∣∣I2∣∣+ |E|+ |A| and Gadget MatrixQuadratic can be perfectly simulated from its input

shares corresponding to indices in I.

From Steps 1 and 2, it follows that |I| 6
∣∣I2∣∣+ |E|+ |A| 6

∣∣I2∣∣+
∣∣I1∣∣ 6 |I| 6 t1.

ut

F.2 Proof of Lemma 8 (Algorithm TwoQuadraticEval)

We prove the t-SNI property of the TwoQuadraticEval algorithm, using the modular approach, by
first considering the matrix construction step with TwoMatrixQuadratic.
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Algorithm 16 TwoMatrixQuadratic
Input: a quadratic function h and xi, x

′
i, with xi = x′i for all 1 6 i 6 n/2.

Output: vij such that ⊕i,jvij = h(⊕ixi) and v′ij such that ⊕i,jv
′
ij = h(⊕ix

′
i)

1: for i = 1 to n do
2: vii ← h(xi), v

′
ii ← h(x′i)

3: for j = i + 1 to n do
4: sij ←$ F2k

5: vij ← h(xi + sij) + h((xi + sij) + xj), vji ← h(xj + sij) + h(sij)
6: if i 6 n/2 and j 6 n/2 then
7: v′ij ← vij , v

′
ji ← vji

8: else
9: s′ij ←$ F2k

10: v′ij ← h(x′i + s′ij) + h((x′i + s′ij) + x′j), v
′
ji ← h(x′j + s′ij) + h(s′ij)

11: end if
12: end for
13: end for
14: if d is even then
15: v11 ← v11 + h(0), v′11 ← v′11 + h(0)
16: end if
17: return (vij) and (v′ij)

Lemma 16 (t-NI of TwoMatrixQuadratic). Let (xi)16i6n and (x′i)16i6n be the input shares of
the TwoMatrixQuadratic operation. Let O and O′ be subsets of the output shares such that O =
E × E ∪ O2 and O′ = E′ × E′ ∪ O′2 where |E| + |O2| + |E′| + |O

′
2| 6 t2. Then for any set of t1

intermediate variables, there exist two subsets I, I ′ of indices with |I|+ |I ′| 6 t1 + t2, such that the
t1 intermediate variables as well as the output shares (vij)(i,j)∈O and (v′ij)(i,j)∈O′ can be perfectly

simulated from x|I and x′|I′.

Proof. We describe hereafter the construction of the sets I and I ′ of indices. We divide the internal
probes into 6 groups. Those groups are processed separately and sequentially.

– Group 1: For every probed variable xi, sij , xi + sij , xi + sji for any i 6= j, or h applied to these
variables, add i in I.

– Group 1’: For every probed variable x′i, s
′
ij , x

′
i + s′ij , x

′
i + s′ji for any i 6= j, or h applied to these

variables, add i in I ′.
– Group 2: For every probed vij , vji or (h)((xi+sij)+xj) with j > i, or v′ij , v

′
ji with i < j 6 n/2:

if j ∈ I add i to I, otherwise, add j to I.
– Group 2’: For every probed v′ij , v

′
ji or (h)((x′i + s′ij) + x′j) with j > i and j > n/2, if j ∈ I ′ add

i to I ′, otherwise, add j to I ′.
– Group 3: For every pair (i, j) ∈ O or (j, i) ∈ O with j > i, or every pair (i, j) ∈ O′ or (j, i) ∈ O′

with i < j 6 n/2, if j ∈ I add i to I, otherwise, add j to I.
– Group 3’: For every pair (i, j) ∈ O′ or (j, i) ∈ O′ with j > i and j > n/2, if j ∈ I ′ add i to I ′,

otherwise, add j to I ′.

Now that both sets I and I ′ have been determined, we show that the t1 intermediate variables
and the output shares (vij)(i,j)∈out and (v′ij)(i,j)∈O′ of Algorithm TwoMatrixQuadratic can be per-

fectly simulated from x|I and x′|I′ . The simulation of variables from Group 1, 2 and 3 is performed

identically as in Proof of Lemma 14 (by noting that variables v′ij and v′ji from Group 2 and 3 with

i < j 6 n/2, probed or such that (i, j) ∈ O′ or (j, i) ∈ O′) are such that v′ij = vij , v
′
ji = vji
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and are thus simulated as vij and vji). Furthermore, the simulation of variables from Group 1’
and 2’ is also performed in the same way, by considering I ′ instead of I. It remains to simulate
the output variables from Group 3’. In this group, all variables are such that j > i and j > n/2,
and by construction we have j ∈ I ′. We distinguish two cases depending on whether i belongs to
I ′ or not. If i ∈ I ′, then those output variables can straightforwardly be simulated since one has
access to x′i and x′j . If i /∈ I ′, by construction, this means that s′ij is not probed, and that only one

variable among v′ij and v′ji has to be simulated. If it is v′ji (probed or such that (j, i) ∈ O′), it can
be perfectly simulated since one has access to x′j , and s′ij is assigned a random value. If it is v′ij
(probed or such that (i, j) ∈ O′), then it can be simulated since one has access to x′j , by treating
x′i + s′ij as a random variable since s′ij is not probed.

