
A Modular Treatment of Cryptographic APIs:
The Symmetric-Key Case

Thomas Shrimpton1, Martijn Stam2, and Bogdan Warinschi2

1 University of Florida
2 University of Bristol

Abstract. Application Programming Interfaces (APIs) to cryptographic tokens
like smartcards and Hardware Security Modules (HSMs) provide users with com-
mands to manage and use cryptographic keys stored on trusted hardware. Their
design is mainly guided by industrial standards with only informal security promises.
In this paper we propose cryptographic models for the security of such APIs. The
key feature of our approach is that it enables modular analysis. Specifically, we
show that a secure cryptographic API can be obtained by combining a secure API
for key-management together with secure implementations of, for instance, en-
cryption or message authentication. Our models are the first to provide such com-
positional guarantees while considering realistic adversaries that can adaptively
corrupt keys stored on tokens. We also provide a proof of concept instantiation
(from a deterministic authenticated-encryption scheme) of the key-management
portion of cryptographic API.

1 Introduction

Key management, i.e. the secure creation, storage, backup, and destruction of keys,
has long been identified as a major challenge in all practical uses of cryptography. To
achieve high levels of security, in practice one commonly relies on physical protec-
tion: store cryptographic keys inside a tamper-resistant device, called a cryptographic
token, and only allow access to the keys (e.g. for performing cryptographic operations)
indirectly through an Application Programming Interface (API). Tokens are widely de-
ployed in practice and range from smart cards and USB sticks to powerful Hardware
Security Modules (HSMs). They are used to generate and store keys for certification au-
thorities, to accelerate SSL/TLS connections and they form the backbone of interbank
communication networks.

A user with access to the token may use the API to perform—securely on the
token—cryptographic operations, such as encryption or authentication of user-provided
data, using the stored keys. A key feature of such APIs is their support for key manage-
ment across tokens. We focus on wrapping, the mechanism to transport keys between
devices by encrypting them under an already shared key. Finally, the API prevents in-
secure or unauthorized use of keys, typically based on attributes and policies. Through
their APIs, the overall distributed architecture provides an increased level of security for
keys, simplifies access control through flexible key-management, and enables modular
application development.

The design and analysis of key-management APIs mainly follows industrial stan-
dards, notably PCKS#11 [23], that are geared towards specifying functionality and in-
teroperability. The standards typically lack a clearly defined security goal, let alone a
rigorous analysis that any security claim is reasonably met. As a result, proper deploy-
ment relies strongly on best practices (undocumented in the public domain); moreover,
tokens are subject to regular successful attacks [2–4,7]. This raises the question whether
the security of cryptographic APIs can be captured and compartmentalized, taking into
account the reality that some keys will leak.

The main symmetric operation employed in key-management, namely the key-
wrapping primitive, is fairly well understood through appropriate models and efficient
implementations [15, 21, 22]. However, the security of the overall design of crypto-
graphic APIs is a far more complicated problem, that only recently received atten-
tion [5, 17, 18]. None of the existing models is entirely satisfactory: they are either
too specific [5, 17]; underspecified while imposing unnecessary restrictions on how
PKCS#11 can be used [18]; or avoid the highly relevant issue of adaptive key corrup-
tion [5, 17]. We provide a more in-depth comparison later in the paper (Section 6). Our
model naturally and unsurprisingly shares various modelling choices with past work:
We keep track of the information concerning which key encrypts which key using a
graph; we maintain information about keys, handles and attributes in a similar way. Our
focus is on the modular analysis where the key-management component can be ana-
lyzed separately from the cryptographic schemes that use the keys, and all of this in a
reasonable corruption model.

Our contributions. We give a formal syntax and security model for cryptographic
APIs, reflecting concepts distilled from PKCS#11. We have aimed for a level of ab-
straction that allows for common deployment “best practices” (e.g. hierachical layer-
ing of managed keys based upon their intended use), without being overly tied to any
particular implementation. Our formalism captures the core symmetric functionalities
exposed by cryptographic APIs. Specifically, management and exporting/importing of
cryptographic keys via the API; and cryptographic operations (e.g. encryption) per-
formed under the managed keys, on behalf of applications requesting these operations
via the API.

To foster modular analysis, we establish security goals for the key-management
system (the abstract “back end” whose state is affected by key-management API calls).
These goals are agnostic toward the particular cryptographic operations the keys will
support. The primitives underlying the cryptographic operations exposed by the API are
also are treated abstractly, as are their corresponding security notions.

Our key technical result shows that—as one would hope and expect—composing a
secure key-management system with a secure primitive yields a secure overall system,
provided certain conditions are met. Remarkably, our composition result holds while
allowing adaptive corruptions of managed keys; we discuss later how we overcome the
well-documented difficulties associated to merging composition and adaptive security
in a single framework.

We also show how to instantiate a secure key-management system based upon deter-
ministic authenticated-encryption (DAE). The DAE primitive was previously proposed

as a method for secure “key-wrapping”, loosely the symmetric encryption of key K1

(and its associated data) under another key K2, ostensibly for the purpose of trans-
porting K1 between devices that share K2. We build upon this functionality to deliver
a (minimal) secure key-management component of a cryptographic API, specifically
one with hierarchical layering of keys. Below, we discuss these contributions in greater
detail.

Our syntax and security model. Our syntax for a cryptographic API abstractly captures
the following abilities: (1) to create keys with specified attributes on a named token;
(2) to wrap, and subsequently unwrap, a managed key for external transport between
tokens; (3) to transport keys directly from one token to another (without (un)wrapping);
and (4) to run (non-key-management) cryptographic primitives on user-provided inputs,
under user-indicated keys. These operations are all subject to the policy enforced by the
token. We include this dependency on the policy in our model, but leave it unspecified.

The security model exposes these capabilities to adversaries who, speaking infor-
mally, attempt to “break” the token by sequences of API calls. In particular, an adver-
sary can create, wrap, and unwrap keys as it wishes, and use these keys in the supported
cryptographic primitives. The realistic multi-token setting is captured by allowing the
adversary to cause direct transfers of keys between tokens (modeling secure injection
of a single key into several tokens, say during the manufacturing process, or by security
officers), and by allowing it to corrupt individual keys adaptively. The latter capabil-
ity models the real possibility that some keys leak, due to for instance partial security
breaches or successful cryptanalysis.

Security with respect to our model will demand that all managed keys that are not
compromised (directly, or indirectly by clever API calls) can be used securely by the
cryptographic primitives. Our focus on the exported primitives, instead of individual
keys, highlights the raison d’être of cryptographic tokens: they should guarantee the
security of the operations performed with the keys that they store.

One salient feature of our model is its generality. Instead of providing a model
only for say an encryption API, we work with an abstract (symmetric) cryptographic
primitive. In brief, we start with an abstract security definition for arbitrary (symmetric)
primitives and lift it to the setting of APIs. Our general treatment has the benefit that
the resulting security definition can be instantiated for APIs that export a large class of
symmetric primitives (including all of the usual ones).

Composition theorem. The main technical contribution of this paper is a modular treat-
ment for cryptographic APIs. As a first step, we isolate the core common component
shared by cryptographic tokens, namely key-management, and provide a separate secu-
rity model for it. Essentially, we define a key-management API (or KM-API, in short)
to be a cryptographic API that allows only key-management operations. We define se-
curity of a KM-API to mean that any key that is not trivially compromised (directly or
indirectly) is indistinguishable from random.

Next, we show how to compose a KM-API and an arbitrary (abstract) primitive.
We require common sense syntactic restrictions to ensure the composition is meaning-
ful (e.g. that the space of keys managed by the KM-API fits the one of the symmetric
primitives). More importantly, the design that we propose requires that each key is

used for either key-management or for keying the primitive, but not for both. Many
of the existent attacks on APIs are the result of careless enforcement of this separa-
tion of key roles. Technically, we enforce this requirement via a mechanism from the
PKCS#11 standard—the security of our construction essentially confirms the validity
of this mechanism.

In a nutshell, to each key an attribute is associated making the key either external
or not.

We ensure the attribute has the desired effect by requiring that it is sticky. This
notion formalizes an integrity property for attributes informally defined by PKCS#11.
It guarantees that once set, the value of an attribute cannot be changed. The following
theorem establishes the security of our design, allowing for the two components to be
designed and analyzed separately.

Theorem 1 (Informal). If CA is a secure KM-API and P is a secure primitive then the
composition of CA and P (as above) is a secure cryptographic API that exports P.

Importantly, the composition theorem is for a setting where adversaries can adap-
tively corrupt keys. Our models rely on game-based definitions, which is the main tool
that we use to reconcile composition and adaptive corruption, two features that raise
well-known problems in settings based on simulation [6, 20].

Construction based on deterministic authenticated encryption. We show that a secure
KM-API can be built upon DAE schemes. In particular, we show that when the wrap-
ping and unwrapping functionalities are implemented by a secure DAE scheme, one
can securely instantiate a KM-API for an abstract “back end” that enforces hierachical
layering of keys. Keys at the lowest layer of the hierarchy are used only to key the cryp-
tographic primitives (we call these external keys), and keys above this are used only
to wrap keys at lower layers (we call these internal keys). Whether a key is external
or internal is specified in that key’s attributes. To wrap external key K1 under internal
key K2, the encryption algorithm of a DAE scheme is used, and the attribtes of key K2

serve as the associated data. (Of course, the KM-API only allows calling applications
to indicate which keys are to be involved, not the actual key values.) The design of our
proposed API ensures that the API policy will enforce layering.

