
Network Oblivious Transfer

Ranjit Kumaresan?, Srinivasan Raghuraman∗, and Adam Sealfon∗

MIT

Abstract. Motivated by the goal of improving the concrete efficiency of
secure multiparty computation (MPC), we study the possibility of imple-
menting an infrastructure for MPC. We propose an infrastructure based
on oblivious transfer (OT), which would consist of OT channels between
some pairs of parties in the network. We devise information-theoretically
secure protocols that allow additional pairs of parties to establish secure
OT correlations using the help of other parties in the network in the
presence of a dishonest majority. Our main technical contribution is an
upper bound that matches a lower bound of Harnik, Ishai, and Kushile-
vitz (Crypto 2007), who studied the number of OT channels necessary
and sufficient for MPC. In particular, we characterize which n-party OT
graphs G allow t-secure computation of OT correlations between all pairs
of parties, showing that this is possible if and only if the complement of
G does not contain the complete bipartite graph Kn−t,n−t as a subgraph.

1 Introduction

Protocols for secure multiparty computation [66,31,8,16] allow a set of mutu-
ally distrusting parties to carry out a distributed computation without com-
promising the privacy of inputs or the correctness of the end result. As a re-
search area, secure computation has witnessed several breakthroughs in the last
decade [67,47,43,59,54,53,40,57,41,52]. However, despite a wide array of potential
game-changing applications, there is nearly no practical adoption of secure com-
putation today (with the notable exceptions of [11,12]). Computations wrapped
in a secure computation protocol do not yet deliver results efficiently enough to
be acceptable in many cloud-computing applications. For instance, state-of-the-
art semihonest 2-party protocols incur a factor ≈ 100 slowdown even for simple
computations.

In the absence of practical real-world protocols for secure computation which
are secure in the presence of any number of dishonest parties, there is a need for
relaxations that are meaningful and yet provide significant performance benefits.
As an example, classic protocols for secure computation [8,16,63] (with subse-
quent improvements e.g., [19,9,4,23,21,20]) offer vastly better efficiency at the
cost of tolerating only a small constant fraction of adversaries. The resilience
offered is certainly acceptable when the number of participating parties is large,
e.g., the setting of large-scale secure computation [13,25,68,14]. Although large-
scale secure computation is well-suited for several interesting applications (such

? MIT. Email: {vranjit, srirag, asealfon}@mit.edu.

2 Ranjit Kumaresan, Srinivasan Raghuraman∗, and Adam Sealfon∗

as voting, census, surveys), we posit that typical settings involve computations
over data supplied by a few end users. In such cases, the overhead associated
with interaction among a large number of helper parties is likely to render these
protocols more expensive than a standard secure computation protocol among
the end users. If the number of helper parties is small, security against a small
fraction of corrupt parties may be a very weak guarantee, since a handful of
corrupt parties could render the protocol insecure.

An orthogonal approach for reducing the online cost of secure computation
protocols is the use of preprocessing [3,24,10,1]. This approach can dramatically
reduce the cost of secure computation: for instance, given preprocessing [3],
the ≈ 100 factor slowdown for simple computations no longer applies. Recent
theoretical research has shown that many primitives can even be made reusable
(e.g. [34]). Perhaps the most important drawback of this approach (other than
the fact that the preprocessing phase is typically very expensive) is that the
preprocessing is not transferable. Clearly, a pair of parties that want to perform
a secure computation cannot benefit from this approach without performing the
expensive preprocessing step. Moreover, this seems to hold even if each of the two
parties have set up the preprocessing with multiple others. Typically, the cost
of the preprocessing phase is quite high, presenting a barrier for the practical
use of preprocessed protocols. This is especially true in settings where parties
are unlikely to run many secure computations that would amortize the cost of
preprocessing.

Motivated by the discussion above, we conclude that some directions that
seem to offer efficiency benefits for secure computation are (1) highly resiliant
protocols that use only a small number of helper parties, and (2) a preprocessing
procedure that allows a notion of transferability between users. Taken together,
these two ideas have the potential to provide an infrastructure for efficient se-
cure computation. Some sets of parties might run a preprocessing phase among
themselves. These parties can then act as helper parties and “transfer” their
preprocessing to help users who want to run a secure computation protocol. We
informally describe some desiderata for such an infrastructure:

– Reusability/Amortization. Setting up an infrastructure component could be
expensive, but using it and maintaining it should be inexpensive relative to
setting up a new component.

– Transferability/Routing. It should be possible to combine different compo-
nents of the infrastructure to deliver benefits to the end users.

– Robustness/Fault-tolerance. Failure or unavailability of some components of
the infrastructure should not nullify the usefulness of the infrastructure.

It is not hard to see that the above criteria are fulfilled for infrastructures
that we use in daily life, for e.g., the infrastructure for online communication (e-
mail, instant messaging, etc.) consisting of transatlantic undersea cables, routers,
wireless access points, etc. What cryptographic primitives would be good can-
didates for a secure computation infrastructure? In this work, we explore the
possibility of using oblivious transfer [62,27] for this purpose.

Network Oblivious Transfer 3

1.1 Our Model: Network Oblivious Transfer

Oblivious transfer (OT) is a fundamental building block of secure computa-
tion [46,45]. As discussed in [45], some of the benefits of basing secure compu-
tation on OT include:

– Preprocessing. OT enables precomputation in an offline stage before the
inputs or the function to be computed are known. The subsequent online
phase is extremely efficient [3].

– Amortization. The cost of computing OTs can be accelerated using efficient
OT extension techniques [2,43,45,59].

– Security. OTs can be realized under a wide variety of computational assump-
tions [60,27,62,58,18] or under physical assumptions.

In this work, we consider n parties connected by a synchronous network
with secure point-to-point private communication channels between every pair
of parties. In addition, some pairs of parties on the network have established OT
channels between them providing them with the ability to perform arbitrarily
many OT operations. We represent the OT channel network via an OT graph
G. The vertices of G represent the n parties, and pairs of parties that have
an established OT channel are connected by an edge in G. Since OT can be
reversed unconditionally [64], we make no distinction between the sender and
the receiver in an OT channel. This OT graph represents the infrastructure
we begin with. The OT channels could either represent poly(λ) 1-out-of-2 OT
correlations for a computational security parameter λ, or a physical channel (e.g.,
noisy channel) that realizes, say δ-Rabin OT [62].1 We are interested in obtaining
security against adaptive semihonest adversaries. We also discuss security against
adaptive malicious adversaries under computational assumptions.

Two parties that are connected by an edge can use the corresponding ex-
isting OT channel to run a secure computation protocol between themselves.
What about parties that are not connected by an edge? Clearly, they can estab-
lish an OT channel between themselves via an OT protocol [60,18] or perhaps
using a physical channel. The latter option, if possible, is likely to be expensive
and the costs of setting up a physical channel may be infeasible unless the two
parties are likely to execute many secure computation protocols. The former
option is also expensive as it involves use of public-key cryptography which is
somewhat necessary in the light of [42].2 This motivates the question of whether
additional parties can use an existing OT infrastructure to establish an OT
channel between themselves unconditionally or relying only on the existence of
symmetric-key cryptography. A positive result to this question would show that
expensive cryptographic operations are not required to set up additional OT
channels which could be used for efficient secure computation. In this work we

1 Recall that λ 1-out-of-2 OT correlations can be extended to poly(λ) 1-out-of-2 OT
correlations via OT extension using just symmetric-key cryptography (e.g. one-way
functions [2] or correlation-robust hash functions [43]).

2 As a rule of thumb, use of public-key cryptography is computationally around 4-6
orders of magnitude more expensive than using symmetric-key cryptography [7].

4 Ranjit Kumaresan, Srinivasan Raghuraman∗, and Adam Sealfon∗

construct OT protocols with information-theoretic security against a threshold
adversary.

The generality of an OT infrastructure. Consider the following candidate
for an infrastructure. Suppose there is a channel between a pair of parties that
allows them to securely evaluate any function. Since OT is complete for se-
cure computation, one can apply the results of [45,46] to use the OT channel
to implement a secure evaluation channel. In the other direction, one can use
a secure evaluation channel to trivially implement OT channels. Consequently,
such a channel is equivalent to an OT channel. The same argument extends
to channels that implement any 2-party primitive that is complete for secure
computation [55,5]. Furthermore, the above argument also applies to the setting
where a set of parties have a secure evaluation channel. Such a channel is equiv-
alent to an OT graph where parties in the set have pairwise OT channels with
everyone in the set.

Assuming a full network of secure channels. Secure channels between two
parties can be implemented either via non-interactive key exchange and hybrid
encryption or via a physical assumption. We emphasize that the one-time setup
cost of emulating a secure channel (e.g. via Diffie-Hellman key exchange) is much
lower than the one-time setup cost of emulating an OT channel that allows un-
bounded OT calls via an OT protocol even using OT extension. Furthermore, our
assumption of secure channels is identical to the setting of [46,33,45], who show
that secure computation reduces to OT under information-theoretic reductions.

1.2 Related Work and Our Contributions

Related work. As mentioned previously, there is a large body of work on secure
computation in the offline/online model (cf. [51,50,24,10,59,61] and references
therein). These protocols exhibit an extremely fast online phase at the expense
of a slow preprocessing phase (sometimes using MPC [51] or more typically, OT
correlations [59] or a somewhat homomorphic encryption scheme [24]). To the
best of our knowledge, the question of transferability of preprocessing has not
been explicitly investigated in the literature with the notable exception of [36],
which we will discuss in greater detail below. There is a large body of work
on secure computation against a threshold adversary (e.g. [8,16,63,31]). Popular
regimes where secure computation against threshold adversaries have been in-
vestigated are for t < n/3, t < n/2, or t = n− 1. In this work we are interested
in threshold adversaries for a dishonest majority, that is, adversaries which can
corrupt t out of n parties for n/2 ≤ t < n.3 Such regimes were investigated
in other contexts such as authenticated broadcast [29] and fairness in secure
computation [6,39,44]. Infrastructures for perfectly secure message transmission
(PSMT) were investigated in the seminal work of [26] (see also [28] and ref-
erences therein). While the task of PSMT is similar to our question regarding
OT channels, there are inherent differences. For example, our protocols can im-
plement OT even between two parties that are isolated in the OT graph (i.e.,

3 When t < n/2, there is no need to rely on an OT infrastructure [63].

Network Oblivious Transfer 5

not connected to any other party via an OT channel).4 In PSMT, on the other
hand, there is no hope of achieving secure communication with a node that is
not connected by any secure channel.