Note that we have |I| + |I ′| 6 t1 + t2 since for each intermediate variable and for each output
share such that (i, j) ∈ O or (i, j) ∈ O′ , by construction at most one index was added to I or I ′,
and when probing a single variable, we never added an index simultaneously into I and I ′.

We now proceed with the proof of Lemma 8. We show that by combining lemmas 4, 16 and
10, the composition of algorithms CommonShares, TwoMatrixQuadratic and MatrixRows allows Al-
gorithm TwoQuadraticEval to be t-SNI, which would prove Lemma 8. Let I = I1 ∪ I2 ∪ I3 ∪ I4
be a set of indices such that |I | 6 t1 corresponds to observations of intermediate variables done
by the attacker in the four gadgets MatrixRows1 (I1), MatrixRows2 (I2), TwoMatrixQuadratic (I3)
and CommonShares (I4), and let O and O′ be two sets of indices such that |O| 6 t2 and

∣∣∣O′∣∣∣ 6 t2

correspond to observations on the outputs made by the attacker.

Gadget MatrixRows1. By assumption, we have
∣∣I1 ∪ O∣∣ 6 t1 + t2 < n. Therefore, Lemma 10

ensures the existence of a set of indices S1 = E × E ∪ A such that |E| + |A| 6
∣∣I1∣∣, and this

gadget can be perfectly simulated from its input shares corresponding to indices in S1.
Gadget MatrixRows2. By assumption, we have

∣∣∣I2 ∪ O′∣∣∣ 6 t1 + t2 < n. Therefore, Lemma 10

ensures the existence of a set of indices S2 = E′ ×E′ ∪A′ such that |E′|+ |A′| 6
∣∣I2∣∣, and this

gadget can be perfectly simulated from its input shares corresponding to indices in S2.
Gadget TwoMatrixQuadratic. From Step 1 and 2, we have |E|+ |A| 6

∣∣I1∣∣ and |E′|+ |A′| 6
∣∣I2∣∣,

which gives |E| + |A| + |E′| + |A′| 6
∣∣I1∣∣ +

∣∣I2∣∣ 6 t1 < n. Therefore, Lemma 16 ensures the
existence of two sets of indices S31 and S32 such that

∣∣S31 ∣∣+
∣∣S32 ∣∣ 6 ∣∣I3∣∣+ |E|+ |A|+ |E′|+ |A′|

and Gadget TwoMatrixQuadratic can be perfectly simulated from its input shares corresponding
to indices in S31 and S32 .

Gadget CommonShares. From previous step, we have
∣∣I4 ∪ S31 ∪ S32 ∣∣ 6 ∣∣I4∣∣ +

∣∣I3∣∣ + |E| + |A| +
|E′|+ |A′| 6

∣∣I4∣∣+ ∣∣I3∣∣+ ∣∣I2∣∣+ ∣∣I1∣∣ 6 |I | 6 t1 < n. Therefore, Lemma 4 ensures the existence
of a set of indices I such that |I| 6

∣∣S31 ∣∣+
∣∣S32 ∣∣+

∣∣I4∣∣.
From Step 4, it follows that |I| 6

∣∣I4∣∣+∣∣I3∣∣+|E|+|A|+|E′|+|A′| 6 ∣∣I4∣∣+∣∣I3∣∣+∣∣I2∣∣+∣∣I1∣∣ 6 |I | 6 t1,
which concludes the proof.

G Threshold Implementation

The soundness of masking/sharing against side-channel attacks relies on assumptions that do not
necessarily hold in practice. For instance, software implementations may leak information about the
transition between two states, which is typically visible in memory-element transitions. In this situa-
tion, ensuring that the manipulation of each share will leak independently may be tricky [CGP+12b].
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Another well known illustration of the default of the probing security model has been given
in [MPG05, MS06] where it is shown that glitches5 enable successful attacks against theoretically
sound masked implementations due to unsatisfactory leakage modeling. In a series of works, the
concept of Threshold Implementations (TI) has been introduced (see e.g. [NRS11] and [BGN+14]).
It aims at providing security developers with designs that are secure against (higher-order) side
channel attacks, even in presence of glitches. Similarly as for Boolean masking, TI schemes start by
splitting the function to protect into the composition of simple functions (e.g. field multiplications
or quadratic functions). Then, the security scheme for the full function is deduced from the TI
schemes dedicated to the smaller primitives.