Extensions. Our ultimate goal is to provide usable security models that should facil-
itate the analysis of security tokens in realistic scenarios. In this paper, for simplicity
we restricted attention to the symmetric aspect of APIs only; moreover our security
definition for cryptographic APIs only concerns the primitives they export. We do not
address other properties that can be enforced by token policies, e.g. that internal poli-
cies may restrict operations to authenticated users that log-in to the token. Such policies
play important roles in the logic of applications that rely on tokens. Nonetheless, we
believe our model provides a suitable starting point for further extension. Indeed, we
already incorporate attributes and use a very simple policy to enforce the security of
our composition. We leave identifying and formalizing the intended semantics for other
PKCS#11 attributes and extending to public-key functionality as an open problem.

Acknowledgements This work was supported in part by European Union Seventh
Framework Programme (FP7/2007-2013) grant agreement 609611 (PRACTICE), and
ERC Advanced Grant ERC-2010AdG-267188-CRIPTO. It was also supported by Na-
tional Science Foundation grant CNS-1319061.

2 Cryptographic Primitives

In this section we provide an abstract framework for cryptographic primitives that cap-
tures common goals such as encryption and message authentication. Our abstraction is
tailored specifically for its subsequent use in defining (Section 3) and constructing (Sec-
tion 4) cryptographic APIs. Thus, while our abstraction is rather general the choices
regarding to what to abstract and what to make explicit in our framework are strongly
motivated by the later context.

Standard notions of encryption and authentication (e.g., IND-CPA and EUF-CMA)
are usually defined based on a single key and corruption of this single key is seldom
considered: it typically renders the game trivial (either the adversary wins easily, or win-
ning is information theoretically impossible). Adding explicit corruption to the single-
key security model facilitates moving to the multi-key scenario (that is needed in the
more general API setting). There are also true multi-key definitions in the literature
(e.g. for key-dependent message security), but for technical reasons we require a mod-
ular multi-key definition that is induced by a single-key one.

Syntax. A primitive P is defined by a pair of stateless, randomized algorithms (KgP,AlgP).
Algorithm KgP takes as input some parameter pm and generates a key from some set
Keyspm; here the distribution may depend on the parameter (e.g. which key length to
use). Algorithm AlgP implements the functionality of the primitive, taking as input both
a key and a primary input in, and producing an output out. Without loss of generality,
the definition of the primitive requires only a single formal algorithm. If some func-
tionality is naturally implemented using several algorithms (e.g. one for encryption and
decryption each) these can all be “packed” inside AlgP by tagging the input to AlgP with
a label that indicates which of the natural algorithms is to be executed. This means that
our framework also captures a situation where multiple “types” of primitives (e.g. both
encryption and a MAC) need to be supported, as all relevant algorithms can be neatly
packed in the single AlgP (for which several distinct security notions can be defined,
e.g. one for confidentiality and one for authenticity).

Correctness. Correctness is usually defined as a requirement on a sequence of calls
that involve the algorithms that define a primitive. For instance encrypting an arbitrary
message and subsequently decrypting the ciphertext (under the same key) should return
the original message. Definition 1 captures this idea in the context of arbitrary primi-
tives. For generality, the definition is formulated in a setting with multiple keys.

We consider an adversary that can create keys of its choice for the primitive (using
oracle NEW), and can invoke the algorithms of the primitive, via oracle ALG using the
index i of a key Ki. The experiment maintains a list tr that records the execution trace:

game ExpcorrP
P (A):

i← 0, tr← []

ANEW,ALG

return corrP(tr)

oracle NEW(K):

if K 6∈ Keys then
return
i++

Ki ← K

return Ki

oracle ALG(j, in):

if j > i then return
y←$ AlgP(Kj , in)

tr← tr :: (j, in, out)

return out

Fig. 1. The experiment ExpcorrP
P (A) (with oracles) to define correctness for primitive

P = (KgP,AlgP).

the occurrence of triple (i, x, y) in the trace indicates that AlgP was invoked on key
Ki, with input x and returning y. The correctness of P is captured by a predicate corrP
applied to the execution trace. Usually corrP will be monotone: initially, for the empty
trace, it will be true and, once set to false, it will remain false.

Definition 1. Let (KgP,AlgP) implement a primitive P with Keys ⊇
⋃

pm[Keyspm]. Let
corrP be a correctness predicate and A an adversary, then the incorrectness advantage
of A against (KgP,AlgP) with respect to corrP is defined as

AdvcorrP
P (A) = Pr [ExpcorrP

P (A) = false]

for the experiment ExpcorrP
P (A) as given in Figure 1,

We call P correct with respect to corrP iff for all (terminating) adversaries the ad-
vantage is 0.

Security. Next, we introduce a formalism for specifying security notions for symmetric
primitives. We first consider the case of a single key (which we associate with index 1)
and then extend the formalism to the case of multiple keys.

Single-key scenario. A security notion for primitive P is given by four algorithms
sec = (setup, chal0, chal1, chalaux). Informally, these algorithms define two experi-
ments Exp

1sec(pm)-0
P and Exp

1sec(pm)-1
P which characterize security in terms of an ad-

versary that tries to distinguish between the two. Both experiments maintain a state st
initialized via the algorithm setup.

In experiment Exp
1sec(pm)-b
P (A) (b is either 0 or 1), the adversary has access to the

algorithm AlgP only indirectly through its challenge oracle CHALb and the auxiliary
oracle CHALaux. The behavior of these oracles is defined by the algorithm chalx (for
the relevant x ∈ {0, 1, aux}) which has both access to the game’s state and oracle ac-
cess to the actual primitive algorithm AlgP. Our formalization generalizes many of the
standard definitions for security of cryptographic primitives, where an adversary needs
to distinguish between two “worlds” (modeled here by oracles CHALb with b = 0, 1).
For example, to define indistinguishability under chosen-plaintext attack for probabilis-
tic symmetric encryption schemes, we would instantiate oracle CHALb with a left-right

game Exp1sec-b
P (A):

i← 0

C ← ∅, H ← ∅
pm←$A
K←$ KgP(pm)

st←$ setup

b′←$ACHALb,CHALaux,CORRUPT

return b′

oracle CORRUPT():

if 1 ∈ H then return
C ← {1}
return K

oracle CHALx(q):

(y, st)←$ chalx
AlgP(K,·)(st, q)

if 1 ∈ C and x ∈ {0, 1} then
return

if x ∈ {0, 1} then H ← {1}
return y

Fig. 2. The experiments Exp
1sec(pm)-b
P (A) for the single key security notion 1sec de-

fined by the tuple (setup, chal0, chal1, chalaux) for primitive P = (KgP,AlgP). The
single key in the system has implicit index 1 and is generated using parameter pm se-
lected by the adversary from a set of possible parameters.

oracle that receives a pair of messages m0,m1, checks that they have the same length,
and returns an encryption of mb. Oracle CHALaux would allow the adversary to see en-
cryptions of whatever messages it wants. Security under chosen-ciphertext attacks can
be captured by letting oracle CHALaux also answer decryption queries.

Without loss of generality we assume chalx makes at most one call to AlgP. The
state of the game allows the algorithm chalx to suppress or modify the output of AlgP,
for instance to avoid the decryption of a challenge ciphertext being made available
directly to the adversary. Of course, how a sequence of calls to a chalb and chalaux
interact with each other is specific to the security game.

Our model allows the adversary to corrupt the secret key. The distinction between
the algorithm chalb and the oracle CHALb as an interface to chalb allows us to deal
with corruptions explicitly: if the key is corrupted, the interface CHALb will suppress
the output of the algorithm chalb. We record if the key is used in some challenge oracle
CHALb in set H and record its corruption using set C and then prevent trivial wins by
appropriate checks.

Multi-key scenario. When utilized within tokens, primitives are effectively in a multi-
key setting. Looking ahead, our definition for cryptographic API security essentially
bootstraps from the security of primitives in a standalone scenario as described above to
when used in this more complex scenarios. As an intermediate step, it may be instructive
to see how to extend the abstract framework described in this section from single to
multi-key setting (for keys obtained directly from the key generation algorithm of the
primitive). We include a discussion in Appendix ??.

3 Cryptographic APIs

A cryptographic API is an interface between an untrusted usage environment, and a
trusted environment that stores cryptographic objects (e.g. keys) and carries out crypto-
graphic operations (e.g. encryption). In practice, the trusted environment is instantiated
as a hardware token, or a hardware security module; we will simply refer to the trusted
environment as the token. A user may request, via the cryptographic API, that the token
carry out cryptographic operations on the user’s behalf. In typical scenarios, the user
will also control which key or keys are to be used, by specifying one or more handles to
these keys. However, the cryptographic value of the key (as stored on the token) should
remain hidden from the user and the outside world in general.

To protect the confidentiality and proper usage of exported and imported keys, to-
kens employ key wrapping and unwrapping mechanisms. Oftentimes there are multiple
tokens in the same cryptologic ecosystem. In this case, keys may be exported from one
trusted token to another (via the API). Thus our abstraction includes (a minimal set of)
explicit key management functions, and an interface to use some specific cryptographic
primitive.

The ultimate goal of a cryptographic API is the correct and secure implementation
of some cryptographic primitive and our main target in this section are appropriate
definitions of correctness (Definition 3) and security (Definition 5). These definitions
build on the abstract notion of a cryptographic primitive from Section 2.

