Arx: A Strongly Encrypted Database System

Rishabh Poddar

Tobias Boelter

Raluca Ada Popa

UC Berkeley

Abstract

In recent years, encrypted databases have emerged as
a promising direction that provides data confidentiality
without sacrificing functionality: queries are executed
on encrypted data. However, existing practical propos-
als rely on a set of weak encryption schemes that have
been shown to leak sensitive data.

In this paper, we propose Arx, the first practical and
functionally rich database system that encrypts the data
only with strong encryption schemes. Arx protects the
database with the same level of security as regular AES-
based encryption, which by itself is devoid of function-
ality. We show that Arx supports real applications such
as ShareLatex and a health data cloud provider, and that
its performance overhead is modest.

1 Introduction

Due to numerous and massive data breaches [28, 42], the
public concern over privacy and confidentiality is likely
at one of its peaks today. Unfortunately, protecting the
data is not as easy as encrypting it because encryption
precludes useful computation on this data.

In recent years, encrypted databases [45, 13, 54] have
emerged as a promising direction that provides both con-
fidentiality and functionality by running queries on en-
crypted data. CryptDB [45] has shown that such a di-
rection can be practical and opened up a rich line of
work [13, 54]. The demand for such systems is demon-
strated by the adoption in industry in only a few years,
despite being a radical technology. A few examples
are Microsoft’s Always Encrypted Service [47] currently
deployed as part of SQL Server 2016, Skyhigh Net-
works [49], CipherCloud [48], Google’s Encrypted Big
Query [46], SAP’s SEEED [29], Lincoln Labs [33], as
well as startups such as IQCrypt [3]. Most of these ser-
vices are NoSQL databases of various kinds showing
that a certain class of encrypted computation suffices for
many systems.

While existing systems provide strong security and are
sufficient for a class of applications, there are many other
applications for which they either leak significant private
data or cannot support. The reason is that they rely on
weak encryption schemes to process equality and order
operations, such as deterministic and order-preserving
(OPE) encryption [17, 18, 44]. These schemes tell the at-
tacker equality relations (including the frequency count

of every value), and the order of different values. Previ-
ous work [36, 39] has shown that an attacker can glean
significant private data from these encryption schemes.

It would be ideal to have a database encrypted with
the strong standard of encryption today, such as when
using regular AES encryption, but somehow still be able
to compute on it. This level of security is called IND-
CPA (indistinguishability under chosen plaintext attack).
Indeed, fully homomorphic encryption (FHE) [25] pro-
vides such security and allows full functionality, but
it is still prohibitively impractical [26]. Searchable-
encryption-based databases [20, 23], while more prac-
tical, are significantly limited in functionality (not sup-
porting basic order queries and aggregates) and are inef-
ficient for write operations, as we elaborate in §12.

In this paper, we propose Arx, the first practical and
functionally rich database system that encrypts the data
only with strong encryption schemes. Arx protects each
data item with IND-CPA security, the same level of se-
curity as FHE or when encrypting each data item with
regular encryption into an unfunctional database. No de-
cryption key ever reaches the server and Arx does not
rely on trusted hardware at the server.

In fact, paradoxically, Arx uses almost exclusively

AES, an encryption scheme that cannot compute. Even
range queries and summation are implemented using
AES. This not only enables strong security guarantees,
but helps performance as well due to hardware imple-
mentations of AES. To achieve this, Arx introduces a set
of new mechanisms, all of them having one insight in
common:
Instead of embedding the computation into special en-
cryption schemes as in FHE and CryptDB, Arx embeds
the computation into data structures, which it builds on
top of traditional encryption schemes.

Arx introduces two new database indices, Arx-RANGE
for range and order-by-limit queries, and Arx-EQ for
equality queries. While Arx-RANGE can be used for
equality queries as well, Arx-EQ is substantially faster.
Both indices are data structures built on top of AES.

To provide rich computation with strong security, Arx-
RANGE uses a cryptographic tool for one-time obfusca-
tion at each node in an index tree. This allows running an
obfuscated program at each index node that implements
the desired comparisons without leaking the data it com-
pares. Inspired by the theoretical literature on running



generic programs in the cloud [24], Arx-RANGE enables
the server to traverse such an encrypted index by itself.
While such generic schemes are prohibitively slow, we
build an index that is practical by designing for our con-
crete setting. For security, each such index node may
only be used once, so Arx-RANGE essentially destroys
itself for the sake of security while computing. Never-
theless, only a logarithmic number of index nodes are
destroyed for each query, and Arx provides an efficient
repair procedure. Arx also uses Arx-RANGE to speed up
aggregations by transforming an aggregate into a lookup
of a logarithmic number of nodes.

Arx-EQ works by embedding a counter into each re-
peating value. This ensures that the encryption of two
equal values is different and the server does not learn
frequency information. At the same time, this enables
building a regular database index over the encryptions.
When searching for a value v, the client can provide a
small token to the server, which the server can expand
into many search tokens for all the occurrences of v.

Because of the new indices, index and query planning
becomes challenging in Arx. The application’s devel-
oper specifies a set of regular indices and, as a result, ex-
pects a certain asymptotic performance. However, there
is no direct mapping between regular indices and Arx in-
dices because Arx’s indices pose new constraints. The
main constraints are: the same index is not used for both
= and > operations, an equality index on (a,b) cannot
be used to compute equality on a alone, and Arx can
compute range queries only via Arx-RANGE. With these
constraints in mind, we designed an index planning al-
gorithm that guarantees the expected asymptotic perfor-
mance while building few additional indices.

Finally, we designed Arx’s architecture so it is
amenable to adoption. As [43] discusses, two lessons
greatly facilitated the adoption of the CryptDB system:
do not change the DB server and do not change appli-
cations. Arx’s architecture, presented in Fig. 1, accom-
plishes these goals. It employs two proxies between the
application and the DB server, which speak Arx language
internally, but export the API of the DB server externally.
The server proxy, in particular, converts encrypted pro-
cessing into regular queries to the DB server.

We implemented Arx on top of MongoDB, a popular
NoSQL database, and plan to open source our implemen-
tation. We show that Arx supports a wide range of real
applications, such as ShareLaTeX [9], the Chino health
data platform [2, 10], NodeBB forum [6], Leanote [4],
and three others. We show that Arx adds modest perfor-
mance overheads. For example, Arx decreases through-
put for ShareLatex by 11% and YCSB’s throughput by
3%-9%. We are collaborating with a health data cloud
provider, Chino [2], for an initial deployment of Arx.
Chino provides a MongoDB-like interface to medical

web applications (which run on premises of hospitals).
This serves the European medical project UNCAP [10],
which involves 11 hospitals in 6 countries. The leaders
of both UNCAP and Chino are interested in using Arx to
secure their database, and are collaborating with us.

2  Overview

2.1 Model and Threat Model

Arx considers the model of an application that stores sen-
sitive data at a database (DB) server, as in Fig. 1. The DB
server can be hosted on a private or public cloud.

Arx targets attackers to the database server. Hence, our
threat model assumes that the attacker does not control or
see the data on the client-side (users, the application, and
Arx’s client proxy), and may only access the server-side
(Arx’s server proxy and the database servers).

Arx considers powerful server-side attackers. Such at-
tackers include curious employees of a cloud provider,
hackers breaking into the database servers, or subpoenas.
The attacker can see all the information at the server: the
entire contents of the database, any data or keys stored
in memory, and any network messages received by the
server. Hence, if the decryption key is in main memory,
the attacker can reach it and decrypt the database. Arx
does not rely on any trusted hardware at the server. The
attacker is passive, that is, the attacker does not mod-
ify or delete the contents of the database or query re-
sults. In this paper, we do not focus on actively mali-
cious attackers; the techniques to expand protection to
such attackers are orthogonal and already exist in the lit-
erature [57, 32, 38].

This scenario corresponds to a set of use cases, both
in the private and the public cloud. Microsoft, which
uses such technology in its SQL Server, lists these use
cases [47]. For example, Chino [2] is a database cloud
provider for medical data. Application servers from the
UNCAP project running at hospitals store patient infor-
mation at Chino. Using Arx protects the confidential-
ity of the patient data against attackers and employees of
Chino. In the private cloud setting, Arx helps remove the
DB server from the trust perimeter.

2.2 Architecture

Fig. 1 shows Arx’s architecture. Arx introduces two
components between the application and the DB server:
a trusted client proxy and a server proxy. The client
proxy exports the same API as the DB server to the ap-
plication so the application does not need to change. To
avoid changing the DB server, the server proxy interacts
with the DB server by calling its unmodified API (e.g. is-
suing queries); in other words, the server proxy behaves
as a regular client of the DB server. Arx cannot use user-
defined functions instead of the server proxy because the
proxy must interact with the DB server multiple times



Application Server

\ 4

5 lanner | o
[ ) : P ,
—-—A—\> query |
: ~| query
: < rewriter [«
P '/—‘\> ~ result =]
. Application Client Proxy

\ 4
A
\ 4

Unmodified DBMS
under attack

'@ »
< >

Server Proxy

Figure 1: Arx’s architecture: A trusted client proxy deployed at the application server, and an untrusted server proxy deployed
at the DBMS server. The client proxy intercepts queries and encrypts sensitive information. The server proxy maintains indices
over the encrypted data, and executes incoming queries. Shaded boxes depict system components introduced by Arx, and unshaded
boxes represent existing components. Locks indicate that sensitive data at the component always remains strongly encrypted.

and run DB queries as part of one invocation, which is
not possible from a UDF in many databases, including
MongoDB.

The client proxy stores the master key. It rewrites
queries, encrypts sensitive data, and forwards the en-
crypted queries to the server proxy for execution along
with helper cryptographic tokens. It forwards any queries
not containing sensitive fields directly to the DB server.
The server proxy helps the server perform encrypted pro-
cessing that requires changes to its regular processing.

The client proxy is lightweight: it does not store the
database and does much less work than the server. The
client proxy stores metadata (schema information) and
a small optional cache. In almost all cases, the client
proxy processes only the results of queries (e.g., to de-
crypt them). The server runs the expensive part of DB
queries, which is filtering and aggregating many docu-
ments into a small result set. The client proxy rarely does
more work than this: as discussed in §4, there is a cor-
ner case when the client proxy processes the results of a
partial set of filters instead of all the filters.

2.3 Developer API

For concreteness, we use MongoDB/NoSQL terminol-
ogy such as collections (for RDBMS tables), documents
(for rows), and fields (for columns), but we use SQL for-
mat for queries because we find MongoDB’s JS format
harder to read. While our implementation is on top of
MongoDB, we tried to keep Arx’s design applicable to
other databases.

Following the example of Microsoft’s SQL
Server [47] and Google’s Encrypted BigQuery [46], Arx
requires the developer to declare what operations will
run on sensitive fields because this results in a more
efficient system.

To use Arx, an application developer must specify:

1. which fields are sensitive and should be encrypted,

2. the operations that run on sensitive fields.

The second can also be automatically inferred given a
complete query trace.