Most relevant to our results is the work of Harnik, Ishai, and Kushilevitz [36].
The main question in their work is an investigation of the number of OT chan-
nels sufficient to implement a n-party secure computation protocol. In a nutshell,
they show against an adaptive t-threshold adversary for t = (1− δ)n, an explicit

construction of an OT graph consisting of (n + o(n))
(d1/δe

2

)
OT channels that

suffices to implement secure computation among the n parties. They note further
that against a static adversary,

(ds/δe
2

)
OT channels suffice, where s denotes a

statistical security parameter. On the negative side, they show that a complete
OT graph is necessary for secure computation when dealing with an adversary
that can corrupt t = n− 1 parties. They derive this result by showing that in a
3-party OT graph with two OT channels, it is not possible to obtain OT corre-
lations between the third pair of parties with security against two corruptions.
Moreover they generalize their 3-party negative result to any OT graph whose
complement contains the complete bipartite graph Kn−t,n−t as a subgraph. In
our paper we extend and generalize the results of [36], fully characterizing the
networks for which it is possible to obtain OT correlations between a designated
pair of parties. We now proceed to explain our contributions in more detail.

Our contributions. We introduce our main result:

Theorem (informal). Let G = (V,E) be an OT graph on n parties P1, . . . Pn,
so that any pair of parties Pi, Pj which are connected by an edge may make an
unbounded number of calls to an OT oracle. Let A be the class of semihonest
t-threshold adversaries which may adaptively corrupt at most t parties.5 Then
two parties A and B in {P1, . . . , Pn} can information-theoretically emulate an
OT oracle while being secure against all adversaries A ∈ A if and only if

1. (honest majority) it holds that t < n/2; or
2. (trivial) A and B are connected by an edge in G; or
3. (partition) there exists no partition V1, V2, V3 of G such that all of the fol-

lowing conditions are satisfied: (a) |V1| = |V2| = n − t and |V3| = 2t − n;
(b) A ∈ V1 and B ∈ V2; and (c) for every A′ ∈ V1 and B′ ∈ V2 it holds that
(A′, B′) 6∈ E.

Our main theorem gives a complete characterization of networks for which
a pair of parties can utilize the OT network infrastructure to execute a secure
computation protocol. The first two conditions in our theorem are straightfor-
ward: (1) if t < n/2, then we are in the honest majority regime, and thus it is
possible to implement secure computation (or emulate an OT oracle) using the
honest majority information-theoretically secure protocols of [63]; (2) clearly if

4 Recall that the model considered in this work, we assume a full network of secure
private communication channels.

5 Combining our work with results from [35,32], we can also obtain computational
security against malicious adversaries in both the nonadaptive and adaptive settings.

6 Ranjit Kumaresan, Srinivasan Raghuraman∗, and Adam Sealfon∗

A and B are connected by an OT edge then by definition they can emulate an
OT oracle.

Condition (3) applies when t ≥ n/2 and when A and B do not have an OT
edge between them. This condition is effectively the converse of the impossibil-
ity result of [36], which states that any n-party OT graph whose complement
contains Kn−t,n−t as a subgraph cannot allow a n-party secure computation
that tolerates t semihonest corruptions. Condition (3) implies that any n-party
OT graph whose complement does not contain Kn−t,n−t as a subgraph can run
n-party secure computations tolerating t semihonest corruptions.

Applying our main theorem. We first compare our positive results to those
of [36]. They investigate how to construct an OT graph with the minimum num-
ber of edges allowing n parties to execute a secure computation protocol. They
show a construction for a graph with (n+ o(n))

(d1/δe
2

)
edges which they prove is

sufficient for resilience against an adversary that corrupts (1− δ)n parties. Our
result provides a complete, simple characterization of which OT graphs on n ver-
tices are sufficient to run a t-secure protocol generating OT correlations between
all pairs of vertices for any t ≥ n/2, which is sufficient to obtain a protocol for
secure computation among the n parties [46,45]. Our main theorem also implies
that determining the minimum number of OT edges needed to execute a secure
computation protocol for general n, t ≥ n/2 is equivalent to an open problem in
graph theory posed by Zarankiewicz in 1951 [48].

Our results immediately imply that for some values of t, extremely simple
sparse OT graphs suffice for achieving secure multiparty computation. For n
even and t = n/2, we have that the t-claw graph (cf. Fig. 4(a)) has t edges and
suffices to achieve t-secure multiparty computation. For n odd and t = (n+1)/2,
the (t + 1)-cycle has t + 1 edges and suffices to achieve t-secure multiparty
computation. We show in the full version that these examples are the sparsest
possible graphs which can achieve b(n+ 1)/2c-secure multiparty computation.

Next, our results are also well-suited to make use of an OT infrastructure for
secure computation. Specifically, let GI denote the OT graph consisting of exist-
ing OT edges between parties that are part of the infrastructure. Now suppose
a pair of parties A,B not connected by an OT edge wish to execute a secure
computation protocol. Then they can find a subgraph G of GI with A,B ∈ G
and |G| = n such that they agree that at most t out of the n parties can be
corrupt and the partition condition in our main theorem holds for G. Since it is
possible to handle a dishonest majority, parties do not have to settle for a lower
threshold and can enjoy increased confidence in the security of their protocol by
making use of the infrastructure. Surprisingly, it turns out the OT subgraph G
need not even contain t OT edges to offer resilience against t corruptions (cf.
Fig. 2(c) with n = 4, t = 2).

A pair of parties may use the OT correlations generated as the base OTs
for an OT extension protocol and inexpensively generate many OT correlations
that can be saved for future use or to add to the OT infrastructure. In any case,
it should be clear that our protocols readily allow load-balancing across the OT
infrastructure and are also abort-tolerant in the sense that if some subgraph G

Network Oblivious Transfer 7

ends up not delivering the output, then one can readily use a different subgraph
G′. Thus we believe that our results can be used to build a scalable infrastructure
for secure computation that allows (1) amortization, (2) routing, and (3) is
robust.

An important caveat regarding efficiency. In the special cases t = n/2 +
O(1) and t = n − O(1), determing whether a graph satisfies the partition con-
dition requires at most poly(n) time. However, in general the problem is coNP-
complete, since it can be restated in the graph complement as subgraph isomor-
phism of a complete bipartite graph [30]. Our protocols are efficient in n only for
t = n/2+O(1) and t = n−O(1).6 In particular, our protocol is quite efficient for
small values of n, a setting in which computing OT correlations in the presence
of a dishonest majority may be especially useful in practice.

2 Preliminaries

2.1 Notation and definitions

Let X ,Y be two probability distributions over some set S. Their statistical dis-
tance is

SD (X ,Y)
def
= maxT⊆S{Pr [X ∈ T]− Pr [Y ∈ T]}

We say that X and Y are ε-close if SD (X ,Y) ≤ ε and this is denoted by
X ≈ε Y. We say that X and Y are identical if SD (X ,Y) = 0 and this is denoted
by X ≡ Y.

All graphs addressed in this work are undirected. We denote a graph as
G = (V,E) where V is a set of vertices and E is a set of edges. We denote an
edge e as e = {v1, v2}, where v1, v2 ∈ V .

For n ∈ N, let Kn denote the complete graph on n vertices. Let Λsa denote

the graph G = (V,E) on 2a+ s vertices with V = VA
⋃̇
VS
⋃̇
VB , where |VA| =

|VB | = a and |VS | = s, and

E = {{v1, v2} : v1 6∈ VA ∨ v2 6∈ VB}

We will sometimes consider subgraphs of Λsa which preserve labels of vertices.
In this case we will always label the vertices so that vertex A ∈ VA and vertex
B ∈ VB .

For two graphs G1 = (V,E1) and G2 = (V,E2) with the same vertex set V ,
we say that G1 and G2 are (v1, . . . , v`)-isomorphic, denoted by G1 'v1,...,v` G2, if
the two graphs are isomorphic to one another while fixing the labelings of vertices
v1, . . . , v` ∈ V , that is, there exists an isomorphism σ such that σ(vi) = vi for
all i ∈ [`].

6 For t = n/2+O(1), we achieve efficiency using computationally-secure OT extension
(e.g. [2,43]). Our protocol with information-theoretic security is quasipolynomial-
time for t = n/2 +O(1). We do, however, achieve information-theoretic security in
polynomial time for t = n−O(1).

8 Ranjit Kumaresan, Srinivasan Raghuraman∗, and Adam Sealfon∗

Similarly, given graphs G1 = (V1, E1) and G2 = (V2, E2) with V1 ⊆ V2
and v1, . . . , v` ∈ V1, we say that G1 is a (v1, . . . , v`)-subgraph of G2, denoted
G1 ⊆v1,...,v` G2, if G1 is (v1, . . . , v`)-isomorphic to some subgraph of G2.

In particular, in the special case that graph G = (V,E) contains vertices
A,B ∈ V , we say that G is an (A,B)-subgraph of Λsa (or that G ⊆A,B Λsa)
if there is an isomorphism σ between G and a subgraph of Λsa such that A is
mapped into set VA and B is mapped into set VB (that is, σ(A) ∈ VA and
σ(B) ∈ VB).

Call an n-vertex graph G = (V,E) k-unsplittable for k ≤ n/2 if any two dis-
joint sets of k vertices have some edge between them. That is, G is k-unsplittable
if for all partitions of the vertices V into three disjoint sets V1, V2, V3 of sizes
|V1| = |V2| = k and |V3| = n − 2k, there exists some edge (u, v) ∈ E with
u ∈ V1, v ∈ V2. It is immediate from this definition that G is k-unsplittable if
and only if G 6⊆ Λn−2kk .

Similarly, call G (k,A,B)-unsplittable for k ≤ n/2 and A,B ∈ V if any
two disjoint sets of k vertices containing A and B, respectively, have some edge
between them. That is, G is (k,A,B)-unsplittable if for all partitions of the
vertices of V into three disjoint sets V1, V2, V3 of sizes |V1| = |V2| = k and
|V3| = n − 2k such that A ∈ V1 and B ∈ V2, there exists some edge (u, v) ∈ E
with u ∈ V1, v ∈ V2. From this definition we have immediately thatG is (k,A,B)-
unsplittable if and only if G 6⊆A,B Λn−2kk .