As explained in the introduction, the focal point of this paper is on those aspects as-
sociated to key-management, shared by cryptographic APIs. For instance, when wrap-
ping a key, the expectation is that after unwrapping the original, wrapped key emerges
(correctness) and that this key has not leaked (security), e.g. as a result of the wrap-
ping. We provide a separate set of notions relevant for the key management part of a
cryptographic API (Definitions 4, 6, and 7).

3.1 Modeling and Syntax

Tokens, handles, keys, and attributes. Formally, we model a token t as having some
abstract state s ∈ States plus a number of associated handles. For simplicity, we assume
the token identity t is a (unique) natural number and let the token’s initial state consist
of this identity only. When API calls to the token are being made, its state might evolve
arbitrarily.

Handles are part of some set Handles (that itself can be thought of as some fixed, fi-
nite subset of {0, 1}∗). Each handle belongs to a unique token, identified by tkn(h), and
points to an actual cryptographic key value, denoted h.key. Since the key will be stored
on the token tkn(h), the value represented by h.key depends on the token’s state. Since
this state is not static, h.key could change over time. The different notation, tkn(h) ver-
sus h.key, captures the distinction between immutable properties associated to a handle
(possibly for bookkeeping within a cryptographic game) and changeable quantities that
are associated to it directly by the API.

The association between a handle and a cryptographic key is annotated by an at-
tribute, denoted h.attr. For instance, an attribute could indicate that the handle points to
a 128-bit AES key to be used in some specific mode of operation only, say CBC-MAC.

Like the key, the attribute will be stored on the cryptographic token (and could
change over time). We will assume that h.attr ∈ Attributes, where Attributes is some
fixed set of possible attributes. Note that the abstraction to a single attribute only is
without loss of generality, as one can capture say the more traditional setting of many
boolean attributes by a single attribute (in this case a true/false vector).

Our model is purposefully abstract, but it is worth bearing in mind typical im-
plementations as used in practice. For instance, PKCS #11 reliance on ‘objects’ im-
plies that a token’s state will contain a mapping between handles and key–attribute
pairs, plus additional information that helps the token to maintain the security pol-
icy. Thus, for most APIs it will be possible to write the state explicitly in the form
s = (s̃, (h 7→ (key, a))h), where for each handle h, the mapping h 7→ (key, a) indi-
cates the associated key and attribute pair (so h.key = key and h.attr = a), and the
state s̃ contains a snapshot of the token’s past I/O only (which in principle could be
made public without compromising core cryptographic security).

The Application Programming Interface (API). Each token runs an API that allows
the outside world to interface with the keys present on the token. Definition 2 lists the
procedures supported by our abstract API. Intuitively, each of the API procedures has
a clearly specified objective. For instance, there is an API call CA.new(t, a) that is
supposed to create a new key on the token t and returns a fresh handle h such that h.key
is this newly generated key and h.attr = a. Here freshness is global and means that
the handle does not yet occur elsewhere, so that a handle can uniquely be associated
to a token (explicitly embedding the token identity in the handle could facilitate global
freshness). While the syntax thus guarantees uniqueness of the handles returned by the
API calls, there is no guarantee that API calls behave as intended (other than possibly
implied by the correctness properties introduced later).

Definition 2. A cryptographic API CA exporting a primitive P (cf. Section 2) is defined
by the following tuple of algorithms.

– h←$ CA.new(t, a) creates and returns a fresh handle on token t, so tkn(h) = t;
the intention is that h.attr = a and h.key is a newly generated key, drawn from
some set Keys according to a distribution that could for instance depend on a.

– h←$ CA.create(t, key, a) creates and returns a fresh handle on token t, so tkn(h) =
t; the intention is that h.attr = a and h.key = key.

– w←$ CA.wrap(h1, h2) takes as input two handles and runs on the first handle’s
token tkn(h1). It returns some w ∈ CWraps, where CWraps is the space of all
wraps. Supposedly w is a wrap of h2.key tied to h2.attr under key h1.key.

– h̄←$ CA.unwrap(h,w, a) takes as input a handle to use for unwrapping, a wrap
and an attribute string. If unwrapping succeeds, a fresh handle h̄ is created on
tkn(h) and returned. The intention is that h̄.attr = a and h̄.key equals the key that
was wrapped under h.key.

– out←$ CA.alg(h, in) intends to evaluate the primitive AlgP on key h.key and input
in, returning out.

Any call may result in an API error ⊥api. An API for key-management only may omit
the procedure CA.alg.

All of the above commands, but the CA.create, reflect the typical interface available
to the user of a token. We use CA.create as an abstraction of (often non-cryptographic)
mechanisms for transferring keys from one token to another. For example, in the pro-
duction phase the same cryptographic key may be injected in several devices (which are
to be used by the same company).

The procedures of the API directly manipulate the state of one token only, where
the relevant token is either made explicit by the API call (CA.new and CA.create),
or it follows from the handles involved (e.g. CA.wrap(h1, h2) can affect the state of
tkn(h1)). We could make this manipulation explicit by keeping track of the token’s
state as input and output of each of the API’s procedures etc. For readability, we keep
the state of the token implicit and only stress that the commands may not depend on, or
modify, the state of another token.

Policies and attributes. To protect the security of the keys the API will enforce a
policy. For instance, an API may forbid usage of a key intended for authentication to be
used for encryption. To indicate that an operation is not allowed, an API call can return
a policy error message (distinct from possible error messages resulting for instance
from decrypting an invalid ciphertext). For simplicity, we will model all possible policy
errors with a single3 symbol ⊥api.

We will not give a formal definition of what constitutes a policy. Actually, the level
of abstraction of our model makes it somewhat cumbersome to pin down an exact, yet
general concept of a policy. In a practical, multi-token setting, the use of attributes is
useful to enforce consistent yet efficient implementation of a policy across tokens. We
will see a concrete example of this in Section 4 (see Definition 8).

An API can also use the token’s state for this decision (e.g. to prevent wrapping
a sensitive key under a key that is somehow deemed insecure or to avoid circularity).
For instance, a token could keep track of all the calls (with responses) ever made to it
(note that, with the exception of the key value of CA.create queries, this information
can all be made public). If only a single token exists, this leads to a complete history of
the API’s use, which suffices to implement (albeit inefficiently) a meaningful security
policy (cf. [5]).

Enforcing meaning. So far our syntax does not formally give any guarantees that h.key
and h.attr are used by the API in an explicit, meaningful way. The generality of our
notion of state would allow an API to for instance declare some key as h.key but in fact
use a completely different cryptographic value throughout. The KSW definitions, which
use a similar abstract state as our work, share this problem, but leave it unaddressed.

Since working completely abstractly (e.g. making no assumptions on states) seems
to easily lead to difficulties without obvious gains we make explicit assumptions re-
garding the implementations. Our upcoming correctness notion deals with the wrapping
mechanism as a means to transfer keys from token to token. Notice that wrapping in-
volves h.key where h is the ‘source’ handle, and only implicitly involves the associated

3 An extension of our model could consider a more fine-grained level of errors, identifying why
an operation results in an error.

key. Since, we would like to reflect that the actual key is transferred we need to make
explicit the assumption that wraps are linked to actual cryptographic keys. Along sim-
ilar lines, we make explicit the assumption that the cryptographic operations exported
by the API make use of actual keys. The assumption is useful to define and analyze the
composition between an API for key-management with actual primitives. Moreover, we
will use the attributes to create a policy separating keys that can be used by the primi-
tive and those that cannot. This slight loss of generality enables simpler definitions and
analysis and still reflects virtually all designs commonly used in practice.

3.2 Correctness of a cryptographic API

In this section we present a definition of correctness for a cryptographic API. Much
of the discussion and formalization is relevant to the latter sections where we define
security since both for correctness and security we explain how to lift the definitions of
Section 2 from primitives to primitives exported by the APIs.

The main difficulty is an important difference between the interfaces that an adver-
sary has against a primitive and against a primitive exported by an API. In Section 2,
primitive correctness is modeled as a predicate on the execution trace of an adversary,
where the trace keeps track of both the keys that are generated and of the cryptographic
operations that the adversary executes with these keys. Crucially, the trace only included
the indexes of the keys and not their cryptographic values. In contrast, an adversary
against the API refers to the underlying keys using the handles provided by the API.
Notice that the difference goes further, in that several handles may point to the same
cryptographic key.

To bridge this gap we introduce a mapping that associates to each handle some
index. The map idx that we introduce reflects the idea that handles with same index have
associated the same cryptographic key.4 Formally, when defining the oracles used by an
adversary to interact with a cryptographic API, we explicitly keep track of the indexes
associated to handles—we explain below our modeling. We then lift the definitions
from primitives to primitives exported by APIs by (essentially) replacing the handles
with their associated index in the execution trace. We detail below our approach.

Indexing handles by equivalence classes. To each handle h we will assign an index
idx(h) ∈ N as soon as the handle is created following some key-management operation.
This indexing induces an equivalence relation: two handles h1 and h2 are equivalent iff
idx(h1) = idx(h2). We aim to ensure that if two handles are expected to have the same
associated cryptographic key then they should belong to the same class. Notice that we
aim to maintain this property globally, i.e. the mapping handles to indexes is “system
wide" and is not restricted to one particular token.