For the first, the developer uses the API: f collec-
tion.sensitive = { field,: info, ..., field,: info, },
specifying the fields in a collection that are sensitive.
“info” is optional but if provided it increases perfor-
mance of Arx. “info” should specify “unique” if the val-
ues in the field are unique. Primary keys are inferred
by Arx automatically to be unique. Fields such as SSN
or driver’s license are unique. Moreover, specifying the
maximum length in bits for these fields helps Arx choose
a more effective encryption scheme. In a database that
has a schema such as MySQL (which is not the case
with MongoDB), Arx can infer this information from the
schema.

For the second, Arx needs to know the query patterns
that will run on the database. Concretely, Arx needs to
know what operations run on what fields, but Arx does
not need to know what constants will be queried for. For
example, for the query SELECT ID FROM T WHERE
age = 10, Arx needs to know that there will be a pro-
jection on ID and an equality on age. The developer
can either specify these operations to Arx or can provide
a query trace from a run of this application and Arx will
automatically identify them.

2.4 Example

Let’s consider a running example. We have a collec-
tion patients containing medical information about
various patients, such as ID, age, diagnosis, and
days_in_hospital. The developer specified that all
fields in the collection are sensitive that the application
filters by “age >”. As aresult, the Arx planner decides
to maintain an Arx-RANGE index on age at the server.
Whenever the application inserts a document into the
collection, the client proxy encrypts all values in the doc-
ument to be inserted using standard encryption, as well
as gives cryptographic tokens to the proxy server needed
to insert the encrypted age value into Arx-RANGE.
When the application issues a query of the form
SELECT ID FROM patients WHERE age > 80,
the following happens. The client proxy provides a cryp-



tographic token to the server proxy for the value 80. The
server proxy traverses the Arx-RANGE index at the DB
server using the token to locate the leaf node in the in-
dex for the first value > 80, and retrieves all values to
the right of this leaf. It returns these values to the client
proxy, who decrypts them, obtains the decrypted IDs and
returns them to the application. The server proxy also in-
forms the client proxy of the tree nodes that got destruc-
ted and receives replenishment.

2.5 Functionality

In this section, we describe the classes of read and write
queries that can be supported by Arx over strongly en-
crypted data. Arx supports similar computation to previ-
ous approaches such as CryptDB [45].

Read queries. The read queries Arx supports are sum-
marized by

SELECT [AGG doc] F(doc) FROM collection
WHERE clause [ORDER BY f;] [LIMIT /]

which we now explain. Each expression in brackets is
optional and doc denotes a document. [AGG doc] refers
to aggregations over documents that can take the gen-
eral form Y Func(doc). Various aggregations fit here. Y
can be any associative operator and Func any efficiently
computable function. Examples include sum, count, sum
of squares, min, max. More aggregations can be com-
puted with minimal postprocessing at the client proxy by
combining a few aggregations, such as average or stan-
dard deviation.

F(doc) refers to a projection that selects various fields
of the document, such as in “SELECT diagnosis, times-
tamp”, or to other lightweight postprocessing such as for-
matting (e.g., convert to date format).

clause = [ Ni_| EQ(f;,vi)| A [A[—| RANGE(f;,v;)]

where EQ(f;,v;) denotes equality-based operations over
a field f; that compare its value with v; such as =, or
array operations such as €, ¢, and RANGE(f;, v;) denotes
range operations over some field f; comparing its value
with v; such as >, >, <. Not all such possible clauses are
supported by Arx, and we discuss some constraints in §9.

Write queries. We support standard write queries such
as INSERT, DELETE, and UPDATE. UPDATE works
both by setting values or by incrementing values. For
DELETE and UPDATE queries, similar constraints as
above apply on their WHERE clause.

2.6 Security

Arx aims to hide the database contents as well as the data
in queries. An attacker often knows the code of the appli-
cation, which means the attacker knows metadata such as

the database schema, what fields have indices, what op-
erations run on the data as part of different queries, so
Arx does not attempt to hide these. As with standard en-
cryption, Arx does not hide the size of the database (the
number of collections, documents, items per field, or the
size of the items). Padding is a standard procedure for
hiding these at a performance cost.

To better explain our security guarantees, we split at-
tackers into two kinds: snapshot and persistent attackers.
The snapshot attacker steals a snapshot of the database
(tables and indices included). The persistent attacker
manages to install a logger that records over time the ac-
cesses and cryptographic tokens from the client and then
sends it to the attacker.

The snapshot attacker is by far the most common at-
tacker we encounter today. For this attacker, Arx pro-
vides strong security guarantees: it provides an IND-
CPA-like security to the database, which reveals noth-
ing beyond sizing information. IND-CPA [27], indistin-
guishability under chosen plaintext attack, is a strong and
standard level of security.

Theorem 1 (Informal). The contents of the database
(collections and indices) are protected with IND-CPA-
like security, and the decryption key is never sent to the
server.

In Appendix A, we define and prove formally the se-
curity guarantees of Arx, including this theorem.

For the persistent attacker, Arx provides stronger secu-
rity than the existing practical and functionally-rich ap-
proaches. This attacker is less common than the snapshot
attacker and is much easier to detect and stop than a snap-
shot attacker. The longer the attacker stays in the system,
the more likely it gets caught. Compared to a snapshot
attacker, a persistent attacker gets to see side channel in-
formation: timing attacks (e.g., the time when a query
arrives indicates the user is online) or attacks based on
access patterns (which positions in the database or index
are accessed and how frequently, but not their contents).
This attacker still does not see database contents which
are encrypted with IND-CPA security. We note that the
snapshot attacker is the typical attacker addressed by ex-
isting encryption-based mechanisms today (such as file
system encryption): indeed, encryption cannot protect
against access patterns by itself. While the access pattern
information is typically much less sensitive than the con-
tents of the database, it can still help the attacker glean
some information. Still, since Arx keeps the database
encrypted with IND-CPA security, it leaks less than prior
solutions even for such an attacker. Arx does not prevent
the leakage of such side channel information. Oblivi-
ous RAM [53] is an active area of research in security
that hides access patterns, and Garbled RAM [24] en-
ables combining Oblivious RAM with computation like



in Arx. Despite significant progress on these fronts in
recent years, there still does not exist a cost-effective so-
lution. In Appendix A, we define the security guarantees
with respect to the persistent attacker.

Arx is not tied to AES. Arx’s design applies to any se-
cure block cipher, not only AES. We implement Arx with
AES because AES is the current safe standard and it has
fast hardware implementations. Should AES be deemed
insecure in the future, any secure block cipher can take
its place in our design.

3 Encryption Building Blocks

Besides Arx’s indexes, Arx uses three encryption
schemes. These schemes already exist in the litera-
ture so we do not elaborate on them. It suffices to
say that they provide IND-CPA (or equivalent) security,
maintaining the strong security guarantees Arx aims for.
Moreover, they are almost all based on AES, except for
AGG defined below. Nevertheless, AGG is used relatively
rarely because Arx performs aggregations over a range
or equality of indexed sensitive fields using Arx-EQ and
Arx-RANGE.

BASE is standard encryption, implemented with AES in
counter mode and random initialization vector. We de-
note by Enc, encryption with BASE.

EQ enables equality checks. It consists of three algo-
rithms: the client uses EQEnc;(v) — ct to encrypt a
value v and EQTokeny(w) — tok to produce a token tok
used to search for w, and the server uses EQEnc(ct, tok)
to search, which returns true if v =w. To implement
EQ, we use a searchable encryption scheme similar to
the schemes in [51, 20].

In this scheme, EQEnc(v) = (IV,AESkpf, () (IV)),
where IV is a random value and KDF is a key deriva-
tion algorithm based on AES. To search for a word w,
the token is tok = KDF(w). To identify if the token
matches an encryption, the server proxy combines tok
with IV and checks to see if it equals the ciphertext. Note
that one cannot build an index on this encryption directly
because it is randomized. Hence, Arx uses this scheme
only for non-indexed fields (i.e., for linear scans). When
the developer desires an index on this field, Arx uses our
new Arx-EQ index.

EQunique is a special case of EQ. In many applica-
tions, some fields have unique values (e.g., primary keys,
SSN). In this case, Arx makes an optimization. Instead
of implementing EQ with the scheme above, it imple-
ments EQ using deterministic encryption. Deterministic
encryption does not weaken security in this case, because
when values are unique, it is as secure as IND-CPA se-
curity. Such a scheme is very fast: to check for equal-
ity, the server simply uses the equality operator, as if the
data were not encrypted. Moreover, databases can build

indexes on this field as before so this case is an optimiza-
tion for Arx-EQ too.

AGG enables addition. Arx uses the Paillier [40] cryp-
tosystem, which has the property that AGGEnc(x) -
AGGEnc,(y) = AGGEnc,(x +y) in a certain algebraic
group. One can extend AGG with multiplication using
the ElGamal cryptosystem if needed.

4 Arx-RANGE and Order-based Queries

We now present our index for performing order opera-
tions. In this paper, we use cryptographic tools as black
boxes so one does not need to understand them.

4.1 Strawman

We begin by presenting a helpful but inefficient straw-
man. This strawman corresponds to the protocols in
mOPE [44] and the startup ZeroDB [22, 11]. For sim-
plicity, consider the index to be a binary search tree (in-
stead of a regular B+ tree). To obtain the desired se-
curity, each node in the tree is encrypted using regular
encryption. Because such encryption is not functional,
the server needs the help of the client to traverse the in-
dex. To locate a value a in the index, the server and the
client interact: the server provides the client with the root
node, the client decrypts it into a value v, compares v to
a, and tells the server whether to go to the left or to the
right child. The server then provides the relevant node
to the client, which again tells the server which way to
go. This procedure repeats until the server reaches a leaf
node. However, this procedure is too slow because each
level in the tree requires a roundtrip. Some web ap-
plications issue tens of queries for one user click. The
ZeroDB developers confirmed that this is a main issue
they are struggling with.

4.2 Non-interactive index traversal

Arx-RANGE enables the server to traverse the tree by it-
self while maintaining security. Say the server receives
Ency(a) and must locate the leaf node corresponding to
a. For this goal, the server must be able to compare
Ency(a) with the encrypted value at a node, say Encg(v).
The idea is to store an obfuscated program at each
tree node that performs the comparison. The obfusca-
tion hides a and v from the attacker.

Garbled circuits help implement such obfuscation.
Using a garbling scheme [55], the client can garble a
program P using a key k and create an obfuscated pro-
gram ObfP, also called a garbled circuit. The algorithm
GarbleEnc produces an encoding for a value a using the
key k denoted e,. The server can run ObfP on e, and
obtains P(a). The security of garbled circuits guarantees
that the server learns nothing about a or the data hard-
coded in P other than the output P(a). This guarantee
holds as long as the garbled circuit is used only once.
That is, if the client provides two encodings e, and e



Range index on patients.age:

<69
Y\
[ |

patients collection:

| 24 ?2?32 D

| age | diagnosis
I\ Enc(23) | Enc(26)| Enc(Lyme)
Enc(ID:91") Enc('ID:23") Enc(91)| Enc(6) |Enc(flu)

Figure 2: An example of Arx-RANGE.

using the same key k to the server, the security guaran-
tees no longer hold.

Inspired from the theoretical literature on garbled
RAM [24], we place a garbled circuit at each node in
the tree and chain the garbled circuits. Each garbled
circuit outputs an encoding of the same input that can be
used with the relevant child garbled circuit.