2.2 Secure Computation

Consider the scenario of n parties P1, . . . , Pn with private inputs x1, . . . , xn ∈ D
computing a function f : Dn → Dn. Let Π be a protocol computing f . We
consider security against adaptive t-threshold adversaries, that is, adversaries
that adaptively corrupt a set of at most t parties, where 0 ≤ t < n.7 We assume
the adversary to be semihonest (i.e. honest-but-curious). That is, the corrupted
parties follow the prescribed protocol, but the adversary may try to infer addi-
tional information about the inputs of the honest parties. As noted in [36], in
the computational setting, using zero-knowledge proofs, it is possible to gener-
ically compile a protocol which is secure against semihonest adversaries into
another protocol which is secure against adaptive malicious adversaries [32].8

This justifies our focus on the semihonest setting here.
For a PPT adversary A, let random variable REALx1,...,xn

Π,A consist of the
views of the corrupted parties when the protocol Π is run on parties P1, . . . , Pn
with inputs x1, . . . , xn respectively. In the ideal world, the honest parties are
replaced with a simulator S that does not receive input values and knows only
the output value of each corrupted party in an honest execution of the protocol.
We define the random variable IDEALx1,...,xn

Π,A,S as the output of the adversary A

7 Note that when t = n, there is nothing to prove.
8 We note that in the computational setting, it is also possible to transform, in a
black-box way, a protocol which is secure against semihonest adversaries into another
protocol which is secure against static malicious adversaries [35].

Network Oblivious Transfer 9

in the ideal game with the simulator when the inputs to parties P1, . . . , Pn are
x1, . . . , xn, respectively.

Definition 1. A protocol Π is said to t-securely compute the function f if

– For all x1, . . . , xn ∈ Dn, party Pi receives yi, where (y1, . . . , yn) =
f(x1, . . . , xn), at the end of the protocol.

– For all adaptive semihonest PPT t-threshold adversaries A, there exists a
PPT simulator S such that for all x1, . . . , xn ∈ Dn{

REALx1,...,xn

Π,A

}
≡
{
IDEALx1,...,xn

Π,A,S

}
This definition is for secure computation with perfect information-theoretic se-
curity and a nonadaptive adversary. By [15], in the semihonest setting with
information-theoretic security, any protocol which is nonadaptively secure is
also adaptively secure. Consequently, satisfying this definition suffices to achieve
adaptive security.

In the discussion below, we will sometimes relax security to statistical or com-
putational definitions. A protocol is statistically t-secure if the random variables
REALx1,...,xn

Π,A and IDEALx1,...,xn

Π,A,S are statistically close, and computationally
t-secure if they are computationally indistinguishable.

2.3 Oblivious Transfer

In this work OT refers to 1-out-of-2 oblivious transfer defined as follows.

Definition 2. We define 1-out-of-2 oblivious transfer fOT for a sender A = P1

with inputs x0, x1 ∈ {0, 1}m, a receiver B = P2 with input b ∈ {0, 1} and n− 2
parties P3, . . . , Pn with input ⊥ as

fOT((x0, x1), b,⊥, . . . ,⊥) = (⊥, xb,⊥, . . . ,⊥)

Note that while OT is typically defined as a 2-party functionality, the definition
above adapts it our setting and formulates OT as an n-party functionality where
only two parties supply non-⊥ inputs.

Definition 3. Let G be a network consisting of n parties A = P1, B =
P2, P3, . . . , Pn. Then a t-secure OT protocol ΠG,t

A→B is a protocol that t-securely
computes the function fOT on the inputs of the parties with A as the sender and
B as the receiever.

We note that OT is symmetric, in the following sense.

Lemma 1. [64] If there exists a t-secure OT protocol ΠG,t
A→B for an n-party

network G with n parties A = P1, B = P2, P3, . . . , Pn with A as the sender and
B as the receiever, then there exists a t-secure OT protocol Π̂G,t

B→A for the same
n parties with B as the sender and A as the receiever.

10 Ranjit Kumaresan, Srinivasan Raghuraman∗, and Adam Sealfon∗

We represent parties as nodes of a graph G where an edge {A,B} indicates
that parties A and B may run a 1-secure OT protocol with A as the sender
and B as the receiver. By Lemma 1, the roles of the sender and receiver may be
reversed, so it makes sense to define G as an undirected graph.

We note the following result regarding the completeness of OT for achieving
arbitrary secure multiparty computation.

Lemma 2. [46,33,45] Consider the complete network G ' Kn on n vertices.
Then, for any function f : Dn → Rn, there exists a protocol Π which (n − 1)-
securely computes f , where party i receives the ith input xi ∈ D and produces
the ith output (f(x))i ∈ R.

3 Warm-ups

Let G = (V,E) be an n-vertex graph representing a network with n parties,
where an edge {Pi, Pj} ∈ E indicates that parties Pi and Pj may run a 1-secure
2-party OT protocol with Pi as the sender and Pj as the receiver. Let t < n
be an upper bound on the number of corruptions made by the adversary. The
central question considered in this work is the following. For which graphs G and
which pairs of parties A,B ∈ V does there exist a t-secure OT protocol with A
as the sender and B as the receiver?

We begin by discussing some simple special cases of small networks. These
will provide useful intuition for our main results. For t < n/2, it is possible to
obtain a t-secure OT protocol for any n-vertex graph G = (V,E) between any
A,B ∈ V , since we can perform secure multiparty computation without any pre-
existing OT channels if there is an honest majority [63]. It remains to consider
the setting where t ≥ n/2.

A′ B′

(a) GCK

A′ B′

C′

(b) GHIK

Fig. 1. Known impossibility results. Securely computing fOT between A′ and B′ is
impossible for t = 1 in GCK and is impossible for t = 2 in GHIK.

A few small cases have been resolved in prior work. For n = 2, t = 1, a
1-secure OT protocol (with perfect security) between the vertices of the two-
vertex graph G does not exist unless the parties were already connected by an
OT channel [17,49]. This result is illustrated in Figure 1(a).

For n = 3, t = 2, it is known that we can obtain a 2-secure OT protocol
between a pair of vertices A,B only if those vertices are already connected by
an OT channel, even if there are OT channels from both A and B to the third
vertex C as depicted in Figure 1(b). More generally, for any n ≥ 2 and t = n−1,

Network Oblivious Transfer 11

there exists a t-secure OT protocol with sender A and receiver B only if those
vertices are already connected by an OT channel, even if all other

(
n
2

)
− 1 pairs

of vertices are connected by OT channels [36]. This also resolves the question
for n = 4, t = 3.

The remainder of this section is devoted to an exploration of the setting
n = 4, t = 2. This is the smallest case not resolved by prior techniques, and will
illustrate many of the tools used in subsequent sections to obtain our general
protocols. The key cases for n = 4, t = 2 are shown in Figure 2. As discussed
below, these cases are sufficient to completely resolve the four-party setting.

A B

P3

P4

(a) G1

A B

P3

P4

(b) G2

A B

P3

P4

(c) G3

A B

P3

P4

(d) G4

Fig. 2. Cases for n = 4 parties with t = 2 corruptions.

3.1 Case 1 : Figure 2(a)

We first show that if G 'A,B G1 then there does not exist a 2-secure OT protocol
for G with A as the sender and B as the receiver.9 This is a consequence of the
impossibility result of [17,49]. An outline of the argument is as follows.

Consider components C1 = {A,P3} and C2 = {B,P4} of G, and let Π be a 2-
secure protocol computing fOT in G with A as the sender and B as the receiver.
Then we can use Π to construct a 1-secure protocol Π ′ for the 2-party network
GCK in Figure 1(a) with A′ as the sender and B′ as the receiver. In protocol
Π ′, party A′ runs Π for both parties of component C1 of G, and B′ runs Π for
both parties of component C2. OT channel invocations can be handled locally,
since all OT channels in G are between parties in the same component. Since
protocol Π is 2-secure, in particular it is secure against corruptions of parties in
C1 or the parties in C2. Consequently Π ′ is a 1-secure OT protocol for a network
G′ 'A′,B′ GCK with A′ as the sender and B′ as the receiver. However, from
[17,49], we know that no such protocol exists with perfect security. Consequently
there is no 2-secure protocol Π for a network G 'A,B G1.

Note that this impossibility holds not only for G 'A,B G1 but for any (A,B)-
subgraph of G1. In particular, if G = (V,E) is a four-vertex graph a single edge
that is incident to vertex A or vertex B, then G cannot have a 2-secure protocol
computing fOT between A and B except in the trivial case when there is already

9 Recall that H 'A,B H ′ for two graphs H,H ′ if there exists an isomorphism between
H and H ′ preserving the labels of vertices A and B.

12 Ranjit Kumaresan, Srinivasan Raghuraman∗, and Adam Sealfon∗

an edge {A,B} ∈ E. This technique of reducing to the known impossiblity results
of [17,49,36] to obtain lower bounds is described formally in Section 4.

3.2 Case 2 : Figure 2(b)

In this example we obtain a positive result, showing that there exists a 2-secure
OT protocol with A as the sender and B as the receiver. Since B has degree 2
in G2, we have that either B or one of its neighbors must be honest, and so one
of the two OT channels must contain an honest party. This suggests the idea of
using secret-sharing to ensure security against 2 corruptions.

Consider the following OT protocol where sender A has inputs x0, x1 ∈
{0, 1}m and receiver B has input b ∈ {0, 1}. A computes 2-out-of-2 shares (x10, x

2
0)

and (x11, x
2
1) of its inputs x0, x1, respectively. A then sends shares x10 and x11 to

party P3 and x20 and x21 to party P4. Parties P3 and B invoke their secure OT
channel with inputs (x10, x

1
1) and b, and parties P4 and B invoke their secure

OT channel with inputs (x20, x
2
1) and b respectively. B uses the obtained shares

x1b , x
2
b to reconstruct xb.