Formal definitions. Our formal definitions of correctness for key-management (Figure)
and primitive-exporting APIs (Figure) use the oracles in Figure 3 to model the interac-
tion of an adversary with the API via key-management commands. Each oracle reflects

4 Notice that the converse implication is not necessarily true.

oracle TRANSFER(t, h):

h̄← CA.create(t, h.key, h.attr)

if h̄ 6=⊥api then idx(h̄)← idx(h)

return h̄

oracle NEW(t, a):

h̄←$ CA.new(t, a)

if h̄ 6=⊥api then
i++

idx(h̄)← i

key(i)← h̄.key

return h̄

oracle WRAP(h1, h2):

w←$ CA.wrap(h1, h2)

if w 6=⊥api then W ←W ∪ {(h1, h2, w)}
return w

oracle UNWRAP(h,w, a):

h̄←$ CA.unwrap(h,w, a)

S ← {h2 : ∃h1,idx(h1)=idx(h)(h1, h2, w) ∈W}
if S = ∅ then
bad← true

else if h̄ 6=⊥api then
idx(h̄)← minh2∈S idx(h2)

return h̄

Fig. 3. Oracles used in experiments ExpcorrP
CA[P](A) and Expcorrkm

CA (A) that define the
correctness of a crypto API CA. The boxed line is only relevant for the experiment
involving corrkm.

the behavior of the API and contains the bookkeeping that we do to maintain and as-
sign equivalence classes to handles. The games where these oracles are used maintain a
global variable i (initially 0) that counts the number of equivalence classes.

The only way to create a new equivalence class is through the NEW oracle: whenever
oracle NEW is called successfully (i.e. does not return ⊥api) we increment i and assign
it as the index of the handle that is returned. Handles can be added to the equivalence
classes through calling either the TRANSFER or the UNWRAP oracle.

The TRANSFER oracle is used, as explained earlier, for bootstrapping purposes: to
create a wrap on one token and then unwrap it on another one, the two tokens already
need to contain the same key. Oracle TRANSFER models this ability: handle h̄ pointing
to the transferred key has the same index as h which points to the original key.

Dealing with handles created via unwrapping requires some more bookkeeping. We
use set W (initially empty) to maintain all wraps created by the WRAP oracle, together
with the handles involved: we add (h1, h2, w) toW if w was the result of wrapping (the
key associated to) h2 under (the key associated to) h1. When calling UNWRAP(h,w, a)
we use W to test whether w was created by wrapping some h2 under a handle h1
equivalent to h (the set S contains all such h2). If this is the case (S is not empty),
then the newly returned handle is equivalent to h2 and is therefore assigned the same
index. In case a wrap w was created multiple times, the lowest applicable index is
used (if the key-management component is secure, it should not be possible to create
identical wraps under non-equivalent handles). If S is empty, the wrapw is adversarially
generated and, since we do not wish to consider dishonest adversaries for defining the
correctness of a cryptographic API, we set the flag bad to force an adversarial loss.

game ExpcorrP
CA[P](A):

W ← ∅, i← 0, bad← false

tr← []

AALG,O

return corrP(tr) ∨ bad

oracle ALG(h, in):

out←$ CA.alg(h, in)

if out 6=⊥api then
tr← tr :: (idx(h), in, out)

return out

Fig. 4. The experiment ExpcorrP
CA[P](A) for defining the correctness of a crypto API CA

that exports primitive P based on correctness predicate corrP. An adversary additionally
has access to the oracles O given in Fig. 3.

Valid traces. The calls that the adversary makes to the algorithm CA.alg (through its
oracle ALG) are recorded in a similar way as done in the experiment for primitive cor-
rectness (Fig. 1). To account for the possibility that the same key is used via equivalent
handles, we identify the key used in the cryptographic operation by the index of the
handle. For an ALG call, this derived index neatly matches the index of the algorithm
used in our multi-key primitive definition.

Definition 3. Let API CA[P] implement a primitive P and let corrP be a correctness
predicate. Then the incorrectness advantage of A against CA[P] with respect to corrP
is defined as

AdvcorrP
CA[P](A) = Pr

[
ExpcorrP

CA[P](A) = false
]

for the experiment ExpcorrP
CA[P](A) as given in Fig. 4. We call CA[P] correct with respect

to corrP iff for all (terminating) adversaries the advantage is 0.

Note that correctness only really implies consistency, it does not incorporate robust-
ness. There is no guarantee that a successfully wrapped key can in fact be unwrapped at
all, or that a primitive API call will result in an evaluation of the primitive. In both cases,
the policy might well result in ⊥api, in which case the correctness game effectively ig-
nores the output of the corresponding call. As an extreme example, the cryptographic
API that always returns ⊥api is considered correct.

3.3 Correctness of an API’s key management

For the correctness definition above, we only looked directly at the final primitive calls,
ignoring the cryptographic key values. However, intuitively if two handles are equiva-
lent, one might expect that the associated cryptographic keys are identical. This intuition
is captured by the experiment described in Figure 5, where an adversary tries to find a
handle pointing to a key distinct from the key associated to the handle’s index.

Definition 4 (Correctness of the key management). Let CA be a key management
API and A an adversary. Then the advantage of A against CA’s key correctness is
defined as

Advcorrkm
CA (A) = Pr [Expcorrkm

CA (A) = false]

game Expcorrkm
CA (A):

W ← ∅, i← 0, bad← false

h←$AO
return h.key = key(idx(h)) ∨ bad

Fig. 5. The experiment Expcorrkm
CA (A) for defining the correctness of the key manage-

ment component of a cryptographic API CA. An adversary has access to the oracles O
given in Fig. 3.

for the experiment Expcorrkm
CA (A) as given in Fig. 5. We call CA key-correct iff for all

(terminating) adversaries the advantage is 0.

Note that correctness of the key management component of a cryptographic API
does not relate to the attribute. For deployed systems, it is common that equivalent han-
dles are associated using different attributes; moreover, these attributes might change
over time. Nonetheless, some attributes should not easily be changed by an adversary.
For example, it should not be possible to change an attribute that declares a key as
“sensitive” (a PKCS#11 term).

This relates to the well-known notion of stickyness, for which we provide a formal
definition later on (Definition 7).

Cryptographic key wrap assumption. Definition 2 mentions that CA.wrap is sup-
posed to wrap h2.key tied to h2.attr under key h1.key. Implicitly, this assumes that
knowledge of bothw and h1.key suffices to determine h2.key as well. For most schemes
used in practice this is indeed the case, however it does not follow logically from our
abstract syntax (even when taking into account correctness of the key management
component).5 Assumption 2 formalizes the idea that an honestly, successfully generated
wrap w ← CA.wrap(h1, h2) contains sufficient information to recover the wrapped key
h2.key, provided one knows the actual key h1.key used for wrapping, and the attributes
h1.attr, h2.attr associated to the handles in the wrapping command.

Henceforth, we will restrict our attention to schemes satisfying the key wrap as-
sumption (which has direct consequences for the security notion we consider in the
upcoming sections).

Assumption 2 (Key wrap assumption). A cryptographic API CA satisfies the key
wrap assumption iff there exists an extractor U that extracts keys from wraps. Specif-
ically, for all w ← CA.wrap(h1, h2), w 6=⊥api with, at the time of calling, key1 =
h1.key and key2 = h2.key it holds that U(w, key1, h1.attr, h2.attr) outputs key2 with
probability 1.

5 As an example, a scheme could effectively share the key over multiple wraps, where unwrap-
ping fails (outputs ⊥api) unless sufficient shares (wraps) have been received: no single wrap
will allow extraction of the key.

oracle NEW(t, a):

h̄←$ CA.new(t, a)

if h̄ 6=⊥api then
i++

idx(h̄)← i

V ← V ∪ {i}
initclass

return h̄

oracle CORRUPT(h):

C ← C ∪ {idx(h)}
return h.key

oracle TRANSFER(t, h):

h̄← CA.create(t, h.key, h.attr)

if h̄ 6=⊥api then idx(h̄)← idx(h)

return h̄

oracle ATTRIB(h):

return h.attr

oracle WRAP(h1, h2):

w←$ CA.wrap(h1, h2)

If w 6=⊥api then
W ←W ∪ {(h1, h2, w)}
E ← E ∪ {(idx(h1), idx(h2))}

return w

oracle UNWRAP(h,w, a):

h̄←$ CA.unwrap(h,w, a)

if h̄ 6=⊥api then
S ← {h2 : (h1, h2, w) ∈W where

idx(h1) = idx(h)}
if S 6= ∅ then idx(h̄)← minh2∈S idx(h2)

else if idx(h) ∈ L(C) then idx(h̄)← 0

else
i++, idx(h̄)← i, V ← V ∪ {i}
initclass

return h̄

Fig. 6. Oracles common to the security experiments Expsec-b
CA[P](A), Expkm-b

CA (A), and
Expsticky

CA (A), for a crypto API CA that exports P = (KgP,AlgP). The macro initclass
is defined separately for each of the experiments.

3.4 Security of a Cryptographic API

We will consider three types of security. Our primary concern is the security of the
exported primitive (Definition 5), of secondary concern are security of keys managed
internally by the API (Definition 6) and the integrity of the attributes (Definition 7). The
various security experiments to define these notions rely on a set of common oracles,
given in Figure 6. With the exception of CORRUPT and ATTRIB, the oracles match those
for the correctness game (as given in Fig. 3), but with more elaborate internal book-
keeping, whose reasoning is explained below. The oracles NEW and UNWRAP contain
a macro initclass that will be defined depending on the game.