Let N be a node in the index with value v, and let L
and R be the left and right nodes. The client generates a
key for every node: ky, k., and kg. The garbled circuit at
N is a garbling with key ky of the comparison program:

if a <v then

e, + GarbleEnc(ky,a); output e, and ‘left’
else

e, < GarbleEnc(kg,a); output e, and ‘right’
end if

Fig. 2 shows how the server traverses the index
without interaction. The number at each node in-
dicates the value v hardcoded in the relevant garbled
circuit. Now consider the query: SELECT * FROM
patients WHERE age < 5. The client provides an
encoding of 5, GarbleEnc(5) encrypted with the key for
the root garbled circuit. The server runs this garbled cir-
cuit on the encoding and obtains “left” as well as an en-
coding of 5 for the left garbled circuit. The server then
runs the left garbled circuit on the new encoding. The
server proceeds similarly until it reaches the desired leaf
node.

4.3 Repairing the index

A part of our index gets destroyed during the traversal be-
cause each garbled circuit may be used at most once. To
repair the index, the clients needs to supply new garbled
circuits to replace the circuits consummed. Fortunately,
only a logarithmic number of garbled circuits got con-
sumed. Consider that a node N and its left child L were
consumed. However, for each node N, the client needs
two pieces of information from the server: the value en-

coded in N, v and the key for the right child R. Instead
of sending N’s garbled circuit to the client, the server
sends an encryption of v, Enc(v) (stored separated in the
index), and the ID of the garbled circuit at R, which was
used to derive the key. The key for a garbled circuit is not
small (1KB for a 32-bit comparison), so this procedure
saves bandwidth.

4.4 A secure database index

We need to take two more steps to obtain a secure index.

First, the shape of the index should not leak infor-
mation about the order in which the data was inserted.
Hence, we use a history-independent treap [12] instead
of a regular search tree. This data structure has the prop-
erty that its shape is the same independent of the insertion
or deletion order. Of course, it is not guaranteed that the
system maintains no history-dependent information. For
example, in our implementation, we have no control of
where in memory the language runtime decides to place
certain data which depends on history. Nevertheless, us-
ing a history-independent data structure is a first step in
this regard.

Second, we store at each node in the tree the encrypted
primary key of the document to which this value belongs.
This enables locating the documents of interest. If the
primary key were not encrypted, the server would learn
the order of the relevant fields based on their order in the
tree.

Running queries using the index. Consider the
query SELECT % FROM patients WHERE age
> 1 AND age < 5. Each node in the index tree has
two garbled circuits to allow for a range. The client
proxy provides GarbleEnc tokens to the server for the
values 1 and 5 so that the server locates the leftmost and
rightmost leaves in the interval [1,5]. The server fetches
the encrypted primary keys from all the nodes in be-
tween which form the range of interest. The server sends
this information to the client proxy which decrypts them,
randomizes their order, and then selects the documents
based on this primary key from the server. The purpose
of the randomization is to hide from the server the order
of the documents matching the range.

For aggregates over a range, the server will not send
the entire range, as we describe in §6. The server answers
ORDERBY LIMIT L queries by simply taking the left-
most or rightmost L nodes. Inserting and deletion of val-
ues in the index happens similarly to the index traver-
sal. For monotonic inserts, a cheap optimization is for
the client proxy to remember the position in the tree of
the last value so that most values can be inserted directly
without requiring a tree traversal. As a performance opti-
mization, order-by queries are not performed using Arx-
RANGE. Since they do not have a limit, they do not do
any filtering, so the client proxy can simply sort the result



set itself.

4.5 Concurrency

Arx-RANGE provides limited concurrency because each
index node needs to be repaired before it can be used
again. To provide a degree of concurrency, the client
proxy stores the top few levels of the tree. As a result, the
index at the server essentially becomes a forest of trees
and accesses within each such tree can be performed in
parallel. At the same time, the storage at the client proxy
is very small because trees grow exponentially in size
with the number of levels. For example, for less than
40KB of storage on the client proxy (which corresponds
to about 12 levels of the tree because the tree is not en-
tirely full), there will be about 1024 nodes in the first
level of the tree, so 1024 queries can proceed in parallel.
Hence, for a little client storage, the degree of concur-
rency can be significant. Queries to the same subtree still
need to be sequential. A common case are monotonic in-
serts, but for these we have an optimization, as follows.

Monotonic inserts refer to inserts in increasing or de-
creasing order. In this case, the client proxy maintains
the latest value inserted in an Arx-RANGE. If the value
to be inserted is larger (for increasing values) than this,
the client proxy knows where in the tree the new value
must be inserted which avoids the tree traversal and the
repair of the corresponding path.

Of course, queries to another Arx-RANGE index or to
other parts of the DB can proceed in parallel.

4.6 Garbled circuit design

Garbled circuits are constructed entirely from AES. They
take as input a program written using boolean gates. One
of the main drawbacks of garbled circuits is that convert-
ing even a simple program to such a circuit often results
in large circuits, and hence bad performance.

We put considerable effort into making our garbled
circuits short and fast; in interest of space, we mention
only briefly the steps we took. We used the short circuit
for comparison from [35], which represents comparison
of n-bit numbers in n gates. We employ transition tables
between two garbled circuits, to avoid encoding the key
for a child circuit inside the garbled circuit. Since this
key is large, this reduces the size of the garbled circuit by
a factor of 128. We use the half-gates technique [56] to
further halve the size of garbled circuit. Since all garbled
circuits have the same topology but different ciphertexts,
we decouple the topology from the ciphertext it contains.
The server hardcodes the topology and the client trans-
mits only ciphertexts. We are planning to release our
garbling library which can be used to compute any func-
tion, not only the one of interest here.

4.7 Security

The index provides the security desired: if an attacker
steals the database, the index provides IND-CPA secu-
rity. The index leaks nothing about the data other than
the number of elements in the database. Note that the
index does not even leak the order of the values. The
reason is that the mapping between a node and a row in
a collection is encrypted at the nodes. The access pat-
terns during search visible to the server are the same as
in the strawman: the server sees which path in the tree
was taken, but not the query or the values at the nodes.
We formalize and prove rigorously the security of our
index scheme in [16].

5 Arx-EQ and Equality Queries

The Arx-EQ index enables filtering based on equality ex-
pressions such as in: SELECT [...] WHERE age = 80.
As explained in §12, Arx-EQ builds on insights from the
searchable encryption literature [19]. We begin by pre-
senting a base protocol that we improve in stages.

5.1 Base protocol

Consider an index on the field age. Arx-EQ will encrypt
the value in age (as follows) and it will then tell the DB
server to build a regular index on age.

The case when the fields are unique (e.g., primary key,
IDs, SSNs) is simple and fast: Arx-EQ encrypts the fields
with EQunique and the regular index suffices. The rest
of the discussion applies to non-unique fields.

The client proxy stores a map, called counter, map-
ping each distinct value v of age that exists in the
database to a counter indicating the number of times v
appears in the database. For example, for age, this map
has about 100 entries.

Encrypt and insert. Consider that the application per-
forms an insert for a document where age has value v.
The client proxy first increments counter[v]. Then, the
proxy encrypts v into:

Enc(v) = H(EQunique(v),counter[v]), (1)
where H is a cryptographic hash (modeled as a ran-
dom oracle). This encryption provides IND-CPA se-
curity because EQunique(v) is a deterministic encryp-
tion scheme which becomes randomized when combined
with a unique salt per value v: counter[v]. This encryp-
tion is not decryptable, but as discussed in §8.2, Arx en-
crypts v with BASE as well. The document with the en-
cryption of v is then inserted in the database.

Search token. When the application sends the
query SELECT [..] WHERE age = 80, the client
proxy computes a search token using which the
server proxy can search for 80. The search to-
ken for a value v is the list of encryptions from
Eq. (1) for every counter from 1 to counter[v]:
H(EQunique(v),1),...,H(EQunique(v),counter[v]).



Search. The server proxy uses the search token
to and construct a query of the form: SELECT [..]
WHERE age = H(EQunique(v), 1) OR OR age
= H(EQunique(v), counter[v]) (with the clauses in a ran-
dom order). The DB server uses the regular index built
on age for each clause in this query. The results corre-
spond to the search results.

Note that, if the application inserts more ages equal to
v after the search, the server cannot use the old search
token to learn if the new values are equal to v because
the new values have a higher counter.

5.2 Reducing the work of the client proxy

The protocol so far requires the client proxy to gen-
erate as many tokens as there are equality matches on
the field age. If a query filters on additional fields,
the client proxy does more work than the size of the
query result, which we want to avoid whenever possi-
ble. We now show how the client proxy can work in time
(logcounter[v]) instead of counter|v].

Instead of encrypting a value v as in Eq. (1), the client
proxy hashes according to the tree in Fig. 3. It starts
with EQunique,(v) at the root of a binary tree. A left
child node contains the hash of the parent concatenated
with 0, and a right child contains the hash of the parent
with 1. The leaves of the tree correspond to counters
0,1,2,3,..counter[v].

The client proxy does not materialize this entire tree.
Given a counter value ct, the proxy can compute the leaf
corresponding to ct, simply by using the binary represen-
tation of ct to compute the corresponding hashes.

T = EQuniquey (v)

i N

To = HT0) =H(T1)

SN/

Too=H(Tp.0)| Tg1=H(Tg.1) T10=H(M.0)

=

Figure 3: Search token tree.

New search token. To search for a value v with counter
counter|[v], the proxy computes the covering set for leaf
nodes 0,...,counter[v] — 1. The covering set is the set
internal tree nodes whose subtrees cover exactly the leaf
nodes 0,...,counter[v] — 1. For the example in Fig. 3,
counter[v] = 3 and the covering set of the three leaves is
node Ty and node Tjg. The search token are the numbers
in the covering set. The covering set can be easily de-
duced from the binary representation of counter[v] — 1.

Search. The server proxy expands the covering set into
the leaf nodes, and proceeds as before.

5.3 Updates

We have already discussed insert. To delete a document,
Arx simply deletes this document. An update is a delete

followed by an insert.

As a result, encrypted values for some counters will
not return matches during search. This does not affect the
accuracy of the search, but as more counters go missing,
it affects throughput because the DB server wastes cy-
cles looking for values with no matches. Hence, when a
search query for a value v indicates more than a threshold
of missing counters, Arx-EQ runs a cleanup procedure.

Cleanup. The server proxy tells the client proxy how
many matches were found for a search, say ct. The client
proxy updates counter[v] with ct, chooses a new key k’
for v, and generates new tokens as in Fig. 3: Tj)y, ..., T
using k' It gives these to the server, which replaces the
fields found matching with these.

In this case, the client proxy does as much work as
the number of matches for v. If the search query filters
only on age, the proxy does as much work as the result
set. If the query had additional filters outside of age, the
proxy does more work than the result set, which is not
ideal. This case might be rare if deletes are not common.
Nevertheless, avoiding this case is an interesting future
work.

5.4 The counter map

We now discuss the implications of storing the counter
map at the server or at the client proxy. While the counter
map can be stored encrypted at the server and still pro-
vide our strong guarantees against a snapshot attacker,
we recommend storing it at the client for increased secu-
rity against the persistent attacker.