We informally argue the 2-security of this protocol assuming that exactly one
of A and B is corrupt.10 Consider the case where A is corrupt and B is honest.
The input of B is only used over secure OT channels, so by the 1-security of the
OT channels with P3 and P4, the corrupt parties can learn nothing about B’s
input bit b. Now consider the case where B is corrupt and A is honest. Either P3

or P4 must be honest. If P3 is honest then the security of OT channel {P3, B}
implies that B learns nothing about share x11−b, so the security of the secret
sharing scheme implies that the corrupt parties do not use x1−b. By symmetry,
the same argument applies if P4 is honest. This completes the argument.

Note that by Lemma 1, we can also obtain a 2-secure OT protocol from A to
B whenever A has degree 2 in OT network. Furthermore, we can extend this idea
to construct a t-secure OT protocol whenever either the sender or the receiver
has degree at least t. We call this protocol the t-claw protocol and describe it in
detail in Section 5.1.

3.3 Case 3 : Figure 2(c)

Somewhat surprisingly, we can also show a positive result for graphs G 'A,B G3

even though the OT network has no edges involving either the sender A or the
receiver B. The protocol is as follows. Since parties P3 and P4 have an OT
channel between them, by Lemma 2, they can perform 1-secure MPC between

10 An additional step is needed to address the case in which P3 and P4 are corrupt
and A and B are both honest. Then P3 and P4 can learn x0 and x1, the inputs
of A, in the protocol just described. This can be handled with the technique of
OT correction, using a one-time pad and the secure point-to-point channel between
A and B. Equivalently, we could run the protocol on random inputs, and then use
method of [3] to obtain 1-out-of-2 OT from random OT. If A and B are both corrupt
then there is nothing to prove.

Network Oblivious Transfer 13

them. P3 and P4 use MPC to compute 2-out-of-2 shares of OT correlations with
uniformly random inputs and send corresponding shares to A and B, who can
then reconstruct the correlations. More concretely, the MPC protocol computes
2-out-of-2 shares (r10, r

2
0), (r11, r

2
1) of two randomly sampled m-bit strings r0, r1,

2-out-of-2 shares (c1, c2) of a random bit c ∈ {0, 1}, and independent 2-out-of-2
shares (s1, s2) of the string rc. Party P3 receives the first share of each secret,
and party P4 receives the second share. Party P3 then sends shares r10, r

1
1 to A

and s1, c1 to B, while P4 sends shares r20, r
2
1 to A and s2, c2 to B. A can then

reconstruct r0 and r1, and B can reconstruct c and rc. Parties A and B have
now established a random OT correlation, which they can use to perform OT
with their original inputs using OT correction [3].11

We now informally argue the 2-security of this protocol. If A and B are both
honest, then the corrupt parties receive no information about their inputs, while
if A and B are both corrupt then there is nothing to prove. Consequently we
can assume that exactly one of A and B is corrupt and that either P3 or P4 is
honest. If A is corrupt and P3 or P4 is honest, then the adversary learns nothing
about c and rc, since it only sees one of the two shares of each. The OT correc-
tion phase uses these strings as one-time pads for inputs which are unknown to
the adversary, and consequently are information-theoretically hidden from the
adversary. Consequently A learns nothing about B. The case where B is corrupt
and P3 or P4 is honest follows by the same argument.

This construction can be extended to obtain a t-secure OT protocol whenever
the OT graph contains a t-clique consisting of t parties which are not the OT
sender or receiver. We call this protocol the t-clique protocol and describe it in
detail in Section 5.2.

3.4 Case 4 : Figure 2(d)

We also obtain a positive result for graphs G 'A,B G4. We introduce here a
technique we call cascading. The idea is as follows. Using the protocol described
in Section 3.2 for network G2 of Figure 2(b), we have 2-secure OT protocol with
P3 as the sender and P4 as the receiver. This effectively gives us an OT channel
between P3 and P4. Applying the protocol from Section 3.3 on the augmented
network, we obtain a 2-secure OT protocol with A as the sender and B as the
receiver. We describe this pictorially in Figure 3.

The 2-security of the protocol follows from the 2-security of the underlying
protocols of Sections 3.2 and 3.3. The technique of cascading for combining t-
secure protocols is described in detail in Section 5.3.

3.5 Cases 1–4 are exhaustive

Note that a t-secure OT protocol with sender A and receiver B in an OT network
G trivially yields a t-secure protocol for any network G′ such that G ⊆A,B G′.

11 This OT correction step can be performed as follows. Party B sends b′ = b⊕ c to A.
A responds with y0 = x0⊕rb′ and y1 = x1⊕r1−b′ . Finally, B computes yb⊕rc = xb.

14 Ranjit Kumaresan, Srinivasan Raghuraman∗, and Adam Sealfon∗

A B

P3

P4

(a)

A B

P3

P4

(b)

A B

P3

P4

(c)

Fig. 3. Illustrating the cascading protocol for Case 4 : Figure 2(d); (a) → (b) → (c)

From cases 1 and 3, we can securely compute fOT in a network G containing
at most a single edge if and only if the edge is {A,B} or {P3, P4}. From cases
1, 2, and 4, we can compute fOT in a network G containing two or more edges
including neither of {A,B} or {P3, P4} if and only if there is some vertex with
degree at least 2 in the OT graph. This completes the characterization of 4-party
networks with 2 corruptions.

4 Lower Bound

We now describe a family of impossibility results using a generic reduction to
the impossiblity result in [36], which we restate in our language below.

Lemma 3. [36] Consider any three party network G with G 'A′,B′ GHIK, the
graph in Figure 1(b). Then any 2-secure OT protocol with A′ as the sender and
B′ as the receiver can be used (as a black box) to obtain a 1-secure OT protocol
for a network G′ with G′ 'A′,B′ GKus, the graph in Figure 1(a), with A′ as the
sender and B′ as the receiver.

The theorem below describes an impossibility result over a family of networks.
We note that this result was observed in [36]; we restate it our language and
provide a formal proof.

Theorem 1. Let n ≥ 2 and n/2 ≤ t < n, and let G be an n party network
such that G ⊆ Λ2t−n

n−t , with P1 ∈ VA and P2 ∈ VB. Any t-secure OT protocol for
G with P1 as the sender and P2 as the receiver can be used (as a black box) to
obtain a 1-secure OT protocol for a network G′ with G′ 'A,B GCK with A′ as
the sender and B′ as the receiver.

The proof is deferred to the full version.

5 Building Blocks

In this section, we describe a few key protocols and techniques that we use in
the subsequent sections to prove our main theorem.

Network Oblivious Transfer 15

A B

P3

P4

.
.
.
.
.

Pt+1

Pt+2

(a) Gt
claw

A B

P3

.
.
.

.
.
.

P4 Pt+1

Pt+2

(b) Gt
clique

A B

P3

P4

(c) G2
2-path

Fig. 4. Building block networks. (a) t-claw graph (b) t-clique graph (c) 2-path graph

5.1 The t-claw Protocol

The first protocol we describe is the t-claw protocol, where the graph G describ-
ing the network is such that G 'A,B Gtclaw. The protocol is described in Protocol
1. The protocol is a straightforward generalization of the one described in Section
3.2. The idea is for A to compute t-out-of-t shares of its inputs and distribute
them among the t parties connected to B. These t parties then perform OT with
B so that B receives the shares to reconstruct his output.

Protocol 1: t-claw Protocol

Preliminaries: Let A,B, P3, . . . , Pt+2 be the t + 2 parties in a network G 'A,B

Gt
claw. A has inputs x0, x1 ∈ {0, 1}m and B has input b ∈ {0, 1}.

Protocol:

1. B chooses a random bit c ∈ {0, 1} and sends b′ = b⊕ c to A.
2. A chooses two random one-time pads r0, r1 ∈ {0, 1}m and sends y0 = x0⊕ rb′

and y1 = x1 ⊕ r1−b′ to B.
3. A then computes t-out-of-t shares (r10, . . . , r

t
0) and (r11, . . . , r

t
1) of r0, r1, re-

spectively.
4. For each i ≥ 3, A sends shares ri0 and ri1 to party Pi.
5. For each i ≥ 3, parties Pi and B invoke the OT protocol ΠG,1

Pi→B with inputs

(ri0, r
i
1) and c respectively.

6. B uses the obtained shares r1c , . . . , r
t
c to reconstruct rc.

7. B finally computes yb ⊕ rc = xb.

Lemma 4. Protocol 1 is an efficient t-secure OT protocol for a network G 'A,B
Gtclaw with A as the sender and B as the receiver.

Proof Intuition. The t-security of the procotol can be seen as follows. Steps 1,
2 and 7 perform OT correction, that is, they perform a transformation from

16 Ranjit Kumaresan, Srinivasan Raghuraman∗, and Adam Sealfon∗

random OT to 1-out-of-2 OT. This transformation protects against the case
that the parties P3, . . . , Pt+2 (that is, all but A and B) are corrupt. Suppose A
were corrupt and B were honest. Clearly, A colluding with any of the parties
P3, . . . , Pt+2 provides A with no additional information since all they possess
are shares sent by A. Next, if A were honest and B corrupt, at least one of the
parties P3, . . . , Pt+2 must be honest. B has no information about those shares
and hence does not learn anything. Finally, if both A and B were corrupt, there
is nothing to prove.

The formal proof is deferred to the full version.

5.2 The t-clique Protocol

The next protocol we describe is the t-clique protocol, where the graph G de-
scribing the network is such that G 'A,B Gtclique. The protocol is described in
Protocol 2. The protocol is a straightforward generalization of the one described
in Section 3.3. The idea is for the parties P3, . . . , Pt+2 to compute t-out-of-t
shares of OT correlations and send them to A and B respectively. The parties
have a complete network of OT channels, so this can be done via multiparty com-
putation (Lemma 2). A and B then perform OT correction using their secure
channel.

Lemma 5. Protocol 2 is an efficient t-secure OT protocol for a network G 'A,B
Gtclique with A as the sender and B as the receiver.

Proof Intuition. The t-security of the procotol can be seen as follows. Steps
4, 5 and 6 perform OT correction, that is, they perform a transformation from

Protocol 2: t-clique Protocol

Preliminaries: Let A,B, P3, . . . , Pt+2 be the t + 2 parties in a network G 'A,B

Gt
clique. A has inputs x0, x1 ∈ {0, 1}m and B has input b ∈ {0, 1}.