Corrupt and compromised handles. We have explained earlier in the context of the
correctness game for APIs that “honest” wrap/unwrap queries induce an equivalence
relation on handles, and how the equivalence class of a handle can be represented (and
maintained) by an index. For defining the security of APIs we also have to take into
account adversaries that may be actively trying to subvert the system. In addition to
dishonest API calls (e.g. asking for unwrappings of adversarially created wraps), we

will also model corruptions of handles. When an adversary corrupts a handle, the as-
sociated cryptographic key is returned to the adversary. Note that the API itself is not
aware of corruptions. Moreover, corruptions and (dishonest API) calls tend to reinforce
each other, which we model by compromised handles, namely those handles for which
an adversary can reasonably be assumed to know the corresponding key. The notion of
corrupt and compromised handles is based on ideas similar to those used by Cachin and
Chandran [5], and Kremer, Steel, and Warinschi [18].

Corruptions. The premise of cryptographic APIs is that keys should be kept secret and
are stored securely—an adversary does not have access to cryptographic keys. Yet, in
practice keys that are initially stored securely on HSMs might be exported to weaker
tokens that can be breached physically (e.g. by means of side-channel analysis or fault
injection). As a result, the adversary can learn these keys. Such leakage of keys is mod-
eled by corruptions: an adversary can issue a corruption request of a handle to learn
the associated key. In general, one cannot guarantee security for handles that have been
corrupted (cf. the primitive’s security game). Moreover, corruption of a handle automat-
ically leads to corruption of the equivalence class of that handle (as equivalent handles
are presumed to point to identical cryptographic keys). We let C be the set of indices
corresponding to handles that have been corrupted directly by the adversary through
making a corruption query.

Compromised handles. An adversary could issue a query WRAP(h1, h2), receiving a
wrapw 6=⊥api as a result. Subsequent corruption of h1 might then also compromise h2.
Indeed, Assumption 2 states that knowledge of a wrapping key suffices to unwrap (and
learn) a wrapped key, making the compromise of h2 inevitable. Thus, the corruption of
a small set of keys could lead to the compromise of a much larger set.

We let L(C) be the set of indices corresponding to compromised handles (where
C ⊆ L(C)). To identify precisely the set L(C) of compromised equivalence classes,
we keep track of which key (handle) wraps which key by means of a directed graph
(V,E). The vertices of the graph are defined by the equivalence classes associated to
the handles (so a subset of the natural numbers). There is an edge from i to j iff for
some handles h1, h2 with idx(h1) = i and idx(h2) = j the adversary has issued a query
WRAP(h1, h2), receiving w 6=⊥api as a result. For a given graph (V,E) and corrupted
set C ⊆ V , we define L(C) as the set of all vertices that can be reached from C
(including C itself).

Dishonest wraps. Since a wrap is just a bitstring, an adversary can try to unwrap some
w that has not been produced by the API itself (i.e., S = ∅ in UNWRAP(h,w, a)). If
unwrapping succeeds and returns a fresh handle, the security game needs to associate
this handle to some equivalence class. We will consider two options.

Firstly, the unwrapping could have been performed under a handle that has not been
compromised (intuitively, this corresponds to a wrapping forgery). In that case, the
handle returned by the unwrapping will be assumed to create a new equivalence class.
Technically, w is now a wrap of a handle in this new class i under idx(h), yet we do
not add a corresponding edge (idx(h), i) to E. Adding this edge would have resulted
in the new class being compromised as a result of the corruption of idx(h), so that

an adversary could no longer win the primitive game based on the newly introduced
equivalence class. Since the new class is effectively the result of a successfully forged
wrap (as S = ∅), we prefer the stronger definition (i.e. without adding an edge to E)
where an adversary might benefit from a forged wrap.

Secondly, the unwrapping could have been called using a compromised handle.
Since the adversary knows the key corresponding to the compromised handle, creation
of such wraps is likely feasible; moreover, the adversary can be assumed to know the
key corresponding to the handle being returned. To simplify matters, we will use the
equivalence class 0 for all handles that result from unwrapping under compromised
handles. The set C of corrupt handles initially contains the class 0. The index class 0
is special as there are no correctness guarantees for it: if idx(h1) = idx(h2) = 0, it is
quite possible that h1.key 6= h2.key.

Incorporating the primitive’s security game. Intuitively, an adversary breaks a cryp-
tographic API, exporting a primitive P, if and only if he manages to win the primitive’s
security game. Formally, in order to express an adversary’s advantage against the cryp-
tographic API in terms of the abstract security game for the primitive itself, we would
need to interpret an adversary’s actions against a cryptographic API as that of an adver-
sary directly playing the abstract primitive game.

As in the correctness game, we use the equivalence to associate handles in the API
game with keys in the primitive game. Whenever a new equivalence class is created, the
API game creates a new instance of the primitive game by calling st[i]←$ setup() (the
macro initclass takes care of this).

For the API’s challenge oracle we want to draw on the challenge algorithms from
the primitive game. These algorithms themselves expect an oracle that implements the
primitive. In the API’s game the challenge oracle can use the API primitive interface.
If the API outputs ⊥api we suppress the output of the challenge oracle and regard the
challenge call as not having taken place in the primitive’s game (note that the call might
still have had an effect on the API’s state).

As in the multi-key primitive game, at the end of the game we check whether the
adversary caused a breach by challenging on corrupt (or in this case compromised) key
or not. As mentioned before, an alternative (and stronger) formulation would maintain
L(C) ∩H = ∅ as invariant by suppressing any query that would cause a breach of the
invariant (possibly allowing for those queries that the API already caught). However,
our formalism is easier to specify and simplifies an already complex model without
materially changing its meaning.

Note that if a cryptographic API exports several different primitives, each with their
own security notion, one can consider several security notions for the cryptographic
API. One could modify the chalaux algorithm to model joint security.

Definition 5. Let API CA[P] export primitive P and let sec = (setup, chal0, chal1, chalaux)
be a security notion for P. Then the advantage of an adversary A against CA[P] is de-
fined by

Advsec
CA[P](A) =

∣∣∣Pr
[
Expsec-0

CA[P](A) = 1
]
−Pr

[
Expsec-1

CA[P](A) = 1
]∣∣∣ ,

game Expsec-b
CA[P](A):

i← 0

H ← ∅, C ← {0}
W ← ∅, V ← ∅, E ← ∅
b′ ← AO,CHALb,CHALaux

if H ∩ L(C) 6= ∅ then return 0

else return b′

macro initclass:

st[i]←$ setup()

oracle CHALx(h, q):

j ← idx(h)

Run (y, st[j])← chalx
Õ(·)(st[j], q)

where Õ(in) is simulated as follows
out← CA.alg(h, in)

if out =⊥api then abort chalb
by setting y ←
leaving st[j] unchanged

if x ∈ {0, 1} ∧ y 6= then H ← H ∪
{j}
return y

Fig. 7. The security experiment Expsec-b
CA[P](A) for a crypto API CA that exports P =

(KgP,AlgP) with security notion sec = (setup, chal0, chal1, chalaux). The adversary
additionally has access to the oracles defined in Fig. 6 (which is where the macro
initclass is used).

for the experiments Expsec-b
CA[P](A) as given in Fig. 7.

3.5 Security of an API’s key management

When concentrating on the security of the exported primitive, we ignored confiden-
tiality of cryptographic keys and authenticity of associated attributes. However, for the
key-management component of a cryptographic API these are important properties and
we capture these with Definitions 6 and 7, respectively.

We define the security of a key-management API via the experiment Expkm-b
CA (A)

as given in Fig. 8. Here, the goal of an adversary is to distinguish real keys managed
by the API from fake ones generated at random. As usual, we capture this idea via a
challenge oracle parametrized by a bit b which the adversary needs to determine. When
called with handle h as input, the oracle returns the real key associated with h or a
fake key (depending on b). In the process the adversary controls the key-management
API which we model via the oracles in Figure 6. We impose only minimal restrictions
to prevent trivial wins. As before, we assume that for all compromised handles, the
adversary knows the corresponding (real) key, making a win trivial (we can exclude
these wins at the end by imposing that H ∩ L(C) = ∅ as before).

Moreover, notice that under the key wrap assumption (Assumption 2), if a handle
has been used to wrap another key, an adverary may easily distinguish between the key
and a random one by unwrapping: the operation would always succeed with the real
key and would fail with the fake one. We call an index tainted if one of the keys with
that index is compromised, or has been used in a wrapping operation.

We write T (C) for the class of tainted indexes: the adversary loses (the experiment
returns 0) if it challenges a key that belongs to a tainted class.

game Expkm-b
CA (A):

i← 0

H ← ∅, C ← {0}
W ← ∅, V ← ∅, E ← ∅
b′ ← AO
if H ∩ T (C) 6= ∅ then return 0

else return b′

oracle CHALb(h):

j ← idx(h)

H ← H ∪ {j}
y ← fake(j)

if b = 1 then y ← h.key

return y

macro initclass:

fake(i)←$ Kg(a)

Fig. 8. The security experiment Expkm-b
CA (A) for a key-management API CA, relative

to generator Kg. The adversary additionally has access to the oracles defined in Fig. 6.

Definition 6. Let API CA be a key management API. Then the advantage of an adver-
sary A against CA is defined by

Advkm
CA(A) =

∣∣∣Pr
[
Expkm-0

CA (A) = 1
]
−Pr

[
Expkm-1

CA (A) = 1
]∣∣∣ ,

for the experiments Expkm-b
CA (A) as given in Fig. 8.

Our notion of secure key management differs from existing ones, e.g. KSW describe
a fake game where the challenge key is not directly revealed, but instead wraps based
on fake keys are given to an adversary. We believe that our notion is the natural one: in
the key agreement literature (including KEMs) distinguishing between real and random
keys is standard. Our notion of secure key management has some beneficial implica-
tions: indistinguishability of keys (privacy) implies to some extent,6 correctness in(see
the full version of this paper).