Counter map at server. The counter map can be stored
encrypted at the server. An entry of the sort v — ct be-
comes EQunique;: (v) — EQuniquey; (ct), where 7} and
k5 are two keys derived from the master key, used for
the counter map. When encrypting a value in a docu-
ment or searching for a value v, the client proxy first
fetches the encrypted counter from the server by pro-
viding EQunique;: (v) to the server. Then, the algorithm
proceeds the same as above.

To avoid leaking the number of distinct fields, Arx
pads the counter map to the number of documents in the
relevant collection. The security of this scheme satisfies
Arx’s goal in §2.6: a stolen database remains IND-CPA
encrypted and nothing leaks about it other than sizes.

Counter map at client. However, we recommend keep-
ing the counter map at the client proxy for added se-
curity. This approach provides higher security against
a persistent attacker, who observes access patterns over
time beyond stealing a snapshot of the database. For ev-
ery newly inserted value, the attacker sees which entry
of the counter map is accessed and which document is
inserted in the database. In this way, the attacker can
compute the number of times each entry appears in the
database and which documents it corresponds to. Even



though the encryption hides the value of the entry, if an
attacker manages to watch for a sufficiently long time,
sensitive frequency information can leak. Storing the
counter map at the client hides entirely such correlations.
For each insert query, the only access pattern is inserting
that document.

Moreover, there are many fields for which the counter
map is very small (e.g., gender, age, letter grades). Fur-
thermore, when all values are unique (the maximum size
for a counter map), Arx-EQ defaults to the regular in-
dex built over EQunique encryptions, not needing any
counter map. The case when there are many distinct val-
ues with few repetitions is less ideal, and we implement
an optimization for this case: to decrease the size of the
counter map, Arx groups multiple entries into one entry
by storing their prefixes. As a tradeoff, the client proxy
has to filter out some results.

5.5 Array-based operations

Arx-EQ can also be used to handle array-based equality
operations such as push, pull, set, unset, €, and ¢. We
discuss such operations in greater detail in § 8.4.

5.6 Security

We formalize and prove the security of Arx-EQ in Ap-
pendix A, and show that it maintains the guarantees out-
lined in §2.6.

6 Aggregation queries using Arx-AGG

We now explain Arx’s aggregation over the encrypted in-
dices. It is based on AES and faster than homomorphic
encryption like Paillier [40].

Many aggregations happen over a range query such
as computing the average days in hospital for peo-
ple in a certain age group. Arx computes an av-
erage by selecting sum and count and dividing them
in the client proxy. Hence, let’s focus on the
query: select sum(days-in_hospital)
patients where 70 < age < 80.

The idea behind aggregations in Arx is inspired from
the authenticated data structure literature [37]. This
work targets integrity guarantees (and not confidential-
ity), but interestingly, we use it for computation on en-
crypted data. Consider the Arx-RANGE index in Fig. 2
built on age. At every node N in the tree, we add
the partial aggregate corresponding to the subtree of
N. For the query above, N contains a partial sum of
days-in_hospital corresponding to the leaves un-
der N. The root node thus contains the sum of all values.
This value is stored encrypted with BASE.

When the server needs to compute the sum over an
arbitrary range, such as [70,80], the server locates the
edges of the range as before, and then it identifies a per-
fectly covering set. Note that this set of nodes is logarith-
mic in size. The server returns the encrypted aggregate of

from

all children and the encrypted value of the node itself for
each node in the covering set to the client proxy, which
decrypts them and sums them up.

In the case of (1) inserting/deleting a document or (2)
modifying a field having an aggregate, the partial sums
on the path from N to the root need to be updated, where
N is the node in the tree corresponding to the changed
document. In the second case, the client also needs to
repair the path in the tree, so the partial sum update hap-
pens essentially for free.

This aggregation strategy supports any aggregation
function of the form Y F(doc) where F is an arbitrary
function whose input is a document, as explained in §2.5.
For aggregates over fields with an EQ index, we have a
similar strategy to the aggregates over a range, but we
do not describe it here due to space constraints. For all
other cases, we use Paillier. However, the number of such
cases is reduced significantly.

7 Joins using Arx-JOIN

We now describe how Arx supports a class of join opera-
tions, namely, foreign-key joins. Arx extends Arx-EQ or
Arx-RANGE for this purpose. This assumes that the join
contains:

FROM T1 JOIN T2ON Tl.fkey = T2.ID
WHERE Tl.field index-op,

where T1 and T2 are the two tables being joined, fkey
is the foreign key pointing to the primary key ID in T2,
and ind-op is either an equality or range operation on
an index, Arx-EQ or Arx-RANGE.

Arx-EQ-based joins. Consider an example with table
T2 having a primary key ID and table T2 having a field
age with Arx-EQ and diagnosis, which is a foreign
key pointing to T2 . ID.

The primary key in the secondary collection T2 .ID
is encrypted with EQunique as before. Consider insert-
ing a document with age 10 and diagnosis ‘flu’ in T1,
and let’s discuss how the client proxy encrypts this pair.
Since foreign keys are not unique, T1l.diagnosis
is encrypted with BASE. Additionally, to perform the
join, the client proxy computes an encrypted pointer for
Tl.diagnosis. When decrypted, this pointer will
point to the appropriate encrypted T2 . ID. Instead of us-
ing one key for Arx-EQ, the client proxy now uses two
keys ki and kp. It generates a token for each key as be-
fore: t; and #,. The client proxy includes #; in the doc-
ument as before, and uses #, to encrypt the diagnosis
‘flu” as in: J = BASE,,(EQunique(‘flu’)). J will help
with the join. Hence, upon insert, the pair (10, ‘flu’)
becomes (BASE(10), 1;, BASE(‘flu’), J). Note that the
client does not add #, to the document: this prevents an



attacker from decrypting the join pointer and performing
joins that were not requested.

Now consider the join query: SELECT [...]
FROM T1 JOIN T2ON Tl.diagnosis T2.1ID
WHERE T1.age 10. To execute this query, the
server proxy computes t; and #, for the age of 10, as
usual with Arx-EQ. It locates the documents of inter-
est using #;, and then uses f, to decrypt J and obtain
EQunique(‘flu’). This value is a primary key in T2, and
the server simply does a lookup in T2.

Arx-RANGE-based joins. Arx employs a different strat-
egy in case the WHERE clause of the join query re-
quires an Arx-RANGE index for execution, e.g. WHERE
Tl.age > 10. In such a scenario, Arx-JOIN tokens
for T1 . age cannot be computed as described above.

Instead, the foreign key values encrypted with BASE
are directly added to the nodes of the Arx-RANGE index
over T1.age, which already contain the encrypted pri-
mary keys of documents in T1 (as described in § 4.4).
While traversing the index in order to resolve the WHERE
clause, the server fetches the encrypted foreign keys
as well from the nodes of interest, and sends them to
the client proxy for decryption as with regular Arx-
RANGE. The client decrypts the encrypted foreign keys,
re-encrypts them with EQunique, shuffles them, and re-
turns them to the server. The server then uses these val-
ues to locate the corresponding documents in T2, and
performs the join. Note that this strategy does not bring
any extra round trips between the proxies.

8 Arx’s Planner

Arx’s planner takes as input a set of query patterns, Arx-
specific annotations, and a list of regular indices, and
produces a data encryption plan, a list of Arx-style in-
dices to build, and a query plan for each query pattern.

8.1 Index planning

Before deciding what index to build, note that Arx-
RANGE and Arx-EQ support compound indices, which
are indices on multiple fields. For example, an in-
dex on (diagnosis, age) enables a quick search for
diagnosis = ‘flu’ and age > 10. Arx en-
ables these by simply treating the two fields as one field
alone. For example, when inserting a document with
diagnosis=‘flu’,age=10, Arx merges the fields
into one field *£1u’ | | 00010, prefixing each value ap-
propriately to maintain the equality and order relations,
and then builds a regular Arx index.

When deciding what indices to build, we aim to pro-
vide the same asymptotic performance as the application
developer expects: if she specified an index over certain
fields, then the time to execute queries on those fields
should be logarithmic and should not require a linear
scan. At the same time, we would like to build few in-

10

dices to avoid the overhead of maintaining and storing

them.

Deciding what indices to build automatically is chal-
lenging because (1) there is no direct mapping between
regular indices to Arx’s indices and (2) Arx’s indices in-
troduce various constraints, such as:

* A regular index serves for both range and equality op-
erations. This is not true in Arx, where we have two
different indices for each operation. We choose not to
use an Arx-RANGE index for equality operations be-
cause of its higher cost and different security.

* Unlike a regular index, a compound Arx-EQ index on
(a,b) cannot be used to compute equality on a alone
because Arx-EQ performs a complete match.

e A range or order by limit on a sensitive field can be
computed only via an Arx-RANGE index, so it can no
longer be computed after applying a separate index.
All these are further complicated by the fact that the

developer can declare compound indices on a mixture of

fields, both sensitive and not. Similarly, queries can have
both sensitive and regular fields in a where clause.

As a consequence of our performance goal and these
constraints, interestingly, there are cases when Arx
builds an Arx-RANGE index on a composition of a non-
sensitive and a sensitive field. Consider, for example,
that the developer built an index on a, a nonsensitive
field, and wants to perform a query containing WHERE
a = AND s >, where s is sensitive. The developer ex-
pects the DB to filter documents by a rapidly based on
the index, and then, to filter the result by “s >”.

If we follow the straightforward solution of building
an Arx-RANGE index on s alone, the resulting asymp-
totics are different. The DB will filter by s and then,
it will scan the results and filter them by a, rendering
the index on a useless. The reason the developer spec-
ified an index on a might be that performance is bet-
ter if the server filters on “a =" first; hence, the new
query plan could significantly affect the performance of
this query especially if the Arx-RANGE index returns a
large number of matches. To deliver the expected per-
formance, Arx builds a composite Arx-RANGE index on
(a,s). Note that this is beneficial for security too because
the server will not learn which documents match one fil-
ter but not the other filter: the server learns only which
documents matched the entire where clause in an all-or-
nothing way.

Despite all these constraints, our index planning algo-
rithm is quite simple. It also applies to queries that have
multiple query plans using different indices, in which
case it maintains the asymptotics of every query plan.
The index planner runs in two stages: per-query pro-
cessing and global analysis. Only the where clauses
(including order by limit operations) matter here. The
first stage of the planner treats sensitive and nonsensitive



fields equally.

Example: For clarity, we use three query patterns as ex-
amples. Their where clauses are: W;: “a = and b =",
W,: “x = andy > and z =". The indices specified by
the developer are on x and (a, b).

Stage 1: Per-query processing. For each where clause
W;, extract the set of filters S; that can use the indices in
a regular database. Example: For Wy, S| = {(a =,b =)}
and for W, S = {(x =)}.

Then, if W; contains a sensitive field with a range or
order-by-limit operation, append a “>” filter on this field
to each member of §;, if the member does not already
contain this. Based on the constraints in §9, a where
clause cannot have more than one such field.