Protocol:

1. Parties P3, . . . , Pt+2 use their pairwise OT channels to run t-secure MPC for
the function f using the protocol from Lemma 2 for the function f described
ahead. The function f is to securely compute t-out-of-t shares (r10, . . . , r

t
0),

(r11, . . . , r
t
1) of two randomly sampled one-time pad keys r0, r1, (c1, . . . , ct) of

a random bit c ∈ {0, 1}, and independent shares (s1, . . . , st) of key rc, so that
party i+ 2 receives only shares ri0, r

i
1, s

i, ci for each i.
2. Each party Pi+2 for i ≥ 1 sends shares ri0, r

i
1 to A and si, ci to B.

3. A uses shares (r10, . . . r
t
0) and (r11, . . . , r

t
1) to reconstruct r0 and r1.

4. B uses shares (c1, . . . , ct) and (s1, . . . , st) to reconstruct c and rc and sends
b′ = b⊕ c to A.

5. A computes y0 = x0 ⊕ rb′ and y1 = x1 ⊕ r1−b′ and sends both to B.
6. B computes yb ⊕ rc = xb.

Network Oblivious Transfer 17

random OT to 1-out-of-2 OT. This transformation protects against the case
that all of parties P3, . . . , Pt+2 (that is, all but A and B) are corrupt. If one of
A and B were corrupt, there exists at least one honest party among the parties
P3, . . . , Pt+2. Hence, even by colluding, A or B would have no information about
those shares and would not learn anything. Finally, if both A and B were corrupt,
there is nothing to prove.

The formal proof is deferred to the full version.

5.3 Cascading

The following building block is a generalization of the technique described in
Section 3.4. The technique describes a general method of combining protocols
iteratively. In our context, this can be thought of a tool for transforming a
network described by a graph G to one described by a graph G′, where G ⊆V G′

and G and G′ are both graphs on the same vertex set V . In other words, it
describes protocols as adding new edges indicating the establishment of OT
correlations between new pairs of parties in the network. With this abstraction,
it is easy to view the technique of cascading as one which combines protocols
iteratively to transform the underlying network by adding new edges. This is
described formally below.

Definition 4. Let G = (V,E) and G′ = (V,E′) be two graphs on the same set
of vertices, V , with G ⊆V G′. We say that a protocol Π t-transforms a network
G into the network G′ if for each {Pi, Pj} ∈ E′ \E, Π is a t-secure OT protocol
for a network G with Pi as the sender and Pj as the receiver.12

Lemma 6. If Π1 is a protocol that runs in time T1 and t-transforms network G1

into G2, and Π2 is a protocol that runs in time T2 and t-transforms network G2

into G3, then there exists a protocol Π that runs in time T1T2 and t-transforms
G1 into G3.

Proof. The protocol Π simply runs Π2, running protocol Π1 to obtain the nec-
essary correlations whenever Π2 invokes OT on an edge of G2 \G1. Let S1 and
S2 be the simulators associated with Π1 and Π2 respectively. The simulator for
Π simply runs S2, invoking S1 for OT calls made on edges in G2 \G1. ut

Using OT extension [2,43], we can also obtain a computationally secure ver-
sion of cascading with improved efficiency.

Lemma 7. Let λ be a computational security parameter. Assuming one-way
functions or correlation-robust hash functions, if Π1 is a protocol that runs in
time T1 and t-transforms network G1 into G2, and Π2 is a protocol that runs in
time T2 and t-transforms network G2 into G3, then there exists a computationally
secure protocol Π that runs in time λ ·T1 +T2 ·poly(λ) and t-transforms G1 into
G3.
12 Note that a single protocol Π may set up independent random OT correlations for

several pairs of parties {Pi, Pj} ∈ E′ \ E. These correlations can be used to run
1-out-of-2 OT using OT correction.

18 Ranjit Kumaresan, Srinivasan Raghuraman∗, and Adam Sealfon∗

Proof. First, run protocol Π1 λ times on random inputs to obtain λ independent
OT correlations for each edge of G2 \ G1. Then run Protocol Π2, using OT
extension [2,43] to obtain OT correlations for OT calls made on edges in G2\G1.

ut

5.4 The 2-path graph

The protocol described in this section is a commonly used subroutine in several of
the protocols which follow. It is a particular combination of the tools encountered
in Sections 5.1, 5.2 and 5.3. The subroutine, which we call 2-path, is the same
as the one described in Section 3.4. It is used to obtain OT correlations between
parties who have a common neighbor in a four-party network with at most two
corruptions (see Figure 4(c)).

Lemma 8. Protocol 3 is an efficient 2-secure OT protocol for a network G 'A,B
G2

2-path with A as the sender and B as the receiver.

Proof. This follows immediately from Lemma 6 and the 2-security of Protocols
1 and 2 for t = 2 (Lemmata 4 and 5). ut

Protocol 3: 2-path

Preliminaries: Let A,B,C,D be the parties, and let there exist OT channels
(A,C) and (B,C). A has input (x0, x1), and B has input b ∈ {0, 1}.

Protocol:

1. Invoke Protocol 1 (2-claw) on parties (D,C,A,B) to obtain OT correlations
on edge (D,C).

2. By Lemma 6, we have an OT channel between D and C.
3. Invoke Protocol 2 (2-clique) on parties (A,B,C,D).

5.5 Combiners

OT combiners aim to combine several insecure candidate protocols for estab-
lishing OT correlations between two parties into a single secure protocol. For a
class of adversaries A, it is possible to achieve this when the candidate protocols
satisfy the property that a majority of them are secure against each advesary
A ∈ A. The following lemma is due to [56,37], relying on prior work by [38,65]
and based on a construction by [22].

Lemma 9. [56,37] Let A be an adversary class. Suppose there exist m protocols
Π1, . . . ,Πm for fOT (A,B, P1, . . . , Pn) such that for any adversary A ∈ A a ma-
jority of the protocols are secure. Then, there exists a protocol Π∗(Π1, . . . ,Πm)
for fOT (A,B, P1, . . . , Pn) which is secure against all adversaries A ∈ A. More-
over, if each protocol Πi is efficient and perfectly secure, then so is Π∗.

Network Oblivious Transfer 19

6 The case t = n/2

We now consider the specific case of t = n/2, that is, when at most half the
parties are corrupt. We note that this is the smallest value of t for which the
question is non-trivial. From the lower bounds proven in Theorem 1, we already
have that for all n-party networks G containing A and B such that G ⊆A,B Λ0

n/2,

there exists no n/2-secure OT protocol with A as the sender and B as the
receiver. Surprisingly Theorem 2 shows that these are the only networks for
which (n/2)-secure OT between A and B is impossible. Below, we provide an
explicit n/2-secure OT protocol between A and B whenever the network G is
(n/2, A,B)-unsplittable.

Theorem 2. Let G be an n-party network OT containing parties A and B.
Then Protocol 5 is an n/2-secure OT protocol between A and B if and only if G
is (n/2, A,B)-unsplittable.

We analyze the efficiency of the protocol in Theorem 3 below. The protocol
as stated runs in quasi-polynomial time. We can also obtain a computationally
secure protocol which runs in polynomial time. The protocol we describe pro-
ceeds in two stages. In the first stage, the protocol transforms every connected
component of the network into a clique. This transformation is very specific to
the case of t = n/2, and in particular, for t > n/2 a connected component cannot
in general function as a clique. This transformation is carried out by means of
repeatedly calling Protocol 4, which obtains OT correlations between a pair of
parties who have a common neighbour. This protocol uses the building block
Protocol 3 from Section 5.4 along with machinery of OT combiners described in
Section 5.5.

Lemma 10. Let G be an n-vertex OT network with edges {A,C} and {B,C}.
Protocol 4 is an n/2-secure OT protocol for the network G with A as the sender
and B as the receiver.

Proof. We consider cases depending on the number of corrupted parties in the
set T = {A,B,C}. If T contains at most one corrupted party, then each tuple
(A,B,C, Pi) for i ≥ 4 contains at most 2 corrupted parties, so each protocol
Πi in step 1 is secure. If T contains two corrupted parties, then there are at
most t − 2 = (n − 4)/2 corrupted parties among P4, . . . , Pn, so a majority of
these parties are honest. Consequently a majority of the protocols Πi which are
combined in step 1 are secure. Thus, in either case, by Lemma 9 the protocol is
secure. Finally, if all three parties of T are corrupted, then all uncorrupted parties
receive no input, so the simulator S can perfectly simulate the uncorrupted
parties by running the honest protocol. Therefore Protocol 4 is n/2-secure. ut

We now complete the proof of Theorem 2.

Proof Intuition (Theorem 2): It is easy to see that by invoking Protocol 4 re-
peatedly, one can obtain OT correlations between any pair of parties in the same

20 Ranjit Kumaresan, Srinivasan Raghuraman∗, and Adam Sealfon∗

Protocol 4: Completing Triangles

Preliminaries: Let A,B,C, P4, . . . , Pn be the n parties, and let there exist OT
channels (A,C) and (B,C). A has input (x0, x1), and B has input b ∈ {0, 1}.

Protocol:

1. Run a combined protocol Π∗(Π4, . . . , Πn) on the n− 3 protocols Π4, . . . , Πn,
where
– For each i ≥ 4, Πi denotes an invocation of Protocol 3 (2-path) with the

four parties A,B,C, Pi with A as the sender and B as the receiver.

connected component. In other words, using cascading (Lemma 6), we can as-
sume that we are given a network which consists of disjoint cliques. This is done
in step 1 of Protocol 5. Hence, if A and B were in the same connected component
in G, this process would end up with correlations between A and B and we can
terminate the protocol (step 2).

If A and B are in different components, then a natural next step is to run the
clique protocol described in Section 5.2 with each of the cliques and parties A
and B with the intent of setting up OT correlations between A and B. However,
the number of corruptions t may be greater than the size of any clique, and
so Protocol 2 may not be secure. However, for an invocation to be secure, we
only require that the clique contains at least one honest party. A majority of
parties must be in cliques containing at least one honest party, so if we invoke
Protocol 2 for each of the parties on their respective cliques, for any adversary
a majority of the invocations is secure. By Lemma 9 we can combine these
candidate protocols to obtain a single secure protocol. This is performed in step
5 of Protocol 5. Finally, we note that steps 3, 4 and 6 perform OT correction,
that is, they perform a transformation from random OT to 1-out-of-2 OT. This
yields the n/2-security of Protocol 5.