Remark 1. A useful observation is that key-management security with respect to ad-
versaries that make polynomially many challenge queries can be reduced via a hybrid
argument to security against an adversary that makes a single challenge query. Specifi-
cally, for any adversaryA that makes qc challenge querries, there is an adversary B that
makes a single challenge query so that Advkm

CA(A) ≤ qc ·Advkm
CA(B)

3.6 Stickyness: Attribute Security

In general, attributes associated to a handle may evolve over time. For instance, an
attribute might indicate whether its handle has been used to perform a wrap operation
or not. Initially this will not be true, but once it has occurred, it will be and should
remain true. Existing API attacks show the importance of the integrity of critical parts
of the attribute (e.g. to prevent a handle from being used for two conflicting purposes).
In PKCS# 11 parlance, a binary attribute is sticky iff it cannot be unset. We model this

6 For information theoretic adversaries the lemma is worthless.

by a stickyness game defined for an arbitrary predicate over the attribute space. Our
notion of stickyness allows no change whatsoever (i.e. a predicate that is initially not
set will have to remain unset). Note that, as expected, there are no guarantees for index
0.

game Expπ-sticky
CA (A):

i← 0, C ← 0

W ← ∅, V ← ∅, E ← ∅
h∗ ← AO
if 0 < idx(h∗) ≤ i then

return π(h∗.attr) 6= pred(idx(h∗))

else return false

macro initclass:

pred(i)← π(a)

Fig. 9. Oracles for defining experiment Expπ-sticky
CA (A) for the partial authenticity of

attributes in a cryptographic API. The adversary additionally has access to the oracles
defined in Fig. 6.

Definition 7. Let CA be a cryptographic API with attribute space Attributes. Let π :
Attributes → {0, 1} be a predicate on the attribute space. Then the advantage of an

adversary A against the stickyness of π equals Pr
[
Expπ-sticky

CA (A) = true
]

with the
experiment as given in Fig. 9.

In the next section we exhibit one particular predicate which specifies whether the
key is intended for key management or for other cryptographic operations. These two
possibilities are modelled through a predicate external applied to attributes: the pred-
icate is set if the key is intended for cryptographic operations other than key manage-
ment.

Remark 2. In this section we have defined secrecy of keys via indistinguishability from
random ones. This may seem like a questionable choice, since API keys are usually used
to accomplish some cryptographic task, and any such use immediately gives rise to a
distinguishing attack. This result can be understood by drawing a useful analogy with
the area of key-exchange protocols. There, security is also defined via indistinguishabil-
ity, even though keys are used later to achieve some other task (i.e. implement a secure
channel). The composition of a good key exchange with a secure implementation of
secure channels should yield a secure channel establishment protocol.

Similarly, one should understand the model of this section as a steppingstone to-
wards the modular analysis of cryptographic APIs of the next section. There, we show
how to combine a key-management API secure in the sense defined in this section with
arbitrary (symmetric) primitives to yield a secure cryptographic API. The security of
the latter is defined by asking that all of the cryptographic tasks implemented by the
cryptographic API meet their (standard) game-based security notion.

4 The Power of Key Management

In this section we show how to compose, generically, a key-management API with an
arbitrary primitive. First we identify some compatibility conditions that permit the com-
position of the two components. Informally, these require that the keys of the API are of
one of two types. Internal keys are used exclusively for key management (i.e. wrapping
other keys). External keys are used exclusively for keying the primitives exported by
the API. Whether a key is internal or external follows from the attribute associated to
the handle through a predicate external. Below, we write h.external for the value of the
external predicate associated to handle h.

Definition 8. Let CA = (CA.init,CA.new,CA.create,CA.key,CA.wrap,CA.unwrap)
be a key-management API and let P = (KgP,AlgP) be the implementation of an arbi-
trary primitive with key space Keys. We say that CA and P are compatible if:

1. there exists an easy to compute predicate external on the attribute space Attributes,
denoted h.external for a particular handle h;

2. if h1.external = true (at call time) then both CA.wrap(h1, h2) and CA.unwrap(h1, w)
return ⊥api;

3. if h.external = true then h.key ∈ Keys.

An abstract primitive P and a compatible key-management API CA can be com-
posed in a generic fashion by exploiting the predicate external, leading to a crypto-
graphic API [CA;P] as formalized in Definition 9 below. Correctness of [CA;P] follows
from correctness of its two constituent components (Theorem 3). Our main composi-
tion result (Theorem 4) states that if both components are secure and, additionally, the
external predicate is sticky, then the composition yields a secure cryptographic API
exporting P. We formalize our construction in the following definition.

Definition 9 (Construction of [CA;P]). Let CA be a key management API defined by
algorithms (CA.init,CA.new,CA.create,CA.key,CA.wrap,CA.unwrap), and let P =
(KgP,AlgP) be a compatible primitive. We define the composition of key management
API CA and the primitive P as

[CA;P] = (CA.init,CA.new,CA.create,CA.key,CA.wrap,CA.unwrap,CA.alg)

where CA.alg(h, x) simply returns AlgP(h.key, x) if h.external = true and returns
⊥api otherwise (note that a call CA.alg(h, x) does not change the API’s state).

The following theorem states that if the components are correct, the result of the
composition is also correct.

Theorem 3 (Correctness of [CA;P]). Let CA be a key-management API and let P =
(KgP,AlgP) be a compatible primitive with correctness notion defined by the predicate
corrP. Then

AdvcorrP
[CA;P] ≤ AdvcorrP

CA + AdvcorrP
P

Then correctness of both CA and P implies correctness of [CA;P].

oracle ALG(h, in):

if h.external = true then
key← h.key

if idx(h) 6= 0 then key← key(idx(h))

out← AlgP(key, in)

tr← tr :: (idx(h), in, out)

else
out←⊥api

return out

Fig. 10. Crucial oracle hop for the [CA;P] correctness proof.

Proof. Consider the game ExpcorrP
[CA;P] with CA.alg specified for the construction at

hand. The resulting oracle ALG is specified in Figure 10 (without the boxed state-
ment). Adding the boxed statement provides an identical game, unless at some point
h.key 6= key(idx(h)). This event is exactly the event that triggers a win in the key-
management’s correctness game (the bad flags in the cryptographic API game and the
key management game coincide). Furthermore, when considering the overall correct-
ness game using ALG with boxed statement included, a win can be syntactically mapped
to a win in the primitive’s correctness game, concluding the proof. ut

Compatibility of a key-management API CA and a primitive (KgP,AlgP) only in-
volved the set from which the primitive’s keys are drawn. While for correctness this
suffices, for security the way keys are distributed matters as well. Recall that KgP takes
as input a parameter pm, whereas a NEW call to the key-management API takes as input
an attribute a. Let a2pm be a function that maps attributes to parameters (or). Let Kg
take in an attribute such that for all attributes a for which the predicate external is set, it
holds that Kg(a) = KgP(a2pm(a)) (i.e. the output distributions of the two algorithms
match).

The following theorem establishes that composing a secure key management API
with a compatible secure primitive yields a secure cryptograhpic API. The proof of the
theorem is in the full version of the paper.

Theorem 4 (Security of [CA;P]). Let CA be a key-management API and let P =
(KgP,AlgP) be a compatible primitive with security notion defined by the tuple of algo-
rithms (setup, chal0, chal1, chalaux). Then for any adversary A against the security of
the cryptographic API [CA;P], there exist efficient reductions B1, B2, and B3 such that

Advsec
[CA;P](A) ≤ 2Advsticky

CA (B1)+qe

(
4Advsticky

CA (B1) + 2Advkm
CA(B2) + Advsec

P (B3)
)

where Advsticky
CA refers to external, Advkm

CA is relative to Kg defined above, and qe is an
upper bound on the number of non-zero index classes that ever contain a handle with
attribute external set (in the game played by A).

Remark 3. To avoid being tied down to a particular cryptographic interface, we have
developed an abstract framework for arbitrary security games. One nice side-effect of
our choice is that we can treat (modularly) settings where APIs leak "fingerprints" of
their external keys via their attributes. Specifically, we can treat these fingerprints as an
additional functionality of the abstract primitive (instead of an attribute). Obviously the
actual primitive needs to be proven secure in the presence of fingerprints.

5 Instantiating a KM-API

We now show how to instantiate a KM-API from a DAE scheme. This KM-API enforces
a “leveled” key hierarchy. The bottom level will contain keys for one or more (unspec-
ified) cryptographic primitives. The top level will contain keys for a DAE scheme. Our
KM-API will enforce the following policy: top-level keys may only be used to (un)wrap
keys at the bottom level, and bottom-level keys may not (un)wrap any key. Intuitively,
keys on the bottom should only be used with their associated cryptographic primitive.

DAE schemes. A deterministic authenticated encryption scheme (DAE) is a tupleΠ =
(K, E ,D). The first component K ⊆ {0, 1}∗ is the set of encryption keys. The encryp-
tion algorithm E and decryption algorithmD both take an input inK×{0, 1}∗×{0, 1}∗
and return either a string or a distinguished value ⊥. We write EVK(X) for E(K,V,X)
andDVK(Y) forD(K,V, Y). We assume there are an associated data space V ⊆ {0, 1}∗
and a message space X ⊆ {0, 1}∗, such that X ∈ X ⇒ {0, 1}|X| ⊂ X and EVK(X) ∈
{0, 1}∗ iff V ∈ V and X ∈ X .