Example: For Wi, S| = {(a =,b =)}, and for Ws, S, =
{(r=y2)}

Stage 2: Global analysis. Union all sets S = U;S;. Re-
move any member A € S if there exists a member B € §
such that an index on B automatically implies an index
on A. The concrete conditions for this implication de-
pend on whether the fields involved are sensitive or not,
as we now exemplify.

Example: If a and b are nonsensitive, and S contains both
(a=,b=)and (a =,b >), then (a =,b =) is removed. If
all of a, b and ¢ are sensitive and S contains both (a =
,b=,c¢>) and (a =,b >), then (a =,b >) is removed.
If b and y are sensitive (a,x,z can be either way), for
S above, the indices Arx builds are: Arx-EQ (a,b) and
Arx-RANGE (x,y).

One can see why our planner maintains the asymp-
totic performance of the developer’s index specification:
it ensures that each expression that was sped up by an in-
dex remains sped up. Moreover, it creates extra indices
only to meet the encryption constraints. In §11, we show
that the number of extra indices Arx builds is modest and
does not blowup in real applications.

8.2 Data layout

After deciding which indices to build, laying out the data
encryption plan is straightforward:

» All values of a sensitive field are encrypted with the
same key, but this key is different from field to field.
 For every aggregation in a query, decide if the where
clause in this query can be supported entirely by us-
ing Arx-RANGE or Arx-EQ. Concretely, the where
clause should not filter by additional fields not present
in the index. If so, update the metadata of the respec-
tive index to follow our index aggregation strategy de-
scribed in §6. If not, encrypt the respective fields with
AGG if the aggregate requires the computation of a

sum.

* For every sensitive field projected by at least one query,
encrypt it with BASE. The reason is that EQ and our
indices are not decryptable.

11

 For every query pattern, if the where clause W; per-
forms an equality on a field, and this field is not part of
every element of S;, encrypt the field with EQ (which
could be in addition to a BASE encryption). The rea-
son is that at least one query plan will need to filter this
field by equality outside of an index.

 For all sensitive fields that do not fall in any of the
above, simply encrypt them with BASE.

8.3 Query planning and execution

Arx knows which indices are relevant to each query pat-
tern from index planning. Sometimes a query has multi-
ple options for which index to use. For example, if there
is an index on age and one on diagnosis, a query
containing WHERE age > 10 and diagnosis='flu’
can use the filter on age or the one on diagnosis.
Different databases take different strategies in this case.
In MongoDB, for example, the two plans are ran in par-
allel, and the first plan that produces the result com-
pletes the query. In databases like MySQL, the database
chooses the best plan based on statistics about the data.
One can add statistics-based planning to Arx by main-
taining the statistics at the client proxy. Our indexing
plan above enables both to work, but our implementation
naturally follows the first. Given a query, for each in-
dex option it has, Arx runs in parallel the query plan for
that index. For each query plan, Arx first uses Arx-EQ or
Arx-RANGE, and then does any remaining filtering based
on EQ or unencrypted fields.

1) Index filtering at the server. Arx first uses the index
to filter the results, as described in §5 for Arx-EQ or in
§4 for Arx-RANGE.

2) Additional filtering at the server. If the query has
clauses not captured by the index, these are either equal-
ity on sensitive fields or unrestricted operations on non-
sensitive fields. For the first, the server proxy filters
the results using EQ with a search token from the client
proxy. For the second, the server proxy issues a regular
query to the DB server.

3) Postprocessing at the client proxy. For MongoDB,

postprocessing happens rarely and only to finalize certain
aggregates. For example, Arx cannot compute average
at the server, but it can compute sum and count. The
client proxy then divides the sum and count to obtain the
average.

It is worth mentioning that other databases like
MySQL offer a set of postprocessing functions (denoted
F(doc) in §2.5) such as formatting: FORMAT (timestamp,
“MM/DD/YY”). These are cheap to compute and run on
the result of filtering, so they can be easily performed at
the client proxy.



8.4 Queries over arrays

In MongoDB, certain fields in a document might have
fields whose values are arrays, e.g. names = |
"Alice"', 'Bob"' |. To support read and write queries
over such fields, it might not be enough to build an in-
dex over the field as a whole. For example, the query
SELECT * 'Alice' € names returns all documents
where the array contains the value 'Alice'. Such
a query cannot be handled by an Arx-EQ index over
names as a whole. Thus, read operations on such fields
are handled by indexing the individual elements in the
array field across documents, as opposed to indexing the
array as a whole. This also enables the execution of write
operations on such fields that push new values into the
array or pop values from it.

Alternatively, some queries might perform operations
on elements of the array at a specific position. For
example, the query SELECT % WHERE names.0 =
'Alice’ returns all documents in which the first ele-
ment of names is 'Alice'. To handle such queries,
separate indices are built per array position. This means
that instead of maintaining a single index for names, a
separate index is maintained for names. 0.

Finally, consider the query SELECT * WHERE names
€ ['Alice','Bob'], where the field names itself is
not an array field. This query returns all documents
where names is either 'Alice' or Bob. Arx executes
this query using an Arx-EQ index over names. Arx first
transforms the query into the following query instead:
SELECT * WHERE names = 'Alice' V names =
'Bob'. The transformed query is then executed using
the Arx-EQ index over names.

9 Discussion and Limitations

Arx does not support operations beyond those listed in

§2.5. Furthermore, Arx poses some constraints on the

where clause because range and order-by-limit opera-

tions can be handled only via an Arx-RANGE index:

1. The query may contain RANGE operations over at
most one sensitive field. While f; > 3 and f; <35, is
supported, f1 > 3 and f; <5 and f> < 10 is not sup-
ported, but additional RANGE operations over non-
sensitive and not indexes fields are supported.

2. If the query contains a LIMIT along with RANGE op-
erations over a sensitive field, then it may contain an
ORDERBY operation over the sensitive field alone.
Further, the Arx-JOIN scheme described in § 7 is lim-

ited to joins over foreign keys. Joins over values that are

not foreign keys are more complicated because a docu-
ment in the queried collection T1 may join with multi-
ple documents in the secondary collection T2, and the
scheme would need to account for dynamic inserts and
updates in T2. Handling such joins is part of future
work. The implementation at certain points needs to en-

12

sure that data is securely deleted at the server, otherwise
our security guarantees against a snapshot attacker can
not be achieved. Also, the implementation needs to be
completely history-oblivious. Both points require very
careful low-level implementation and are impossible to
achieve with Java.

Query logging. Some application administrators may
want the database to log queries for debugging purposes.
Maintaining a query log can help a snapshot attacker be-
come as powerful as a persistent attacker: a snapshot of
the log provides history of accesses. This situation can
be fixed in two simple ways: the client proxy can instead
do the logging, or the client proxy encrypts the query
and any tokens with BASE so the server logs encrypted
information.

10 Implementation

While the design of Arx is decoupled from any particular
database system as described in §2.2, we implemented
our prototype for MongoDB 3.0, one of the most popu-
lar NoSQL data stores. Arx consists of two transparent
proxies between the application and the database server
based on the Netty I/O framework [5]. Arx does not re-
quire modifications to applications or the database.

Arx’s implementation consists of ~11,500 lines of
Java, along with ~600 lines of C/C++ code. Addition-
ally, we implemented a C++ library for garbling, Arx-
Garble, for Arx-RANGE. We incorporated a set of recent
advances in garbling, which increase performance. The
library consists of ~1200 lines of C++ code, and it can
be used for general functions, not only for Arx-RANGE.
We plan to release the source code of both Arx and Arx-
Garble soon.

Finally, while Arx supports join operations by de-
sign using the Arx-JOIN scheme, joins are not supported
in many NoSQL databases including MongoDB (un-
til recently). Most NoSQL applications implement any
needed joins in the application. Thus, we did not imple-
ment joins in our ptototype because we did not need it in
the MongoDB applications we found.

11 Evaluation

In this section, we show that Arx supports real applica-
tions with a small developer effort and a modest perfor-
mance overhead.

11.1 Functionality

To understand if Arx supports real applications, we eval-
uate Arx on seven existing applications built on top of
MongoDB. All these applications contain sensitive user
information. Table 4 summarizes our results. Some
fields are clearly sensitive (heart rate, private messages)
and we marked them as such, but other fields were
less clearly so, such as timestamps. We conservatively



Application Protected fields NS | #LoA No. of No. of Total no. of indices
No. Examples Arx-EQ | Arx-RANGE | Vanilla | With Arx
ShareLaTeX [9] 50 | document lines, edits 0/1 62 4 3 12 15
Uncap (medical) [10] 17 | heart rate, medical tests - 18 0 2 2 2
NodeBB (forum) [6] 13 posts, comments - 17 9 3 12 16
Pencilblue (CMS) [7] 54 | articles, comments 0/2 60 19 18 70 73
Leanote (notes) [4] 111 | notes, books, tags 2/2 129 23 13 69 83
Budget manager [1] 21 | expenditure, ledgers - 25 3 0 5 5
Redux (chat) [8] 14 messages, groups - 17 2 0 3 3

Figure 4: Examples of applications supported by Arx: the number of fields we deemed as sensitive and annotated them using
Arx, a few examples of what these fields are, NS — the number of queries not supported(the right number) with the same number
excluding timestamps (the left number), the number of lines of annotations (LoA) the developer had to specify to protect these
fields, how many Arx-specific indices it uses, and the number of indices the database builds in the vanilla application and with Arx
(which includes indices on nonsensitive fields). Since Arx-AGG is built on Arx-EQ and Arx-RANGE, we do not count it separately.

marked fields as sensitive. Regarding queries not sup-
ported, half were due to timestamps which are less sensi-
tive. The limitation was the number of range/order oper-
ations Arx allows in the query, as explained in §9. For
Leanote, the two queries were performing regular ex-
pression on the sensitive fields, which Arx cannot sup-
port. Nevertheless, the tables shows that Arx can protect
almost all sensitive fields in these applications.

In terms of the developer’s effort, there is no change to
application code. The LoA mostly equals the number of
fields annotated, the difference being mostly in format-
ting. The table also shows that, while Arx’s index plan-
ner increases the number of indices by 14%, this number
does not blow up. The main reason is that the number of
fields that both are sensitive and have an order query on
them are small.

11.2 Performance setup

To evaluate the performance of Arx, we used the follow-
ing setup. Arx’s server proxy was collocated with Mon-
goDB 3.0.11 on 4 logical cores of a machine with two
2.3GHz Intel E5-2670 Haswell-EP 12-core processors
and 256GB of RAM. Arx’s client proxy was deployed on
4 logical cores of an identical machine. A separate ma-
chine with four 2.0GHz Intel E7540 Nehalem 6-core pro-
cessors and 256GB of RAM was used to run the clients.
In throughput experiments, we ran the clients on all 48
logical cores of the machine to measure the server at
maximum capacity. All three machines were connected
over a 1Gb Ethernet network.

We start the evaluation with low level microbench-

marks and work our way to end-to-end experiments.

11.3 Encryption schemes microbenchmarks

The cryptographic schemes used by Arx are efficient, as
shown in Fig. 5. The results were averaged over multiple
iterations.