Proof (Theorem 2). The “only if” part of theorem has been proven by virtue of
the lower bound of Theorem 1 with t = n/2. We now prove the “if” part. We
note that in the case where A and B are in the same connected component in
the network G, by the n/2-security of Protocol 4 and Lemma 6, we note that
Protocol 5 is an n/2-secure OT protocol with A as the sender and B as the
receiver, thus proving the theorem.

We now proceed to the case where A and B are not in the same connected
component in G. We must show that the protocol is secure against t-threshold
adversaries as long as the vertices cannot be partitioned into two sets VA, VB
each of size t = n/2 with A ∈ VA, B ∈ VB such that there are no edges between
VA and VB . Let A be a t-threshold adversary which corrupts parties T , |T | ≤ t.
We will construct a simulator S which plays the role of the uncorrupted parties.

If {A,B} ⊂ T then the uncorrupted parties receive no input, so the sim-
ulator can perfectly simulate the uncorrupted parties. If {A,B} ∩ T = ∅ then

Network Oblivious Transfer 21

Protocol 5: n/2 corruptions

Preliminaries: Let P1 = A,P2 = B,P3, . . . , Pn be the n parties in a network
G = (V,E). A has input (x0, x1), and B has input b ∈ {0, 1}.

Protocol:

1. While there exist parties Pi, Pj , Pk ∈ V such that {Pi, Pj} ∈ E, {Pj , Pk} ∈ E,
but {Pi, Pk} /∈ E:
(a) Let S be the set of triples of distinct vertices (X,Y, Z) ∈ V 3 with {X,Y } ∈

E, {Y,Z} ∈ E, and {X,Z} /∈ E.
(b) For each triple (X,Y, Z) ∈ S, invoke Protocol 4 with independent random

inputs (ri,k0 , ri,k1) and bi,k, to obtain OT correlations along edge {X,Z}.
(c) Invoking cascading (Lemma 6), we can add {X,Z} to the edge set E for

all triples (X,Y, Z) ∈ S.
The OT network G now consists of disjoint cliques C1, . . . , C`.

2. If A and B are in the same clique, then halt.
3. B samples a random bit c and sends b′ = b⊕ c to A.
4. A chooses random one-time pads r0, r1 and sends y0 = x0 ⊕ rb′ and y1 =

x1 ⊕ r1−b′ to B.
5. Let C1 be the clique containing A and C2 be the clique containing B. For

each party Pi, i ≥ 3, let C(i) denote the clique containing party i, and let
Pj1 , . . . , Pj|C(i)| denote the parties in clique C(i).
Run a combined protocol Π∗(Π1, . . . , Πn) on the n protocols Π1, . . . , Πn,
where
– For each i ∈ [n], Πi denotes an invocation of Protocol 2 on the |C(i)|+ 2

parties A,B, Pj1 , . . . , Pj|C(i)| with inputs (r0, r1) and c.a

6. Finally, B computes xb = yb ⊕ rc.

a In the case C(i) = C1, A is both the OT sender and a member of the clique. A
similar condition holds for B in the case C(i) = C2.

S chooses arbitrary inputs x0, x1, b and runs the protocol. Since the only steps
which depend on the input at all are on point-to-point channels between A and
B, the view of the adversary in the real and ideal worlds is identical.

Otherwise, we have that the corrupted parties T include exactly one of A,B.
If A ∈ T but B /∈ T , then S chooses an arbitrary bit b and runs the protocol,
invoking the OT simulator for each invocation of Protocol 4. It follows that
as long as the combined protocol Π∗ in step 5 is secure against A, Protocol
5 is secure against A. It remains to show that a majority of the n protocols
Π1, . . . ,Πn are secure against A. Since party B is honest, by Lemma 5, protocol
Πi is secure against A as long as at least one of the parties in clique C(i) is
honest. In particular, if party Pi is honest then protocol Πi is secure against
A. At most t of the parties P1, . . . , Pn are corrupt, so the only protocols which
may be insecure against A are the t protocols Πi corresponding to the corrupted
parties Pi. Assume that all t of these protocols are insecure against A. Then the
corrupted parties lie in completely corrupted cliques who sizes sum to n/2. This

22 Ranjit Kumaresan, Srinivasan Raghuraman∗, and Adam Sealfon∗

then gives a set VA = T of n/2 parties containing A but not B such that there
are no edges from VA to the remaining vertices VB = T . However, we know that
G possesses no such partition. Hence, at most t− 1 < n/2 of the n protocols are
insecure against A and hence by Lemma 9, the combined protocol Π∗ in step 5
is secure and hence Protocol 5 is secure against A.

The remaining case that B ∈ T but A /∈ T is similar. Here, the simulator S
is given the output value xb. S runs the protocol with (xb, xb) as the input to
A, again invoking the OT simulator for each invocation of Protocol 4. As above,
as long as the combined protocol Π∗ in step 5 is secure against A, Protocol 5
is secure against A. By the same argument, the only protocols Πi which may
be insecure against A are the t protocols corresponding to the corrupted parties
Pi. If all t of these protocols are insecure against A, we have a set VA = T of
n/2 parties containing A but not B such that there are no edges from VA to
the remaining vertices VB = T . However, we know that G possesses no such
partition, so at most t − 1 < n/2 of the n protocols are insecure against A. By
Lemma 9, the combined protocol Π∗ in step 5 is secure and so Protocol 5 is
secure against A. ut

We now analyze the efficiency of Protocol 5.

Theorem 3. Protocol 5 runs in quasi-polynomial time. Assuming one-way func-
tions, we can obtain a computationally secure protocol which runs in polynomial
time using computationally secure cascading (Lemma 7).

Proof. Each iteration of step 1 decreases the length of a path between any pair
of vertices from ` to d`+ 1e/2. Consequently, after O(log n) iterations the graph
will consist of a collection of disjoint cliques, and the protocol will move on to
the next step. By Lemma 6 (Cascading), if each iteration can be performed in
time at most T assuming the augmented graph, then the full cascaded protocol
runs in time at most TO(logn). Since T = poly(n) and each other step of the
protocol is efficient, this implies that Protocol 5 runs in quasi-polynomial time.

Replacing the cascading of step 1 with the more efficient but computation-
ally secure cascading of Lemma 7, we have the cascaded protocol runs in time
O(T poly(λ) · log n). Since each other step of the protocol is efficient, this implies
that assuming one-way functions, we have a computationally-secure version of
Protocol 5 that runs in quasi-polynomial time. ut

7 The case t = n− 2

On account of the lower bound proven in [36], we note that t = n − 2 is the
largest value of t for which the question is non-trivial. In this section we present
an improved computationally efficient OT protocol between A and B for the
special case t = n− 2 for all (2, A,B)-unsplittable networks G.

Theorem 4. Let G be an n-party OT network containing parties A and B.
Then Protocol 6 is an efficient (n − 2)-secure OT protocol between A and B if
and only if G is (2, A,B)-unsplittable.

Network Oblivious Transfer 23

Protocol 6: n− 2 corruptions

Preliminaries: Let P1 = A,P2 = B,P3, . . . , Pn be the n parties, and let graph
G = (V,E) be the OT network among the parties. A has input (x0, x1), and B
has input b ∈ {0, 1}.

Protocol:

1. For all pairs of parties Pi, Pj ∈ V with i, j ≥ 3 such that {Pi, Pj} /∈ E:
(a) Invoke Protocol 5 (or any 2-secure protocol for n′ = 4) on the induced

OT subgraph Gi,j := G∩ {Pi, Pj , A,B} with independent random inputs
(ri,j0 , ri,j1) and bi,j , to obtain OT correlations along edge {Pi, Pj}.

(b) By virtue of cascading (Lemma 6), we can add edge {Pi, Pj} to the graph
G.a

The OT network G now contains a (n− 2)-clique among vertices Pi, . . . , Pn.
2. Invoke Protocol 2 (t-clique) with input (x0, x1) and b.

a We will only have OT security over this edge when at least two of the parties
Pi, Pj , A,B are honest, but we obtain the functionality of the edge regardless.
We address security of the overall protocol in the proof.

The protocol is built upon the following structural aspect of the network
G under consideration. Since G is (2, A,B)-unsplittable, for any two sets of
vertices VAA and VBB such that |VA| = |VB | = 2, there exists an edge from a
vertex of VA to a vertex of VB . In particular, this implies that for any two parties
Pi, Pj where i, j ≥ 3, the sub-network Gi,j induced by parties A, B, Pi and Pj
is (2, A,B)-unsplittable. Then for any i, j, we also have that the sub-network
Gi,j is (2, Pi, Pj)-unsplittable. Hence, we could try to obtain OT correlations
between every pair of vertices Pi, Pj by running Protocol 5 on every Gi,j for
n = 4 parties. Notice that if these invocations were secure, then we would
obtain an (n − 2)-clique in the network after which we can execute Protocol
2 in order to obtain OT correlations between A and B. This is described in
Protocol 6. However, each of the execution of Protocol 5 is only guaranteed to
be secure if at most two of the corresponding parties are corrupt. This need not
be true in general, and so we cannot directly leverage the security of Protocol 5.
Nonetheless, we will argue that Protocol 6 is secure against t = n−2 corruptions.

Proof Intuition (Theorem 4): In order to analyze the (n−2)-security of Protocol
6, we consider each invocation of Protocol 5 on a sub-network Gi,j . If at most
two of the four parties in Gi,j are corrupt, then that invocation of Protocol 5 is
secure and yields secure OT correlations between parties Pi and Pj . Appealing
to Lemma 6, we can augment G to include edge {Pi, Pj}.

Each Gi,j must contain at least one honest party since either A or B must be
honest (otherwise, there is nothing to prove). It remains to consider sub-networks
Gi,j in which three of the parties are corrupt. Since at least one of A or B is
honest, this implies that both Pi and Pj are corrupt. Thus, there is nothing to

24 Ranjit Kumaresan, Srinivasan Raghuraman∗, and Adam Sealfon∗

prove regarding the security of the invocation of Protocol 5 on Gi,j since we
are establishing OT correlations between a pair of corrupt parties Pi and Pj .
Combining these claims, we have that each of the invocations of Protocol 5 is
secure and yields secure OT correlations between the pairs of parties Pi, Pj for
all i, j ≥ 3. By virtue of Lemma 6, we obtain an (n − 2)-clique in the network
and the (n− 2)-security of Protocol 2 with t = n− 2 proves the (n− 2)-security
of Protocol 6.