Our convention is that EVK(⊥) = DVK(⊥) = ⊥ for all K ∈ K, V ∈ V . We require
that D and E are each others inverses on their range excluding ⊥: for all K ∈ K, V ∈
V, Y ∈ {0, 1}∗, if there is an X such EVK(X) = Y then we require that DVK(Y) =
X (correctness), moreover if no such X exists, then we require that DVK(Y) = ⊥
(tidyness).

We require E to be length-regular with stretch τ : N× N→ N, meaning that for all
K ∈ K, V ∈ V, X ∈ X it holds that |EVK(X)| = |X| + τ(|V |, |X|). Consequently,
ciphertext lengths can only on the lengths of V and X .

DAE scheme security. For integer ` ≥ 1 we define the advantage of adversaryA in the
`-key left-or-right DAE with corruptions experiment as

Adv`-dae-crptΠ (A) =
∣∣∣Pr

[
Exp`-dae-crpt-0Π (A) = 1

]
−Pr

[
Exp`-dae-crpt-1Π (A) = 1

]∣∣∣ ,
where the probability is over the experiment in Fig. 11 and the coins ofA. Without loss
of generality, we assume that the adversary does not repeat any query, and that it does
not ask queries that are outside of the implied domains of its oracles.

As a special case of this, we also define the advantage of adverary A in the `-key
left-or-right DAE experiment as

Adv`-daeΠ (A) =
∣∣∣Pr

[
Exp`-dae-0Π (A) = 1

]
−Pr

[
Exp`-dae-1Π (A) = 1

]∣∣∣ ,

game Expdae-crpt-b
Π,` (A):

I, C ← ∅
K1,K2, . . . ,K`←$K
b′←$AEnc,LR,Dec

return b′

oracle Enc(i, V,X):

return EVKi
(X)

oracle Reveal(i):

if i ∈ I then return
C ← C ∪ {i}
return Ki

oracle LR(i, V,X0, X1):

if i ∈ C then return
if |X0|+τ(|X0|, |V |) 6= |X1|+
τ(|X1|, |V |) then return
I ← I ∪ {i}
return EVKi

(Xb)

oracle Dec(i, V, Y):

if i ∈ C then return
X ← ⊥
if b = 1 then X ← DVKi

(Y)

return X

Fig. 11. The experiments Exp`-dae-crpt-bΠ (A) for defining left-or-right DAE security
with adaptive key-corruption. To prevent trivial wins, we make the following assump-
tions on the adversary: (1) it does not ask (i, V, Y) to its Dec-oracle if some pre-
vious Enc-oracle query (i, V,X) returned Y , or if some previous LR-oracle query
(i, V,X0, X1) returned Y ; (2) it does not ask (i, V,X) to its Enc-oracle if some previ-
ous Dec-oracle query (i, V, Y) returned X; (3) if (i, V,X) is ever asked to the Enc-
oracle, then no query of the form (i, V,X, ·) or (i, V, ·, X) is ever made to the LR-
oracle, and vice versa.

where Exp`-dae-bΠ is defined by modifying Fig. 11 to no longer include the Enc or
Reveal oracles, the sets I, C, and any references to these. The applicable restrictions
on adversarial behavior carry over.

We note that this notion differs from the DAE security notion first given by Rogaway
and Shrimpton [22]. We use a left-or-right version, more along the lines of Gennaro and
Halevi [15] because it suits our needs better.

A standard “hybrid argument” provides a proof of the following theorem, along
with the description of the claimed adversary B. We omit this proof.

Theorem 5. [1-key left-or-right DAE implies `-key left-or-right DAE with corrup-
tions.] Fix an integer ` ≥ 1. Let Π = (K, E ,D) be a DAE scheme with associated-data
space V , message space X , and ciphertext-expansion function e. LetA be an adversary
compatible with the `-key DAE advantage notion. Let A ask qi LR-queries of the form
(i, ·, ·, ·) and pi Dec-queries of the form (i, ·, ·), and have time-complexity t. Then there
is an adversary B that makes black-box use of A such that

Adv`-dae-crptΠ (A) ≤ `Adv1-dae
Π (B)

where B asks at most maxi{qi} LR-queries and maxi{pi} Dec-queries.

Building a KM-API from a DAE scheme. Assume that there exists an easy to compute
predicate external on the attribute space Attributes ⊆ {0, 1}∗, and assume that sam-

pling attributes for which the predicate holds, respectively does not hold, both are easy.
Recall that, as before, for a particular handle h, we use the shorthand h.external for the
predicate evaluated on h.attr.

Let KgP be the key generation for some primitive with key space Keys and let pm
be a function that maps attributes to parameters (or). Let Π = (K, E ,D) be a DAE-
scheme with associated-data space V = Attributes and message-space X that contains
Keys. Define Kg : Attributes→ Keys∪K to be the algorithm that, on input an attribute
a that satisfies external, samples from Keys according to KgP(pm(a)) and otherwise
samples uniformly from K.

Before specifying the algorithms that comprise our KM-API, let us detail our as-
sumptions on the state of tokens with its scope. We assume that all tokens have state of
the form s = (s̃, (h 7→ (key, a))h), where for each handle h, the mapping h 7→ (key, a)
indicates the associated key and attribute pair (so h.key = key and h.attr = a), and the
state s̃ contains a snapshot of the token’s past I/O only. Let fresh be a mechanism that
creates fresh (unique) handles on a per token basis.

With all of this established, the algorithms of our KM-API are defined as follows:

– CA.new(t, a): Create a fresh handle h on token t by calling fresh(t). SampleK←$ Kg(a)
and update the state of token t to reflect the new mapping h 7→ (K, a). Return h.

– CA.create(t,K, a): Create a fresh handle h on token t by calling fresh(t) and up-
date the state on token t to reflect the new mapping h 7→ (K, a). Return h.

– CA.wrap(h1, h2): If h1.external∨¬h2.external then return ⊥api. Otherwise, w ←
Eh2.attr
h1.key

(h2.key). Return w.

– CA.unwrap(h,w, a): If h.external return ⊥api. Compute K ← Dah.key(w). If K =

⊥ then return⊥api. Otherwise, create a fresh handle h̄ and update the state on token
tkn(h) to reflect the new mapping h̄ 7→ (K, a). Return h̄.

Theorem 6. Fix a nonempty set Keys. Let Π = (K, E ,D) be a DAE-scheme with
associated-data space V = Attributes and message-spaceX that contains Keys. Let CA
be the KM-API just described, and let A be an efficient KM-API adversary asking a
single challenge query. Let qn be the number of NEW-oracle queries made by A in its
execution, and let ` ≤ qn be the number of these that produce an internal key. Then
there exist efficient adversaries B,F for the `-key DAE with corruptions experiment
such that

Advkm
CA(A) ≤ 2Adv`-dae-crptΠ (F) + (qn − `)Adv`-dae-crptΠ(B)

6 Related work.

Symbolic models for API security. Given that many attacks against APIs rely on log-
ical flaws rather than weak cryptography a large body of work addresses their secu-
rity using symbolic models. The first set of attacks were discovered by Longley and
Rigby [19], Bond [3], and Clulow [7]. More recently, Cortier, Keighren, and Steel [8],
Delaune, Kremer, and Steel [13], and Bortolozzo et al. [4] uncovered further vulnerabil-
ities by using automated tools. Security models and proofs of security include the work

of Courant and Monin who use Coq to analyze a variant of IBM CCA API [11] and
Cortier, Keighren, and Steel [8]. Fröschle and Steel [14] and Cortier and Steel [9] ana-
lyze a fragment of the of PKCS#11 standard. Newer models consider key-management
that employs asymmetric cryptographic [12] and revocation of keys [10]. While sym-
bolic models are suitable for finding attacks, security proofs are less meaningful—in
particular they do not a priori imply security with respect to the types of stronger com-
putational models that we develop in this paper.

The Cachin–Chandran model [5]. This is the first computational security model for a
cryptographic API. The model is based on a particular design that relies on a centrally
located server which keeps track of all key-management operations (how realistic the
presence of such a server is in the distributed environment in which tokens typically
operate is unclear).

The security model is intrinsically stated in terms of this suggested implementa-
tion of an API by hardwiring into the syntax of what constitutes an API their specific
implementation choices (e.g. how and when certain attributes change, how and what in-
formation the overall internal state of the token should maintain). Clearly this severely
restricts the model’s applicability. For example, the security of the wrap scheme is hard-
wired into the model and essentially demands that the wrap operation be implemented
with a probabilistic scheme—schemes employing a deterministic wrapping mechanism
would be ruled insecure under the model (in particular our key-management scheme is
not captured as our tokens need not keep track, internally, of the attributes associated to
keys).

From a security perspective, just like in our model, the adversary has access to the
full interface of the token and aims to break the cryptographic functionality that the
token provides. Yet, there are three aspects—we believe shortcomings—of the Cachin–
Chandran model on which our model significantly improves. Firstly, as stated already,
the Cachin–Chandran model rules out (either explicitly or by implication) some very
reasonable and secure implementations of a cryptographic API. Secondly, aliasing is-
sues caused by the possibility that a key can have multiple distinct handles pointing to it
are sidestepped in the Cachin–Chandran model (essentially, unwrapping of wraps that
were not previously created is not permitted). Finally, the corruption model considered
in the Cachin–Chandran model is restricted to users, which implies that an adversary
can then act on that user’s behalf. However, there are no further implications to the ex-
periment, as acting on behalf of a user does not give access to any keys. Consequently,
the notion of corrupted or compromised keys is absent in the Cachin–Chandran model.