13

Scheme ‘ Enc. Dec. Token | Operation
BASE 0.327 0.13 - -
EQ 4.998 - 2.353 | Match: 2.368
EQunique | 0.012 0.047 - Equality: ~0
AGG 16,254 | 15,116 - Sum: 8

Figure 5: Microbenchmarks of cryptographic schemes used by
Arx in us

11.4 Performance of Arx-EQ

We evaluate the performance of Arx-EQ (without the
unique optimization) using relevant queries issued by
ShareLaTeX. These queries filter by one field using Arx-
EQ, allowing us to focus on Arx-EQ. The field is the
document ID in the history collection which is a log of all
changes to any documents. We first loaded the database
with 100K documents representative of a ShareLaTeX
workload.

Fig. 6 compares the read throughput of Arx-EQ with
a regular MongoDB index, when varying the number of
duplicates per value of the indexed field. The Arx-EQ
scheme expands a query from a single equality clause
into a disjunction of equalities over all possible tokens.
The number of tokens corresponding to a value increases
with the number of duplicates. The DB server essentially
looks up each token in the index. In contrast, a regular
index maps duplicates to a single reference and can fetch
them all in a scan. At the same time, both indices need
to fetch the documents for each primary key identified
as a matching, which constitutes a significant part of the
execution time. Overall, Arx-EQ incurs a performance
penalty of 55% in the worst case, of which ~8% is due
to Arx’s proxy. Further, when all fields are unique,
the added latency due to Arx-EQ is small—1.13ms as
opposed to 0.94ms for MongoDB, as shown in Fig. 9. As
the number of duplicates increases, the latency of both
MongoDB and Arx increase in similar proportions—at
100 duplicates, the latency for Arx is 42.1ms, while that
of MongoDB is 18.8ms.

Fig. 7 compares the write throughput of Arx-EQ with



70000
60000
50000
40000
30000
20000

30000
28000
26000
24000
22000
20000

MongoDB —+—
Proxy —»—
Arx —e—

Reads/sec
Writes/sec

MongoDB —+—
Proxy —>—
Arx —e—

Operation EZZZ23
Repair 3

Latency (ms)

18000
16000

10000
0 T R

0 10 20 30 40 50 60 70 80 90 100

No. of duplicates

0 10 20 30 40 50 60 70 80 90 100

No. of duplicates

Monotonic
insert

Insert

Figure 6: Arx-EQ read throughput with Figure 7: Arx-EQ write throughput with Figure 8: Arx-RANGE latency of reads

increasing no. of duplicates.

Dup Read latency (ms) Write latency (ms)
"| Mongo | Proxy | Arx | Mongo| Proxy | Arx
1 0.94 1.04 1.13 2.69 2.72 | 3.30
10 1.91 2.23 4.29 2.69 2.66 | 3.34
20 3.81 4.19 8.49 2.62 2.65 3.28
50 9.40 10.09 | 20.86| 2.55 2.53 3.33
100 | 18.80 | 20.23 | 42.10| 2.50 2.51 3.35

Figure 9: Arx-EQ latency of reads and writes with increasing
no. of duplicates.

increasing number of duplicates. The write performance
of a regular B+Tree index slowly improves with in-
creased duplication, as a result of a corresponding de-
crease in the height of the tree. In contrast, writes to an
Arx-EQ index are independent of the number of dupli-
cates by virtue of security: each value looks different.
Further, since each individual insert requires the com-
putation of a single token, which is a constant-time op-
eration, the write throughput of Arx-EQ remains stable
in this experiment. As a result, the net overhead grows
from 18% (when fields are unique) to 25%, when there
are 100 duplicates per value. Latency follows a similar
trend, as shown in Fig. 9, and remains stable for Arx-EQ
at ~3.3ms. For a regular MongoDB index, the latency
slowly improves from ~2.7ms to ~2.5ms as the number
of duplicates grows to 100.

11.5 Performance of Arx-RANGE

Our garbled circuits are implemented in AES, which
takes advantage of existing hardware implementations.
For a 32-bit value, the garbled circuit is 3088 bytes long,
the time to garble is 19786 cycles and the time to eval-
uate is 7842 cycles. For a 128-bit value, the circuit is
12304 bytes, the time to garble is 70109 cycles (0.03ms)
and the time to evaluate is 29099 cycles.

Each circuit has the size of two ciphertexts per gate
and additionally needs to store a 128 bit unique random
id. An n bit const-comparison circuit has exactly » gates.
No additional metadata is needed, hence the size for a n
bit comparison circuit is n-2 - 128 4 128 bit. For a 32
bit comparator this amounts to 1040 byte. One transi-
tion table has the size n-2 - 128 bit. Hence the size of a
complete node is n- 6 - 128 4- 128 bit, which again for a

increasing no. of duplicates.

14

and writes

bitlength of 32 bit results in 3088 byte.

The cost of evaluating a 32 bit comparison circuit is
dominated by the 64 AES evaluations needed. Theoret-
ically of these 64 evaluations, 32 come for free as they
are independent and hence can exploit instruction level
parallelism. A single AES instruction has a latency of 7
cycles on modern CPUs, hence the complete evaluation
of the circuit can theoretically be as fast as 224 cycles, at
least for the AES part.

The overhead stems from the fact that we currently use
the gerypt library to evaluate AES and we have not yet
done any low-level optimizations.

We now evaluate the latency introduced by Arx-
RANGE. We pre-inserted 1M values into the index, and
assumed a length of 128 bits for the index keys, suffi-
cient for composite keys. We cached the top 1000 nodes
of the index at the client proxy, which amounted to a
mere 88KB of memory. We subsequently evaluated the
performance of different operations on the index. Fig. 8
illustrates the latency of each operation, divided into two
parts: (1) the time taken to perform the operation, and
(2) the time taken to repair the index. The generation of
fresh garbled circuits in order to repair the index remains
the primary contributor towards latency.

Range queries cost more than writes because the
former traverse two paths in the index (for bounded
queries), while the latter traverse a single path. The la-
tency for a range query is about 6 ms. We note that using
the strawman in §4.1, one incurs a roundtrip overhead for
each node in the tree, which is roughly as long our entire
range query. The figure also highlights the performance
improvement when the index can be optimized for mono-
tonic inserts, which was common in the applications we
evaluated.

11.6 Performance of Arx-AGG

Computing an aggregate over a range with Paillier as in
CryptDB [45] takes significantly longer than with Arx.
In Arx, this cost is essentially zero because traversing
the index for a range query automatically computes the
cover set. In CryptDB, one has to do a homomorphic
multiplication for every value in the range. For example,
aggregating over a range size of 10,000 values, Arx takes



about 0 ms for the aggregate and CryptDB takes 80ms.
With the cost of the range, Arx is 13 times faster.

11.7 Comparison to CryptDB

We cannot compare to CryptDB directly because
CryptDB is implemented on MySQL. On one hand,
CryptDB’s order queries via order-preserving encryption
are faster than Arx’s, but such encryption scheme is sig-
nificantly less secure. On the other hand, Arx’s aggregate
over a range is faster than CryptDB’s for the same secu-
rity, as evaluated in §11.6.

11.8 End-to-end evaluation

In this section, we evaluate Arx on ShareLLaTeX and
YCSB.

11.8.1 Evaluation on ShareLaTeX

We evaluate the overhead of Arx using ShareLL.aTeX [9],
a popular web application for real-time collaboration on
LaTeX projects, that uses MongoDB for persistent stor-
age. We chose ShareLaTeX because it uses both of Arx’s
indices, it has sensitive data (documents, chats) and is a
popular application. The application was collocated with
Arx’s client proxy.

ShareLaTeX maintains multiple collections in Mon-
goDB corresponding to users, projects, documents, doc-
ument history, chat messages, etc. We were conserva-
tive in estimating the sensitivity of fields in the differ-
ent collections. Specifically, all information generated
from user activity (such as a user’s personal informa-
tion, project contents, chat messages, edit history, etc.)
was deemed sensitive, along with associated metadata in-
cluding timestamps and version numbers. The remaining
fields comprised application-specific metadata (e.g. font
size, compiler type, etc.) and were assumed to be non-
sensitive.

Before every experiment, we pre-loaded the database
with 100K projects, 200K users, and each collection with
100K records. Subsequently, using Selenium, multiple
clients open up browsers in parallel and collaborate on
projects, continuously editing documents and exchang-
ing messages via chat. Fig. 10 shows the maximum
throughput of ShareLL.aTeX in various configurations for
both a vanilla deployment against regular MongoDB,
and for an Arx deployment. The client proxy is either
collocated with the ShareLaTeX application sharing the
same four cores, or deployed on extra and separate cores.
While the decline in application throughput is significant
when the client proxy and ShareLaTeX are collocated,
the performance improves drastically when two sepa-
rate cores are allocated to Arx’s client proxy, in which
case the reduction in throughput stabilizes at a reason-
able 10%.

Fig. 11 compares the performance of Arx with increas-
ing load at the application server, when four separate
cores are allocated to Arx’s client proxy. It also shows

15

the performance of MongoDB with the Netty [5] proxy
without the Arx hooks. Note that each client thread is-
sues many requests as fast as it can, bringing a load
equivalent to many real users. At peak throughput with
40 client threads and 100% CPU load at the application,
the reduction in performance owing to Arx is 11%, of
which 8% is due to the Arx’s proxy, and the remaining
3% due to Arx’s encryption and indexing schemes.

Finally, the latency introduced by Arx is modest in
comparison to the latency of the application. Under con-
ditions of low stress with 16 clients, performance re-
mains bottlenecked at the application, and the latency
added by Arx is negligible, which increases from an av-
erage of 257ms per operation to 258ms. At peak through-
put with 40 clients, the latency of vanilla ShareLL.aTeX is
343ms, which grows by 12% to 385ms in the presence of
Arx, having marginal impact on user experience.

An important takeaway from these experiments is that
Arx brings a modest overhead to the overall web appli-
cation. There are two main reasons for this. First, web
applications have a significant overhead themselves at
the web server. Second, even though Arx-RANGE is not
cheap, Arx-RANGE is just one operation out of a set of
multiple operations Arx runs, with the other operations
being faster and overall more common, such as: Arx-EQ
and the building blocks in §3.

11.8.2 YCSB Benchmark
Since Arx is a NoSQL database, we also evaluate its
overhead on the YCSB benchmark [21] running against
the client proxy. We first loaded the database with 1M
documents. We annotated all fields as sensitive including
the primary key. Hence, the primary key has an Arx-EQ
index and the rest of the fields are encrypted with BASE.
Fig. 12 shows the average performance of Arx versus
vanilla MongoDB, across different workloads with vary-
ing proportions of reads and writes. In the figure, “R”
refers to proportion of reads, “U” to updates, “I” to in-
serts, and “RMW?” to read-modify-write. The reduction
in throughput is higher for read-heavy workloads as a
result of the added latency due to sequential decryption
of the result sets. Overall, the overhead of Arx ranges
from 3%-9%, based on the workload. Increase in la-
tency due to Arx is also unremarkable—for example,
average read latency increases from 2.31ms to 2.43ms
under peak throughput, while average update latency in-
creases from 2.36ms to 2.47ms, in the 50% read-50%
update workload. Arx’s performance on YCSB is high
because YCSB conforms to Arx-EQ’s optimized special
case when fields are unique. In general, this shows that
indexing primary keys is fast with Arx.