In the rest of this section, it is argued that the ideas developed in this paper can be applied
to save calculations when the TI scheme involved several multiplications with common shares
(namely sharings having the first bn/2c shares in common). We start by recalling the principles of
TI, then, following a similar approach as in [RBN+15], we recall the link between ISW scheme and
TI implementations of the AND gate.

Threshold Implementation. Let f be a function defined from F2k into F2m , and for every
x ∈ F2k let x[j] denote the jth-bit coordinate of x. A threshold implementation of a function f(x)
based on a sharing x = (x1, ..., xsin) ∈ Fsin

2k
of x ∈ F2k consists in a family of sout functions f1, ...,

fsout such that the following properties are satisfied;

– correctness:

f(x) =
∑

i∈[1..sout]

fi(x) (5)

– non-completeness: for every i ∈ [1..sout], there exists a function σ from [1..k] into itself such
that the algebraic description of fi(x) does not involve the coordinates xj [σ(j)] for j ranging
over [1..k] (which is denoted by fi(x) ⊥ xj [σ(j)]).

– uniformity: for every x ∈ F2k , the function x 7→ fi(x) is balanced6.

The tricky point in (first-order) TI implementation is to define a scheme with sin as small
as possible and sout = sin (which will ensure that the number of shares will not increase). The
definition can be straightforwardly extended to higher orders [BGN+14].

Threshold Implementation for Field Multiplications. It can be proved that the minimum
sin to define a TI implementation of a multiplication is 3 (see e.g. [NRS11]). To process ab from
a = (a1, a2, a3) and b = (b1, b2, b3), let us try to define a TI implementation with sout = sin. For
such a purpose, we start by processing the following matrix where ci,j = aibj :

c1,1 c1,2 c1,3
c2,1 c2,2 c2,3
c3,1 c3,2 c3,3




5 In static CMOS, a spurious transition of nodes in a combinational circuit within one clock cycle, resulting from
different arrival times of the input signals.

6 We recall that a function is balanced if every element of F2m has the same number of pre-images by f .
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c1,1 c1,2 c1,3
c2,1 c2,2 c2,3
c3,1 c3,2 c3,3




It may be checked that the three following functions satisfy the correctness and non-completeness
properties:

f1(a, b) = c1,1 + c1,2 + c2,1 ,

f2(a, b) = c1,3 + c3,1 ,

f3(a, b) = c2,2 + c2,3 + c3,2 + c3,3 .

Unfortunately, they do not satisfy the uniformity property. In order to satisfy the latter property
and to have sout = sin, we increase the number of input shares to sin = 4. We depict the solution
hereafter:

c1,1 c1,2 c1,3 c1,4
c2,1 c2,2 c2,3 c2,4
c3,1 c3,2 c3,3 c3,4
c4,1 c4,2 c4,3 c4,4




From the matrix above, we apply the same previous construction and we additionally add the
”uniformizing” term in red:

f1(a, b) = (a1 + a2) · (b1 + b2) + a3
f2(a, b) = (a1 + a2) · (b3 + b4) + a3
f3(a, b) = (a3 + a4) · (b1 + b2) + a1
f4(a, b) = (a3 + a4) · (b3 + b4) + a1

.

The construction gives an implementation of the multiplication secure against first-order side
channel attacks, in the presence of glitches. Other constructions exist, offering different trade-offs
for sin, sout and security (see e.g. [NRS11], [BGN+14] or [RBN+15]).

Factorize Internal Multiplications. It may be checked that the processing of the multiplication
term in f1(a, b) may be re-used if the processing between two new data a′ and b′ must be done
while their respective sharings a′ and b′ have the shares a1 and a2 (resp. b1 and b2) in common
with a and b respectively. To ensure that some sharings have the first bn/2c shares in common, the
algorithm CommonShares (Alg. 4) can be applied. We show hereafter that it can be implemented
to be secure against bn/2c side-channel attacks in presence of glitches.

TI for CommonShares. The new sharing (a′1, · · · , a′n) (resp. (b′1, · · · , b′n)) of a (resp. b) produced
by Alg. 4 from the old sharing (a1, · · · , an) (resp. (b1, · · · , bn)) is defined such that:

– for every i < bn/2c, a′i and b′i equal a same fresh random value ri, namely:

a′i = b′i = fi(∅)
.
= ri ,
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– for every i > bn/2c:
a′i = fi(ai−bn/2c, ai)

.
= ai−bn/2c + ri + ai ,

b′i = fi(bi−bn/2c, bi) .

It may be checked that the family (fi)i∈[1..n] is a threshold implementation of Alg. 4. Moreover,
since each fi manipulates at most 2 shares of a or b, Lemma 4 implies that this implementation
stays secure against bn/2c side channel attacks in presence of glitches.
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