The formal proof is deferred to the full version.

8 The General Case: t ≥ n/2

In this section, we resolve the network OT question for general t ≥ n/2. Note
that from the protocols in Sections 6 and 7 we already have tight answers for the
special cases t = n/2 and t = n− 2. We address the general question from both
ends of the spectrum, namely for t larger than n/2 and t smaller than n − 2.
These analyses yield two distinct protocols which employ the protocols from
Sections 6 and 7 as their respective base cases. The two protocols we describe
are efficient in different parameter regimes. Protocol 7 described in Section 8.1
is quasi-polynomially efficient13 when t = n/2 +O(1), and Protocol 8 described
in Section 8.2 is (polynomially) efficient when t = n−O(1). Putting these pro-
tocols together, we obtain a single protocol that is efficient under computational
security when either t = n/2 +O(1) or t = n−O(1). We note that the problem
of recognizing whether there exists a t-secure OT protocol is efficient in these
cases, while the recognition problem for general n, t is coNP-complete.

8.1 General Protocol (Quasi-polynomial for t = n/2 +O(1))

We now describe a t-secure OT protocol between A and B for all (n− t, A,B)-
unsplittable networks G. As a consequence of the lower bound described in
Section 4, this result is tight.

Theorem 5. Let G be an n-party OT network containing parties A and B, and
let t ≥ n/2. Then Protocol 7 is a t-secure OT protocol between A and B if and
only if G is (n− t, A,B)-unsplittable. The protocol achieves perfect security and
runs in quasi-polynomial time for t = n/2 +O(1). Assuming one-way functions,
we can also obtain a protocol which achieves computational security and runs in
polynomial time for t = n/2 +O(1).

The protocol proceeds by recursion, reducing the problem of obtaining an
OT protocol on an n-vertex graph with t > n/2 corrupted parties to a number
of instances of n′-vertex graphs, a majority of which have at most t′ corrupted
parties, for n′ = n− 1 and t′ = t− 1. As shown below, each n′-vertex subgraph
G′ has a structure similar to G in the sense that G′ is (n′− t′, A,B)-unsplittable

13 or polynomially efficient under computational security

Network Oblivious Transfer 25

whenever G is (n − t, A,B)-unsplittable. We can now recurse on these smaller
problem instances, invoking an OT combiner to obtain the full protocol.

More precisely, the protocol constructs n − 2 subgraphs on n − 1 vertices,
where each subgraph is obtained by deleting a single vertex other than A and B.
We can recursively run a (t − 1)-secure OT protocol on each of the subgraphs.
The final protocol invokes a combiner on these n − 2 candidate protocols. It
remains to be shown that a majority of the subgraphs G′ contain at most t− 1
corrupt parties.

Proof Intuition (Theorem 5): We may assume that at least one of A or B is
honest. As described above, we wish to argue that a majority of the subgraphs
G′ contain at most t − 1 corrupt parties. Combining this with the claim that
these subgraphs preserve an unsplittability property of G and invoking Lemma
9 completes the proof.

However, this claim follows from the following observation. Since t > n/2, if
exactly t parties are corrupt then a majority of the subgraphs contain at most
t− 1 corrupt parties since A and B are not both corrupt. If strictly fewer than
t parties are corrupt then all of the sub-graphs contain at most t − 1 corrupt
parties. In either case, for a majority of subgraphs, at most t− 1 of the parties
are corrupt.

We first present and prove a structure lemma.

Lemma 11. Given graph G = (V,E) and a vertex i, let Gi be the induced graph
on the n − 1 vertices V \ {i}. If G is (n − t, A,B)-unsplittable, then Gi is also
(n− t, A,B)-unsplittable.

Proof. We will prove the contrapositive. Suppose that Gi ⊆A,B Λ2t−n−1
n−t . This

means there exists a partition of the vertex set of Gi as V \{i} = VA
⋃̇
VS
⋃̇
VB

with no edges between VA and VB , where A ∈ VA, B ∈ VB , |VA| = |VB | = n− t
and |VS | = 2t − n − 1. But then we can partition the vertex set of G as V =

VA
⋃̇
V ′S
⋃̇
VB , where V ′S = VS ∪ {i}. We have that |VA| = |VB | = n − t and

|V ′S | = 2t − n, and there are no edges between VA and VB , so G ⊆A,B Λ2t−n
n−t ,

which is a contradiction. ut

As an immediate consequence, the condition described in Theorem 5 is both
necessary and sufficient in order to obtain a complete network of OT channels
and perform secure multiparty computation among all parties in the network.

Corollary 1. Let G be an n-party network. For t ≥ n/2, we can t-securely
generate OT correlations between all pairs of parties (thus, completing the OT
network) if and only if the G is (n− t)-unsplittable.

The formal proofs of Theorem 5 and Corollary 1 are deferred to the full version.

26 Ranjit Kumaresan, Srinivasan Raghuraman∗, and Adam Sealfon∗

Protocol 7: General Protocol I

Preliminaries: Let A,B, P3, . . . , Pn be the n parties in a network G and let
t ≥ n/2 be the maximum number of corruptions. A has input (x0, x1), and B has
input b ∈ {0, 1}.

Protocol:

1. If t = n/2, then invoke Protocol 5 and halt.
2. Otherwise, run a combined protocol Π∗(Π3, . . . , Πn), where

– For each i ≥ 3, Πi denotes the recursive invocation of this protocol on the
n − 1 parties excluding party Pi with the induced sub-network G \ {Pi}
and t′ = t− 1 corruptions.

8.2 General Protocol (Efficient for t = n−O(1))

We now describe another t-secure OT protocol for all networks G with A as the
sender and B as the receiver whenever the network G is (n−t, A,B)-unsplittable.
This protocol uses, in spirit, a reduction in the opposite sense than the one
described in Section 8.1. The protocol is efficient whenever t = n−O(1).

Theorem 6. Let G be an n-party OT network containing parties A and B, and
let t ≥ n/2. Protocol 8 is a t-secure OT protocol between A and B if and only if
G is (n− t, A,B)-unsplittable. The protocol is efficient for t = n−O(1).

The idea behind this protocol is the following. We increase the size of the
network in order to obtain a large number N of well-connected additional
simulated parties such that at least one them is guaranteed to be honest. We
may assume that at least one of A and B is honest, as otherwise there is
nothing to prove. Consequently there are at least two honest parties in the
augmented network. We will now apply the protocol from Section 7. It remains
to describe the construction of these simulated parties, to show that at least
one of them is honest, and to prove a structural lemma that if the original
network G is (n − t, A,B)-unsplittable then the augmented network G′ is
(2, A,B)-unsplittable.

Proof Intuition (Theorem 6): We first describe the new network generated
by Protocol 8. The parties other than A and B in the newly constructed
network consist of all subsets of size n − t − 1 of the parties in G contain-
ing neither A nor B. Lemma 12 below shows that this new network G′ is
(2, A,B)-unsplittable whenever G is (n − t, A,B)-unsplittable, where the edges
of G′ are as described in Protocol 8. A party X in G′ will be considered
honest if all constituent parties Pi ∈ X from G are honest. Since one of A
and B is honest and at most t parties are corrupt, at least n − t parties
are honest and in particular, at least n − t − 1 of the parties other than A
and B must be honest. This means that one of the subsets is completely

Network Oblivious Transfer 27

Protocol 8: General protocol II

Preliminaries: Let P1 = A,P2 = B,P3, . . . , Pn be the n parties in a network
G = (V,E). A has input (x0, x1), and B has input b ∈ {0, 1}. Let k = n− t.

Protocol:

1. Invoke Protocol 6 with t′ = n − 2 on the n′-node network G′ with inputs
(x0, x1) and b, where n′ =

(
n−2
k−1

)
+ 2, and

– Sk−1 is the set of subsets of {P3, . . . , Pn} of size k − 1.
– The n′ vertices of G′ correspond to A,B, and the

(
n−2
k−1

)
subsets of Sk−1.

– The edges of G′ are defined as follows. Two subsets X,Y ∈ Sk−1 will have
an edge if either X ∩ Y 6= ∅ or there exists a pair of parties Pi ∈ X and
Pj ∈ Y with {Pi, Pj} ∈ E.

– Invocation of OT over an edge {X,Y } in G′ with inputs (z0, z1) and c is
performed as follows.
• If X ∩ Y 6= ∅, then choose some party Pi ∈ X ∩ Y . Pi ∈ X and hence

knows (z0, z1); similarly, Pi ∈ Y and knows c. Consequently Pi knows
zc, and sends it to the other members of set Y .

• If X ∩ Y = ∅, there is a pair of parties Pi ∈ X,Pj ∈ Y such that
{Pi, Pj} ∈ E. Pi knows (z0, z1) and Pj knows c, so they can invoke
OT over the channel (Pi, Pj) in G, and Pj can then send the value zc
to the other members of set Y .

honest. Since A or B is also honest, G′ is guaranteed to have at least two honest
parties. Combining these facts and invoking Theorem 4 completes the argument.

We will use the following structural lemma about the network G′ constructed
in Protocol 8. The formal proof of Theorem 6 is deferred to the full version.

Lemma 12. If G is (n− t, A,B)-unsplittable, then G′ is a (2, A,B)-unsplittable
network on n′ =

(
n−2
n−t−1

)
+ 2 vertices, where G′ is the network from Protocol 8.

Proof. We prove the contrapositive. Assume that G′ ⊆A,B Λn
′−2

2 . Let k = n− t,
and for i ∈ N, let Si denote the set of subsets of V \ {A,B} = {P3, . . . , Pn} of
size i. Then there exist vertices X,Y ∈ Sk−1 such that there are no edges in
G′ between any of the parties in {A,X} and any of the parties in {B, Y }. In
particular, X ∩ Y = ∅, since otherwise {X,Y } would be an edge of G′. This
implies that we have 2k = 2(n− t) parties {A,B}∪X ∪Y such that there are no
edges in G from the n− t parties {A} ∪X to any of the n− t parties {B} ∪ Y .
By definition, this means that G ⊆A,B Λ2t−n

n−t , which is a contradiction. ut

References

1. B. Applebaum, Y. Ishai, E. Kushilevitz, and B. Waters. Encoding functions with
constant online rate or how to compress garbled circuits keys. In Crypto (2), pages
166–184, 2013.