11.9 Storage

Arx increases the amount of data stored in the database
for the following reasons: (1) ciphertexts are larger than



10000
8000
6000

7000
Vanilla I

Arx 223

6000

5000

4000 4000

2000

Throughput (ops/min)

3000

Throughput (ops/min)

80000
70000

MongoDB

Figure 10: ShareLaTeX performance Figure 11:
with Arx’s client proxy on varying cores

plaintexts for certain encryption schemes, and (2) addi-
tional fields are added to documents in order to enable
certain operations, e.g. equality checks using EQ, or to-
kens for Arx-EQ indexing. Further, Arx-RANGE indices
are larger than regular B+Trees, because each node in the
index tree stores garbled circuits. Vanilla ShareLaTeX
with 100K documents per collection required 0.52GB of
storage in MongoDB, with an additional 45.4 MB for in-
dices. With Arx, the data storage increased by ~1.4x
to 0.72GB for the reasons described above. The ap-
plication required three compound Arx-RANGE indices,
which together occupied 8.4GB of memory at the server
proxy while indices maintained by the database occu-
pied 45.8MB. This resulted in a net increase of ~16x
at the DB server, for storing the encrypted data along
with Arx’s indices. However, there remains substantial
scope for optimizing the size of the indices in our imple-
mentation. For example, a serialized dump of the three
Arx-RANGE indices occupied 3.1GB of memory. More-
over, our choice of workload did not include large data
items such as images or videos, which typically would
not require indexing by Arx-RANGE. In such cases, the
storage overhead imposed by Arx would proportionately
decrease.

Finally, the application required two Arx-EQ indices
for which counter maps were maintained at the client
proxy, which in turn occupied 8.6MB of memory, illus-
trating that Arx-EQ imposes modest storage overhead at
the application server. Moreover, the values inserted into
the counter maps were distinct; in case of duplicates, the
memory requirements would be proportionately lower.

12 Related Work

Encrypted databases. Early approaches [30] used
heuristics instead of encryption schemes with provable
security. Practical encrypted databases such as [45, 13,
48, 541, in some cases, either don’t support useful func-
tions or use weak encryption schemes that reveal sen-
sitive information [36, 39]. Searchable-encryption based
databases [20, 23] are more secure than these approaches
(and comparable in security to Arx), but are too restricted
in functionality. They return a superset of the results for

;‘3\ Proxy B2
g 60000 Arx
& 50000 9%
S 40000
Vanilla —— 'En 30000
Proxy —— 2 20000
Arx —e— =

2000 ‘ ‘ x | E 10000
16 24 &) 40 48 0

No. of clients

ShareLaTeX performance
with increasing no. of client threads

16

95%R,
5%U

50%R,
50%U

Figure 12: YCSB throughput for differ-
ent workloads.

95%R,  50%R,
5%1  50%RMW

a range query and do not support order by limit
queries, a common query used for pagination. More-
over, they do not support aggregates over a range be-
cause the range identifies a superset of the relevant doc-
uments, yielding an incorrect aggregate. Similarly, con-
current work [31, 34] support equality-based queries and
are too restricted in functionality. They do not support
range, order-by-limit, or aggregates over range queries,
and the former does not support updates and inserts,
which are crucial for many applications. Other encrypted
databases [41] rely on certain trust assumptions at the
server: the server is split in two parts that do not col-
lude with each other. Approaches using trusted hardware
promise full functionality [15, 50, 14], but they rely on
trusted hardware at the server.

Work related to Arx-EQ. Arx-EQ falls in the general
category of searchable-encryption schemes [52, 19] and
builds on insights from this literature. While there are
many schemes proposed in this space [19], none of them
meet the following desired security and performance
from a database index. First, a searchable encryption
scheme should not only encrypt the database with IND-
CPA security, but also, when inserting a field, the ac-
cess pattern should not inform the attacker of what other
fields it equals, and an old search token should not allow
searching on newly inserted data. Second, inserts, up-
dates and deletes should be efficient and should not cause
reads to become slow. Arx-EQ meets all these goals. Per-
haps the closest work to Arx-EQ is [20]. This scheme
uses revocation lists for delete operations, which adds
significant complexity and overhead, as well as leaks
more than our goal in Arx: an old search token can be
used to search new data, and the revocation lists leak var-
ious metadata.

Work related to Arx-RANGE. We provide an extensive
survey of the literature related to Arx-RANGE in [16].
The main highlight is order-preserving encryption [17,
18, 44], which is efficient, but leaks a significant amount
of information [36, 39].



13 Conclusion.

Arx is the first practical and functionally rich database
system that encrypts the database with strong encryption
schemes and computes on the encrypted database. We
showed that Arx supports a rich set of applications and
incurs a modest performance overhead.

Acknowledgements

The authors would like to thank Riyaz Faizullabhoy
for discussing early versions of Arx as part of a class
project.

References

[1] Budget Manager. https://github.com/
kdelemme/budget-manager/.

[2] Chino.io: Security and Privacy for Health Data in
the EU. https://chino.io/.

[3] iQrypt: Encrypt and query your database. http:
//igrypt.com/.

[4] Leanote. https://leanote.com/.
[5] Netty Project. http://netty.io/.
[6] NodeBB. https://nodebb.org/.
[7] PencilBlue. https://pencilblue.org/.
[8] Redux chat.

github.com/raineroviir/
react-redux-socketio-chat/.

https://

[9] ShareLatex.
com/.

https://www.sharelatex.

[10] UNCAP: Ubiquitous iNteropable Care for Ageing
People. http://www.uncap.eu/.

[11] ZeroDB. http://zerodb.io/.

[12] C.R. Aragon and R. G. Seidel. Randomized search
trees. In Proceedings of the 30th Annual Sympo-
sium on Foundations of Computer Science (FOCS),
1989.

[13] A. Arasu, K. Eguro, R. Kaushik, D. Kossmann,
R. Ramamurthy, and R. Venkatesan. A secure co-
processor for database applications. In Proceedings
of the 23rd International Conference on Field Pro-
grammable Logic and Applications (FPL), Porto,

Portugal, 2013.

[14] S. Bajaj and R. Sion. TrustedDB: A trusted hard-
ware based database with privacy and data confi-
dentiality. In Proceedings of the 2011 ACM SIG-
MOD International Conference on Management of

Data, Athens, Greece, 2011.

17

[15] A. Baumann, M. Peinado, and G. Hunt. Shielding
applications from an untrusted cloud with Haven.
In Proceedings of the 11th Symposium on Oper-
ating Systems Design and Implementation (OSDI),
2014.
[16] T. Boelter, R. Poddar, and R. A. Popa. A secure
one-roundtrip index for range queries. Cryptology
ePrint Archive, Report 2016/568, 2016. http://
eprint.iacr.org/.
[17] A.Boldyreva, N. Chenette, Y. Lee, and A. O’Neill.
Order-preserving symmetric encryption. In Pro-
ceedings of the 28th Annual International Con-
ference on the Theory and Applications of Cryp-
tographic Techniques (Eurocrypt), Cologne, Ger-
many, 2009.
[18] A. Boldyreva, N. Chenette, and A. O’Neill. Order-
preserving encryption revisited: Improved security
analysis and alternative solutions. In Proceedings
of the 31st International Cryptology Conference
(CRYPTO), Santa Barbara, CA, 2011.
[19] C. Bosch, P. Hartel, W. Jonker, and A. Peter. A sur-
vey of provably secure searchable encryption. ACM
Computing Surveys (CSUR), 2014.
[20] D. Cash, J. Jaeger, S. Jarecki, C. Jutla,
H. Krawczyk, M. Rosu, and M. Steiner. Dynamic
searchable encryption in very-large databases:
Data structures and implementation. In Proceed-
ings of the 21st Network and Distributed System
Security Symposium (NDSS), San Diego, CA,
2014.
[21] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakr-
ishnan, and R. Sears. Benchmarking cloud serving
systems with YCSB. In Proceedings of the 2nd
ACM Symposium on Cloud Computing (SOCC),
Cascais, Portugal, 2011.
[22] M. Egorov and M. Wilkison. ZeroDB white paper.
CoRR, abs/1602.07168, 2016. http://arxiv.
org/abs/1602.07168.
[23] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen,
M. Rosu, and M. Steiner. Rich queries on encrypted
data: Beyond exact matches. In Proceedings of the
20th European Symposium on Research in Com-
puter Security (ESORICS), Vienna, Austria, 2015.
[24] S. Garg, S. Lu, and R. Ostrovsky. Black-box gar-
bled RAM. In Proceedings of the 56th Annual
Symposium on Foundations of Computer Science
(FOCS), 2015.


https://github.com/kdelemme/budget-manager/
https://github.com/kdelemme/budget-manager/
https://chino.io/
http://iqrypt.com/
http://iqrypt.com/
https://leanote.com/
http://netty.io/
https://nodebb.org/
https://pencilblue.org/
https://github.com/raineroviir/react-redux-socketio-chat/
https://github.com/raineroviir/react-redux-socketio-chat/
https://github.com/raineroviir/react-redux-socketio-chat/
https://www.sharelatex.com/
https://www.sharelatex.com/
http://www.uncap.eu/
http://zerodb.io/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://arxiv.org/abs/1602.07168
http://arxiv.org/abs/1602.07168

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

C. Gentry. Fully homomorphic encryption using
ideal lattices. In Proceedings of the 41st ACM Sym-
posium on Theory of Computing (STOC), Bethesda,
MD, 2012.

C. Gentry, S. Halevi, and N. P. Smart. Homomor-
phic evaluation of the AES circuit, 2012. Cryptol-
ogy ePrint Archive, Report 2012/099.

O. Goldreich. The Foundations of Cryptography.
Cambridge University Press, 2001.

T. Greene. Biggest data breaches of 2015,
2015. http://www.networkworld.
com/article/3011103/security/
biggest—-data-breaches-o0f-2015.
html.

P. Grofig, M. Haerterich, I. Hang, F. K. and
Mathias Kohler, A. Schaad, A. Schroepfer, and
W. Tighzert. Experiences and observations on the
industrial implementation of a system to sear ch
over outsourced encrypted data. In Lecture Notes
in Informatics, Sicherheit, 2014.

H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra. Ex-
ecuting SQL over encrypted data in the database-
service-provider model. In Proceedings of the 2002
ACM SIGMOD International Conference on Man-
agement of Data, Madison, WI, 2002.

S. Kamara and T. Moataz. Sql on structurally-
encrypted databases. Cryptology ePrint Archive,
Report 2016/453, 2016. http://eprint.
iacr.org/.

N. Karapanos, A. Filios, R. A. Popa, and S. Cap-
kun. Verena: End-to-end integrity protection for
web applications. In Proceedings of the 37th IEEE
Symposium on Security and Privacy (IEEE S&P),
2016.

J. Kepner, V. Gadepally, P. Michaleas, N. Schear,
M. Varia, A. Yerukhimovich, and R. K. Cunning-
ham. Computing on masked data: a high per-
formance method for improving big data veracity.
CoRR, 2014.