Our model makes only minimal assumptions about the inner-workings of a crypto-
graphic API (it allows but certainly does not impose a central server for the implemen-
tation). Our security model carefully keeps track of the equivalence classes on handles
that the wrap/unwrap operations give rise to. More importantly, we explicitly allow for
adaptive corruption of API keys and demand that any other key that is not directly or
indirectly affected by corruptions stays secure.

The Kremer–Steel–Warinschi model [18]. The KSW computational model7 fixes some
of the shortcomings of the Cachin–Chandran model. In particular, it presents definitions

7 The paper also introduces two other related models: an idealized and a symbolic one.

for the syntax and security of an encryption-exporting API not driven by any particular
implementation and allowing adaptive corruption of keys. The syntax is single token
and the security requirements imposed are incompatible with PKCS#11 implementa-
tions: all attributes need to be sticky, whereas PKCS#11 mandates that some attributes
change during operations. Interestingly, while the Cachin-Chandran model imposes that
wrapping be implemented with a probabilistic encryption scheme, the modelling choice
adopted by the KSW model enforces wrapping to be deterministic. Perhaps worse, the
high level of abstraction led to underspecified, malformed definitions.8

In contrast, we consider a multi-token environment and only surface minimal as-
sumptions that avoid the underspecification in the KSW model. Our security notion
is more relaxed. For example, for key-management APIs we only demand that the
application keys are secret, which allows for both probabilistic and deterministic so-
lutions to the key-wrap problem. Crucially, we show that our notion of security for
key-management APIs is composable, whereas no such result is known to hold for the
KSW model.

Universally Composable Key-Management [17]. This paper is, in spirit, closest to ours.
It aims to provide a compositional framework where key-management can be analyzed
separately from the other cryptographic operations that tokens may export. The formal-
ization relies on the universal composability framework (as refined by Hofheinz and
Shoup [16]) and consists of an ideal key-management functionality which, as usual,
should be emulated by a secure implementation. The framework naturally encompasses
multi-token scenarios which are simply distributed implementations of the function-
ality and should guarantee the desired guarantee: the implementation can replace the
functionality in any other scenario.

Since the underlying definitional framework relies on simulation, the model does
not tolerate well adversaries that adaptively corrupt keys (we discuss this issue below),
so the adversary is only allowed static corruptions. An additional issue is that in simu-
lation based settings keys cannot be freely passed around between functionalities. The
solution adopted here employs a cumbersome capability-based mechanism to model
the interaction between key-management and other cryptographic operations. The key-
management functionality is not fully agnostic of the primitive in which the managed
keys are to be used. Furthermore, the key-management functionality has hardwired a
wrapping algorithm (which needs to be deterministic, authenticated and secure against
related-key attacks).

We avoid all of these shortcomings. Our construction is mostly oblivious to the
primitive in which keys are used and allows various instantiations where wrapping can
be either probabilistic or deterministic. Our use of game-based definitions enables the
proof of the composition theorem even with adaptive corruptions.

8 For example, the formalization crucially relies on the notation s[key(h)
$7→ k0] which indicates

some state s in which key(h) has been replaced with the randomly chosen k0. However, given
the abstract notion of state, it is unclear what this state change even means. For instance, if
another handle points to the same key, does that handle’s key also get affected? Is the state
change persistent? Is k0 drawn anew each time?

Computationally sound API analysis. Recently, Scerri and Stanley-Oakes have pro-
posed an approach for the analysis of key-management APIs [24] using the framework
of Bana and Comon [1]. This framework allows to model and reason about crypto-
graphic systems using a high-level of abstraction and then use a general theorem that
links the results with security in a standard computational model. The approach used
by Scerri and Stanley-Oakes is similar to ours in that they treat the key-management
component of APIs separately and retrieve the security of the overall API through a
composition theorem that considers the use of API keys in symmetric encryption. That
work provides a more detailed treatment of API policies and benefits from the simple,
axiomatic way of reasoning about security of protocols. The main drawback is that the
adversary is only allowed a constant number of queries to the API.

7 Conclusion

We propose models that capture the core security guarantees that cryptographic and
key-management APIs should provide. Our treatment is general, in that we do not con-
sider a particular primitive (or primitives) but rely on an abstraction that allows multiple
instantiations. Our work opens several interesting research avenues. We currently treat
policies abstractly, and only indicate their influence on tokens as part of our execution
model. It would be interesting to investigate further additional guarantees for tokens
that relate to secure policy enforcement. For example, useful policies may attempt to
ensure that certain keys are used only by certain users and only for a restricted set of
operations. Such guarantees can be defined and analyzed in an extension of our model
that incorporates the notion of token users and formalizes the type of restrictions envi-
sioned by the policy. In this paper we consider only the management of symmetric keys.
It would be useful to extend our treatment to include private keys for the asymmetric
cryptographic primitives that are part of a standard PKCS#11 interface.

References

1. Bana, G., Comon-Lundh, H.: Towards unconditional soundness: Computationally complete
symbolic attacker. In: Degano, P., Guttman, J.D. (eds.) Proc. 1st Principles of Security and
Trust (POST’12). LNCS, vol. 7215, pp. 189–208. Springer, Heidelberg (2012)

2. Bardou, R., Focardi, R., Kawamoto, Y., Simionato, L., Steel, G., Tsay, J.K.: Efficient
padding oracle attacks on cryptographic hardware. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 608–625. Springer, Heidelberg (Aug 2012)

3. Bond, M.: Attacks on cryptoprocessor transaction sets. In: Koç, Çetin Kaya., Naccache, D.,
Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 220–234. Springer, Heidelberg (May 2001)

4. Bortolozzo, M., Centenaro, M., Focardi, R., Steel, G.: Attacking and fixing PKCS#11 se-
curity tokens. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 10. pp.
260–269. ACM Press (Oct 2010)

5. Cachin, C., Chandran, N.: A secure cryptographic token interface. In: Proc. 22th IEEE Com-
puter Security Foundations Symposium (CSF’09). pp. 141–153. IEEE Computer Society
Press (2009)

6. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation.
In: 28th ACM STOC. pp. 639–648. ACM Press (May 1996)

7. Clulow, J.: On the security of PKCS#11. In: Walter, C.D., Koç, Çetin Kaya., Paar, C. (eds.)
CHES 2003. LNCS, vol. 2779, pp. 411–425. Springer, Heidelberg (Sep 2003)

8. Cortier, V., Keighren, G., Steel, G.: Automatic analysis of the security of XOR-based key
management schemes. In: Proc. 13th International Conference on Tools and Algorithms
for Construction and Analysis of Systems (TACAS’07). pp. 538–552. No. 4424 in LNCS,
Springer, Heidelberg (2007)

9. Cortier, V., Steel, G.: A generic security API for symmetric key management on crypto-
graphic devices. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 605–
620. Springer, Heidelberg (Sep 2009)

10. Cortier, V., Steel, G., Wiedling, C.: Revoke and let live: a secure key revocation api for
cryptographic devices. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 12. pp. 918–
928. ACM Press (Oct 2012)

11. Courant, J., Monin, J.F.: Defending a bank with a proof assistant. In: WITS. pp. 87–98 (2006)
12. Daubignard, M., Lubicz, D., Steel, G.: A secure key management interface with asymmetric

cryptography. In: POST 2014. pp. 63–82 (2014)
13. Delaune, S., Kremer, S., Steel, G.: Formal analysis of PKCS#11. In: Proc. 21th IEEE Com-

puter Security Foundations Symposium (CSF’08). pp. 331–344. IEEE Computer Society
Press (2008)

14. Fröschle, S., Steel, G.: Analysing PKCS#11 key management APIs with unbounded fresh
data. In: Proc. Joint Workshop on Automated Reasoning for Security Protocol Analysis and
Issues in the Theory of Security (ARSPA-WITS’09). Lecture Notes in Computer Science,
vol. 5511, pp. 92–106. Springer (2009)

15. Gennaro, R., Halevi, S.: More on key wrapping. In: Jacobson Jr., M.J., Rijmen, V., Safavi-
Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 53–70. Springer, Heidelberg (Aug 2009)

16. Hofheinz, D., Shoup, V.: GNUC: A new universal composability framework. Journal of
Cryptology 28(3), 423–508 (Jul 2015)

17. Kremer, S., Künnemann, R., Steel, G.: Universally composable key-management. In: Cramp-
ton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 327–344.
Springer, Heidelberg (Sep 2013)

18. Kremer, S., Steel, G., Warinschi, B.: Security for key management interfaces. In: Proc. 24th
IEEE Computer Security Foundations Symposium (CSF’11). pp. 266–280. IEEE Computer
Society Press (2011)

19. Longley, D., Rigby, S.: An automatic search for security flaws in key management schemes.
Computers and Security 11(1), 75–89 (March 1992)

20. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: The non-
committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–
126. Springer, Heidelberg (Aug 2002)

21. Osaki, Y., Iwata, T.: Further more on key wrapping. IEICE Transactions 95-A(1), 8–20
(2012)

22. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer, Heidelberg
(May / Jun 2006)

23. RSA Security Inc.: PKCS#11: Cryptographic token interface standard (June 2004)
24. Scerri, G., Stanley-Oakes, R.: Analysis of key wrapping APIs: Generic policies, computa-

tional security. In: Proc. 29th IEEE Computer Security Foundations Symposium (CSF’16).
IEEE Computer Society Press (2016)