28 Ranjit Kumaresan, Srinivasan Raghuraman∗, and Adam Sealfon∗

2. D. Beaver. Correlated pseudorandomness and the complexity of private computa-
tions. In STOC, pages 479–488, 1996.

3. D. Beaver. Precomputing oblivious transfer. In Crypto, pages 97–109, 1995.
4. Z. Beerliová-Trub́ıniová and M. Hirt. Perfectly-secure MPC with linear communi-

cation complexity. In TCC, pages 213–230, 2008.
5. A. Beimel, T. Malkin, and S. Micali. The all-or-nothing nature of two-party secure

computation. In Crypto, pages 80–97, 1999.
6. A. Beimel, E. Omri, and I. Orlov. Protocols for multiparty coin toss with dishonest

majority. In Crypto, pages 538–557, 2010.
7. M. Bellare, V.T. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling from a

fixed-key blockcipher. In IEEE Security and Privacy, pages 478–492, 2013.
8. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-

cryptographic fault-tolerant distributed computations. In STOC, pages 1–10, 1988.
9. E. Ben-Sasson, S. Fehr, and R. Ostrovsky. Near-linear unconditionally-secure mul-

tiparty computation with a dishonest minority. In Crypto, pages 663–680, 2012.
10. R. Bendlin, I. Damg̊ard, C. Orlandi, and S. Zakarias. Semi-homomorphic encryp-

tion and multiparty computation. In Eurocrypt, pages 169–188, 2011.
11. D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-

preserving computations. In ESORICS, pages 192–206, 2008.
12. P. Bogetoft, D. Christensen, I. Damg̊ard, M. Geisler, T. Jakobsen, M. Krøigaard,

J. Nielsen, J. Nielsen, K. Nielsen, J. Pagter, M. Schwartzbach, and T. Toft. Secure
multiparty computation goes live. In FC, pages 325–343, 2009.

13. E. Boyle, K-M. Chung, and R. Pass. Large-scale secure computation: Multi-party
computation for (parallel) ram programs. In Crypto (2), pages 742–762, 2015.

14. E. Boyle, S. Goldwasser, and S. Tessaro. Communication locality in secure multi-
party computation - how to run sublinear algorithms in a distributed setting. In
TCC, pages 356–376, 2013.

15. R. Canetti, I. Damg̊ard, S. Dziembowski, Y. Ishai and T Malkin. On adaptive vs.
non-adaptive security of multiparty protocols. In Eurocrypt, pages 262–279, 2001.

16. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure pro-
tocols. In STOC, pages 11–19, 1988.

17. B. Chor and E. Kushilevitz. A zero-one law for boolean privacy (extended ab-
stract). In STOC, pages 62–72, 1989.

18. T. Chou and C. Orlandi. The simplest protocol for oblivious transfer. In Latincrypt,
pages 40–58, 2015.

19. I. Damg̊ard and Y. Ishai. Scalable secure multiparty computation. In Crypto,
pages 501–520, 2006.

20. I. Damg̊ard, Y. Ishai, and M. Krøigaard. Perfectly secure multiparty computation
and the computational overhead of cryptography. In Eurocrypt, pages 445–465,
2010.

21. I. Damg̊ard, Y. Ishai, M. Krøigaard, J. Nielsen, A. Smith. Scalable multiparty
computation with nearly optimal work and resilience. In Crypto, pages 241–261,
2008.

22. I. Damg̊ard, J. Kilian, and L. Salvail. On the (im) possibility of basing oblivious
transfer and bit commitment on weakened security assumptions. In Eurocrypt,
pages 56–73. Springer, 1999.

23. I. Damg̊ard and J. Nielsen. Scalable and unconditionally secure multiparty com-
putation. In Crypto, pages 572–590, 2007.

24. I. Damg̊ard, V. Pastro, N. Smart, and S. Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Crypto, pages 643–662, 2012.

Network Oblivious Transfer 29

25. V. Dani, V. King, M. Movahedi, and J. Saia. Brief announcement: breaking the
o(nm) bit barrier, secure multiparty computation with a static adversary. In
PODC, pages 227–228, 2012.

26. D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmis-
sion. In FOCS, pages 36–45, 1990.

27. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
In Crypto, pages 205–210, 1983.

28. M. Fitzi, M. Franklin, J. A. Garay, and H.V. Simhadri. Towards optimal and
efficient perfectly secure message transmission. In TCC, pages 311–322, 2007.

29. J. A. Garay, J. Katz, C.-Y. Koo, and R. Ostrovsky. Round complexity of authen-
ticated broadcast with a dishonest majority. In FOCS, pages 658–668, 2007.

30. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

31. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game, or a
completeness theorem for protocols with honest majority. In STOC, pages 218–229,
1987.

32. O. Goldreich, S. Micali, and A. Wigderson. Proofs that Yield Nothing But Their
Validity for All Languages in NP Have Zero-Knowledge Proof Systems. J. ACM,
38(3), pages 691–729, 1991.

33. O. Goldreich and R. Vainish. How to solve any protocol problem - an efficiency
improvement. In Crypto, pages 73–86, 1988.

34. S. Goldwasser, Y. Kalai, R. Popa, V. Vaikuntanathan and N. Zeldovich. Reusable
garbled circuits and succinct functional encryption. In STOC, pages 555–564, 2013.

35. I. Haitner. Semi-honest to malicious oblivious transfer—the black-box way. In
TCC, pages 412–426, 2008.

36. D. Harnik, Y. Ishai, and E. Kushilevitz. How many oblivious transfers are needed
for secure multiparty computation? In Crypto, pages 284–302, 2007.

37. D. Harnik, Y. Ishai, E. Kushilevitz, and J. Nielsen. OT-Combiners via Secure
Computation. In TCC, pages 393–411, 2008.

38. D. Harnik, J. Kilian, M. Naor, O. Reingold, and A. Rosen. On robust combiners
for oblivious transfer and other primitives. In Eurocrypt, pages 96–113, 2005.

39. M. Hirt, C. Lucas, and U. Maurer. A dynamic tradeoff between active and passive
corruptions in secure multi-party computation. In Crypto (2), pages 203–219, 2013.

40. Y. Huang, J. Katz, and D. Evans. Efficient secure two-party computation using
symmetric cut-and-choose. In Crypto (2), pages 18–35, 2013.

41. Y. Huang, J. Katz, V. Kolesnikov, R. Kumaresan, and A. Malozemoff. Amortizing
garbled circuits. In Crypto (2), 2014.

42. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way
permutations. In STOC, pages 44–61, 1989.

43. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers
efficiently. In Crypto, pages 145–161, 2003.

44. Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank. On combining privacy with
guaranteed output delivery in secure multiparty computation. In Crypto, pages
483–500, 2006.

45. Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious
transfer - efficiently. In Crypto, pages 572–591, 2008.

46. J. Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31,
1988.

47. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and
applications. In ICALP, pages 486–498, 2008.

30 Ranjit Kumaresan, Srinivasan Raghuraman∗, and Adam Sealfon∗

48. T. Kovári, V. Sós and P. Turán. On a problem of K. Zarankiewicz. Colloquium
Mathematicae 3(1), pages 50–57, 1954.

49. E. Kushilevitz. Privacy and communication complexity. In FOCS, pages 416–421,
1989.

50. E. Larraia, E. Orsini, and N.P. Smart. Dishonest majority multi-party computation
for binary circuits. In Crypto (2), pages 495–512, 2014.

51. Y. Lindell, B. Pinkas, N.P. Smart, and A. Yanai. Efficient constant round multi-
party computation combining bmr and spdz. In Crypto (2), pages 319–338, 2015.

52. Y. Lindell and B. Riva. Cut-and-choose yao-based two-party computation with
low cost in the online/offline and batch settings. In Crypto, pages 476–494, 2014.

53. Y. Lindell. Fast cut-and-choose based protocols for malicious and covert adver-
saries. In Crypto, pages 1–17, 2013.
Lecture Notes in Computer Science, pages 1–17. Springer, August 2013.

54. Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In Eurocrypt, pages 52–78, 2007.

55. H. Maji, M. Prabhakaran, and M. Rosulek. A zero-one law for cryptographic
complexity with respect to computational UC security. In Crypto, pages 595–612,
2010.

56. R. Meier, B. Przydatek, and J. Wullschleger. Robuster combiners for oblivious
transfer. In TCC, pages 404–418, 2007.

57. P. Mohassel and B. Riva. Garbled circuits checking garbled circuits: More efficient
and secure two-party computation. In Crypto (2), pages 36–53, 2013.

58. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In SODA, pages
448–457, 2001.

59. J. Nielsen, P. Nordholt, C. Orlandi, and S. Burra. A new approach to practical
active-secure two-party computation. In Crypto, pages 681–700, 2012.

60. C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and
composable oblivious transfer. In Crypto, pages 554–571, 2008.

61. M. Prabhakaran and V. Prabhakaran. On secure multiparty sampling for more
than two parties. In Information Theory Workshop (ITW), 2012.

62. M. Rabin. How to exchange secrets by oblivious transfer. 1981.
63. T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with

honest majority. In STOC, pages 73–85, 1989.
64. S. Wolf and J. Wullschleger. Oblivious transfer is symmetric. In Eurocrypt, pages

222–232, 2006.
65. W. Jürg Wullschleger. Oblivious-Transfer Amplification. In Eurocrypt, pages 555–

572, 2007.
66. A. C.-C. Yao. How to generate and exchange secrets. In FOCS, pages 162–167,

1986.
67. S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole - reducing data

transfer in garbled circuits using half gates. In Eurocrypt, pages 220–250, 2015.
68. M. Zamani, M. Movahedi, and J. Saia. Millions of millionaires: Multiparty com-

putation in large networks. In ePrint 2014/149.

	Network Oblivious Transfer