M. Kim, H. T. Lee, S. Ling, S. Q. Ren, B. H. M.
Tan, and H. Wang. Better security for queries on en-
crypted databases. Cryptology ePrint Archive, Re-
port 2016/470, 2016. http://eprint.iacr.
org/.

V. Kolesnikov, A.-R. Sadeghi, and T. Schneider.
Improved garbled circuit building blocks and ap-
plications to auctions and computing minima. In
Proceedings of the 8th International Conference on
Cryptology and Network Security (CANS), 2009.

18

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

V. Kolesnikov and A. Shikfa. On the limits of pri-
vacy provided by order-preserving encryption. Bell
Labs Technical Journal, 2012.

F. Li, M. Hadjieleftheriou, G. Kollios, and
L. Reyzin. Authenticated index structures for ag-
gregation queries. ACM Transactions on Informa-
tion and System Security, 13(4), 2010.

R. Merkle. Secrecy, authentication and public key
systems / A certified digital signature. PhD thesis,
Stanford University, 1979.

M. Naveed, S. Kamara, and C. V. Wright. In-
ference attacks on property-preserving encrypted
databases. In Proceedings of the 22nd ACM Con-
ference on Computer and Communications Security
(CCS), Denver, CO, 2015.

P. Paillier. Public-key cryptosystems based on com-
posite degree residuosity classes. In Proceedings
of the 18th Annual International Conference on the
Theory and Applications of Cryptographic Tech-
niques (Eurocrypt), Prague, Czech Republic, 1999.

V. Pappas, F. Krell, B. Vo, V. Kolesnikov,
T. Malkin, S. G. Choi, W. George, A. Keromytis,
and S. Bellovin. Blind Seer: A scalable private
DBMS. In Proceedings of the 35th IEEE Sympo-
sium on Security and Privacy (IEEE S&P), 2014.

F. Pennic. Anthem suffers the largest healthcare
data breach to date, 2015.

R. A. Popa. Building Practical Systems that Com-
pute on Encrypted Data. PhD thesis, MIT, 2014.

R. A. Popa, FE. H. Li, and N. Zeldovich. An ideal-
security protocol for order-preserving encoding. In
Proceedings of the 34th IEEE Symposium on Secu-
rity and Privacy (IEEE S&P), San Francisco, CA,
2013.

R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan. CryptDB: Protecting confiden-
tiality with encrypted query processing. In Pro-
ceedings of the 23rd ACM Symposium on Operat-
ing Systems Principles (SOSP), Cascais, Portugal,
2011.

Google. Encrypted BigQuery client.
https://github.com/google/
encrypted-bigquery-client.
Microsoft SQL Server 2016. Always en-

crypted database engine. https://msdn.
microsoft.com/en-us/library/
mt163865.aspx.


http://www.networkworld.com/article/3011103/security/biggest-data-breaches-of-2015.html
http://www.networkworld.com/article/3011103/security/biggest-data-breaches-of-2015.html
http://www.networkworld.com/article/3011103/security/biggest-data-breaches-of-2015.html
http://www.networkworld.com/article/3011103/security/biggest-data-breaches-of-2015.html
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
https://github.com/google/encrypted-bigquery-client
https://github.com/google/encrypted-bigquery-client
https://msdn.microsoft.com/en-us/library/mt163865.aspx
https://msdn.microsoft.com/en-us/library/mt163865.aspx
https://msdn.microsoft.com/en-us/library/mt163865.aspx

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

CipherCloud.  Cloud data protection solution.
http://www.ciphercloud.comn.

Cloud Threat Intelligence. Skyhigh cloud secu-
rity labs, Skyhigh Networks. https://www.
skyhighnetworks.com/.

F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,
M. Peinado, G. Mainar-Ruiz, and M. Russinovich.
VC3: Trustworthy data analytics in the cloud using
SGX. In Proceedings of the 36th IEEE Symposium
on Security and Privacy (IEEE S&P), 2015.

J. Sherry, C. Lan, R. P. Ada, and S. Ratnasamy.
BlindBox: Deep packet inspection over encrypted
traffic. In Proceedings of the 26th ACM Special In-
terest Group on Data Communication Conference

(SIGCOMM), 2015.

D. X. Song, D. Wagner, and A. Perrig. Practical
techniques for searches on encrypted data. In Pro-
ceedings of the 21st IEEE Symposium on Security
and Privacy (IEEE S&P), Oakland, CA, 2000.

E. Stefanov, E. Shi, and D. Song. Towards practical
oblivious RAM. In Proceedings of the 19th Net-
work and Distributed System Security Symposium
(NDSS), San Diego, CA, 2012.

S. Tu, M. F. Kaashoek, S. Madden, and N. Zel-
dovich. Processing analytical queries over en-
crypted data. In Proceedings of the 39th Inter-
national Conference on Very Large Data Bases
(VLDB), Riva del Garda, Italy, 2013.

A. C. Yao. How to generate and exchange secrets
(extended abstract). In Proceedings of the 27th An-
nual Symposium on Foundations of Computer Sci-
ence (FOCS), 1986.

S. Zahur, M. Rosulek, and D. Evans. Two halves
make a whole: Reducing data transfer in garbled
circuits using half gates. In Proceedings of the
34th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques
(Eurocrypt), 2015.

Y. Zhang, J. Katz, and C. Papamanthou. IntegriDB:
Verifiable SQL for outsourced databases. In Pro-
ceedings of the 22nd ACM Conference on Com-
puter and Communications Security (CCS), Den-
ver, CO, 2015.

19

Appendices

A Formal treatment of security

In this appendix, we provide security definitions and
proofs for the security of Arx. In this paper, we focus
on the system, so we include most of the formal crypto-
graphic treatment in a separate report: [16]. This report
focuses on the cryptographic treatment of Arx-RANGE
as well as presents other contributions of this scheme. It
also introduces notation, definitions and proofs we need
here, so for conciseness, we will simply refer to them
when needed.

A.1 Persistent attacker

We begin with the persistent attacker because the snap-
shot attacker is an instantiation of the snapshot attacker,
and the guarantee for the snapshot attacker will follow.

As is typical when defining security of such protocols
as Arx, we define a leakage function that the attacker sees
(e.g., size of the database, number of values in the result),
and prove that the attacker does not learn anything else.
We prove non-adaptive semantic security with respect to
these leakage functions. Non-adaptive security suffices
in this case because, in our threat model, an attacker does
not have the ability to issue queries and users, who issue
queries, do not see the encrypted database. However, one
can extend the proofs to adaptive security with some (less
efficient) tweaks to our schemes.

A few preliminaries are needed to understand our no-
tation and notions. Please refer to [16].

We now define the leakage profile of Arx in the face
of a persistent attacker.

Definition 1. The schema and sizing leakage is, given a

database DB,

* the schema: the name of collections, the number of
documents in each collection and which fields they
contain (but not the content of the fields), unique or
size information per field declared by the developer
indices built by the developer,

e size: the size of each field, and

* the query patterns (list of operations per field, but no
constants).

The leakage for query Q, in general, is the entire query
except for the constants in the query, the time when the
query is issued, which documents and fields are accessed
(removed, inserted, read, updated), but not their content.

For EQ,

e upon search on field f for constant c: whether the
search token equals any previous search token for field
f, the items that match the constant c from field f (in-
cluding the items that were deleted and observed by
the attacker),


http://www.ciphercloud.com
https://www.skyhighnetworks.com/
https://www.skyhighnetworks.com/

* upon insert: nothing besides above with respect to old
search tokens observed by attacker, and

* upon update: as above with respect to old search to-
kens observed by attacker.

For Arx-RANGE and Arx-AGG, as specified in [16].

For Arx-EQ:

* upon search on field f for constant c: the items that
match the constant c¢ from field f and the counter of
each (indicating insert order), including counters and
matches for elements that were deleted since the last
cleanup, such items were in deleted documents,

* upon insert, delete, update: nothing additional, and

* upon cleanup: same as search.

For Arx-JOIN: the same information as Arx-EQ or
Arx-RANGE, depending on which Arx-JOIN was built on,
as well as leakage as in EQ for the foreign key, where
each match identifies a primary key.

Theorem 2. The Arx protocol is non-adaptively seman-
tically secure (see definition in [16]) with leakage profile
defined in Def. 1, under the assumptions that: AES is
a pseudorandom permutation and the Paillier assump-
tion [40]. In some places, for efficiency, we additionally
introduce the random oracle assumption.

The security definition captures the honest-but-curious
server as defined by the protocol so we assume the server
does not maintain history-dependent data: however, we
note again as in §4.4, that the real server might main-
tain some history-dependent information which is hard
to control (e.g., the language runtime’s placement of data
in memory).

Proof Sketch. We provide a proof sketch leaving a de-
tailed proof for the next version of this report. Neverthe-
less, the proof for Arx-RANGE, the biggest part of this
component is fully presented in [16], and the remainder
is mostly mechanical.

We can treat each scheme per field in Arx separately
because the client uses a separate key for each one.
Hence, let’s discuss each scheme in part.

The building blocks, BASE, EQ and AGG, already ex-
ist and are proven secure [40, 51, 20]; their security guar-
antees satisfy the leakage in Def. 1.

The more complex scheme is Arx-RANGE, for which
we prove adherence to the desired security guarantees
in [16].

The proofs for Arx-EQ and Arx-JOIN are straightfor-
ward and will be included in the next version of this re-
port.

O

A.2 Snapshot attacker

Proof of Theorem 1. The guarantee for the snapshot at-
tacker follows from Theorem 2. The per-query leakage is

removed from the leakage function: recall that the snap-
shot attacker ’s information is a snapshot of the database.

As promised, the remaining leakage is only the
schema and sizing information, and it contains no data
content. In fact, one can simulate efficiently the con-
tent of the database (collections and indices) only from
schema and sizing information.

Definition 2. The leakage is, given a database DB,

e the schema: the name of collections, the number of
documents in each collection and which fields they
contain (but not the content of the fields), unique or
size information per field declared by the developer,
indices built by the developer,

e size: the size of each field, and

e the query patterns (list of operations per field, but no
constants).

The fact that the decryption key is never sent to the
server is by design. O



	Introduction
	Overview
	Model and Threat Model
	Architecture
	Developer API
	Example
	Functionality
	Security

	Encryption Building Blocks
	Arx-Range and Order-based Queries
	Strawman
	Non-interactive index traversal
	Repairing the index
	A secure database index 
	Concurrency
	Garbled circuit design
	Security

	Arx-Eq and Equality Queries
	Base protocol
	Reducing the work of the client proxy
	Updates
	The counter map
	Array-based operations
	Security

	Aggregation queries using Arx-Agg
	Joins using Arx-Join
	Arx's Planner
	Index planning
	Data layout
	Query planning and execution
	Queries over arrays

	Discussion and Limitations
	Implementation
	Evaluation
	Functionality
	Performance setup
	Encryption schemes microbenchmarks
	Performance of Arx-Eq
	Performance of Arx-Range
	Performance of Arx-Agg
	Comparison to CryptDB
	End-to-end evaluation
	Evaluation on ShareLaTeX
	YCSB Benchmark

	Storage

	Related Work
	Conclusion.
	Appendices
	Formal treatment of security
	Persistent attacker
	Snapshot attacker


